1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/kernel.h>
13#include <linux/slab.h>
14#include <linux/backing-dev.h>
15#include <linux/mm.h>
16#include <linux/mm_inline.h>
17#include <linux/shm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/syscalls.h>
22#include <linux/capability.h>
23#include <linux/init.h>
24#include <linux/file.h>
25#include <linux/fs.h>
26#include <linux/personality.h>
27#include <linux/security.h>
28#include <linux/hugetlb.h>
29#include <linux/shmem_fs.h>
30#include <linux/profile.h>
31#include <linux/export.h>
32#include <linux/mount.h>
33#include <linux/mempolicy.h>
34#include <linux/rmap.h>
35#include <linux/mmu_notifier.h>
36#include <linux/mmdebug.h>
37#include <linux/perf_event.h>
38#include <linux/audit.h>
39#include <linux/khugepaged.h>
40#include <linux/uprobes.h>
41#include <linux/notifier.h>
42#include <linux/memory.h>
43#include <linux/printk.h>
44#include <linux/userfaultfd_k.h>
45#include <linux/moduleparam.h>
46#include <linux/pkeys.h>
47#include <linux/oom.h>
48#include <linux/sched/mm.h>
49#include <linux/ksm.h>
50
51#include <linux/uaccess.h>
52#include <asm/cacheflush.h>
53#include <asm/tlb.h>
54#include <asm/mmu_context.h>
55
56#define CREATE_TRACE_POINTS
57#include <trace/events/mmap.h>
58
59#include "internal.h"
60
61#ifndef arch_mmap_check
62#define arch_mmap_check(addr, len, flags)	(0)
63#endif
64
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69#endif
70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74#endif
75
76static bool ignore_rlimit_data;
77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80		struct vm_area_struct *vma, struct vm_area_struct *prev,
81		struct vm_area_struct *next, unsigned long start,
82		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85{
86	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87}
88
89/* Update vma->vm_page_prot to reflect vma->vm_flags. */
90void vma_set_page_prot(struct vm_area_struct *vma)
91{
92	unsigned long vm_flags = vma->vm_flags;
93	pgprot_t vm_page_prot;
94
95	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96	if (vma_wants_writenotify(vma, vm_page_prot)) {
97		vm_flags &= ~VM_SHARED;
98		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99	}
100	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102}
103
104/*
105 * Requires inode->i_mapping->i_mmap_rwsem
106 */
107static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108				      struct address_space *mapping)
109{
110	if (vma_is_shared_maywrite(vma))
111		mapping_unmap_writable(mapping);
112
113	flush_dcache_mmap_lock(mapping);
114	vma_interval_tree_remove(vma, &mapping->i_mmap);
115	flush_dcache_mmap_unlock(mapping);
116}
117
118/*
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
121 */
122void unlink_file_vma(struct vm_area_struct *vma)
123{
124	struct file *file = vma->vm_file;
125
126	if (file) {
127		struct address_space *mapping = file->f_mapping;
128		i_mmap_lock_write(mapping);
129		__remove_shared_vm_struct(vma, mapping);
130		i_mmap_unlock_write(mapping);
131	}
132}
133
134/*
135 * Close a vm structure and free it.
136 */
137static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138{
139	might_sleep();
140	if (vma->vm_ops && vma->vm_ops->close)
141		vma->vm_ops->close(vma);
142	if (vma->vm_file)
143		fput(vma->vm_file);
144	mpol_put(vma_policy(vma));
145	if (unreachable)
146		__vm_area_free(vma);
147	else
148		vm_area_free(vma);
149}
150
151static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152						    unsigned long min)
153{
154	return mas_prev(&vmi->mas, min);
155}
156
157/*
158 * check_brk_limits() - Use platform specific check of range & verify mlock
159 * limits.
160 * @addr: The address to check
161 * @len: The size of increase.
162 *
163 * Return: 0 on success.
164 */
165static int check_brk_limits(unsigned long addr, unsigned long len)
166{
167	unsigned long mapped_addr;
168
169	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170	if (IS_ERR_VALUE(mapped_addr))
171		return mapped_addr;
172
173	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174		? 0 : -EAGAIN;
175}
176static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177		unsigned long addr, unsigned long request, unsigned long flags);
178SYSCALL_DEFINE1(brk, unsigned long, brk)
179{
180	unsigned long newbrk, oldbrk, origbrk;
181	struct mm_struct *mm = current->mm;
182	struct vm_area_struct *brkvma, *next = NULL;
183	unsigned long min_brk;
184	bool populate = false;
185	LIST_HEAD(uf);
186	struct vma_iterator vmi;
187
188	if (mmap_write_lock_killable(mm))
189		return -EINTR;
190
191	origbrk = mm->brk;
192
193#ifdef CONFIG_COMPAT_BRK
194	/*
195	 * CONFIG_COMPAT_BRK can still be overridden by setting
196	 * randomize_va_space to 2, which will still cause mm->start_brk
197	 * to be arbitrarily shifted
198	 */
199	if (current->brk_randomized)
200		min_brk = mm->start_brk;
201	else
202		min_brk = mm->end_data;
203#else
204	min_brk = mm->start_brk;
205#endif
206	if (brk < min_brk)
207		goto out;
208
209	/*
210	 * Check against rlimit here. If this check is done later after the test
211	 * of oldbrk with newbrk then it can escape the test and let the data
212	 * segment grow beyond its set limit the in case where the limit is
213	 * not page aligned -Ram Gupta
214	 */
215	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216			      mm->end_data, mm->start_data))
217		goto out;
218
219	newbrk = PAGE_ALIGN(brk);
220	oldbrk = PAGE_ALIGN(mm->brk);
221	if (oldbrk == newbrk) {
222		mm->brk = brk;
223		goto success;
224	}
225
226	/* Always allow shrinking brk. */
227	if (brk <= mm->brk) {
228		/* Search one past newbrk */
229		vma_iter_init(&vmi, mm, newbrk);
230		brkvma = vma_find(&vmi, oldbrk);
231		if (!brkvma || brkvma->vm_start >= oldbrk)
232			goto out; /* mapping intersects with an existing non-brk vma. */
233		/*
234		 * mm->brk must be protected by write mmap_lock.
235		 * do_vma_munmap() will drop the lock on success,  so update it
236		 * before calling do_vma_munmap().
237		 */
238		mm->brk = brk;
239		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240			goto out;
241
242		goto success_unlocked;
243	}
244
245	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246		goto out;
247
248	/*
249	 * Only check if the next VMA is within the stack_guard_gap of the
250	 * expansion area
251	 */
252	vma_iter_init(&vmi, mm, oldbrk);
253	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255		goto out;
256
257	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258	/* Ok, looks good - let it rip. */
259	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260		goto out;
261
262	mm->brk = brk;
263	if (mm->def_flags & VM_LOCKED)
264		populate = true;
265
266success:
267	mmap_write_unlock(mm);
268success_unlocked:
269	userfaultfd_unmap_complete(mm, &uf);
270	if (populate)
271		mm_populate(oldbrk, newbrk - oldbrk);
272	return brk;
273
274out:
275	mm->brk = origbrk;
276	mmap_write_unlock(mm);
277	return origbrk;
278}
279
280#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281static void validate_mm(struct mm_struct *mm)
282{
283	int bug = 0;
284	int i = 0;
285	struct vm_area_struct *vma;
286	VMA_ITERATOR(vmi, mm, 0);
287
288	mt_validate(&mm->mm_mt);
289	for_each_vma(vmi, vma) {
290#ifdef CONFIG_DEBUG_VM_RB
291		struct anon_vma *anon_vma = vma->anon_vma;
292		struct anon_vma_chain *avc;
293#endif
294		unsigned long vmi_start, vmi_end;
295		bool warn = 0;
296
297		vmi_start = vma_iter_addr(&vmi);
298		vmi_end = vma_iter_end(&vmi);
299		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300			warn = 1;
301
302		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303			warn = 1;
304
305		if (warn) {
306			pr_emerg("issue in %s\n", current->comm);
307			dump_stack();
308			dump_vma(vma);
309			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310				 vmi_start, vmi_end - 1);
311			vma_iter_dump_tree(&vmi);
312		}
313
314#ifdef CONFIG_DEBUG_VM_RB
315		if (anon_vma) {
316			anon_vma_lock_read(anon_vma);
317			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318				anon_vma_interval_tree_verify(avc);
319			anon_vma_unlock_read(anon_vma);
320		}
321#endif
322		i++;
323	}
324	if (i != mm->map_count) {
325		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326		bug = 1;
327	}
328	VM_BUG_ON_MM(bug, mm);
329}
330
331#else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332#define validate_mm(mm) do { } while (0)
333#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335/*
336 * vma has some anon_vma assigned, and is already inserted on that
337 * anon_vma's interval trees.
338 *
339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340 * vma must be removed from the anon_vma's interval trees using
341 * anon_vma_interval_tree_pre_update_vma().
342 *
343 * After the update, the vma will be reinserted using
344 * anon_vma_interval_tree_post_update_vma().
345 *
346 * The entire update must be protected by exclusive mmap_lock and by
347 * the root anon_vma's mutex.
348 */
349static inline void
350anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351{
352	struct anon_vma_chain *avc;
353
354	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356}
357
358static inline void
359anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360{
361	struct anon_vma_chain *avc;
362
363	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365}
366
367static unsigned long count_vma_pages_range(struct mm_struct *mm,
368		unsigned long addr, unsigned long end)
369{
370	VMA_ITERATOR(vmi, mm, addr);
371	struct vm_area_struct *vma;
372	unsigned long nr_pages = 0;
373
374	for_each_vma_range(vmi, vma, end) {
375		unsigned long vm_start = max(addr, vma->vm_start);
376		unsigned long vm_end = min(end, vma->vm_end);
377
378		nr_pages += PHYS_PFN(vm_end - vm_start);
379	}
380
381	return nr_pages;
382}
383
384static void __vma_link_file(struct vm_area_struct *vma,
385			    struct address_space *mapping)
386{
387	if (vma_is_shared_maywrite(vma))
388		mapping_allow_writable(mapping);
389
390	flush_dcache_mmap_lock(mapping);
391	vma_interval_tree_insert(vma, &mapping->i_mmap);
392	flush_dcache_mmap_unlock(mapping);
393}
394
395static void vma_link_file(struct vm_area_struct *vma)
396{
397	struct file *file = vma->vm_file;
398	struct address_space *mapping;
399
400	if (file) {
401		mapping = file->f_mapping;
402		i_mmap_lock_write(mapping);
403		__vma_link_file(vma, mapping);
404		i_mmap_unlock_write(mapping);
405	}
406}
407
408static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409{
410	VMA_ITERATOR(vmi, mm, 0);
411
412	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413	if (vma_iter_prealloc(&vmi, vma))
414		return -ENOMEM;
415
416	vma_start_write(vma);
417	vma_iter_store(&vmi, vma);
418	vma_link_file(vma);
419	mm->map_count++;
420	validate_mm(mm);
421	return 0;
422}
423
424/*
425 * init_multi_vma_prep() - Initializer for struct vma_prepare
426 * @vp: The vma_prepare struct
427 * @vma: The vma that will be altered once locked
428 * @next: The next vma if it is to be adjusted
429 * @remove: The first vma to be removed
430 * @remove2: The second vma to be removed
431 */
432static inline void init_multi_vma_prep(struct vma_prepare *vp,
433		struct vm_area_struct *vma, struct vm_area_struct *next,
434		struct vm_area_struct *remove, struct vm_area_struct *remove2)
435{
436	memset(vp, 0, sizeof(struct vma_prepare));
437	vp->vma = vma;
438	vp->anon_vma = vma->anon_vma;
439	vp->remove = remove;
440	vp->remove2 = remove2;
441	vp->adj_next = next;
442	if (!vp->anon_vma && next)
443		vp->anon_vma = next->anon_vma;
444
445	vp->file = vma->vm_file;
446	if (vp->file)
447		vp->mapping = vma->vm_file->f_mapping;
448
449}
450
451/*
452 * init_vma_prep() - Initializer wrapper for vma_prepare struct
453 * @vp: The vma_prepare struct
454 * @vma: The vma that will be altered once locked
455 */
456static inline void init_vma_prep(struct vma_prepare *vp,
457				 struct vm_area_struct *vma)
458{
459	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460}
461
462
463/*
464 * vma_prepare() - Helper function for handling locking VMAs prior to altering
465 * @vp: The initialized vma_prepare struct
466 */
467static inline void vma_prepare(struct vma_prepare *vp)
468{
469	if (vp->file) {
470		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471
472		if (vp->adj_next)
473			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474				      vp->adj_next->vm_end);
475
476		i_mmap_lock_write(vp->mapping);
477		if (vp->insert && vp->insert->vm_file) {
478			/*
479			 * Put into interval tree now, so instantiated pages
480			 * are visible to arm/parisc __flush_dcache_page
481			 * throughout; but we cannot insert into address
482			 * space until vma start or end is updated.
