1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/oom_kill.c
4 *
5 *  Copyright (C)  1998,2000  Rik van Riel
6 *	Thanks go out to Claus Fischer for some serious inspiration and
7 *	for goading me into coding this file...
8 *  Copyright (C)  2010  Google, Inc.
9 *	Rewritten by David Rientjes
10 *
11 *  The routines in this file are used to kill a process when
12 *  we're seriously out of memory. This gets called from __alloc_pages()
13 *  in mm/page_alloc.c when we really run out of memory.
14 *
15 *  Since we won't call these routines often (on a well-configured
16 *  machine) this file will double as a 'coding guide' and a signpost
17 *  for newbie kernel hackers. It features several pointers to major
18 *  kernel subsystems and hints as to where to find out what things do.
19 */
20
21#include <linux/oom.h>
22#include <linux/mm.h>
23#include <linux/err.h>
24#include <linux/gfp.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/coredump.h>
28#include <linux/sched/task.h>
29#include <linux/sched/debug.h>
30#include <linux/swap.h>
31#include <linux/syscalls.h>
32#include <linux/timex.h>
33#include <linux/jiffies.h>
34#include <linux/cpuset.h>
35#include <linux/export.h>
36#include <linux/notifier.h>
37#include <linux/memcontrol.h>
38#include <linux/mempolicy.h>
39#include <linux/security.h>
40#include <linux/ptrace.h>
41#include <linux/freezer.h>
42#include <linux/ftrace.h>
43#include <linux/ratelimit.h>
44#include <linux/kthread.h>
45#include <linux/init.h>
46#include <linux/mmu_notifier.h>
47#include <linux/cred.h>
48
49#include <asm/tlb.h>
50#include "internal.h"
51#include "slab.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/oom.h>
55
56static int sysctl_panic_on_oom;
57static int sysctl_oom_kill_allocating_task;
58static int sysctl_oom_dump_tasks = 1;
59
60/*
61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
63 * from different domains).
64 *
65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
66 * and mark_oom_victim
67 */
68DEFINE_MUTEX(oom_lock);
69/* Serializes oom_score_adj and oom_score_adj_min updates */
70DEFINE_MUTEX(oom_adj_mutex);
71
72static inline bool is_memcg_oom(struct oom_control *oc)
73{
74	return oc->memcg != NULL;
75}
76
77#ifdef CONFIG_NUMA
78/**
79 * oom_cpuset_eligible() - check task eligibility for kill
80 * @start: task struct of which task to consider
81 * @oc: pointer to struct oom_control
82 *
83 * Task eligibility is determined by whether or not a candidate task, @tsk,
84 * shares the same mempolicy nodes as current if it is bound by such a policy
85 * and whether or not it has the same set of allowed cpuset nodes.
86 *
87 * This function is assuming oom-killer context and 'current' has triggered
88 * the oom-killer.
89 */
90static bool oom_cpuset_eligible(struct task_struct *start,
91				struct oom_control *oc)
92{
93	struct task_struct *tsk;
94	bool ret = false;
95	const nodemask_t *mask = oc->nodemask;
96
97	rcu_read_lock();
98	for_each_thread(start, tsk) {
99		if (mask) {
100			/*
101			 * If this is a mempolicy constrained oom, tsk's
102			 * cpuset is irrelevant.  Only return true if its
103			 * mempolicy intersects current, otherwise it may be
104			 * needlessly killed.
105			 */
106			ret = mempolicy_in_oom_domain(tsk, mask);
107		} else {
108			/*
109			 * This is not a mempolicy constrained oom, so only
110			 * check the mems of tsk's cpuset.
111			 */
112			ret = cpuset_mems_allowed_intersects(current, tsk);
113		}
114		if (ret)
115			break;
116	}
117	rcu_read_unlock();
118
119	return ret;
120}
121#else
122static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123{
124	return true;
125}
126#endif /* CONFIG_NUMA */
127
128/*
129 * The process p may have detached its own ->mm while exiting or through
130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
131 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
132 * task_lock() held.
133 */
134struct task_struct *find_lock_task_mm(struct task_struct *p)
135{
136	struct task_struct *t;
137
138	rcu_read_lock();
139
140	for_each_thread(p, t) {
141		task_lock(t);
142		if (likely(t->mm))
143			goto found;
144		task_unlock(t);
145	}
146	t = NULL;
147found:
148	rcu_read_unlock();
149
150	return t;
151}
152
153/*
154 * order == -1 means the oom kill is required by sysrq, otherwise only
155 * for display purposes.
