1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/mm/mmu_notifier.c
4 *
5 *  Copyright (C) 2008  Qumranet, Inc.
6 *  Copyright (C) 2008  SGI
7 *             Christoph Lameter <cl@linux.com>
8 */
9
10#include <linux/rculist.h>
11#include <linux/mmu_notifier.h>
12#include <linux/export.h>
13#include <linux/mm.h>
14#include <linux/err.h>
15#include <linux/interval_tree.h>
16#include <linux/srcu.h>
17#include <linux/rcupdate.h>
18#include <linux/sched.h>
19#include <linux/sched/mm.h>
20#include <linux/slab.h>
21
22/* global SRCU for all MMs */
23DEFINE_STATIC_SRCU(srcu);
24
25#ifdef CONFIG_LOCKDEP
26struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
27	.name = "mmu_notifier_invalidate_range_start"
28};
29#endif
30
31/*
32 * The mmu_notifier_subscriptions structure is allocated and installed in
33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected
34 * critical section and it's released only when mm_count reaches zero
35 * in mmdrop().
36 */
37struct mmu_notifier_subscriptions {
38	/* all mmu notifiers registered in this mm are queued in this list */
39	struct hlist_head list;
40	bool has_itree;
41	/* to serialize the list modifications and hlist_unhashed */
42	spinlock_t lock;
43	unsigned long invalidate_seq;
44	unsigned long active_invalidate_ranges;
45	struct rb_root_cached itree;
46	wait_queue_head_t wq;
47	struct hlist_head deferred_list;
48};
49
50/*
51 * This is a collision-retry read-side/write-side 'lock', a lot like a
52 * seqcount, however this allows multiple write-sides to hold it at
53 * once. Conceptually the write side is protecting the values of the PTEs in
54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
55 * writer exists.
56 *
57 * Note that the core mm creates nested invalidate_range_start()/end() regions
58 * within the same thread, and runs invalidate_range_start()/end() in parallel
59 * on multiple CPUs. This is designed to not reduce concurrency or block
60 * progress on the mm side.
61 *
62 * As a secondary function, holding the full write side also serves to prevent
63 * writers for the itree, this is an optimization to avoid extra locking
64 * during invalidate_range_start/end notifiers.
65 *
66 * The write side has two states, fully excluded:
67 *  - mm->active_invalidate_ranges != 0
68 *  - subscriptions->invalidate_seq & 1 == True (odd)
69 *  - some range on the mm_struct is being invalidated
70 *  - the itree is not allowed to change
71 *
72 * And partially excluded:
73 *  - mm->active_invalidate_ranges != 0
74 *  - subscriptions->invalidate_seq & 1 == False (even)
75 *  - some range on the mm_struct is being invalidated
76 *  - the itree is allowed to change
77 *
78 * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
79 *    seq |= 1  # Begin writing
80 *    seq++     # Release the writing state
81 *    seq & 1   # True if a writer exists
82 *
83 * The later state avoids some expensive work on inv_end in the common case of
84 * no mmu_interval_notifier monitoring the VA.
85 */
86static bool
87mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
88{
89	lockdep_assert_held(&subscriptions->lock);
90	return subscriptions->invalidate_seq & 1;
91}
92
93static struct mmu_interval_notifier *
94mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
95			 const struct mmu_notifier_range *range,
96			 unsigned long *seq)
97{
98	struct interval_tree_node *node;
99	struct mmu_interval_notifier *res = NULL;
100
101	spin_lock(&subscriptions->lock);
102	subscriptions->active_invalidate_ranges++;
103	node = interval_tree_iter_first(&subscriptions->itree, range->start,
104					range->end - 1);
105	if (node) {
106		subscriptions->invalidate_seq |= 1;
107		res = container_of(node, struct mmu_interval_notifier,
108				   interval_tree);
109	}
110
111	*seq = subscriptions->invalidate_seq;
112	spin_unlock(&subscriptions->lock);
113	return res;
114}
115
116static struct mmu_interval_notifier *
117mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
118		  const struct mmu_notifier_range *range)
119{
120	struct interval_tree_node *node;
121
122	node = interval_tree_iter_next(&interval_sub->interval_tree,
123				       range->start, range->end - 1);
124	if (!node)
125		return NULL;
126	return container_of(node, struct mmu_interval_notifier, interval_tree);
127}
128
129static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
130{
131	struct mmu_interval_notifier *interval_sub;
132	struct hlist_node *next;
133
134	spin_lock(&subscriptions->lock);
135	if (--subscriptions->active_invalidate_ranges ||
136	    !mn_itree_is_invalidating(subscriptions)) {
137		spin_unlock(&subscriptions->lock);
138		return;
139	}
140
141	/* Make invalidate_seq even */
142	subscriptions->invalidate_seq++;
143
144	/*
145	 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
146	 * Adds and removes are queued until the final inv_end happens then
147	 * they are progressed. This arrangement for tree updates is used to
148	 * avoid using a blocking lock during invalidate_range_start.