483			 */
484			__vma_link_file(vp->insert,
485					vp->insert->vm_file->f_mapping);
486		}
487	}
488
489	if (vp->anon_vma) {
490		anon_vma_lock_write(vp->anon_vma);
491		anon_vma_interval_tree_pre_update_vma(vp->vma);
492		if (vp->adj_next)
493			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494	}
495
496	if (vp->file) {
497		flush_dcache_mmap_lock(vp->mapping);
498		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499		if (vp->adj_next)
500			vma_interval_tree_remove(vp->adj_next,
501						 &vp->mapping->i_mmap);
502	}
503
504}
505
506/*
507 * vma_complete- Helper function for handling the unlocking after altering VMAs,
508 * or for inserting a VMA.
509 *
510 * @vp: The vma_prepare struct
511 * @vmi: The vma iterator
512 * @mm: The mm_struct
513 */
514static inline void vma_complete(struct vma_prepare *vp,
515				struct vma_iterator *vmi, struct mm_struct *mm)
516{
517	if (vp->file) {
518		if (vp->adj_next)
519			vma_interval_tree_insert(vp->adj_next,
520						 &vp->mapping->i_mmap);
521		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522		flush_dcache_mmap_unlock(vp->mapping);
523	}
524
525	if (vp->remove && vp->file) {
526		__remove_shared_vm_struct(vp->remove, vp->mapping);
527		if (vp->remove2)
528			__remove_shared_vm_struct(vp->remove2, vp->mapping);
529	} else if (vp->insert) {
530		/*
531		 * split_vma has split insert from vma, and needs
532		 * us to insert it before dropping the locks
533		 * (it may either follow vma or precede it).
534		 */
535		vma_iter_store(vmi, vp->insert);
536		mm->map_count++;
537	}
538
539	if (vp->anon_vma) {
540		anon_vma_interval_tree_post_update_vma(vp->vma);
541		if (vp->adj_next)
542			anon_vma_interval_tree_post_update_vma(vp->adj_next);
543		anon_vma_unlock_write(vp->anon_vma);
544	}
545
546	if (vp->file) {
547		i_mmap_unlock_write(vp->mapping);
548		uprobe_mmap(vp->vma);
549
550		if (vp->adj_next)
551			uprobe_mmap(vp->adj_next);
552	}
553
554	if (vp->remove) {
555again:
556		vma_mark_detached(vp->remove, true);
557		if (vp->file) {
558			uprobe_munmap(vp->remove, vp->remove->vm_start,
559				      vp->remove->vm_end);
560			fput(vp->file);
561		}
562		if (vp->remove->anon_vma)
563			anon_vma_merge(vp->vma, vp->remove);
564		mm->map_count--;
565		mpol_put(vma_policy(vp->remove));
566		if (!vp->remove2)
567			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568		vm_area_free(vp->remove);
569
570		/*
571		 * In mprotect's case 6 (see comments on vma_merge),
572		 * we are removing both mid and next vmas
573		 */
574		if (vp->remove2) {
575			vp->remove = vp->remove2;
576			vp->remove2 = NULL;
577			goto again;
578		}
579	}
580	if (vp->insert && vp->file)
581		uprobe_mmap(vp->insert);
582	validate_mm(mm);
583}
584
585/*
586 * dup_anon_vma() - Helper function to duplicate anon_vma
587 * @dst: The destination VMA
588 * @src: The source VMA
589 * @dup: Pointer to the destination VMA when successful.
590 *
591 * Returns: 0 on success.
592 */
593static inline int dup_anon_vma(struct vm_area_struct *dst,
594		struct vm_area_struct *src, struct vm_area_struct **dup)
595{
596	/*
597	 * Easily overlooked: when mprotect shifts the boundary, make sure the
598	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
599	 * anon pages imported.
600	 */
601	if (src->anon_vma && !dst->anon_vma) {
602		int ret;
603
604		vma_assert_write_locked(dst);
605		dst->anon_vma = src->anon_vma;
606		ret = anon_vma_clone(dst, src);
607		if (ret)
608			return ret;
609
610		*dup = dst;
611	}
612
613	return 0;
614}
615
616/*
617 * vma_expand - Expand an existing VMA
618 *
619 * @vmi: The vma iterator
620 * @vma: The vma to expand
621 * @start: The start of the vma
622 * @end: The exclusive end of the vma
623 * @pgoff: The page offset of vma
624 * @next: The current of next vma.
625 *
626 * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627 * expand over @next if it's different from @vma and @end == @next->vm_end.
628 * Checking if the @vma can expand and merge with @next needs to be handled by
629 * the caller.
630 *
631 * Returns: 0 on success
632 */
633int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634	       unsigned long start, unsigned long end, pgoff_t pgoff,
635	       struct vm_area_struct *next)
636{
637	struct vm_area_struct *anon_dup = NULL;
638	bool remove_next = false;
639	struct vma_prepare vp;
640
641	vma_start_write(vma);
642	if (next && (vma != next) && (end == next->vm_end)) {
643		int ret;
644
645		remove_next = true;
646		vma_start_write(next);
647		ret = dup_anon_vma(vma, next, &anon_dup);
648		if (ret)
649			return ret;
650	}
651
652	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653	/* Not merging but overwriting any part of next is not handled. */
654	VM_WARN_ON(next && !vp.remove &&
655		  next != vma && end > next->vm_start);
656	/* Only handles expanding */
657	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658
659	/* Note: vma iterator must be pointing to 'start' */
660	vma_iter_config(vmi, start, end);
661	if (vma_iter_prealloc(vmi, vma))
662		goto nomem;
663
664	vma_prepare(&vp);
665	vma_adjust_trans_huge(vma, start, end, 0);
666	vma_set_range(vma, start, end, pgoff);
667	vma_iter_store(vmi, vma);
668
669	vma_complete(&vp, vmi, vma->vm_mm);
670	return 0;
671
672nomem:
673	if (anon_dup)
674		unlink_anon_vmas(anon_dup);
675	return -ENOMEM;
676}
677
678/*
679 * vma_shrink() - Reduce an existing VMAs memory area
680 * @vmi: The vma iterator
681 * @vma: The VMA to modify
682 * @start: The new start
683 * @end: The new end
684 *
685 * Returns: 0 on success, -ENOMEM otherwise
686 */
687int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688	       unsigned long start, unsigned long end, pgoff_t pgoff)
689{
690	struct vma_prepare vp;
691
692	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693
694	if (vma->vm_start < start)
695		vma_iter_config(vmi, vma->vm_start, start);
696	else
697		vma_iter_config(vmi, end, vma->vm_end);
698
699	if (vma_iter_prealloc(vmi, NULL))
700		return -ENOMEM;
701
702	vma_start_write(vma);
703
704	init_vma_prep(&vp, vma);
705	vma_prepare(&vp);
706	vma_adjust_trans_huge(vma, start, end, 0);
707
708	vma_iter_clear(vmi);
709	vma_set_range(vma, start, end, pgoff);
710	vma_complete(&vp, vmi, vma->vm_mm);
711	return 0;
712}
713
714/*
715 * If the vma has a ->close operation then the driver probably needs to release
716 * per-vma resources, so we don't attempt to merge those if the caller indicates
717 * the current vma may be removed as part of the merge.
718 */
719static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720		struct file *file, unsigned long vm_flags,
721		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722		struct anon_vma_name *anon_name, bool may_remove_vma)
723{
724	/*
725	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
726	 * match the flags but dirty bit -- the caller should mark
727	 * merged VMA as dirty. If dirty bit won't be excluded from
728	 * comparison, we increase pressure on the memory system forcing
729	 * the kernel to generate new VMAs when old one could be
730	 * extended instead.
731	 */
732	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733		return false;
734	if (vma->vm_file != file)
735		return false;
736	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737		return false;
738	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739		return false;
740	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741		return false;
742	return true;
743}
744
745static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747{
748	/*
749	 * The list_is_singular() test is to avoid merging VMA cloned from
750	 * parents. This can improve scalability caused by anon_vma lock.
751	 */
752	if ((!anon_vma1 || !anon_vma2) && (!vma ||
753		list_is_singular(&vma->anon_vma_chain)))
754		return true;
755	return anon_vma1 == anon_vma2;
756}
757
758/*
759 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760 * in front of (at a lower virtual address and file offset than) the vma.
761 *
762 * We cannot merge two vmas if they have differently assigned (non-NULL)
763 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764 *
765 * We don't check here for the merged mmap wrapping around the end of pagecache
766 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767 * wrap, nor mmaps which cover the final page at index -1UL.
768 *
769 * We assume the vma may be removed as part of the merge.
770 */
771static bool
772can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773		struct anon_vma *anon_vma, struct file *file,
774		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775		struct anon_vma_name *anon_name)
776{
777	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779		if (vma->vm_pgoff == vm_pgoff)
780			return true;
781	}
782	return false;
783}
784
785/*
786 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787 * beyond (at a higher virtual address and file offset than) the vma.
788 *
789 * We cannot merge two vmas if they have differently assigned (non-NULL)
790 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791 *
792 * We assume that vma is not removed as part of the merge.
793 */
794static bool
795can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796		struct anon_vma *anon_vma, struct file *file,
797		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798		struct anon_vma_name *anon_name)
799{
800	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802		pgoff_t vm_pglen;
803		vm_pglen = vma_pages(vma);
804		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805			return true;
806	}
807	return false;
808}
809
810/*
811 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812 * figure out whether that can be merged with its predecessor or its
813 * successor.  Or both (it neatly fills a hole).
814 *
815 * In most cases - when called for mmap, brk or mremap - [addr,end) is
816 * certain not to be mapped by the time vma_merge is called; but when
817 * called for mprotect, it is certain to be already mapped (either at
818 * an offset within prev, or at the start of next), and the flags of
819 * this area are about to be changed to vm_flags - and the no-change
820 * case has already been eliminated.
821 *
822 * The following mprotect cases have to be considered, where **** is
823 * the area passed down from mprotect_fixup, never extending beyond one
824 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825 * at the same address as **** and is of the same or larger span, and
826 * NNNN the next vma after ****:
827 *
828 *     ****             ****                   ****
829 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830 *    cannot merge    might become       might become
831 *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832 *    mmap, brk or    case 4 below       case 5 below
833 *    mremap move:
834 *                        ****               ****
835 *                    PPPP    NNNN       PPPPCCCCNNNN
836 *                    might become       might become
837 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838 *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839 *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840 *
841 * It is important for case 8 that the vma CCCC overlapping the
842 * region **** is never going to extended over NNNN. Instead NNNN must
843 * be extended in region **** and CCCC must be removed. This way in
844 * all cases where vma_merge succeeds, the moment vma_merge drops the
845 * rmap_locks, the properties of the merged vma will be already
846 * correct for the whole merged range. Some of those properties like
847 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848 * be correct for the whole merged range immediately after the
849 * rmap_locks are released. Otherwise if NNNN would be removed and
850 * CCCC would be extended over the NNNN range, remove_migration_ptes
851 * or other rmap walkers (if working on addresses beyond the "end"
852 * parameter) may establish ptes with the wrong permissions of CCCC
853 * instead of the right permissions of NNNN.
854 *
855 * In the code below:
856 * PPPP is represented by *prev
857 * CCCC is represented by *curr or not represented at all (NULL)
858 * NNNN is represented by *next or not represented at all (NULL)
859 * **** is not represented - it will be merged and the vma containing the
860 *      area is returned, or the function will return NULL
861 */
862static struct vm_area_struct
863*vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
865	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867	   struct anon_vma_name *anon_name)
868{
869	struct mm_struct *mm = src->vm_mm;
870	struct anon_vma *anon_vma = src->anon_vma;
871	struct file *file = src->vm_file;
872	struct vm_area_struct *curr, *next, *res;
873	struct vm_area_struct *vma, *adjust, *remove, *remove2;
874	struct vm_area_struct *anon_dup = NULL;
875	struct vma_prepare vp;
876	pgoff_t vma_pgoff;
877	int err = 0;
878	bool merge_prev = false;
879	bool merge_next = false;
880	bool vma_expanded = false;
881	unsigned long vma_start = addr;
882	unsigned long vma_end = end;
883	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884	long adj_start = 0;
885
886	/*
887	 * We later require that vma->vm_flags == vm_flags,
888	 * so this tests vma->vm_flags & VM_SPECIAL, too.