156 */
157static inline bool is_sysrq_oom(struct oom_control *oc)
158{
159	return oc->order == -1;
160}
161
162/* return true if the task is not adequate as candidate victim task. */
163static bool oom_unkillable_task(struct task_struct *p)
164{
165	if (is_global_init(p))
166		return true;
167	if (p->flags & PF_KTHREAD)
168		return true;
169	return false;
170}
171
172/*
173 * Check whether unreclaimable slab amount is greater than
174 * all user memory(LRU pages).
175 * dump_unreclaimable_slab() could help in the case that
176 * oom due to too much unreclaimable slab used by kernel.
177*/
178static bool should_dump_unreclaim_slab(void)
179{
180	unsigned long nr_lru;
181
182	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183		 global_node_page_state(NR_INACTIVE_ANON) +
184		 global_node_page_state(NR_ACTIVE_FILE) +
185		 global_node_page_state(NR_INACTIVE_FILE) +
186		 global_node_page_state(NR_ISOLATED_ANON) +
187		 global_node_page_state(NR_ISOLATED_FILE) +
188		 global_node_page_state(NR_UNEVICTABLE);
189
190	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191}
192
193/**
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
197 *
198 * The heuristic for determining which task to kill is made to be as simple and
199 * predictable as possible.  The goal is to return the highest value for the
200 * task consuming the most memory to avoid subsequent oom failures.
201 */
202long oom_badness(struct task_struct *p, unsigned long totalpages)
203{
204	long points;
205	long adj;
206
207	if (oom_unkillable_task(p))
208		return LONG_MIN;
209
210	p = find_lock_task_mm(p);
211	if (!p)
212		return LONG_MIN;
213
214	/*
215	 * Do not even consider tasks which are explicitly marked oom
216	 * unkillable or have been already oom reaped or the are in
217	 * the middle of vfork
218	 */
219	adj = (long)p->signal->oom_score_adj;
220	if (adj == OOM_SCORE_ADJ_MIN ||
221			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
222			in_vfork(p)) {
223		task_unlock(p);
224		return LONG_MIN;
225	}
226
227	/*
228	 * The baseline for the badness score is the proportion of RAM that each
229	 * task's rss, pagetable and swap space use.
230	 */
231	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233	task_unlock(p);
234
235	/* Normalize to oom_score_adj units */
236	adj *= totalpages / 1000;
237	points += adj;
238
239	return points;
240}
241
242static const char * const oom_constraint_text[] = {
243	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247};
248
249/*
250 * Determine the type of allocation constraint.
251 */
252static enum oom_constraint constrained_alloc(struct oom_control *oc)
253{
254	struct zone *zone;
255	struct zoneref *z;
256	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257	bool cpuset_limited = false;
258	int nid;
259
260	if (is_memcg_oom(oc)) {
261		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262		return CONSTRAINT_MEMCG;
263	}
264
265	/* Default to all available memory */
266	oc->totalpages = totalram_pages() + total_swap_pages;
267
268	if (!IS_ENABLED(CONFIG_NUMA))
269		return CONSTRAINT_NONE;
270
271	if (!oc->zonelist)
272		return CONSTRAINT_NONE;
273	/*
274	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275	 * to kill current.We have to random task kill in this case.
276	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277	 */
278	if (oc->gfp_mask & __GFP_THISNODE)
279		return CONSTRAINT_NONE;
280
281	/*
282	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283	 * the page allocator means a mempolicy is in effect.  Cpuset policy
284	 * is enforced in get_page_from_freelist().
285	 */
286	if (oc->nodemask &&
287	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288		oc->totalpages = total_swap_pages;
289		for_each_node_mask(nid, *oc->nodemask)
290			oc->totalpages += node_present_pages(nid);
291		return CONSTRAINT_MEMORY_POLICY;
292	}
293
294	/* Check this allocation failure is caused by cpuset's wall function */
295	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296			highest_zoneidx, oc->nodemask)
297		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298			cpuset_limited = true;
299
300	if (cpuset_limited) {
301		oc->totalpages = total_swap_pages;
302		for_each_node_mask(nid, cpuset_current_mems_allowed)
303			oc->totalpages += node_present_pages(nid);
304		return CONSTRAINT_CPUSET;
305	}
306	return CONSTRAINT_NONE;
307}
308
309static int oom_evaluate_task(struct task_struct *task, void *arg)
310{
311	struct oom_control *oc = arg;
312	long points;
313
314	if (oom_unkillable_task(task))
315		goto next;
316
317	/* p may not have freeable memory in nodemask */
318	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319		goto next;
320
321	/*
322	 * This task already has access to memory reserves and is being killed.