149	 */
150	hlist_for_each_entry_safe(interval_sub, next,
151				  &subscriptions->deferred_list,
152				  deferred_item) {
153		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
154			interval_tree_insert(&interval_sub->interval_tree,
155					     &subscriptions->itree);
156		else
157			interval_tree_remove(&interval_sub->interval_tree,
158					     &subscriptions->itree);
159		hlist_del(&interval_sub->deferred_item);
160	}
161	spin_unlock(&subscriptions->lock);
162
163	wake_up_all(&subscriptions->wq);
164}
165
166/**
167 * mmu_interval_read_begin - Begin a read side critical section against a VA
168 *                           range
169 * @interval_sub: The interval subscription
170 *
171 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
172 * collision-retry scheme similar to seqcount for the VA range under
173 * subscription. If the mm invokes invalidation during the critical section
174 * then mmu_interval_read_retry() will return true.
175 *
176 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
177 * require a blocking context.  The critical region formed by this can sleep,
178 * and the required 'user_lock' can also be a sleeping lock.
179 *
180 * The caller is required to provide a 'user_lock' to serialize both teardown
181 * and setup.
182 *
183 * The return value should be passed to mmu_interval_read_retry().
184 */
185unsigned long
186mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
187{
188	struct mmu_notifier_subscriptions *subscriptions =
189		interval_sub->mm->notifier_subscriptions;
190	unsigned long seq;
191	bool is_invalidating;
192
193	/*
194	 * If the subscription has a different seq value under the user_lock
195	 * than we started with then it has collided.
196	 *
197	 * If the subscription currently has the same seq value as the
198	 * subscriptions seq, then it is currently between
199	 * invalidate_start/end and is colliding.
200	 *
201	 * The locking looks broadly like this:
202	 *   mn_itree_inv_start():                 mmu_interval_read_begin():
203	 *                                         spin_lock
204	 *                                          seq = READ_ONCE(interval_sub->invalidate_seq);
205	 *                                          seq == subs->invalidate_seq
206	 *                                         spin_unlock
207	 *    spin_lock
208	 *     seq = ++subscriptions->invalidate_seq
209	 *    spin_unlock
210	 *     op->invalidate():
211	 *       user_lock
212	 *        mmu_interval_set_seq()
213	 *         interval_sub->invalidate_seq = seq
214	 *       user_unlock
215	 *
216	 *                          [Required: mmu_interval_read_retry() == true]
217	 *
218	 *   mn_itree_inv_end():
219	 *    spin_lock
220	 *     seq = ++subscriptions->invalidate_seq
221	 *    spin_unlock
222	 *
223	 *                                        user_lock
224	 *                                         mmu_interval_read_retry():
225	 *                                          interval_sub->invalidate_seq != seq
226	 *                                        user_unlock
227	 *
228	 * Barriers are not needed here as any races here are closed by an
229	 * eventual mmu_interval_read_retry(), which provides a barrier via the
230	 * user_lock.
231	 */
232	spin_lock(&subscriptions->lock);
233	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
234	seq = READ_ONCE(interval_sub->invalidate_seq);
235	is_invalidating = seq == subscriptions->invalidate_seq;
236	spin_unlock(&subscriptions->lock);
237
238	/*
239	 * interval_sub->invalidate_seq must always be set to an odd value via
240	 * mmu_interval_set_seq() using the provided cur_seq from
241	 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
242	 * will always clear the below sleep in some reasonable time as
243	 * subscriptions->invalidate_seq is even in the idle state.
244	 */
245	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
246	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
247	if (is_invalidating)
248		wait_event(subscriptions->wq,
249			   READ_ONCE(subscriptions->invalidate_seq) != seq);
250
251	/*
252	 * Notice that mmu_interval_read_retry() can already be true at this
253	 * point, avoiding loops here allows the caller to provide a global
254	 * time bound.