889	 */
890	if (vm_flags & VM_SPECIAL)
891		return NULL;
892
893	/* Does the input range span an existing VMA? (cases 5 - 8) */
894	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895
896	if (!curr ||			/* cases 1 - 4 */
897	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
898		next = vma_lookup(mm, end);
899	else
900		next = NULL;		/* case 5 */
901
902	if (prev) {
903		vma_start = prev->vm_start;
904		vma_pgoff = prev->vm_pgoff;
905
906		/* Can we merge the predecessor? */
907		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909					   pgoff, vm_userfaultfd_ctx, anon_name)) {
910			merge_prev = true;
911			vma_prev(vmi);
912		}
913	}
914
915	/* Can we merge the successor? */
916	if (next && mpol_equal(policy, vma_policy(next)) &&
917	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918				 vm_userfaultfd_ctx, anon_name)) {
919		merge_next = true;
920	}
921
922	/* Verify some invariant that must be enforced by the caller. */
923	VM_WARN_ON(prev && addr <= prev->vm_start);
924	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925	VM_WARN_ON(addr >= end);
926
927	if (!merge_prev && !merge_next)
928		return NULL; /* Not mergeable. */
929
930	if (merge_prev)
931		vma_start_write(prev);
932
933	res = vma = prev;
934	remove = remove2 = adjust = NULL;
935
936	/* Can we merge both the predecessor and the successor? */
937	if (merge_prev && merge_next &&
938	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939		vma_start_write(next);
940		remove = next;				/* case 1 */
941		vma_end = next->vm_end;
942		err = dup_anon_vma(prev, next, &anon_dup);
943		if (curr) {				/* case 6 */
944			vma_start_write(curr);
945			remove = curr;
946			remove2 = next;
947			/*
948			 * Note that the dup_anon_vma below cannot overwrite err
949			 * since the first caller would do nothing unless next
950			 * has an anon_vma.
951			 */
952			if (!next->anon_vma)
953				err = dup_anon_vma(prev, curr, &anon_dup);
954		}
955	} else if (merge_prev) {			/* case 2 */
956		if (curr) {
957			vma_start_write(curr);
958			if (end == curr->vm_end) {	/* case 7 */
959				/*
960				 * can_vma_merge_after() assumed we would not be
961				 * removing prev vma, so it skipped the check
962				 * for vm_ops->close, but we are removing curr
963				 */
964				if (curr->vm_ops && curr->vm_ops->close)
965					err = -EINVAL;
966				remove = curr;
967			} else {			/* case 5 */
968				adjust = curr;
969				adj_start = (end - curr->vm_start);
970			}
971			if (!err)
972				err = dup_anon_vma(prev, curr, &anon_dup);
973		}
974	} else { /* merge_next */
975		vma_start_write(next);
976		res = next;
977		if (prev && addr < prev->vm_end) {	/* case 4 */
978			vma_start_write(prev);
979			vma_end = addr;
980			adjust = next;
981			adj_start = -(prev->vm_end - addr);
982			err = dup_anon_vma(next, prev, &anon_dup);
983		} else {
984			/*
985			 * Note that cases 3 and 8 are the ONLY ones where prev
986			 * is permitted to be (but is not necessarily) NULL.
987			 */
988			vma = next;			/* case 3 */
989			vma_start = addr;
990			vma_end = next->vm_end;
991			vma_pgoff = next->vm_pgoff - pglen;
992			if (curr) {			/* case 8 */
993				vma_pgoff = curr->vm_pgoff;
994				vma_start_write(curr);
995				remove = curr;
996				err = dup_anon_vma(next, curr, &anon_dup);
997			}
998		}
999	}
1000
1001	/* Error in anon_vma clone. */
1002	if (err)
1003		goto anon_vma_fail;
1004
1005	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006		vma_expanded = true;
1007
1008	if (vma_expanded) {
1009		vma_iter_config(vmi, vma_start, vma_end);
1010	} else {
1011		vma_iter_config(vmi, adjust->vm_start + adj_start,
1012				adjust->vm_end);
1013	}
1014
1015	if (vma_iter_prealloc(vmi, vma))
1016		goto prealloc_fail;
1017
1018	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020		   vp.anon_vma != adjust->anon_vma);
1021
1022	vma_prepare(&vp);
1023	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025
1026	if (vma_expanded)
1027		vma_iter_store(vmi, vma);
1028
1029	if (adj_start) {
1030		adjust->vm_start += adj_start;
1031		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032		if (adj_start < 0) {
1033			WARN_ON(vma_expanded);
1034			vma_iter_store(vmi, next);
1035		}
1036	}
1037
1038	vma_complete(&vp, vmi, mm);
1039	khugepaged_enter_vma(res, vm_flags);
1040	return res;
1041
1042prealloc_fail:
1043	if (anon_dup)
1044		unlink_anon_vmas(anon_dup);
1045
1046anon_vma_fail:
1047	vma_iter_set(vmi, addr);
1048	vma_iter_load(vmi);
1049	return NULL;
1050}
1051
1052/*
1053 * Rough compatibility check to quickly see if it's even worth looking
1054 * at sharing an anon_vma.
1055 *
1056 * They need to have the same vm_file, and the flags can only differ
1057 * in things that mprotect may change.
1058 *
1059 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060 * we can merge the two vma's. For example, we refuse to merge a vma if
1061 * there is a vm_ops->close() function, because that indicates that the
1062 * driver is doing some kind of reference counting. But that doesn't
1063 * really matter for the anon_vma sharing case.
1064 */
1065static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066{
1067	return a->vm_end == b->vm_start &&
1068		mpol_equal(vma_policy(a), vma_policy(b)) &&
1069		a->vm_file == b->vm_file &&
1070		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072}
1073
1074/*
1075 * Do some basic sanity checking to see if we can re-use the anon_vma
1076 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077 * the same as 'old', the other will be the new one that is trying
1078 * to share the anon_vma.
1079 *
1080 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081 * the anon_vma of 'old' is concurrently in the process of being set up
1082 * by another page fault trying to merge _that_. But that's ok: if it
1083 * is being set up, that automatically means that it will be a singleton
1084 * acceptable for merging, so we can do all of this optimistically. But
1085 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086 *
1087 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089 * is to return an anon_vma that is "complex" due to having gone through
1090 * a fork).
1091 *
1092 * We also make sure that the two vma's are compatible (adjacent,
1093 * and with the same memory policies). That's all stable, even with just
1094 * a read lock on the mmap_lock.
1095 */
1096static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097{
1098	if (anon_vma_compatible(a, b)) {
1099		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100
1101		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102			return anon_vma;
1103	}
1104	return NULL;
1105}
1106
1107/*
1108 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109 * neighbouring vmas for a suitable anon_vma, before it goes off
1110 * to allocate a new anon_vma.  It checks because a repetitive
1111 * sequence of mprotects and faults may otherwise lead to distinct
1112 * anon_vmas being allocated, preventing vma merge in subsequent
1113 * mprotect.
1114 */
1115struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116{
1117	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1118	struct anon_vma *anon_vma = NULL;
1119	struct vm_area_struct *prev, *next;
1120
1121	/* Try next first. */
1122	next = mas_walk(&mas);
1123	if (next) {
1124		anon_vma = reusable_anon_vma(next, vma, next);
1125		if (anon_vma)
1126			return anon_vma;
1127	}
1128
1129	prev = mas_prev(&mas, 0);
1130	VM_BUG_ON_VMA(prev != vma, vma);
1131	prev = mas_prev(&mas, 0);
1132	/* Try prev next. */
1133	if (prev)
1134		anon_vma = reusable_anon_vma(prev, prev, vma);
1135
1136	/*
1137	 * We might reach here with anon_vma == NULL if we can't find
1138	 * any reusable anon_vma.
1139	 * There's no absolute need to look only at touching neighbours:
1140	 * we could search further afield for "compatible" anon_vmas.
1141	 * But it would probably just be a waste of time searching,
1142	 * or lead to too many vmas hanging off the same anon_vma.
1143	 * We're trying to allow mprotect remerging later on,
1144	 * not trying to minimize memory used for anon_vmas.
1145	 */
1146	return anon_vma;
1147}
1148
1149/*
1150 * If a hint addr is less than mmap_min_addr change hint to be as
1151 * low as possible but still greater than mmap_min_addr
1152 */
1153static inline unsigned long round_hint_to_min(unsigned long hint)
1154{
1155	hint &= PAGE_MASK;
1156	if (((void *)hint != NULL) &&
1157	    (hint < mmap_min_addr))
1158		return PAGE_ALIGN(mmap_min_addr);
1159	return hint;
1160}
1161
1162bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163			unsigned long bytes)
1164{
1165	unsigned long locked_pages, limit_pages;
1166
1167	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168		return true;
1169
1170	locked_pages = bytes >> PAGE_SHIFT;
1171	locked_pages += mm->locked_vm;
1172
1173	limit_pages = rlimit(RLIMIT_MEMLOCK);
1174	limit_pages >>= PAGE_SHIFT;
1175
1176	return locked_pages <= limit_pages;
1177}
1178
1179static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180{
1181	if (S_ISREG(inode->i_mode))
1182		return MAX_LFS_FILESIZE;
1183
1184	if (S_ISBLK(inode->i_mode))
1185		return MAX_LFS_FILESIZE;
1186
1187	if (S_ISSOCK(inode->i_mode))
1188		return MAX_LFS_FILESIZE;
1189
1190	/* Special "we do even unsigned file positions" case */
1191	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192		return 0;
1193
1194	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195	return ULONG_MAX;
1196}
1197
1198static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199				unsigned long pgoff, unsigned long len)
1200{
1201	u64 maxsize = file_mmap_size_max(file, inode);
1202
1203	if (maxsize && len > maxsize)
1204		return false;
1205	maxsize -= len;
1206	if (pgoff > maxsize >> PAGE_SHIFT)
1207		return false;
1208	return true;
1209}
1210
1211/*
1212 * The caller must write-lock current->mm->mmap_lock.
1213 */
1214unsigned long do_mmap(struct file *file, unsigned long addr,
1215			unsigned long len, unsigned long prot,
1216			unsigned long flags, vm_flags_t vm_flags,
1217			unsigned long pgoff, unsigned long *populate,
1218			struct list_head *uf)
1219{
1220	struct mm_struct *mm = current->mm;
1221	int pkey = 0;
1222
1223	*populate = 0;
1224
1225	if (!len)
1226		return -EINVAL;
1227
1228	/*
1229	 * Does the application expect PROT_READ to imply PROT_EXEC?
1230	 *
1231	 * (the exception is when the underlying filesystem is noexec
1232	 *  mounted, in which case we don't add PROT_EXEC.)
1233	 */
1234	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235		if (!(file && path_noexec(&file->f_path)))
1236			prot |= PROT_EXEC;
1237
1238	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1239	if (flags & MAP_FIXED_NOREPLACE)
1240		flags |= MAP_FIXED;
1241
1242	if (!(flags & MAP_FIXED))
1243		addr = round_hint_to_min(addr);
1244
1245	/* Careful about overflows.. */
1246	len = PAGE_ALIGN(len);
1247	if (!len)
1248		return -ENOMEM;
1249
1250	/* offset overflow? */
1251	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252		return -EOVERFLOW;
1253
1254	/* Too many mappings? */
1255	if (mm->map_count > sysctl_max_map_count)
1256		return -ENOMEM;
1257
1258	/* Obtain the address to map to. we verify (or select) it and ensure
1259	 * that it represents a valid section of the address space.
1260	 */
1261	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1262	if (IS_ERR_VALUE(addr))
1263		return addr;
1264
1265	if (flags & MAP_FIXED_NOREPLACE) {
1266		if (find_vma_intersection(mm, addr, addr + len))
1267			return -EEXIST;
1268	}
1269
1270	if (prot == PROT_EXEC) {
1271		pkey = execute_only_pkey(mm);
1272		if (pkey < 0)
1273			pkey = 0;
1274	}
1275
1276	/* Do simple checking here so the lower-level routines won't have
1277	 * to. we assume access permissions have been handled by the open
1278	 * of the memory object, so we don't do any here.
1279	 */
1280	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1281			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1282
1283	if (flags & MAP_LOCKED)
1284		if (!can_do_mlock())
1285			return -EPERM;
1286
1287	if (!mlock_future_ok(mm, vm_flags, len))
1288		return -EAGAIN;
1289
1290	if (file) {
1291		struct inode *inode = file_inode(file);
1292		unsigned long flags_mask;
1293
1294		if (!file_mmap_ok(file, inode, pgoff, len))
1295			return -EOVERFLOW;
1296
1297		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1298
1299		switch (flags & MAP_TYPE) {
1300		case MAP_SHARED:
1301			/*
1302			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1303			 * flags. E.g. MAP_SYNC is dangerous to use with
1304			 * MAP_SHARED as you don't know which consistency model
1305			 * you will get. We silently ignore unsupported flags
1306			 * with MAP_SHARED to preserve backward compatibility.