323	 * Don't allow any other task to have access to the reserves unless
324	 * the task has MMF_OOM_SKIP because chances that it would release
325	 * any memory is quite low.
326	 */
327	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329			goto next;
330		goto abort;
331	}
332
333	/*
334	 * If task is allocating a lot of memory and has been marked to be
335	 * killed first if it triggers an oom, then select it.
336	 */
337	if (oom_task_origin(task)) {
338		points = LONG_MAX;
339		goto select;
340	}
341
342	points = oom_badness(task, oc->totalpages);
343	if (points == LONG_MIN || points < oc->chosen_points)
344		goto next;
345
346select:
347	if (oc->chosen)
348		put_task_struct(oc->chosen);
349	get_task_struct(task);
350	oc->chosen = task;
351	oc->chosen_points = points;
352next:
353	return 0;
354abort:
355	if (oc->chosen)
356		put_task_struct(oc->chosen);
357	oc->chosen = (void *)-1UL;
358	return 1;
359}
360
361/*
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
364 */
365static void select_bad_process(struct oom_control *oc)
366{
367	oc->chosen_points = LONG_MIN;
368
369	if (is_memcg_oom(oc))
370		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371	else {
372		struct task_struct *p;
373
374		rcu_read_lock();
375		for_each_process(p)
376			if (oom_evaluate_task(p, oc))
377				break;
378		rcu_read_unlock();
379	}
380}
381
382static int dump_task(struct task_struct *p, void *arg)
383{
384	struct oom_control *oc = arg;
385	struct task_struct *task;
386
387	if (oom_unkillable_task(p))
388		return 0;
389
390	/* p may not have freeable memory in nodemask */
391	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392		return 0;
393
394	task = find_lock_task_mm(p);
395	if (!task) {
396		/*
397		 * All of p's threads have already detached their mm's. There's
398		 * no need to report them; they can't be oom killed anyway.
399		 */
400		return 0;
401	}
402
403	pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu         %5hd %s\n",
404		task->pid, from_kuid(&init_user_ns, task_uid(task)),
405		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406		get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
407		get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
408		get_mm_counter(task->mm, MM_SWAPENTS),
409		task->signal->oom_score_adj, task->comm);
410	task_unlock(task);
411
412	return 0;
413}
414
415/**
416 * dump_tasks - dump current memory state of all system tasks
417 * @oc: pointer to struct oom_control
418 *
419 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 * are not shown.
422 * State information includes task's pid, uid, tgid, vm size, rss,
423 * pgtables_bytes, swapents, oom_score_adj value, and name.
424 */
425static void dump_tasks(struct oom_control *oc)
426{
427	pr_info("Tasks state (memory values in pages):\n");
428	pr_info("[  pid  ]   uid  tgid total_vm      rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
429
430	if (is_memcg_oom(oc))
431		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432	else {
433		struct task_struct *p;
434
435		rcu_read_lock();
436		for_each_process(p)
437			dump_task(p, oc);
438		rcu_read_unlock();
439	}
440}
441
442static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
443{
444	/* one line summary of the oom killer context. */
445	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
446			oom_constraint_text[oc->constraint],
447			nodemask_pr_args(oc->nodemask));
448	cpuset_print_current_mems_allowed();
449	mem_cgroup_print_oom_context(oc->memcg, victim);
450	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
451		from_kuid(&init_user_ns, task_uid(victim)));
452}
453
454static void dump_header(struct oom_control *oc)
455{
456	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
457		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
458			current->signal->oom_score_adj);
459	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
460		pr_warn("COMPACTION is disabled!!!\n");
461
462	dump_stack();
463	if (is_memcg_oom(oc))
464		mem_cgroup_print_oom_meminfo(oc->memcg);
465	else {
466		__show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
467		if (should_dump_unreclaim_slab())
468			dump_unreclaimable_slab();
469	}
470	if (sysctl_oom_dump_tasks)
471		dump_tasks(oc);
472}
473
474/*
475 * Number of OOM victims in flight
476 */
477static atomic_t oom_victims = ATOMIC_INIT(0);
478static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
479
480static bool oom_killer_disabled __read_mostly;
481
482/*
483 * task->mm can be NULL if the task is the exited group leader.  So to
484 * determine whether the task is using a particular mm, we examine all the
485 * task's threads: if one of those is using this mm then this task was also
486 * using it.
487 */
488bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
489{
490	struct task_struct *t;
491
492	for_each_thread(p, t) {
493		struct mm_struct *t_mm = READ_ONCE(t->mm);
494		if (t_mm)
495			return t_mm == mm;
496	}
497	return false;
498}
499
500#ifdef CONFIG_MMU
501/*
502 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
503 * victim (if that is possible) to help the OOM killer to move on.