255	 */
256
257	return seq;
258}
259EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
260
261static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
262			     struct mm_struct *mm)
263{
264	struct mmu_notifier_range range = {
265		.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
266		.event = MMU_NOTIFY_RELEASE,
267		.mm = mm,
268		.start = 0,
269		.end = ULONG_MAX,
270	};
271	struct mmu_interval_notifier *interval_sub;
272	unsigned long cur_seq;
273	bool ret;
274
275	for (interval_sub =
276		     mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
277	     interval_sub;
278	     interval_sub = mn_itree_inv_next(interval_sub, &range)) {
279		ret = interval_sub->ops->invalidate(interval_sub, &range,
280						    cur_seq);
281		WARN_ON(!ret);
282	}
283
284	mn_itree_inv_end(subscriptions);
285}
286
287/*
288 * This function can't run concurrently against mmu_notifier_register
289 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
290 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
291 * in parallel despite there being no task using this mm any more,
292 * through the vmas outside of the exit_mmap context, such as with
293 * vmtruncate. This serializes against mmu_notifier_unregister with
294 * the notifier_subscriptions->lock in addition to SRCU and it serializes
295 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
296 * can't go away from under us as exit_mmap holds an mm_count pin
297 * itself.
298 */
299static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
300			     struct mm_struct *mm)
301{
302	struct mmu_notifier *subscription;
303	int id;
304
305	/*
306	 * SRCU here will block mmu_notifier_unregister until
307	 * ->release returns.
308	 */
309	id = srcu_read_lock(&srcu);
310	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
311				 srcu_read_lock_held(&srcu))
312		/*
313		 * If ->release runs before mmu_notifier_unregister it must be
314		 * handled, as it's the only way for the driver to flush all
315		 * existing sptes and stop the driver from establishing any more
316		 * sptes before all the pages in the mm are freed.
317		 */
318		if (subscription->ops->release)
319			subscription->ops->release(subscription, mm);
320
321	spin_lock(&subscriptions->lock);
322	while (unlikely(!hlist_empty(&subscriptions->list))) {
323		subscription = hlist_entry(subscriptions->list.first,
324					   struct mmu_notifier, hlist);
325		/*
326		 * We arrived before mmu_notifier_unregister so
327		 * mmu_notifier_unregister will do nothing other than to wait
328		 * for ->release to finish and for mmu_notifier_unregister to
329		 * return.
330		 */
331		hlist_del_init_rcu(&subscription->hlist);
332	}
333	spin_unlock(&subscriptions->lock);
334	srcu_read_unlock(&srcu, id);
335
336	/*
337	 * synchronize_srcu here prevents mmu_notifier_release from returning to
338	 * exit_mmap (which would proceed with freeing all pages in the mm)
339	 * until the ->release method returns, if it was invoked by
340	 * mmu_notifier_unregister.
341	 *
342	 * The notifier_subscriptions can't go away from under us because
343	 * one mm_count is held by exit_mmap.
344	 */
345	synchronize_srcu(&srcu);
346}
347
348void __mmu_notifier_release(struct mm_struct *mm)
349{
350	struct mmu_notifier_subscriptions *subscriptions =
351		mm->notifier_subscriptions;
352
353	if (subscriptions->has_itree)
354		mn_itree_release(subscriptions, mm);
355
356	if (!hlist_empty(&subscriptions->list))
357		mn_hlist_release(subscriptions, mm);
358}
359
360/*
361 * If no young bitflag is supported by the hardware, ->clear_flush_young can
362 * unmap the address and return 1 or 0 depending if the mapping previously
363 * existed or not.
364 */
365int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
366					unsigned long start,
367					unsigned long end)
368{
369	struct mmu_notifier *subscription;
370	int young = 0, id;
371
372	id = srcu_read_lock(&srcu);
373	hlist_for_each_entry_rcu(subscription,
374				 &mm->notifier_subscriptions->list, hlist,
375				 srcu_read_lock_held(&srcu)) {
376		if (subscription->ops->clear_flush_young)
377			young |= subscription->ops->clear_flush_young(
378				subscription, mm, start, end);
379	}
380	srcu_read_unlock(&srcu, id);
381
382	return young;
383}
384
385int __mmu_notifier_clear_young(struct mm_struct *mm,
386			       unsigned long start,
387			       unsigned long end)
388{
389	struct mmu_notifier *subscription;
390	int young = 0, id;
391
392	id = srcu_read_lock(&srcu);
393	hlist_for_each_entry_rcu(subscription,
394				 &mm->notifier_subscriptions->list, hlist,
395				 srcu_read_lock_held(&srcu)) {
396		if (subscription->ops->clear_young)
397			young |= subscription->ops->clear_young(subscription,
398								mm, start, end);
399	}
400	srcu_read_unlock(&srcu, id);
401
402	return young;
403}
404
405int __mmu_notifier_test_young(struct mm_struct *mm,
406			      unsigned long address)
407{
408	struct mmu_notifier *subscription;
409	int young = 0, id;
410
411	id = srcu_read_lock(&srcu);
412	hlist_for_each_entry_rcu(subscription,
413				 &mm->notifier_subscriptions->list, hlist,
414				 srcu_read_lock_held(&srcu)) {
415		if (subscription->ops->test_young) {
416			young = subscription->ops->test_young(subscription, mm,
417							      address);
418			if (young)
419				break;
420		}
421	}
422	srcu_read_unlock(&srcu, id);
423
424	return young;
425}
426