1307			 */
1308			flags &= LEGACY_MAP_MASK;
1309			fallthrough;
1310		case MAP_SHARED_VALIDATE:
1311			if (flags & ~flags_mask)
1312				return -EOPNOTSUPP;
1313			if (prot & PROT_WRITE) {
1314				if (!(file->f_mode & FMODE_WRITE))
1315					return -EACCES;
1316				if (IS_SWAPFILE(file->f_mapping->host))
1317					return -ETXTBSY;
1318			}
1319
1320			/*
1321			 * Make sure we don't allow writing to an append-only
1322			 * file..
1323			 */
1324			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1325				return -EACCES;
1326
1327			vm_flags |= VM_SHARED | VM_MAYSHARE;
1328			if (!(file->f_mode & FMODE_WRITE))
1329				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1330			fallthrough;
1331		case MAP_PRIVATE:
1332			if (!(file->f_mode & FMODE_READ))
1333				return -EACCES;
1334			if (path_noexec(&file->f_path)) {
1335				if (vm_flags & VM_EXEC)
1336					return -EPERM;
1337				vm_flags &= ~VM_MAYEXEC;
1338			}
1339
1340			if (!file->f_op->mmap)
1341				return -ENODEV;
1342			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1343				return -EINVAL;
1344			break;
1345
1346		default:
1347			return -EINVAL;
1348		}
1349	} else {
1350		switch (flags & MAP_TYPE) {
1351		case MAP_SHARED:
1352			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1353				return -EINVAL;
1354			/*
1355			 * Ignore pgoff.
1356			 */
1357			pgoff = 0;
1358			vm_flags |= VM_SHARED | VM_MAYSHARE;
1359			break;
1360		case MAP_PRIVATE:
1361			/*
1362			 * Set pgoff according to addr for anon_vma.
1363			 */
1364			pgoff = addr >> PAGE_SHIFT;
1365			break;
1366		default:
1367			return -EINVAL;
1368		}
1369	}
1370
1371	/*
1372	 * Set 'VM_NORESERVE' if we should not account for the
1373	 * memory use of this mapping.
1374	 */
1375	if (flags & MAP_NORESERVE) {
1376		/* We honor MAP_NORESERVE if allowed to overcommit */
1377		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1378			vm_flags |= VM_NORESERVE;
1379
1380		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1381		if (file && is_file_hugepages(file))
1382			vm_flags |= VM_NORESERVE;
1383	}
1384
1385	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1386	if (!IS_ERR_VALUE(addr) &&
1387	    ((vm_flags & VM_LOCKED) ||
1388	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1389		*populate = len;
1390	return addr;
1391}
1392
1393unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1394			      unsigned long prot, unsigned long flags,
1395			      unsigned long fd, unsigned long pgoff)
1396{
1397	struct file *file = NULL;
1398	unsigned long retval;
1399
1400	if (!(flags & MAP_ANONYMOUS)) {
1401		audit_mmap_fd(fd, flags);
1402		file = fget(fd);
1403		if (!file)
1404			return -EBADF;
1405		if (is_file_hugepages(file)) {
1406			len = ALIGN(len, huge_page_size(hstate_file(file)));
1407		} else if (unlikely(flags & MAP_HUGETLB)) {
1408			retval = -EINVAL;
1409			goto out_fput;
1410		}
1411	} else if (flags & MAP_HUGETLB) {
1412		struct hstate *hs;
1413
1414		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1415		if (!hs)
1416			return -EINVAL;
1417
1418		len = ALIGN(len, huge_page_size(hs));
1419		/*
1420		 * VM_NORESERVE is used because the reservations will be
1421		 * taken when vm_ops->mmap() is called
1422		 */
1423		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1424				VM_NORESERVE,
1425				HUGETLB_ANONHUGE_INODE,
1426				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427		if (IS_ERR(file))
1428			return PTR_ERR(file);
1429	}
1430
1431	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1432out_fput:
1433	if (file)
1434		fput(file);
1435	return retval;
1436}
1437
1438SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1439		unsigned long, prot, unsigned long, flags,
1440		unsigned long, fd, unsigned long, pgoff)
1441{
1442	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1443}
1444
1445#ifdef __ARCH_WANT_SYS_OLD_MMAP
1446struct mmap_arg_struct {
1447	unsigned long addr;
1448	unsigned long len;
1449	unsigned long prot;
1450	unsigned long flags;
1451	unsigned long fd;
1452	unsigned long offset;
1453};
1454
1455SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1456{
1457	struct mmap_arg_struct a;
1458
1459	if (copy_from_user(&a, arg, sizeof(a)))
1460		return -EFAULT;
1461	if (offset_in_page(a.offset))
1462		return -EINVAL;
1463
1464	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1465			       a.offset >> PAGE_SHIFT);
1466}
1467#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1468
1469static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1470{
1471	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1472}
1473
1474static bool vma_is_shared_writable(struct vm_area_struct *vma)
1475{
1476	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1477		(VM_WRITE | VM_SHARED);
1478}
1479
1480static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1481{
1482	/* No managed pages to writeback. */
1483	if (vma->vm_flags & VM_PFNMAP)
1484		return false;
1485
1486	return vma->vm_file && vma->vm_file->f_mapping &&
1487		mapping_can_writeback(vma->vm_file->f_mapping);
1488}
1489
1490/*
1491 * Does this VMA require the underlying folios to have their dirty state
1492 * tracked?
1493 */
1494bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1495{
1496	/* Only shared, writable VMAs require dirty tracking. */
1497	if (!vma_is_shared_writable(vma))
1498		return false;
1499
1500	/* Does the filesystem need to be notified? */
1501	if (vm_ops_needs_writenotify(vma->vm_ops))
1502		return true;
1503
1504	/*
1505	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1506	 * can writeback, dirty tracking is still required.
1507	 */
1508	return vma_fs_can_writeback(vma);
1509}
1510
1511/*
1512 * Some shared mappings will want the pages marked read-only
1513 * to track write events. If so, we'll downgrade vm_page_prot
1514 * to the private version (using protection_map[] without the
1515 * VM_SHARED bit).
1516 */
1517int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1518{
1519	/* If it was private or non-writable, the write bit is already clear */
1520	if (!vma_is_shared_writable(vma))
1521		return 0;
1522
1523	/* The backer wishes to know when pages are first written to? */
1524	if (vm_ops_needs_writenotify(vma->vm_ops))
1525		return 1;
1526
1527	/* The open routine did something to the protections that pgprot_modify
1528	 * won't preserve? */
1529	if (pgprot_val(vm_page_prot) !=
1530	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1531		return 0;
1532
1533	/*
1534	 * Do we need to track softdirty? hugetlb does not support softdirty
1535	 * tracking yet.
1536	 */
1537	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1538		return 1;
1539
1540	/* Do we need write faults for uffd-wp tracking? */
1541	if (userfaultfd_wp(vma))
1542		return 1;
1543
1544	/* Can the mapping track the dirty pages? */
1545	return vma_fs_can_writeback(vma);
1546}
1547
1548/*
1549 * We account for memory if it's a private writeable mapping,
1550 * not hugepages and VM_NORESERVE wasn't set.
1551 */
1552static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1553{
1554	/*
1555	 * hugetlb has its own accounting separate from the core VM
1556	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1557	 */
1558	if (file && is_file_hugepages(file))
1559		return 0;
1560
1561	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1562}
1563
1564/**
1565 * unmapped_area() - Find an area between the low_limit and the high_limit with
1566 * the correct alignment and offset, all from @info. Note: current->mm is used
1567 * for the search.
1568 *
1569 * @info: The unmapped area information including the range [low_limit -
1570 * high_limit), the alignment offset and mask.
1571 *
1572 * Return: A memory address or -ENOMEM.
1573 */
1574static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1575{
1576	unsigned long length, gap;
1577	unsigned long low_limit, high_limit;
1578	struct vm_area_struct *tmp;
1579
1580	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1581
1582	/* Adjust search length to account for worst case alignment overhead */
1583	length = info->length + info->align_mask;
1584	if (length < info->length)
1585		return -ENOMEM;
1586
1587	low_limit = info->low_limit;
1588	if (low_limit < mmap_min_addr)
1589		low_limit = mmap_min_addr;
1590	high_limit = info->high_limit;
1591retry:
1592	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1593		return -ENOMEM;
1594
1595	gap = mas.index;
1596	gap += (info->align_offset - gap) & info->align_mask;
1597	tmp = mas_next(&mas, ULONG_MAX);
1598	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1599		if (vm_start_gap(tmp) < gap + length - 1) {
1600			low_limit = tmp->vm_end;
1601			mas_reset(&mas);
1602			goto retry;
1603		}
1604	} else {
1605		tmp = mas_prev(&mas, 0);
1606		if (tmp && vm_end_gap(tmp) > gap) {
1607			low_limit = vm_end_gap(tmp);
1608			mas_reset(&mas);
1609			goto retry;
1610		}
1611	}
1612
1613	return gap;
1614}
1615
1616/**
1617 * unmapped_area_topdown() - Find an area between the low_limit and the
1618 * high_limit with the correct alignment and offset at the highest available
1619 * address, all from @info. Note: current->mm is used for the search.
1620 *
1621 * @info: The unmapped area information including the range [low_limit -
1622 * high_limit), the alignment offset and mask.
1623 *
1624 * Return: A memory address or -ENOMEM.
1625 */
1626static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1627{
1628	unsigned long length, gap, gap_end;
1629	unsigned long low_limit, high_limit;
1630	struct vm_area_struct *tmp;
1631
1632	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1633	/* Adjust search length to account for worst case alignment overhead */
1634	length = info->length + info->align_mask;
1635	if (length < info->length)
1636		return -ENOMEM;
1637
1638	low_limit = info->low_limit;
1639	if (low_limit < mmap_min_addr)
1640		low_limit = mmap_min_addr;
1641	high_limit = info->high_limit;
1642retry:
1643	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1644		return -ENOMEM;
1645
1646	gap = mas.last + 1 - info->length;
1647	gap -= (gap - info->align_offset) & info->align_mask;
1648	gap_end = mas.last;
1649	tmp = mas_next(&mas, ULONG_MAX);
1650	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1651		if (vm_start_gap(tmp) <= gap_end) {
1652			high_limit = vm_start_gap(tmp);
1653			mas_reset(&mas);
1654			goto retry;
1655		}
1656	} else {
1657		tmp = mas_prev(&mas, 0);
1658		if (tmp && vm_end_gap(tmp) > gap) {
1659			high_limit = tmp->vm_start;
1660			mas_reset(&mas);
1661			goto retry;
1662		}
1663	}
1664
1665	return gap;
1666}
1667
1668/*
1669 * Search for an unmapped address range.
1670 *
1671 * We are looking for a range that:
1672 * - does not intersect with any VMA;
1673 * - is contained within the [low_limit, high_limit) interval;
1674 * - is at least the desired size.
1675 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1676 */
1677unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1678{
1679	unsigned long addr;
1680
1681	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1682		addr = unmapped_area_topdown(info);
1683	else
1684		addr = unmapped_area(info);
1685
1686	trace_vm_unmapped_area(addr, info);
1687	return addr;
1688}
1689
1690/* Get an address range which is currently unmapped.
1691 * For shmat() with addr=0.
1692 *
1693 * Ugly calling convention alert:
1694 * Return value with the low bits set means error value,
1695 * ie
1696 *	if (ret & ~PAGE_MASK)
1697 *		error = ret;
1698 *
1699 * This function "knows" that -ENOMEM has the bits set.