504 */
505static struct task_struct *oom_reaper_th;
506static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
507static struct task_struct *oom_reaper_list;
508static DEFINE_SPINLOCK(oom_reaper_lock);
509
510static bool __oom_reap_task_mm(struct mm_struct *mm)
511{
512	struct vm_area_struct *vma;
513	bool ret = true;
514	VMA_ITERATOR(vmi, mm, 0);
515
516	/*
517	 * Tell all users of get_user/copy_from_user etc... that the content
518	 * is no longer stable. No barriers really needed because unmapping
519	 * should imply barriers already and the reader would hit a page fault
520	 * if it stumbled over a reaped memory.
521	 */
522	set_bit(MMF_UNSTABLE, &mm->flags);
523
524	for_each_vma(vmi, vma) {
525		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
526			continue;
527
528		/*
529		 * Only anonymous pages have a good chance to be dropped
530		 * without additional steps which we cannot afford as we
531		 * are OOM already.
532		 *
533		 * We do not even care about fs backed pages because all
534		 * which are reclaimable have already been reclaimed and
535		 * we do not want to block exit_mmap by keeping mm ref
536		 * count elevated without a good reason.
537		 */
538		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
539			struct mmu_notifier_range range;
540			struct mmu_gather tlb;
541
542			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
543						mm, vma->vm_start,
544						vma->vm_end);
545			tlb_gather_mmu(&tlb, mm);
546			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
547				tlb_finish_mmu(&tlb);
548				ret = false;
549				continue;
550			}
551			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
552			mmu_notifier_invalidate_range_end(&range);
553			tlb_finish_mmu(&tlb);
554		}
555	}
556
557	return ret;
558}
559
560/*
561 * Reaps the address space of the give task.
562 *
563 * Returns true on success and false if none or part of the address space
564 * has been reclaimed and the caller should retry later.
565 */
566static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
567{
568	bool ret = true;
569
570	if (!mmap_read_trylock(mm)) {
571		trace_skip_task_reaping(tsk->pid);
572		return false;
573	}
574
575	/*
576	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
577	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
578	 * under mmap_lock for reading because it serializes against the
579	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
580	 */
581	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
582		trace_skip_task_reaping(tsk->pid);
583		goto out_unlock;
584	}
585
586	trace_start_task_reaping(tsk->pid);
587
588	/* failed to reap part of the address space. Try again later */
589	ret = __oom_reap_task_mm(mm);
590	if (!ret)
591		goto out_finish;
592
593	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
594			task_pid_nr(tsk), tsk->comm,
595			K(get_mm_counter(mm, MM_ANONPAGES)),
596			K(get_mm_counter(mm, MM_FILEPAGES)),
597			K(get_mm_counter(mm, MM_SHMEMPAGES)));
598out_finish:
599	trace_finish_task_reaping(tsk->pid);
600out_unlock:
601	mmap_read_unlock(mm);
602
603	return ret;
604}
605
606#define MAX_OOM_REAP_RETRIES 10
607static void oom_reap_task(struct task_struct *tsk)
608{
609	int attempts = 0;
610	struct mm_struct *mm = tsk->signal->oom_mm;
611
612	/* Retry the mmap_read_trylock(mm) a few times */
613	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
614		schedule_timeout_idle(HZ/10);
615
616	if (attempts <= MAX_OOM_REAP_RETRIES ||
617	    test_bit(MMF_OOM_SKIP, &mm->flags))
618		goto done;
619
620	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
621		task_pid_nr(tsk), tsk->comm);
622	sched_show_task(tsk);
623	debug_show_all_locks();
624
625done:
626	tsk->oom_reaper_list = NULL;
627
628	/*
629	 * Hide this mm from OOM killer because it has been either reaped or
630	 * somebody can't call mmap_write_unlock(mm).