427void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
428			       pte_t pte)
429{
430	struct mmu_notifier *subscription;
431	int id;
432
433	id = srcu_read_lock(&srcu);
434	hlist_for_each_entry_rcu(subscription,
435				 &mm->notifier_subscriptions->list, hlist,
436				 srcu_read_lock_held(&srcu)) {
437		if (subscription->ops->change_pte)
438			subscription->ops->change_pte(subscription, mm, address,
439						      pte);
440	}
441	srcu_read_unlock(&srcu, id);
442}
443
444static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
445			       const struct mmu_notifier_range *range)
446{
447	struct mmu_interval_notifier *interval_sub;
448	unsigned long cur_seq;
449
450	for (interval_sub =
451		     mn_itree_inv_start_range(subscriptions, range, &cur_seq);
452	     interval_sub;
453	     interval_sub = mn_itree_inv_next(interval_sub, range)) {
454		bool ret;
455
456		ret = interval_sub->ops->invalidate(interval_sub, range,
457						    cur_seq);
458		if (!ret) {
459			if (WARN_ON(mmu_notifier_range_blockable(range)))
460				continue;
461			goto out_would_block;
462		}
463	}
464	return 0;
465
466out_would_block:
467	/*
468	 * On -EAGAIN the non-blocking caller is not allowed to call
469	 * invalidate_range_end()
470	 */
471	mn_itree_inv_end(subscriptions);
472	return -EAGAIN;
473}
474
475static int mn_hlist_invalidate_range_start(
476	struct mmu_notifier_subscriptions *subscriptions,
477	struct mmu_notifier_range *range)
478{
479	struct mmu_notifier *subscription;
480	int ret = 0;
481	int id;
482
483	id = srcu_read_lock(&srcu);
484	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
485				 srcu_read_lock_held(&srcu)) {
486		const struct mmu_notifier_ops *ops = subscription->ops;
487
488		if (ops->invalidate_range_start) {
489			int _ret;
490
491			if (!mmu_notifier_range_blockable(range))
492				non_block_start();
493			_ret = ops->invalidate_range_start(subscription, range);
494			if (!mmu_notifier_range_blockable(range))
495				non_block_end();
496			if (_ret) {
497				pr_info("%pS callback failed with %d in %sblockable context.\n",
498					ops->invalidate_range_start, _ret,
499					!mmu_notifier_range_blockable(range) ?
500						"non-" :
501						"");
502				WARN_ON(mmu_notifier_range_blockable(range) ||
503					_ret != -EAGAIN);
504				/*
505				 * We call all the notifiers on any EAGAIN,
506				 * there is no way for a notifier to know if
507				 * its start method failed, thus a start that
508				 * does EAGAIN can't also do end.
509				 */
510				WARN_ON(ops->invalidate_range_end);
511				ret = _ret;
512			}
513		}
514	}
515
516	if (ret) {
517		/*
518		 * Must be non-blocking to get here.  If there are multiple
519		 * notifiers and one or more failed start, any that succeeded
520		 * start are expecting their end to be called.  Do so now.
521		 */
522		hlist_for_each_entry_rcu(subscription, &subscriptions->list,
523					 hlist, srcu_read_lock_held(&srcu)) {
524			if (!subscription->ops->invalidate_range_end)
525				continue;
526
527			subscription->ops->invalidate_range_end(subscription,
528								range);
529		}
530	}
531	srcu_read_unlock(&srcu, id);
532
533	return ret;
534}
535
536int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
537{
538	struct mmu_notifier_subscriptions *subscriptions =
539		range->mm->notifier_subscriptions;
540	int ret;
541
542	if (subscriptions->has_itree) {
543		ret = mn_itree_invalidate(subscriptions, range);
544		if (ret)
545			return ret;
546	}
547	if (!hlist_empty(&subscriptions->list))
548		return mn_hlist_invalidate_range_start(subscriptions, range);
549	return 0;
550}
551
552static void
553mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
554			struct mmu_notifier_range *range)
555{
556	struct mmu_notifier *subscription;
557	int id;
558
559	id = srcu_read_lock(&srcu);
560	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
561				 srcu_read_lock_held(&srcu)) {
562		if (subscription->ops->invalidate_range_end) {
563			if (!mmu_notifier_range_blockable(range))
564				non_block_start();
565			subscription->ops->invalidate_range_end(subscription,
566								range);
567			if (!mmu_notifier_range_blockable(range))
568				non_block_end();
569		}
570	}
571	srcu_read_unlock(&srcu, id);
572}
573
574void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
575{
576	struct mmu_notifier_subscriptions *subscriptions =
577		range->mm->notifier_subscriptions;
578
579	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
580	if (subscriptions->has_itree)
581		mn_itree_inv_end(subscriptions);
582
583	if (!hlist_empty(&subscriptions->list))
584		mn_hlist_invalidate_end(subscriptions, range);
585	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
586}
587
588void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
589					unsigned long start, unsigned long end)
590{
591	struct mmu_notifier *subscription;
592	int id;
593
594	id = srcu_read_lock(&srcu);
595	hlist_for_each_entry_rcu(subscription,
596				 &mm->notifier_subscriptions->list, hlist,
597				 srcu_read_lock_held(&srcu)) {
598		if (subscription->ops->arch_invalidate_secondary_tlbs)
599			subscription->ops->arch_invalidate_secondary_tlbs(
600				subscription, mm,
601				start, end);
602	}
603	srcu_read_unlock(&srcu, id);
604}
605
606/*
607 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
608 * write mode. A NULL mn signals the notifier is being registered for itree
609 * mode.