1700 */
1701unsigned long
1702generic_get_unmapped_area(struct file *filp, unsigned long addr,
1703			  unsigned long len, unsigned long pgoff,
1704			  unsigned long flags)
1705{
1706	struct mm_struct *mm = current->mm;
1707	struct vm_area_struct *vma, *prev;
1708	struct vm_unmapped_area_info info;
1709	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1710
1711	if (len > mmap_end - mmap_min_addr)
1712		return -ENOMEM;
1713
1714	if (flags & MAP_FIXED)
1715		return addr;
1716
1717	if (addr) {
1718		addr = PAGE_ALIGN(addr);
1719		vma = find_vma_prev(mm, addr, &prev);
1720		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1721		    (!vma || addr + len <= vm_start_gap(vma)) &&
1722		    (!prev || addr >= vm_end_gap(prev)))
1723			return addr;
1724	}
1725
1726	info.flags = 0;
1727	info.length = len;
1728	info.low_limit = mm->mmap_base;
1729	info.high_limit = mmap_end;
1730	info.align_mask = 0;
1731	info.align_offset = 0;
1732	return vm_unmapped_area(&info);
1733}
1734
1735#ifndef HAVE_ARCH_UNMAPPED_AREA
1736unsigned long
1737arch_get_unmapped_area(struct file *filp, unsigned long addr,
1738		       unsigned long len, unsigned long pgoff,
1739		       unsigned long flags)
1740{
1741	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1742}
1743#endif
1744
1745/*
1746 * This mmap-allocator allocates new areas top-down from below the
1747 * stack's low limit (the base):
1748 */
1749unsigned long
1750generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1751				  unsigned long len, unsigned long pgoff,
1752				  unsigned long flags)
1753{
1754	struct vm_area_struct *vma, *prev;
1755	struct mm_struct *mm = current->mm;
1756	struct vm_unmapped_area_info info;
1757	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1758
1759	/* requested length too big for entire address space */
1760	if (len > mmap_end - mmap_min_addr)
1761		return -ENOMEM;
1762
1763	if (flags & MAP_FIXED)
1764		return addr;
1765
1766	/* requesting a specific address */
1767	if (addr) {
1768		addr = PAGE_ALIGN(addr);
1769		vma = find_vma_prev(mm, addr, &prev);
1770		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1771				(!vma || addr + len <= vm_start_gap(vma)) &&
1772				(!prev || addr >= vm_end_gap(prev)))
1773			return addr;
1774	}
1775
1776	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1777	info.length = len;
1778	info.low_limit = PAGE_SIZE;
1779	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1780	info.align_mask = 0;
1781	info.align_offset = 0;
1782	addr = vm_unmapped_area(&info);
1783
1784	/*
1785	 * A failed mmap() very likely causes application failure,
1786	 * so fall back to the bottom-up function here. This scenario
1787	 * can happen with large stack limits and large mmap()
1788	 * allocations.
1789	 */
1790	if (offset_in_page(addr)) {
1791		VM_BUG_ON(addr != -ENOMEM);
1792		info.flags = 0;
1793		info.low_limit = TASK_UNMAPPED_BASE;
1794		info.high_limit = mmap_end;
1795		addr = vm_unmapped_area(&info);
1796	}
1797
1798	return addr;
1799}
1800
1801#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1802unsigned long
1803arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1804			       unsigned long len, unsigned long pgoff,
1805			       unsigned long flags)
1806{
1807	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1808}
1809#endif
1810
1811unsigned long
1812get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1813		unsigned long pgoff, unsigned long flags)
1814{
1815	unsigned long (*get_area)(struct file *, unsigned long,
1816				  unsigned long, unsigned long, unsigned long);
1817
1818	unsigned long error = arch_mmap_check(addr, len, flags);
1819	if (error)
1820		return error;
1821
1822	/* Careful about overflows.. */
1823	if (len > TASK_SIZE)
1824		return -ENOMEM;
1825
1826	get_area = current->mm->get_unmapped_area;
1827	if (file) {
1828		if (file->f_op->get_unmapped_area)
1829			get_area = file->f_op->get_unmapped_area;
1830	} else if (flags & MAP_SHARED) {
1831		/*
1832		 * mmap_region() will call shmem_zero_setup() to create a file,
1833		 * so use shmem's get_unmapped_area in case it can be huge.
1834		 */
1835		get_area = shmem_get_unmapped_area;
1836	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1837		/* Ensures that larger anonymous mappings are THP aligned. */
1838		get_area = thp_get_unmapped_area;
1839	}
1840
1841	/* Always treat pgoff as zero for anonymous memory. */
1842	if (!file)
1843		pgoff = 0;
1844
1845	addr = get_area(file, addr, len, pgoff, flags);
1846	if (IS_ERR_VALUE(addr))
1847		return addr;
1848
1849	if (addr > TASK_SIZE - len)
1850		return -ENOMEM;
1851	if (offset_in_page(addr))
1852		return -EINVAL;
1853
1854	error = security_mmap_addr(addr);
1855	return error ? error : addr;
1856}
1857
1858EXPORT_SYMBOL(get_unmapped_area);
1859
1860/**
1861 * find_vma_intersection() - Look up the first VMA which intersects the interval
1862 * @mm: The process address space.
1863 * @start_addr: The inclusive start user address.
1864 * @end_addr: The exclusive end user address.
1865 *
1866 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1867 * start_addr < end_addr.
1868 */
1869struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1870					     unsigned long start_addr,
1871					     unsigned long end_addr)
1872{
1873	unsigned long index = start_addr;
1874
1875	mmap_assert_locked(mm);
1876	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1877}
1878EXPORT_SYMBOL(find_vma_intersection);
1879
1880/**
1881 * find_vma() - Find the VMA for a given address, or the next VMA.
1882 * @mm: The mm_struct to check
1883 * @addr: The address
1884 *
1885 * Returns: The VMA associated with addr, or the next VMA.
1886 * May return %NULL in the case of no VMA at addr or above.
1887 */
1888struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1889{
1890	unsigned long index = addr;
1891
1892	mmap_assert_locked(mm);
1893	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1894}
1895EXPORT_SYMBOL(find_vma);
1896
1897/**
1898 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1899 * set %pprev to the previous VMA, if any.
1900 * @mm: The mm_struct to check
1901 * @addr: The address
1902 * @pprev: The pointer to set to the previous VMA
1903 *
1904 * Note that RCU lock is missing here since the external mmap_lock() is used
1905 * instead.
1906 *
1907 * Returns: The VMA associated with @addr, or the next vma.
1908 * May return %NULL in the case of no vma at addr or above.
1909 */
1910struct vm_area_struct *
1911find_vma_prev(struct mm_struct *mm, unsigned long addr,
1912			struct vm_area_struct **pprev)
1913{
1914	struct vm_area_struct *vma;
1915	MA_STATE(mas, &mm->mm_mt, addr, addr);
1916
1917	vma = mas_walk(&mas);
1918	*pprev = mas_prev(&mas, 0);
1919	if (!vma)
1920		vma = mas_next(&mas, ULONG_MAX);
1921	return vma;
1922}
1923
1924/*
1925 * Verify that the stack growth is acceptable and
1926 * update accounting. This is shared with both the
1927 * grow-up and grow-down cases.
1928 */
1929static int acct_stack_growth(struct vm_area_struct *vma,
1930			     unsigned long size, unsigned long grow)
1931{
1932	struct mm_struct *mm = vma->vm_mm;
1933	unsigned long new_start;
1934
1935	/* address space limit tests */
1936	if (!may_expand_vm(mm, vma->vm_flags, grow))
1937		return -ENOMEM;
1938
1939	/* Stack limit test */
1940	if (size > rlimit(RLIMIT_STACK))
1941		return -ENOMEM;
1942
1943	/* mlock limit tests */
1944	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1945		return -ENOMEM;
1946
1947	/* Check to ensure the stack will not grow into a hugetlb-only region */
1948	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1949			vma->vm_end - size;
1950	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1951		return -EFAULT;
1952
1953	/*
1954	 * Overcommit..  This must be the final test, as it will
1955	 * update security statistics.
1956	 */
1957	if (security_vm_enough_memory_mm(mm, grow))
1958		return -ENOMEM;
1959
1960	return 0;
1961}
1962
1963#if defined(CONFIG_STACK_GROWSUP)
1964/*
1965 * PA-RISC uses this for its stack.
1966 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1967 */
1968static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1969{
1970	struct mm_struct *mm = vma->vm_mm;
1971	struct vm_area_struct *next;
1972	unsigned long gap_addr;
1973	int error = 0;
1974	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1975
1976	if (!(vma->vm_flags & VM_GROWSUP))
1977		return -EFAULT;
1978
1979	/* Guard against exceeding limits of the address space. */
1980	address &= PAGE_MASK;
1981	if (address >= (TASK_SIZE & PAGE_MASK))
1982		return -ENOMEM;
1983	address += PAGE_SIZE;
1984
1985	/* Enforce stack_guard_gap */
1986	gap_addr = address + stack_guard_gap;
1987
1988	/* Guard against overflow */
1989	if (gap_addr < address || gap_addr > TASK_SIZE)
1990		gap_addr = TASK_SIZE;
1991
1992	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1993	if (next && vma_is_accessible(next)) {
1994		if (!(next->vm_flags & VM_GROWSUP))
1995			return -ENOMEM;
1996		/* Check that both stack segments have the same anon_vma? */
1997	}
1998
1999	if (next)
2000		mas_prev_range(&mas, address);
2001
2002	__mas_set_range(&mas, vma->vm_start, address - 1);
2003	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2004		return -ENOMEM;
2005
2006	/* We must make sure the anon_vma is allocated. */
2007	if (unlikely(anon_vma_prepare(vma))) {
2008		mas_destroy(&mas);
2009		return -ENOMEM;
2010	}
2011
2012	/* Lock the VMA before expanding to prevent concurrent page faults */
2013	vma_start_write(vma);
2014	/*
2015	 * vma->vm_start/vm_end cannot change under us because the caller
2016	 * is required to hold the mmap_lock in read mode.  We need the
2017	 * anon_vma lock to serialize against concurrent expand_stacks.
2018	 */
2019	anon_vma_lock_write(vma->anon_vma);
2020
2021	/* Somebody else might have raced and expanded it already */
2022	if (address > vma->vm_end) {
2023		unsigned long size, grow;
2024
2025		size = address - vma->vm_start;
2026		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2027
2028		error = -ENOMEM;
2029		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2030			error = acct_stack_growth(vma, size, grow);
2031			if (!error) {
2032				/*
2033				 * We only hold a shared mmap_lock lock here, so
2034				 * we need to protect against concurrent vma
2035				 * expansions.  anon_vma_lock_write() doesn't
2036				 * help here, as we don't guarantee that all
2037				 * growable vmas in a mm share the same root
2038				 * anon vma.  So, we reuse mm->page_table_lock
2039				 * to guard against concurrent vma expansions.
2040				 */
2041				spin_lock(&mm->page_table_lock);
2042				if (vma->vm_flags & VM_LOCKED)
2043					mm->locked_vm += grow;
2044				vm_stat_account(mm, vma->vm_flags, grow);
2045				anon_vma_interval_tree_pre_update_vma(vma);
2046				vma->vm_end = address;
2047				/* Overwrite old entry in mtree. */
2048				mas_store_prealloc(&mas, vma);
2049				anon_vma_interval_tree_post_update_vma(vma);
2050				spin_unlock(&mm->page_table_lock);
2051
2052				perf_event_mmap(vma);
2053			}
2054		}
2055	}
2056	anon_vma_unlock_write(vma->anon_vma);
2057	mas_destroy(&mas);
2058	validate_mm(mm);
2059	return error;
2060}
2061#endif /* CONFIG_STACK_GROWSUP */
2062
2063/*
2064 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2065 * mmap_lock held for writing.
2066 */
2067int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2068{
2069	struct mm_struct *mm = vma->vm_mm;
2070	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2071	struct vm_area_struct *prev;
2072	int error = 0;
2073
2074	if (!(vma->vm_flags & VM_GROWSDOWN))
2075		return -EFAULT;
2076
2077	address &= PAGE_MASK;
2078	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2079		return -EPERM;
2080
2081	/* Enforce stack_guard_gap */
2082	prev = mas_prev(&mas, 0);
2083	/* Check that both stack segments have the same anon_vma? */
2084	if (prev) {
2085		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2086		    vma_is_accessible(prev) &&
2087		    (address - prev->vm_end < stack_guard_gap))
2088			return -ENOMEM;
2089	}
2090
2091	if (prev)
2092		mas_next_range(&mas, vma->vm_start);
2093
2094	__mas_set_range(&mas, address, vma->vm_end - 1);
2095	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2096		return -ENOMEM;
2097
2098	/* We must make sure the anon_vma is allocated. */
2099	if (unlikely(anon_vma_prepare(vma))) {
2100		mas_destroy(&mas);
2101		return -ENOMEM;
2102	}
2103
2104	/* Lock the VMA before expanding to prevent concurrent page faults */
2105	vma_start_write(vma);
2106	/*
2107	 * vma->vm_start/vm_end cannot change under us because the caller
2108	 * is required to hold the mmap_lock in read mode.  We need the
2109	 * anon_vma lock to serialize against concurrent expand_stacks.
2110	 */
2111	anon_vma_lock_write(vma->anon_vma);
2112
2113	/* Somebody else might have raced and expanded it already */
2114	if (address < vma->vm_start) {
2115		unsigned long size, grow;
2116
2117		size = vma->vm_end - address;
2118		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2119
2120		error = -ENOMEM;
2121		if (grow <= vma->vm_pgoff) {
2122			error = acct_stack_growth(vma, size, grow);
2123			if (!error) {
2124				/*
2125				 * We only hold a shared mmap_lock lock here, so
2126				 * we need to protect against concurrent vma
2127				 * expansions.  anon_vma_lock_write() doesn't
2128				 * help here, as we don't guarantee that all
2129				 * growable vmas in a mm share the same root
2130				 * anon vma.  So, we reuse mm->page_table_lock
2131				 * to guard against concurrent vma expansions.