631	 */
632	set_bit(MMF_OOM_SKIP, &mm->flags);
633
634	/* Drop a reference taken by queue_oom_reaper */
635	put_task_struct(tsk);
636}
637
638static int oom_reaper(void *unused)
639{
640	set_freezable();
641
642	while (true) {
643		struct task_struct *tsk = NULL;
644
645		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
646		spin_lock_irq(&oom_reaper_lock);
647		if (oom_reaper_list != NULL) {
648			tsk = oom_reaper_list;
649			oom_reaper_list = tsk->oom_reaper_list;
650		}
651		spin_unlock_irq(&oom_reaper_lock);
652
653		if (tsk)
654			oom_reap_task(tsk);
655	}
656
657	return 0;
658}
659
660static void wake_oom_reaper(struct timer_list *timer)
661{
662	struct task_struct *tsk = container_of(timer, struct task_struct,
663			oom_reaper_timer);
664	struct mm_struct *mm = tsk->signal->oom_mm;
665	unsigned long flags;
666
667	/* The victim managed to terminate on its own - see exit_mmap */
668	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
669		put_task_struct(tsk);
670		return;
671	}
672
673	spin_lock_irqsave(&oom_reaper_lock, flags);
674	tsk->oom_reaper_list = oom_reaper_list;
675	oom_reaper_list = tsk;
676	spin_unlock_irqrestore(&oom_reaper_lock, flags);
677	trace_wake_reaper(tsk->pid);
678	wake_up(&oom_reaper_wait);
679}
680
681/*
682 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
683 * The timers timeout is arbitrary... the longer it is, the longer the worst
684 * case scenario for the OOM can take. If it is too small, the oom_reaper can
685 * get in the way and release resources needed by the process exit path.
686 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
687 * before the exit path is able to wake the futex waiters.
688 */
689#define OOM_REAPER_DELAY (2*HZ)
690static void queue_oom_reaper(struct task_struct *tsk)
691{
692	/* mm is already queued? */
693	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
694		return;
695
696	get_task_struct(tsk);
697	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
698	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
699	add_timer(&tsk->oom_reaper_timer);
700}
701
702#ifdef CONFIG_SYSCTL
703static struct ctl_table vm_oom_kill_table[] = {
704	{
705		.procname	= "panic_on_oom",
706		.data		= &sysctl_panic_on_oom,
707		.maxlen		= sizeof(sysctl_panic_on_oom),
708		.mode		= 0644,
709		.proc_handler	= proc_dointvec_minmax,
710		.extra1		= SYSCTL_ZERO,
711		.extra2		= SYSCTL_TWO,
712	},
713	{
714		.procname	= "oom_kill_allocating_task",
715		.data		= &sysctl_oom_kill_allocating_task,
716		.maxlen		= sizeof(sysctl_oom_kill_allocating_task),
717		.mode		= 0644,
718		.proc_handler	= proc_dointvec,
719	},
720	{
721		.procname	= "oom_dump_tasks",
722		.data		= &sysctl_oom_dump_tasks,
723		.maxlen		= sizeof(sysctl_oom_dump_tasks),
724		.mode		= 0644,
725		.proc_handler	= proc_dointvec,
726	},
727	{}
728};
729#endif
730
731static int __init oom_init(void)
732{
733	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
734#ifdef CONFIG_SYSCTL
735	register_sysctl_init("vm", vm_oom_kill_table);
736#endif
737	return 0;
738}
739subsys_initcall(oom_init)
740#else
741static inline void queue_oom_reaper(struct task_struct *tsk)
742{
743}
744#endif /* CONFIG_MMU */
745
746/**
747 * mark_oom_victim - mark the given task as OOM victim
748 * @tsk: task to mark
749 *
750 * Has to be called with oom_lock held and never after
751 * oom has been disabled already.
752 *
753 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
754 * under task_lock or operate on the current).
755 */
756static void mark_oom_victim(struct task_struct *tsk)
757{
758	const struct cred *cred;
759	struct mm_struct *mm = tsk->mm;
760
761	WARN_ON(oom_killer_disabled);
762	/* OOM killer might race with memcg OOM */
763	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
764		return;
765
766	/* oom_mm is bound to the signal struct life time. */
767	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
768		mmgrab(tsk->signal->oom_mm);
769
770	/*
771	 * Make sure that the task is woken up from uninterruptible sleep
772	 * if it is frozen because OOM killer wouldn't be able to free
773	 * any memory and livelock. freezing_slow_path will tell the freezer
774	 * that TIF_MEMDIE tasks should be ignored.
775	 */
776	__thaw_task(tsk);
777	atomic_inc(&oom_victims);
778	cred = get_task_cred(tsk);
779	trace_mark_victim(tsk, cred->uid.val);
780	put_cred(cred);
781}
782
783/**
784 * exit_oom_victim - note the exit of an OOM victim
785 */
786void exit_oom_victim(void)
787{
788	clear_thread_flag(TIF_MEMDIE);
789
790	if (!atomic_dec_return(&oom_victims))
791		wake_up_all(&oom_victims_wait);
792}
793
794/**
795 * oom_killer_enable - enable OOM killer
796 */
797void oom_killer_enable(void)
798{
799	oom_killer_disabled = false;
800	pr_info("OOM killer enabled.\n");
801}
802
803/**
804 * oom_killer_disable - disable OOM killer
805 * @timeout: maximum timeout to wait for oom victims in jiffies
806 *
807 * Forces all page allocations to fail rather than trigger OOM killer.