610 */
611int __mmu_notifier_register(struct mmu_notifier *subscription,
612			    struct mm_struct *mm)
613{
614	struct mmu_notifier_subscriptions *subscriptions = NULL;
615	int ret;
616
617	mmap_assert_write_locked(mm);
618	BUG_ON(atomic_read(&mm->mm_users) <= 0);
619
620	/*
621	 * Subsystems should only register for invalidate_secondary_tlbs() or
622	 * invalidate_range_start()/end() callbacks, not both.
623	 */
624	if (WARN_ON_ONCE(subscription &&
625			 (subscription->ops->arch_invalidate_secondary_tlbs &&
626			 (subscription->ops->invalidate_range_start ||
627			  subscription->ops->invalidate_range_end))))
628		return -EINVAL;
629
630	if (!mm->notifier_subscriptions) {
631		/*
632		 * kmalloc cannot be called under mm_take_all_locks(), but we
633		 * know that mm->notifier_subscriptions can't change while we
634		 * hold the write side of the mmap_lock.
635		 */
636		subscriptions = kzalloc(
637			sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
638		if (!subscriptions)
639			return -ENOMEM;
640
641		INIT_HLIST_HEAD(&subscriptions->list);
642		spin_lock_init(&subscriptions->lock);
643		subscriptions->invalidate_seq = 2;
644		subscriptions->itree = RB_ROOT_CACHED;
645		init_waitqueue_head(&subscriptions->wq);
646		INIT_HLIST_HEAD(&subscriptions->deferred_list);
647	}
648
649	ret = mm_take_all_locks(mm);
650	if (unlikely(ret))
651		goto out_clean;
652
653	/*
654	 * Serialize the update against mmu_notifier_unregister. A
655	 * side note: mmu_notifier_release can't run concurrently with
656	 * us because we hold the mm_users pin (either implicitly as
657	 * current->mm or explicitly with get_task_mm() or similar).
658	 * We can't race against any other mmu notifier method either
659	 * thanks to mm_take_all_locks().
660	 *
661	 * release semantics on the initialization of the
662	 * mmu_notifier_subscriptions's contents are provided for unlocked
663	 * readers.  acquire can only be used while holding the mmgrab or
664	 * mmget, and is safe because once created the
665	 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
666	 * As above, users holding the mmap_lock or one of the
667	 * mm_take_all_locks() do not need to use acquire semantics.
668	 */
669	if (subscriptions)
670		smp_store_release(&mm->notifier_subscriptions, subscriptions);
671
672	if (subscription) {
673		/* Pairs with the mmdrop in mmu_notifier_unregister_* */
674		mmgrab(mm);
675		subscription->mm = mm;
676		subscription->users = 1;
677
678		spin_lock(&mm->notifier_subscriptions->lock);
679		hlist_add_head_rcu(&subscription->hlist,
680				   &mm->notifier_subscriptions->list);
681		spin_unlock(&mm->notifier_subscriptions->lock);
682	} else
683		mm->notifier_subscriptions->has_itree = true;
684
685	mm_drop_all_locks(mm);
686	BUG_ON(atomic_read(&mm->mm_users) <= 0);
687	return 0;
688
689out_clean:
690	kfree(subscriptions);
691	return ret;
692}
693EXPORT_SYMBOL_GPL(__mmu_notifier_register);
694
695/**
696 * mmu_notifier_register - Register a notifier on a mm
697 * @subscription: The notifier to attach
698 * @mm: The mm to attach the notifier to
699 *
700 * Must not hold mmap_lock nor any other VM related lock when calling
701 * this registration function. Must also ensure mm_users can't go down
702 * to zero while this runs to avoid races with mmu_notifier_release,
703 * so mm has to be current->mm or the mm should be pinned safely such
704 * as with get_task_mm(). If the mm is not current->mm, the mm_users
705 * pin should be released by calling mmput after mmu_notifier_register
706 * returns.