2132				 */
2133				spin_lock(&mm->page_table_lock);
2134				if (vma->vm_flags & VM_LOCKED)
2135					mm->locked_vm += grow;
2136				vm_stat_account(mm, vma->vm_flags, grow);
2137				anon_vma_interval_tree_pre_update_vma(vma);
2138				vma->vm_start = address;
2139				vma->vm_pgoff -= grow;
2140				/* Overwrite old entry in mtree. */
2141				mas_store_prealloc(&mas, vma);
2142				anon_vma_interval_tree_post_update_vma(vma);
2143				spin_unlock(&mm->page_table_lock);
2144
2145				perf_event_mmap(vma);
2146			}
2147		}
2148	}
2149	anon_vma_unlock_write(vma->anon_vma);
2150	mas_destroy(&mas);
2151	validate_mm(mm);
2152	return error;
2153}
2154
2155/* enforced gap between the expanding stack and other mappings. */
2156unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2157
2158static int __init cmdline_parse_stack_guard_gap(char *p)
2159{
2160	unsigned long val;
2161	char *endptr;
2162
2163	val = simple_strtoul(p, &endptr, 10);
2164	if (!*endptr)
2165		stack_guard_gap = val << PAGE_SHIFT;
2166
2167	return 1;
2168}
2169__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2170
2171#ifdef CONFIG_STACK_GROWSUP
2172int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2173{
2174	return expand_upwards(vma, address);
2175}
2176
2177struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2178{
2179	struct vm_area_struct *vma, *prev;
2180
2181	addr &= PAGE_MASK;
2182	vma = find_vma_prev(mm, addr, &prev);
2183	if (vma && (vma->vm_start <= addr))
2184		return vma;
2185	if (!prev)
2186		return NULL;
2187	if (expand_stack_locked(prev, addr))
2188		return NULL;
2189	if (prev->vm_flags & VM_LOCKED)
2190		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2191	return prev;
2192}
2193#else
2194int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2195{
2196	return expand_downwards(vma, address);
2197}
2198
2199struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2200{
2201	struct vm_area_struct *vma;
2202	unsigned long start;
2203
2204	addr &= PAGE_MASK;
2205	vma = find_vma(mm, addr);
2206	if (!vma)
2207		return NULL;
2208	if (vma->vm_start <= addr)
2209		return vma;
2210	start = vma->vm_start;
2211	if (expand_stack_locked(vma, addr))
2212		return NULL;
2213	if (vma->vm_flags & VM_LOCKED)
2214		populate_vma_page_range(vma, addr, start, NULL);
2215	return vma;
2216}
2217#endif
2218
2219#if defined(CONFIG_STACK_GROWSUP)
2220
2221#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2222#define vma_expand_down(vma, addr) (-EFAULT)
2223
2224#else
2225
2226#define vma_expand_up(vma,addr) (-EFAULT)
2227#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2228
2229#endif
2230
2231/*
2232 * expand_stack(): legacy interface for page faulting. Don't use unless
2233 * you have to.
2234 *
2235 * This is called with the mm locked for reading, drops the lock, takes
2236 * the lock for writing, tries to look up a vma again, expands it if
2237 * necessary, and downgrades the lock to reading again.
2238 *
2239 * If no vma is found or it can't be expanded, it returns NULL and has
2240 * dropped the lock.
2241 */
2242struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2243{
2244	struct vm_area_struct *vma, *prev;
2245
2246	mmap_read_unlock(mm);
2247	if (mmap_write_lock_killable(mm))
2248		return NULL;
2249
2250	vma = find_vma_prev(mm, addr, &prev);
2251	if (vma && vma->vm_start <= addr)
2252		goto success;
2253
2254	if (prev && !vma_expand_up(prev, addr)) {
2255		vma = prev;
2256		goto success;
2257	}
2258
2259	if (vma && !vma_expand_down(vma, addr))
2260		goto success;
2261
2262	mmap_write_unlock(mm);
2263	return NULL;
2264
2265success:
2266	mmap_write_downgrade(mm);
2267	return vma;
2268}
2269
2270/*
2271 * Ok - we have the memory areas we should free on a maple tree so release them,
2272 * and do the vma updates.
2273 *
2274 * Called with the mm semaphore held.
2275 */
2276static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2277{
2278	unsigned long nr_accounted = 0;
2279	struct vm_area_struct *vma;
2280
2281	/* Update high watermark before we lower total_vm */
2282	update_hiwater_vm(mm);
2283	mas_for_each(mas, vma, ULONG_MAX) {
2284		long nrpages = vma_pages(vma);
2285
2286		if (vma->vm_flags & VM_ACCOUNT)
2287			nr_accounted += nrpages;
2288		vm_stat_account(mm, vma->vm_flags, -nrpages);
2289		remove_vma(vma, false);
2290	}
2291	vm_unacct_memory(nr_accounted);
2292}
2293
2294/*
2295 * Get rid of page table information in the indicated region.
2296 *
2297 * Called with the mm semaphore held.
2298 */
2299static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2300		struct vm_area_struct *vma, struct vm_area_struct *prev,
2301		struct vm_area_struct *next, unsigned long start,
2302		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2303{
2304	struct mmu_gather tlb;
2305	unsigned long mt_start = mas->index;
2306
2307	lru_add_drain();
2308	tlb_gather_mmu(&tlb, mm);
2309	update_hiwater_rss(mm);
2310	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2311	mas_set(mas, mt_start);
2312	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2313				 next ? next->vm_start : USER_PGTABLES_CEILING,
2314				 mm_wr_locked);
2315	tlb_finish_mmu(&tlb);
2316}
2317
2318/*
2319 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2320 * has already been checked or doesn't make sense to fail.
2321 * VMA Iterator will point to the end VMA.
2322 */
2323static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2324		       unsigned long addr, int new_below)
2325{
2326	struct vma_prepare vp;
2327	struct vm_area_struct *new;
2328	int err;
2329
2330	WARN_ON(vma->vm_start >= addr);
2331	WARN_ON(vma->vm_end <= addr);
2332
2333	if (vma->vm_ops && vma->vm_ops->may_split) {
2334		err = vma->vm_ops->may_split(vma, addr);
2335		if (err)
2336			return err;
2337	}
2338
2339	new = vm_area_dup(vma);
2340	if (!new)
2341		return -ENOMEM;
2342
2343	if (new_below) {
2344		new->vm_end = addr;
2345	} else {
2346		new->vm_start = addr;
2347		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2348	}
2349
2350	err = -ENOMEM;
2351	vma_iter_config(vmi, new->vm_start, new->vm_end);
2352	if (vma_iter_prealloc(vmi, new))
2353		goto out_free_vma;
2354
2355	err = vma_dup_policy(vma, new);
2356	if (err)
2357		goto out_free_vmi;
2358
2359	err = anon_vma_clone(new, vma);
2360	if (err)
2361		goto out_free_mpol;
2362
2363	if (new->vm_file)
2364		get_file(new->vm_file);
2365
2366	if (new->vm_ops && new->vm_ops->open)
2367		new->vm_ops->open(new);
2368
2369	vma_start_write(vma);
2370	vma_start_write(new);
2371
2372	init_vma_prep(&vp, vma);
2373	vp.insert = new;
2374	vma_prepare(&vp);
2375	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2376
2377	if (new_below) {
2378		vma->vm_start = addr;
2379		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2380	} else {
2381		vma->vm_end = addr;
2382	}
2383
2384	/* vma_complete stores the new vma */
2385	vma_complete(&vp, vmi, vma->vm_mm);
2386
2387	/* Success. */
2388	if (new_below)
2389		vma_next(vmi);
2390	return 0;
2391
2392out_free_mpol:
2393	mpol_put(vma_policy(new));
2394out_free_vmi:
2395	vma_iter_free(vmi);
2396out_free_vma:
2397	vm_area_free(new);
2398	return err;
2399}
2400
2401/*
2402 * Split a vma into two pieces at address 'addr', a new vma is allocated
2403 * either for the first part or the tail.
2404 */
2405static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2406		     unsigned long addr, int new_below)
2407{
2408	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2409		return -ENOMEM;
2410
2411	return __split_vma(vmi, vma, addr, new_below);
2412}
2413
2414/*
2415 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2416 * context and anonymous VMA name within the range [start, end).
2417 *
2418 * As a result, we might be able to merge the newly modified VMA range with an
2419 * adjacent VMA with identical properties.
2420 *
2421 * If no merge is possible and the range does not span the entirety of the VMA,
2422 * we then need to split the VMA to accommodate the change.
2423 *
2424 * The function returns either the merged VMA, the original VMA if a split was
2425 * required instead, or an error if the split failed.
2426 */
2427struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2428				  struct vm_area_struct *prev,
2429				  struct vm_area_struct *vma,
2430				  unsigned long start, unsigned long end,
2431				  unsigned long vm_flags,
2432				  struct mempolicy *policy,
2433				  struct vm_userfaultfd_ctx uffd_ctx,
2434				  struct anon_vma_name *anon_name)
2435{
2436	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2437	struct vm_area_struct *merged;
2438
2439	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2440			   pgoff, policy, uffd_ctx, anon_name);
2441	if (merged)
2442		return merged;
2443
2444	if (vma->vm_start < start) {
2445		int err = split_vma(vmi, vma, start, 1);
2446
2447		if (err)
2448			return ERR_PTR(err);
2449	}
2450
2451	if (vma->vm_end > end) {
2452		int err = split_vma(vmi, vma, end, 0);
2453
2454		if (err)
2455			return ERR_PTR(err);
2456	}
2457
2458	return vma;
2459}
2460
2461/*
2462 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2463 * must ensure that [start, end) does not overlap any existing VMA.
2464 */
2465static struct vm_area_struct
2466*vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2467		   struct vm_area_struct *vma, unsigned long start,
2468		   unsigned long end, pgoff_t pgoff)
2469{
2470	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2471			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2472}
2473
2474/*
2475 * Expand vma by delta bytes, potentially merging with an immediately adjacent
2476 * VMA with identical properties.
2477 */
2478struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2479					struct vm_area_struct *vma,
2480					unsigned long delta)
2481{
2482	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2483
2484	/* vma is specified as prev, so case 1 or 2 will apply. */
2485	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2486			 vma->vm_flags, pgoff, vma_policy(vma),
2487			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2488}
2489
2490/*
2491 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2492 * @vmi: The vma iterator
2493 * @vma: The starting vm_area_struct
2494 * @mm: The mm_struct
2495 * @start: The aligned start address to munmap.
2496 * @end: The aligned end address to munmap.
2497 * @uf: The userfaultfd list_head
2498 * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2499 * success.
2500 *
2501 * Return: 0 on success and drops the lock if so directed, error and leaves the
2502 * lock held otherwise.
2503 */
2504static int
2505do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2506		    struct mm_struct *mm, unsigned long start,
2507		    unsigned long end, struct list_head *uf, bool unlock)
2508{
2509	struct vm_area_struct *prev, *next = NULL;
2510	struct maple_tree mt_detach;
2511	int count = 0;
2512	int error = -ENOMEM;
2513	unsigned long locked_vm = 0;
2514	MA_STATE(mas_detach, &mt_detach, 0, 0);
2515	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2516	mt_on_stack(mt_detach);
2517
2518	/*
2519	 * If we need to split any vma, do it now to save pain later.
2520	 *
2521	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2522	 * unmapped vm_area_struct will remain in use: so lower split_vma
2523	 * places tmp vma above, and higher split_vma places tmp vma below.
2524	 */
2525
2526	/* Does it split the first one? */
2527	if (start > vma->vm_start) {
2528
2529		/*
2530		 * Make sure that map_count on return from munmap() will
2531		 * not exceed its limit; but let map_count go just above
2532		 * its limit temporarily, to help free resources as expected.
2533		 */
2534		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2535			goto map_count_exceeded;
2536
2537		error = __split_vma(vmi, vma, start, 1);
2538		if (error)
2539			goto start_split_failed;
2540	}
2541
2542	/*
2543	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2544	 * it is always overwritten.