808 * Will block and wait until all OOM victims are killed or the given
809 * timeout expires.
810 *
811 * The function cannot be called when there are runnable user tasks because
812 * the userspace would see unexpected allocation failures as a result. Any
813 * new usage of this function should be consulted with MM people.
814 *
815 * Returns true if successful and false if the OOM killer cannot be
816 * disabled.
817 */
818bool oom_killer_disable(signed long timeout)
819{
820	signed long ret;
821
822	/*
823	 * Make sure to not race with an ongoing OOM killer. Check that the
824	 * current is not killed (possibly due to sharing the victim's memory).
825	 */
826	if (mutex_lock_killable(&oom_lock))
827		return false;
828	oom_killer_disabled = true;
829	mutex_unlock(&oom_lock);
830
831	ret = wait_event_interruptible_timeout(oom_victims_wait,
832			!atomic_read(&oom_victims), timeout);
833	if (ret <= 0) {
834		oom_killer_enable();
835		return false;
836	}
837	pr_info("OOM killer disabled.\n");
838
839	return true;
840}
841
842static inline bool __task_will_free_mem(struct task_struct *task)
843{
844	struct signal_struct *sig = task->signal;
845
846	/*
847	 * A coredumping process may sleep for an extended period in
848	 * coredump_task_exit(), so the oom killer cannot assume that
849	 * the process will promptly exit and release memory.
850	 */
851	if (sig->core_state)
852		return false;
853
854	if (sig->flags & SIGNAL_GROUP_EXIT)
855		return true;
856
857	if (thread_group_empty(task) && (task->flags & PF_EXITING))
858		return true;
859
860	return false;
861}
862
863/*
864 * Checks whether the given task is dying or exiting and likely to
865 * release its address space. This means that all threads and processes
866 * sharing the same mm have to be killed or exiting.
867 * Caller has to make sure that task->mm is stable (hold task_lock or
868 * it operates on the current).
869 */
870static bool task_will_free_mem(struct task_struct *task)
871{
872	struct mm_struct *mm = task->mm;
873	struct task_struct *p;
874	bool ret = true;
875
876	/*
877	 * Skip tasks without mm because it might have passed its exit_mm and
878	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
879	 * on that for now. We can consider find_lock_task_mm in future.
880	 */
881	if (!mm)
882		return false;
883
884	if (!__task_will_free_mem(task))
885		return false;
886
887	/*
888	 * This task has already been drained by the oom reaper so there are
889	 * only small chances it will free some more
890	 */
891	if (test_bit(MMF_OOM_SKIP, &mm->flags))
892		return false;
893
894	if (atomic_read(&mm->mm_users) <= 1)
895		return true;
896
897	/*
898	 * Make sure that all tasks which share the mm with the given tasks
899	 * are dying as well to make sure that a) nobody pins its mm and
900	 * b) the task is also reapable by the oom reaper.
901	 */
902	rcu_read_lock();
903	for_each_process(p) {
904		if (!process_shares_mm(p, mm))
905			continue;
906		if (same_thread_group(task, p))
907			continue;
908		ret = __task_will_free_mem(p);
909		if (!ret)
910			break;
911	}
912	rcu_read_unlock();
913
914	return ret;
915}
916
917static void __oom_kill_process(struct task_struct *victim, const char *message)
918{
919	struct task_struct *p;
920	struct mm_struct *mm;
921	bool can_oom_reap = true;
922
923	p = find_lock_task_mm(victim);
924	if (!p) {
925		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
926			message, task_pid_nr(victim), victim->comm);
927		put_task_struct(victim);
928		return;
929	} else if (victim != p) {
930		get_task_struct(p);
931		put_task_struct(victim);
932		victim = p;
933	}
934
935	/* Get a reference to safely compare mm after task_unlock(victim) */
936	mm = victim->mm;
937	mmgrab(mm);
938
939	/* Raise event before sending signal: task reaper must see this */
940	count_vm_event(OOM_KILL);
941	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
942
943	/*
944	 * We should send SIGKILL before granting access to memory reserves
945	 * in order to prevent the OOM victim from depleting the memory
946	 * reserves from the user space under its control.