707 *
708 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
709 * unregister the notifier.
710 *
711 * While the caller has a mmu_notifier get the subscription->mm pointer will remain
712 * valid, and can be converted to an active mm pointer via mmget_not_zero().
713 */
714int mmu_notifier_register(struct mmu_notifier *subscription,
715			  struct mm_struct *mm)
716{
717	int ret;
718
719	mmap_write_lock(mm);
720	ret = __mmu_notifier_register(subscription, mm);
721	mmap_write_unlock(mm);
722	return ret;
723}
724EXPORT_SYMBOL_GPL(mmu_notifier_register);
725
726static struct mmu_notifier *
727find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
728{
729	struct mmu_notifier *subscription;
730
731	spin_lock(&mm->notifier_subscriptions->lock);
732	hlist_for_each_entry_rcu(subscription,
733				 &mm->notifier_subscriptions->list, hlist,
734				 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
735		if (subscription->ops != ops)
736			continue;
737
738		if (likely(subscription->users != UINT_MAX))
739			subscription->users++;
740		else
741			subscription = ERR_PTR(-EOVERFLOW);
742		spin_unlock(&mm->notifier_subscriptions->lock);
743		return subscription;
744	}
745	spin_unlock(&mm->notifier_subscriptions->lock);
746	return NULL;
747}
748
749/**
750 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
751 *                           the mm & ops
752 * @ops: The operations struct being subscribe with
753 * @mm : The mm to attach notifiers too
754 *
755 * This function either allocates a new mmu_notifier via
756 * ops->alloc_notifier(), or returns an already existing notifier on the
757 * list. The value of the ops pointer is used to determine when two notifiers
758 * are the same.
759 *
760 * Each call to mmu_notifier_get() must be paired with a call to
761 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
762 *
763 * While the caller has a mmu_notifier get the mm pointer will remain valid,
764 * and can be converted to an active mm pointer via mmget_not_zero().
765 */
766struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
767					     struct mm_struct *mm)
768{
769	struct mmu_notifier *subscription;
770	int ret;
771
772	mmap_assert_write_locked(mm);
773
774	if (mm->notifier_subscriptions) {
775		subscription = find_get_mmu_notifier(mm, ops);
776		if (subscription)
777			return subscription;
778	}
779
780	subscription = ops->alloc_notifier(mm);
781	if (IS_ERR(subscription))
782		return subscription;
783	subscription->ops = ops;
784	ret = __mmu_notifier_register(subscription, mm);
785	if (ret)
786		goto out_free;
787	return subscription;
788out_free:
789	subscription->ops->free_notifier(subscription);
790	return ERR_PTR(ret);
791}
792EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
793
794/* this is called after the last mmu_notifier_unregister() returned */
795void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
796{
797	BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
798	kfree(mm->notifier_subscriptions);
799	mm->notifier_subscriptions = LIST_POISON1; /* debug */
800}
801
802/*
803 * This releases the mm_count pin automatically and frees the mm
804 * structure if it was the last user of it. It serializes against
805 * running mmu notifiers with SRCU and against mmu_notifier_unregister
806 * with the unregister lock + SRCU. All sptes must be dropped before
807 * calling mmu_notifier_unregister. ->release or any other notifier
808 * method may be invoked concurrently with mmu_notifier_unregister,
809 * and only after mmu_notifier_unregister returned we're guaranteed
810 * that ->release or any other method can't run anymore.
811 */
812void mmu_notifier_unregister(struct mmu_notifier *subscription,
813			     struct mm_struct *mm)
814{
815	BUG_ON(atomic_read(&mm->mm_count) <= 0);
816
817	if (!hlist_unhashed(&subscription->hlist)) {
818		/*
819		 * SRCU here will force exit_mmap to wait for ->release to
820		 * finish before freeing the pages.
821		 */
822		int id;
823
824		id = srcu_read_lock(&srcu);
825		/*
826		 * exit_mmap will block in mmu_notifier_release to guarantee
827		 * that ->release is called before freeing the pages.
828		 */
829		if (subscription->ops->release)
830			subscription->ops->release(subscription, mm);
831		srcu_read_unlock(&srcu, id);
832
833		spin_lock(&mm->notifier_subscriptions->lock);
834		/*
835		 * Can not use list_del_rcu() since __mmu_notifier_release
836		 * can delete it before we hold the lock.