2545	 */
2546	next = vma;
2547	do {
2548		/* Does it split the end? */
2549		if (next->vm_end > end) {
2550			error = __split_vma(vmi, next, end, 0);
2551			if (error)
2552				goto end_split_failed;
2553		}
2554		vma_start_write(next);
2555		mas_set(&mas_detach, count);
2556		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2557		if (error)
2558			goto munmap_gather_failed;
2559		vma_mark_detached(next, true);
2560		if (next->vm_flags & VM_LOCKED)
2561			locked_vm += vma_pages(next);
2562
2563		count++;
2564		if (unlikely(uf)) {
2565			/*
2566			 * If userfaultfd_unmap_prep returns an error the vmas
2567			 * will remain split, but userland will get a
2568			 * highly unexpected error anyway. This is no
2569			 * different than the case where the first of the two
2570			 * __split_vma fails, but we don't undo the first
2571			 * split, despite we could. This is unlikely enough
2572			 * failure that it's not worth optimizing it for.
2573			 */
2574			error = userfaultfd_unmap_prep(next, start, end, uf);
2575
2576			if (error)
2577				goto userfaultfd_error;
2578		}
2579#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2580		BUG_ON(next->vm_start < start);
2581		BUG_ON(next->vm_start > end);
2582#endif
2583	} for_each_vma_range(*vmi, next, end);
2584
2585#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2586	/* Make sure no VMAs are about to be lost. */
2587	{
2588		MA_STATE(test, &mt_detach, 0, 0);
2589		struct vm_area_struct *vma_mas, *vma_test;
2590		int test_count = 0;
2591
2592		vma_iter_set(vmi, start);
2593		rcu_read_lock();
2594		vma_test = mas_find(&test, count - 1);
2595		for_each_vma_range(*vmi, vma_mas, end) {
2596			BUG_ON(vma_mas != vma_test);
2597			test_count++;
2598			vma_test = mas_next(&test, count - 1);
2599		}
2600		rcu_read_unlock();
2601		BUG_ON(count != test_count);
2602	}
2603#endif
2604
2605	while (vma_iter_addr(vmi) > start)
2606		vma_iter_prev_range(vmi);
2607
2608	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2609	if (error)
2610		goto clear_tree_failed;
2611
2612	/* Point of no return */
2613	mm->locked_vm -= locked_vm;
2614	mm->map_count -= count;
2615	if (unlock)
2616		mmap_write_downgrade(mm);
2617
2618	prev = vma_iter_prev_range(vmi);
2619	next = vma_next(vmi);
2620	if (next)
2621		vma_iter_prev_range(vmi);
2622
2623	/*
2624	 * We can free page tables without write-locking mmap_lock because VMAs
2625	 * were isolated before we downgraded mmap_lock.
2626	 */
2627	mas_set(&mas_detach, 1);
2628	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2629		     !unlock);
2630	/* Statistics and freeing VMAs */
2631	mas_set(&mas_detach, 0);
2632	remove_mt(mm, &mas_detach);
2633	validate_mm(mm);
2634	if (unlock)
2635		mmap_read_unlock(mm);
2636
2637	__mt_destroy(&mt_detach);
2638	return 0;
2639
2640clear_tree_failed:
2641userfaultfd_error:
2642munmap_gather_failed:
2643end_split_failed:
2644	mas_set(&mas_detach, 0);
2645	mas_for_each(&mas_detach, next, end)
2646		vma_mark_detached(next, false);
2647
2648	__mt_destroy(&mt_detach);
2649start_split_failed:
2650map_count_exceeded:
2651	validate_mm(mm);
2652	return error;
2653}
2654
2655/*
2656 * do_vmi_munmap() - munmap a given range.
2657 * @vmi: The vma iterator
2658 * @mm: The mm_struct
2659 * @start: The start address to munmap
2660 * @len: The length of the range to munmap
2661 * @uf: The userfaultfd list_head
2662 * @unlock: set to true if the user wants to drop the mmap_lock on success
2663 *
2664 * This function takes a @mas that is either pointing to the previous VMA or set
2665 * to MA_START and sets it up to remove the mapping(s).  The @len will be
2666 * aligned and any arch_unmap work will be preformed.
2667 *
2668 * Return: 0 on success and drops the lock if so directed, error and leaves the
2669 * lock held otherwise.
2670 */
2671int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2672		  unsigned long start, size_t len, struct list_head *uf,
2673		  bool unlock)
2674{
2675	unsigned long end;
2676	struct vm_area_struct *vma;
2677
2678	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2679		return -EINVAL;
2680
2681	end = start + PAGE_ALIGN(len);
2682	if (end == start)
2683		return -EINVAL;
2684
2685	 /* arch_unmap() might do unmaps itself.  */
2686	arch_unmap(mm, start, end);
2687
2688	/* Find the first overlapping VMA */
2689	vma = vma_find(vmi, end);
2690	if (!vma) {
2691		if (unlock)
2692			mmap_write_unlock(mm);
2693		return 0;
2694	}
2695
2696	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2697}
2698
2699/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2700 * @mm: The mm_struct
2701 * @start: The start address to munmap
2702 * @len: The length to be munmapped.
2703 * @uf: The userfaultfd list_head
2704 *
2705 * Return: 0 on success, error otherwise.
2706 */
2707int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2708	      struct list_head *uf)
2709{
2710	VMA_ITERATOR(vmi, mm, start);
2711
2712	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2713}
2714
2715unsigned long mmap_region(struct file *file, unsigned long addr,
2716		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2717		struct list_head *uf)
2718{
2719	struct mm_struct *mm = current->mm;
2720	struct vm_area_struct *vma = NULL;
2721	struct vm_area_struct *next, *prev, *merge;
2722	pgoff_t pglen = len >> PAGE_SHIFT;
2723	unsigned long charged = 0;
2724	unsigned long end = addr + len;
2725	unsigned long merge_start = addr, merge_end = end;
2726	bool writable_file_mapping = false;
2727	pgoff_t vm_pgoff;
2728	int error;
2729	VMA_ITERATOR(vmi, mm, addr);
2730
2731	/* Check against address space limit. */
2732	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2733		unsigned long nr_pages;
2734
2735		/*
2736		 * MAP_FIXED may remove pages of mappings that intersects with
2737		 * requested mapping. Account for the pages it would unmap.
2738		 */
2739		nr_pages = count_vma_pages_range(mm, addr, end);
2740
2741		if (!may_expand_vm(mm, vm_flags,
2742					(len >> PAGE_SHIFT) - nr_pages))
2743			return -ENOMEM;
2744	}
2745
2746	/* Unmap any existing mapping in the area */
2747	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2748		return -ENOMEM;
2749
2750	/*
2751	 * Private writable mapping: check memory availability
2752	 */
2753	if (accountable_mapping(file, vm_flags)) {
2754		charged = len >> PAGE_SHIFT;
2755		if (security_vm_enough_memory_mm(mm, charged))
2756			return -ENOMEM;
2757		vm_flags |= VM_ACCOUNT;
2758	}
2759
2760	next = vma_next(&vmi);
2761	prev = vma_prev(&vmi);
2762	if (vm_flags & VM_SPECIAL) {
2763		if (prev)
2764			vma_iter_next_range(&vmi);
2765		goto cannot_expand;
2766	}
2767
2768	/* Attempt to expand an old mapping */
2769	/* Check next */
2770	if (next && next->vm_start == end && !vma_policy(next) &&
2771	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2772				 NULL_VM_UFFD_CTX, NULL)) {
2773		merge_end = next->vm_end;
2774		vma = next;
2775		vm_pgoff = next->vm_pgoff - pglen;
2776	}
2777
2778	/* Check prev */
2779	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2780	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2781				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2782		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2783				       NULL_VM_UFFD_CTX, NULL))) {
2784		merge_start = prev->vm_start;
2785		vma = prev;
2786		vm_pgoff = prev->vm_pgoff;
2787	} else if (prev) {
2788		vma_iter_next_range(&vmi);
2789	}
2790
2791	/* Actually expand, if possible */
2792	if (vma &&
2793	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2794		khugepaged_enter_vma(vma, vm_flags);
2795		goto expanded;
2796	}
2797
2798	if (vma == prev)
2799		vma_iter_set(&vmi, addr);
2800cannot_expand:
2801
2802	/*
2803	 * Determine the object being mapped and call the appropriate
2804	 * specific mapper. the address has already been validated, but
2805	 * not unmapped, but the maps are removed from the list.
2806	 */
2807	vma = vm_area_alloc(mm);
2808	if (!vma) {
2809		error = -ENOMEM;
2810		goto unacct_error;
2811	}
2812
2813	vma_iter_config(&vmi, addr, end);
2814	vma_set_range(vma, addr, end, pgoff);
2815	vm_flags_init(vma, vm_flags);
2816	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2817
2818	if (file) {
2819		vma->vm_file = get_file(file);
2820		error = call_mmap(file, vma);
2821		if (error)
2822			goto unmap_and_free_vma;
2823
2824		if (vma_is_shared_maywrite(vma)) {
2825			error = mapping_map_writable(file->f_mapping);
2826			if (error)
2827				goto close_and_free_vma;
2828
2829			writable_file_mapping = true;
2830		}
2831
2832		/*
2833		 * Expansion is handled above, merging is handled below.
2834		 * Drivers should not alter the address of the VMA.
2835		 */
2836		error = -EINVAL;
2837		if (WARN_ON((addr != vma->vm_start)))
2838			goto close_and_free_vma;
2839
2840		vma_iter_config(&vmi, addr, end);
2841		/*
2842		 * If vm_flags changed after call_mmap(), we should try merge
2843		 * vma again as we may succeed this time.
2844		 */
2845		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2846			merge = vma_merge_new_vma(&vmi, prev, vma,
2847						  vma->vm_start, vma->vm_end,
2848						  vma->vm_pgoff);
2849			if (merge) {
2850				/*
2851				 * ->mmap() can change vma->vm_file and fput
2852				 * the original file. So fput the vma->vm_file
2853				 * here or we would add an extra fput for file
2854				 * and cause general protection fault
2855				 * ultimately.
2856				 */
2857				fput(vma->vm_file);
2858				vm_area_free(vma);
2859				vma = merge;
2860				/* Update vm_flags to pick up the change. */
2861				vm_flags = vma->vm_flags;
2862				goto unmap_writable;
2863			}
2864		}
2865
2866		vm_flags = vma->vm_flags;
2867	} else if (vm_flags & VM_SHARED) {
2868		error = shmem_zero_setup(vma);
2869		if (error)
2870			goto free_vma;
2871	} else {
2872		vma_set_anonymous(vma);
2873	}
2874
2875	if (map_deny_write_exec(vma, vma->vm_flags)) {
2876		error = -EACCES;
2877		goto close_and_free_vma;
2878	}
2879
2880	/* Allow architectures to sanity-check the vm_flags */
2881	error = -EINVAL;
2882	if (!arch_validate_flags(vma->vm_flags))
2883		goto close_and_free_vma;
2884
2885	error = -ENOMEM;
2886	if (vma_iter_prealloc(&vmi, vma))
2887		goto close_and_free_vma;
2888
2889	/* Lock the VMA since it is modified after insertion into VMA tree */
2890	vma_start_write(vma);
2891	vma_iter_store(&vmi, vma);
2892	mm->map_count++;
2893	vma_link_file(vma);
2894
2895	/*
2896	 * vma_merge() calls khugepaged_enter_vma() either, the below
2897	 * call covers the non-merge case.
2898	 */
2899	khugepaged_enter_vma(vma, vma->vm_flags);
2900
2901	/* Once vma denies write, undo our temporary denial count */
2902unmap_writable:
2903	if (writable_file_mapping)
2904		mapping_unmap_writable(file->f_mapping);
2905	file = vma->vm_file;
2906	ksm_add_vma(vma);
2907expanded:
2908	perf_event_mmap(vma);
2909
2910	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2911	if (vm_flags & VM_LOCKED) {
2912		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2913					is_vm_hugetlb_page(vma) ||
2914					vma == get_gate_vma(current->mm))
2915			vm_flags_clear(vma, VM_LOCKED_MASK);
2916		else
2917			mm->locked_vm += (len >> PAGE_SHIFT);
2918	}
2919
2920	if (file)
2921		uprobe_mmap(vma);
2922
2923	/*
2924	 * New (or expanded) vma always get soft dirty status.
2925	 * Otherwise user-space soft-dirty page tracker won't
2926	 * be able to distinguish situation when vma area unmapped,
2927	 * then new mapped in-place (which must be aimed as
2928	 * a completely new data area).