947	 */
948	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
949	mark_oom_victim(victim);
950	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
951		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
952		K(get_mm_counter(mm, MM_ANONPAGES)),
953		K(get_mm_counter(mm, MM_FILEPAGES)),
954		K(get_mm_counter(mm, MM_SHMEMPAGES)),
955		from_kuid(&init_user_ns, task_uid(victim)),
956		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
957	task_unlock(victim);
958
959	/*
960	 * Kill all user processes sharing victim->mm in other thread groups, if
961	 * any.  They don't get access to memory reserves, though, to avoid
962	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
963	 * oom killed thread cannot exit because it requires the semaphore and
964	 * its contended by another thread trying to allocate memory itself.
965	 * That thread will now get access to memory reserves since it has a
966	 * pending fatal signal.
967	 */
968	rcu_read_lock();
969	for_each_process(p) {
970		if (!process_shares_mm(p, mm))
971			continue;
972		if (same_thread_group(p, victim))
973			continue;
974		if (is_global_init(p)) {
975			can_oom_reap = false;
976			set_bit(MMF_OOM_SKIP, &mm->flags);
977			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
978					task_pid_nr(victim), victim->comm,
979					task_pid_nr(p), p->comm);
980			continue;
981		}
982		/*
983		 * No kthread_use_mm() user needs to read from the userspace so
984		 * we are ok to reap it.
985		 */
986		if (unlikely(p->flags & PF_KTHREAD))
987			continue;
988		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
989	}
990	rcu_read_unlock();
991
992	if (can_oom_reap)
993		queue_oom_reaper(victim);
994
995	mmdrop(mm);
996	put_task_struct(victim);
997}
998
999/*
1000 * Kill provided task unless it's secured by setting
1001 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1002 */
1003static int oom_kill_memcg_member(struct task_struct *task, void *message)
1004{
1005	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1006	    !is_global_init(task)) {
1007		get_task_struct(task);
1008		__oom_kill_process(task, message);
1009	}
1010	return 0;
1011}
1012
1013static void oom_kill_process(struct oom_control *oc, const char *message)
1014{
1015	struct task_struct *victim = oc->chosen;
1016	struct mem_cgroup *oom_group;
1017	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1018					      DEFAULT_RATELIMIT_BURST);
1019
1020	/*
1021	 * If the task is already exiting, don't alarm the sysadmin or kill
1022	 * its children or threads, just give it access to memory reserves
1023	 * so it can die quickly
1024	 */
1025	task_lock(victim);
1026	if (task_will_free_mem(victim)) {
1027		mark_oom_victim(victim);
1028		queue_oom_reaper(victim);
1029		task_unlock(victim);
1030		put_task_struct(victim);
1031		return;
1032	}
1033	task_unlock(victim);
1034
1035	if (__ratelimit(&oom_rs)) {
1036		dump_header(oc);
1037		dump_oom_victim(oc, victim);
1038	}
1039
1040	/*
1041	 * Do we need to kill the entire memory cgroup?
1042	 * Or even one of the ancestor memory cgroups?
1043	 * Check this out before killing the victim task.
1044	 */
1045	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1046
1047	__oom_kill_process(victim, message);
1048
1049	/*
1050	 * If necessary, kill all tasks in the selected memory cgroup.
1051	 */
1052	if (oom_group) {
1053		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1054		mem_cgroup_print_oom_group(oom_group);
1055		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1056				      (void *)message);
1057		mem_cgroup_put(oom_group);
1058	}
1059}
1060
1061/*
1062 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1063 */
1064static void check_panic_on_oom(struct oom_control *oc)
1065{
1066	if (likely(!sysctl_panic_on_oom))
1067		return;
1068	if (sysctl_panic_on_oom != 2) {
1069		/*
1070		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1071		 * does not panic for cpuset, mempolicy, or memcg allocation
1072		 * failures.
1073		 */
1074		if (oc->constraint != CONSTRAINT_NONE)
1075			return;
1076	}
1077	/* Do not panic for oom kills triggered by sysrq */
1078	if (is_sysrq_oom(oc))
1079		return;
1080	dump_header(oc);
1081	panic("Out of memory: %s panic_on_oom is enabled\n",
1082		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1083}
1084
1085static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1086
1087int register_oom_notifier(struct notifier_block *nb)
1088{
1089	return blocking_notifier_chain_register(&oom_notify_list, nb);
1090}
1091EXPORT_SYMBOL_GPL(register_oom_notifier);
1092
1093int unregister_oom_notifier(struct notifier_block *nb)
1094{
1095	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1096}
1097EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1098
1099/**
1100 * out_of_memory - kill the "best" process when we run out of memory
1101 * @oc: pointer to struct oom_control
1102 *
1103 * If we run out of memory, we have the choice between either
1104 * killing a random task (bad), letting the system crash (worse)
1105 * OR try to be smart about which process to kill. Note that we
1106 * don't have to be perfect here, we just have to be good.