837		 */
838		hlist_del_init_rcu(&subscription->hlist);
839		spin_unlock(&mm->notifier_subscriptions->lock);
840	}
841
842	/*
843	 * Wait for any running method to finish, of course including
844	 * ->release if it was run by mmu_notifier_release instead of us.
845	 */
846	synchronize_srcu(&srcu);
847
848	BUG_ON(atomic_read(&mm->mm_count) <= 0);
849
850	mmdrop(mm);
851}
852EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
853
854static void mmu_notifier_free_rcu(struct rcu_head *rcu)
855{
856	struct mmu_notifier *subscription =
857		container_of(rcu, struct mmu_notifier, rcu);
858	struct mm_struct *mm = subscription->mm;
859
860	subscription->ops->free_notifier(subscription);
861	/* Pairs with the get in __mmu_notifier_register() */
862	mmdrop(mm);
863}
864
865/**
866 * mmu_notifier_put - Release the reference on the notifier
867 * @subscription: The notifier to act on
868 *
869 * This function must be paired with each mmu_notifier_get(), it releases the
870 * reference obtained by the get. If this is the last reference then process
871 * to free the notifier will be run asynchronously.
872 *
873 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
874 * when the mm_struct is destroyed. Instead free_notifier is always called to
875 * release any resources held by the user.
876 *
877 * As ops->release is not guaranteed to be called, the user must ensure that
878 * all sptes are dropped, and no new sptes can be established before
879 * mmu_notifier_put() is called.
880 *
881 * This function can be called from the ops->release callback, however the
882 * caller must still ensure it is called pairwise with mmu_notifier_get().
883 *
884 * Modules calling this function must call mmu_notifier_synchronize() in
885 * their __exit functions to ensure the async work is completed.
886 */
887void mmu_notifier_put(struct mmu_notifier *subscription)
888{
889	struct mm_struct *mm = subscription->mm;
890
891	spin_lock(&mm->notifier_subscriptions->lock);
892	if (WARN_ON(!subscription->users) || --subscription->users)
893		goto out_unlock;
894	hlist_del_init_rcu(&subscription->hlist);
895	spin_unlock(&mm->notifier_subscriptions->lock);
896
897	call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
898	return;
899
900out_unlock:
901	spin_unlock(&mm->notifier_subscriptions->lock);
902}
903EXPORT_SYMBOL_GPL(mmu_notifier_put);
904
905static int __mmu_interval_notifier_insert(
906	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
907	struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
908	unsigned long length, const struct mmu_interval_notifier_ops *ops)
909{
910	interval_sub->mm = mm;
911	interval_sub->ops = ops;
912	RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
913	interval_sub->interval_tree.start = start;
914	/*
915	 * Note that the representation of the intervals in the interval tree
916	 * considers the ending point as contained in the interval.
917	 */
918	if (length == 0 ||
919	    check_add_overflow(start, length - 1,
920			       &interval_sub->interval_tree.last))
921		return -EOVERFLOW;
922
923	/* Must call with a mmget() held */
924	if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
925		return -EINVAL;
926
927	/* pairs with mmdrop in mmu_interval_notifier_remove() */
928	mmgrab(mm);
929
930	/*
931	 * If some invalidate_range_start/end region is going on in parallel
932	 * we don't know what VA ranges are affected, so we must assume this
933	 * new range is included.
934	 *
935	 * If the itree is invalidating then we are not allowed to change
936	 * it. Retrying until invalidation is done is tricky due to the
937	 * possibility for live lock, instead defer the add to
938	 * mn_itree_inv_end() so this algorithm is deterministic.
939	 *
940	 * In all cases the value for the interval_sub->invalidate_seq should be
941	 * odd, see mmu_interval_read_begin()
942	 */
943	spin_lock(&subscriptions->lock);
944	if (subscriptions->active_invalidate_ranges) {
945		if (mn_itree_is_invalidating(subscriptions))
946			hlist_add_head(&interval_sub->deferred_item,
947				       &subscriptions->deferred_list);
948		else {
949			subscriptions->invalidate_seq |= 1;
950			interval_tree_insert(&interval_sub->interval_tree,
951					     &subscriptions->itree);
952		}
953		interval_sub->invalidate_seq = subscriptions->invalidate_seq;
954	} else {
955		WARN_ON(mn_itree_is_invalidating(subscriptions));
956		/*
957		 * The starting seq for a subscription not under invalidation
958		 * should be odd, not equal to the current invalidate_seq and
959		 * invalidate_seq should not 'wrap' to the new seq any time
960		 * soon.