1107 */
1108bool out_of_memory(struct oom_control *oc)
1109{
1110	unsigned long freed = 0;
1111
1112	if (oom_killer_disabled)
1113		return false;
1114
1115	if (!is_memcg_oom(oc)) {
1116		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1117		if (freed > 0 && !is_sysrq_oom(oc))
1118			/* Got some memory back in the last second. */
1119			return true;
1120	}
1121
1122	/*
1123	 * If current has a pending SIGKILL or is exiting, then automatically
1124	 * select it.  The goal is to allow it to allocate so that it may
1125	 * quickly exit and free its memory.
1126	 */
1127	if (task_will_free_mem(current)) {
1128		mark_oom_victim(current);
1129		queue_oom_reaper(current);
1130		return true;
1131	}
1132
1133	/*
1134	 * The OOM killer does not compensate for IO-less reclaim.
1135	 * But mem_cgroup_oom() has to invoke the OOM killer even
1136	 * if it is a GFP_NOFS allocation.
1137	 */
1138	if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1139		return true;
1140
1141	/*
1142	 * Check if there were limitations on the allocation (only relevant for
1143	 * NUMA and memcg) that may require different handling.
1144	 */
1145	oc->constraint = constrained_alloc(oc);
1146	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1147		oc->nodemask = NULL;
1148	check_panic_on_oom(oc);
1149
1150	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1151	    current->mm && !oom_unkillable_task(current) &&
1152	    oom_cpuset_eligible(current, oc) &&
1153	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1154		get_task_struct(current);
1155		oc->chosen = current;
1156		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1157		return true;
1158	}
1159
1160	select_bad_process(oc);
1161	/* Found nothing?!?! */
1162	if (!oc->chosen) {
1163		dump_header(oc);
1164		pr_warn("Out of memory and no killable processes...\n");
1165		/*
1166		 * If we got here due to an actual allocation at the
1167		 * system level, we cannot survive this and will enter
1168		 * an endless loop in the allocator. Bail out now.
1169		 */
1170		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1171			panic("System is deadlocked on memory\n");
1172	}
1173	if (oc->chosen && oc->chosen != (void *)-1UL)
1174		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1175				 "Memory cgroup out of memory");
1176	return !!oc->chosen;
1177}
1178
1179/*
1180 * The pagefault handler calls here because some allocation has failed. We have
1181 * to take care of the memcg OOM here because this is the only safe context without
1182 * any locks held but let the oom killer triggered from the allocation context care
1183 * about the global OOM.
1184 */
1185void pagefault_out_of_memory(void)
1186{
1187	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1188				      DEFAULT_RATELIMIT_BURST);
1189
1190	if (mem_cgroup_oom_synchronize(true))
1191		return;
1192
1193	if (fatal_signal_pending(current))
1194		return;
1195
1196	if (__ratelimit(&pfoom_rs))
1197		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1198}
1199
1200SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1201{
1202#ifdef CONFIG_MMU
1203	struct mm_struct *mm = NULL;
1204	struct task_struct *task;
1205	struct task_struct *p;
1206	unsigned int f_flags;
1207	bool reap = false;
1208	long ret = 0;
1209
1210	if (flags)
1211		return -EINVAL;
1212
1213	task = pidfd_get_task(pidfd, &f_flags);
1214	if (IS_ERR(task))
1215		return PTR_ERR(task);
1216
1217	/*
1218	 * Make sure to choose a thread which still has a reference to mm
1219	 * during the group exit
1220	 */
1221	p = find_lock_task_mm(task);
1222	if (!p) {
1223		ret = -ESRCH;
1224		goto put_task;
1225	}
1226
1227	mm = p->mm;
1228	mmgrab(mm);
1229
1230	if (task_will_free_mem(p))
1231		reap = true;
1232	else {
1233		/* Error only if the work has not been done already */
1234		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1235			ret = -EINVAL;
1236	}
1237	task_unlock(p);
1238
1239	if (!reap)
1240		goto drop_mm;
1241
1242	if (mmap_read_lock_killable(mm)) {
1243		ret = -EINTR;
1244		goto drop_mm;
1245	}
1246	/*
1247	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1248	 * possible change in exit_mmap is seen
1249	 */
1250	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1251		ret = -EAGAIN;
1252	mmap_read_unlock(mm);
1253
1254drop_mm:
1255	mmdrop(mm);
1256put_task:
1257	put_task_struct(task);
1258	return ret;
1259#else
1260	return -ENOSYS;
1261#endif /* CONFIG_MMU */
1262}
1263