961		 */
962		interval_sub->invalidate_seq =
963			subscriptions->invalidate_seq - 1;
964		interval_tree_insert(&interval_sub->interval_tree,
965				     &subscriptions->itree);
966	}
967	spin_unlock(&subscriptions->lock);
968	return 0;
969}
970
971/**
972 * mmu_interval_notifier_insert - Insert an interval notifier
973 * @interval_sub: Interval subscription to register
974 * @start: Starting virtual address to monitor
975 * @length: Length of the range to monitor
976 * @mm: mm_struct to attach to
977 * @ops: Interval notifier operations to be called on matching events
978 *
979 * This function subscribes the interval notifier for notifications from the
980 * mm.  Upon return the ops related to mmu_interval_notifier will be called
981 * whenever an event that intersects with the given range occurs.
982 *
983 * Upon return the range_notifier may not be present in the interval tree yet.
984 * The caller must use the normal interval notifier read flow via
985 * mmu_interval_read_begin() to establish SPTEs for this range.
986 */
987int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
988				 struct mm_struct *mm, unsigned long start,
989				 unsigned long length,
990				 const struct mmu_interval_notifier_ops *ops)
991{
992	struct mmu_notifier_subscriptions *subscriptions;
993	int ret;
994
995	might_lock(&mm->mmap_lock);
996
997	subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
998	if (!subscriptions || !subscriptions->has_itree) {
999		ret = mmu_notifier_register(NULL, mm);
1000		if (ret)
1001			return ret;
1002		subscriptions = mm->notifier_subscriptions;
1003	}
1004	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1005					      start, length, ops);
1006}
1007EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
1008
1009int mmu_interval_notifier_insert_locked(
1010	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
1011	unsigned long start, unsigned long length,
1012	const struct mmu_interval_notifier_ops *ops)
1013{
1014	struct mmu_notifier_subscriptions *subscriptions =
1015		mm->notifier_subscriptions;
1016	int ret;
1017
1018	mmap_assert_write_locked(mm);
1019
1020	if (!subscriptions || !subscriptions->has_itree) {
1021		ret = __mmu_notifier_register(NULL, mm);
1022		if (ret)
1023			return ret;
1024		subscriptions = mm->notifier_subscriptions;
1025	}
1026	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1027					      start, length, ops);
1028}
1029EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1030
1031static bool
1032mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions,
1033			  unsigned long seq)
1034{
1035	bool ret;
1036
1037	spin_lock(&subscriptions->lock);
1038	ret = subscriptions->invalidate_seq != seq;
1039	spin_unlock(&subscriptions->lock);
1040	return ret;
1041}
1042
1043/**
1044 * mmu_interval_notifier_remove - Remove a interval notifier
1045 * @interval_sub: Interval subscription to unregister
1046 *
1047 * This function must be paired with mmu_interval_notifier_insert(). It cannot
1048 * be called from any ops callback.
1049 *
1050 * Once this returns ops callbacks are no longer running on other CPUs and
1051 * will not be called in future.
1052 */
1053void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1054{
1055	struct mm_struct *mm = interval_sub->mm;
1056	struct mmu_notifier_subscriptions *subscriptions =
1057		mm->notifier_subscriptions;
1058	unsigned long seq = 0;
1059
1060	might_sleep();
1061
1062	spin_lock(&subscriptions->lock);
1063	if (mn_itree_is_invalidating(subscriptions)) {
1064		/*
1065		 * remove is being called after insert put this on the
1066		 * deferred list, but before the deferred list was processed.
1067		 */
1068		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1069			hlist_del(&interval_sub->deferred_item);
1070		} else {
1071			hlist_add_head(&interval_sub->deferred_item,
1072				       &subscriptions->deferred_list);
1073			seq = subscriptions->invalidate_seq;
1074		}
1075	} else {
1076		WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1077		interval_tree_remove(&interval_sub->interval_tree,
1078				     &subscriptions->itree);
1079	}
1080	spin_unlock(&subscriptions->lock);
1081
1082	/*
1083	 * The possible sleep on progress in the invalidation requires the
1084	 * caller not hold any locks held by invalidation callbacks.
1085	 */
1086	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1087	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1088	if (seq)
1089		wait_event(subscriptions->wq,
1090			   mmu_interval_seq_released(subscriptions, seq));
1091
1092	/* pairs with mmgrab in mmu_interval_notifier_insert() */
1093	mmdrop(mm);
1094}
1095EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1096
1097/**
1098 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1099 *
1100 * This function ensures that all outstanding async SRU work from
1101 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1102 * associated with an unused mmu_notifier will no longer be called.
1103 *
1104 * Before using the caller must ensure that all of its mmu_notifiers have been
1105 * fully released via mmu_notifier_put().
1106 *
1107 * Modules using the mmu_notifier_put() API should call this in their __exit
1108 * function to avoid module unloading races.
1109 */
1110void mmu_notifier_synchronize(void)
1111{
1112	synchronize_srcu(&srcu);
1113}
1114EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1115