2929	 */
2930	vm_flags_set(vma, VM_SOFTDIRTY);
2931
2932	vma_set_page_prot(vma);
2933
2934	validate_mm(mm);
2935	return addr;
2936
2937close_and_free_vma:
2938	if (file && vma->vm_ops && vma->vm_ops->close)
2939		vma->vm_ops->close(vma);
2940
2941	if (file || vma->vm_file) {
2942unmap_and_free_vma:
2943		fput(vma->vm_file);
2944		vma->vm_file = NULL;
2945
2946		vma_iter_set(&vmi, vma->vm_end);
2947		/* Undo any partial mapping done by a device driver. */
2948		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2949			     vma->vm_end, vma->vm_end, true);
2950	}
2951	if (writable_file_mapping)
2952		mapping_unmap_writable(file->f_mapping);
2953free_vma:
2954	vm_area_free(vma);
2955unacct_error:
2956	if (charged)
2957		vm_unacct_memory(charged);
2958	validate_mm(mm);
2959	return error;
2960}
2961
2962static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2963{
2964	int ret;
2965	struct mm_struct *mm = current->mm;
2966	LIST_HEAD(uf);
2967	VMA_ITERATOR(vmi, mm, start);
2968
2969	if (mmap_write_lock_killable(mm))
2970		return -EINTR;
2971
2972	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2973	if (ret || !unlock)
2974		mmap_write_unlock(mm);
2975
2976	userfaultfd_unmap_complete(mm, &uf);
2977	return ret;
2978}
2979
2980int vm_munmap(unsigned long start, size_t len)
2981{
2982	return __vm_munmap(start, len, false);
2983}
2984EXPORT_SYMBOL(vm_munmap);
2985
2986SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2987{
2988	addr = untagged_addr(addr);
2989	return __vm_munmap(addr, len, true);
2990}
2991
2992
2993/*
2994 * Emulation of deprecated remap_file_pages() syscall.
2995 */
2996SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2997		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2998{
2999
3000	struct mm_struct *mm = current->mm;
3001	struct vm_area_struct *vma;
3002	unsigned long populate = 0;
3003	unsigned long ret = -EINVAL;
3004	struct file *file;
3005
3006	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3007		     current->comm, current->pid);
3008
3009	if (prot)
3010		return ret;
3011	start = start & PAGE_MASK;
3012	size = size & PAGE_MASK;
3013
3014	if (start + size <= start)
3015		return ret;
3016
3017	/* Does pgoff wrap? */
3018	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3019		return ret;
3020
3021	if (mmap_write_lock_killable(mm))
3022		return -EINTR;
3023
3024	vma = vma_lookup(mm, start);
3025
3026	if (!vma || !(vma->vm_flags & VM_SHARED))
3027		goto out;
3028
3029	if (start + size > vma->vm_end) {
3030		VMA_ITERATOR(vmi, mm, vma->vm_end);
3031		struct vm_area_struct *next, *prev = vma;
3032
3033		for_each_vma_range(vmi, next, start + size) {
3034			/* hole between vmas ? */
3035			if (next->vm_start != prev->vm_end)
3036				goto out;
3037
3038			if (next->vm_file != vma->vm_file)
3039				goto out;
3040
3041			if (next->vm_flags != vma->vm_flags)
3042				goto out;
3043
3044			if (start + size <= next->vm_end)
3045				break;
3046
3047			prev = next;
3048		}
3049
3050		if (!next)
3051			goto out;
3052	}
3053
3054	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3055	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3056	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3057
3058	flags &= MAP_NONBLOCK;
3059	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3060	if (vma->vm_flags & VM_LOCKED)
3061		flags |= MAP_LOCKED;
3062
3063	file = get_file(vma->vm_file);
3064	ret = do_mmap(vma->vm_file, start, size,
3065			prot, flags, 0, pgoff, &populate, NULL);
3066	fput(file);
3067out:
3068	mmap_write_unlock(mm);
3069	if (populate)
3070		mm_populate(ret, populate);
3071	if (!IS_ERR_VALUE(ret))
3072		ret = 0;
3073	return ret;
3074}
3075
3076/*
3077 * do_vma_munmap() - Unmap a full or partial vma.
3078 * @vmi: The vma iterator pointing at the vma
3079 * @vma: The first vma to be munmapped
3080 * @start: the start of the address to unmap
3081 * @end: The end of the address to unmap
3082 * @uf: The userfaultfd list_head
3083 * @unlock: Drop the lock on success
3084 *
3085 * unmaps a VMA mapping when the vma iterator is already in position.
3086 * Does not handle alignment.
3087 *
3088 * Return: 0 on success drops the lock of so directed, error on failure and will
3089 * still hold the lock.
3090 */
3091int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3092		unsigned long start, unsigned long end, struct list_head *uf,
3093		bool unlock)
3094{
3095	struct mm_struct *mm = vma->vm_mm;
3096
3097	arch_unmap(mm, start, end);
3098	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3099}
3100
3101/*
3102 * do_brk_flags() - Increase the brk vma if the flags match.
3103 * @vmi: The vma iterator
3104 * @addr: The start address
3105 * @len: The length of the increase
3106 * @vma: The vma,
3107 * @flags: The VMA Flags
3108 *
3109 * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3110 * do not match then create a new anonymous VMA.  Eventually we may be able to
3111 * do some brk-specific accounting here.
3112 */
3113static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3114		unsigned long addr, unsigned long len, unsigned long flags)
3115{
3116	struct mm_struct *mm = current->mm;
3117	struct vma_prepare vp;
3118
3119	/*
3120	 * Check against address space limits by the changed size
3121	 * Note: This happens *after* clearing old mappings in some code paths.
3122	 */
3123	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3124	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3125		return -ENOMEM;
3126
3127	if (mm->map_count > sysctl_max_map_count)
3128		return -ENOMEM;
3129
3130	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3131		return -ENOMEM;
3132
3133	/*
3134	 * Expand the existing vma if possible; Note that singular lists do not
3135	 * occur after forking, so the expand will only happen on new VMAs.
3136	 */
3137	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3138	    can_vma_merge_after(vma, flags, NULL, NULL,
3139				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3140		vma_iter_config(vmi, vma->vm_start, addr + len);
3141		if (vma_iter_prealloc(vmi, vma))
3142			goto unacct_fail;
3143
3144		vma_start_write(vma);
3145
3146		init_vma_prep(&vp, vma);
3147		vma_prepare(&vp);
3148		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3149		vma->vm_end = addr + len;
3150		vm_flags_set(vma, VM_SOFTDIRTY);
3151		vma_iter_store(vmi, vma);
3152
3153		vma_complete(&vp, vmi, mm);
3154		khugepaged_enter_vma(vma, flags);
3155		goto out;
3156	}
3157
3158	if (vma)
3159		vma_iter_next_range(vmi);
3160	/* create a vma struct for an anonymous mapping */
3161	vma = vm_area_alloc(mm);
3162	if (!vma)
3163		goto unacct_fail;
3164
3165	vma_set_anonymous(vma);
3166	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3167	vm_flags_init(vma, flags);
3168	vma->vm_page_prot = vm_get_page_prot(flags);
3169	vma_start_write(vma);
3170	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3171		goto mas_store_fail;
3172
3173	mm->map_count++;
3174	validate_mm(mm);
3175	ksm_add_vma(vma);
3176out:
3177	perf_event_mmap(vma);
3178	mm->total_vm += len >> PAGE_SHIFT;
3179	mm->data_vm += len >> PAGE_SHIFT;
3180	if (flags & VM_LOCKED)
3181		mm->locked_vm += (len >> PAGE_SHIFT);
3182	vm_flags_set(vma, VM_SOFTDIRTY);
3183	return 0;
3184
3185mas_store_fail:
3186	vm_area_free(vma);
3187unacct_fail:
3188	vm_unacct_memory(len >> PAGE_SHIFT);
3189	return -ENOMEM;
3190}
3191
3192int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3193{
3194	struct mm_struct *mm = current->mm;
3195	struct vm_area_struct *vma = NULL;
3196	unsigned long len;
3197	int ret;
3198	bool populate;
3199	LIST_HEAD(uf);
3200	VMA_ITERATOR(vmi, mm, addr);
3201
3202	len = PAGE_ALIGN(request);
3203	if (len < request)
3204		return -ENOMEM;
3205	if (!len)
3206		return 0;
3207
3208	/* Until we need other flags, refuse anything except VM_EXEC. */
3209	if ((flags & (~VM_EXEC)) != 0)
3210		return -EINVAL;
3211
3212	if (mmap_write_lock_killable(mm))
3213		return -EINTR;
3214
3215	ret = check_brk_limits(addr, len);
3216	if (ret)
3217		goto limits_failed;
3218
3219	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3220	if (ret)
3221		goto munmap_failed;
3222
3223	vma = vma_prev(&vmi);
3224	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3225	populate = ((mm->def_flags & VM_LOCKED) != 0);
3226	mmap_write_unlock(mm);
3227	userfaultfd_unmap_complete(mm, &uf);
3228	if (populate && !ret)
3229		mm_populate(addr, len);
3230	return ret;
3231
3232munmap_failed:
3233limits_failed:
3234	mmap_write_unlock(mm);
3235	return ret;
3236}
3237EXPORT_SYMBOL(vm_brk_flags);
3238
3239/* Release all mmaps. */
3240void exit_mmap(struct mm_struct *mm)
3241{
3242	struct mmu_gather tlb;
3243	struct vm_area_struct *vma;
3244	unsigned long nr_accounted = 0;
3245	MA_STATE(mas, &mm->mm_mt, 0, 0);
3246	int count = 0;
3247
3248	/* mm's last user has gone, and its about to be pulled down */
3249	mmu_notifier_release(mm);
3250
3251	mmap_read_lock(mm);
3252	arch_exit_mmap(mm);
3253
3254	vma = mas_find(&mas, ULONG_MAX);
3255	if (!vma || unlikely(xa_is_zero(vma))) {
3256		/* Can happen if dup_mmap() received an OOM */
3257		mmap_read_unlock(mm);
3258		mmap_write_lock(mm);
3259		goto destroy;
3260	}
3261
3262	lru_add_drain();
3263	flush_cache_mm(mm);
3264	tlb_gather_mmu_fullmm(&tlb, mm);
3265	/* update_hiwater_rss(mm) here? but nobody should be looking */
3266	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3267	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3268	mmap_read_unlock(mm);
3269
3270	/*
3271	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3272	 * because the memory has been already freed.
3273	 */
3274	set_bit(MMF_OOM_SKIP, &mm->flags);
3275	mmap_write_lock(mm);
3276	mt_clear_in_rcu(&mm->mm_mt);
3277	mas_set(&mas, vma->vm_end);
3278	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3279		      USER_PGTABLES_CEILING, true);
3280	tlb_finish_mmu(&tlb);
3281
3282	/*
3283	 * Walk the list again, actually closing and freeing it, with preemption
3284	 * enabled, without holding any MM locks besides the unreachable
3285	 * mmap_write_lock.
3286	 */
3287	mas_set(&mas, vma->vm_end);
3288	do {
3289		if (vma->vm_flags & VM_ACCOUNT)
3290			nr_accounted += vma_pages(vma);
3291		remove_vma(vma, true);
3292		count++;
3293		cond_resched();
3294		vma = mas_find(&mas, ULONG_MAX);
3295	} while (vma && likely(!xa_is_zero(vma)));
3296
3297	BUG_ON(count != mm->map_count);
3298
3299	trace_exit_mmap(mm);
3300destroy:
3301	__mt_destroy(&mm->mm_mt);
3302	mmap_write_unlock(mm);
3303	vm_unacct_memory(nr_accounted);
3304}
3305
3306/* Insert vm structure into process list sorted by address
3307 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3308 * then i_mmap_rwsem is taken here.
3309 */
3310int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3311{
3312	unsigned long charged = vma_pages(vma);
3313
3314
3315	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3316		return -ENOMEM;
3317
3318	if ((vma->vm_flags & VM_ACCOUNT) &&
3319	     security_vm_enough_memory_mm(mm, charged))
3320		return -ENOMEM;
3321
3322	/*
3323	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3324	 * until its first write fault, when page's anon_vma and index
3325	 * are set.  But now set the vm_pgoff it will almost certainly
3326	 * end up with (unless mremap moves it elsewhere before that
3327	 * first wfault), so /proc/pid/maps tells a consistent story.
3328	 *
3329	 * By setting it to reflect the virtual start address of the
3330	 * vma, merges and splits can happen in a seamless way, just
3331	 * using the existing file pgoff checks and manipulations.
3332	 * Similarly in do_mmap and in do_brk_flags.
3333	 */
3334	if (vma_is_anonymous(vma)) {
3335		BUG_ON(vma->anon_vma);
3336		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3337	}
3338
3339	if (vma_link(mm, vma)) {
3340		if (vma->vm_flags & VM_ACCOUNT)
3341			vm_unacct_memory(charged);
3342		return -ENOMEM;
3343	}
3344
3345	return 0;
3346}
3347
3348/*
3349 * Copy the vma structure to a new location in the same mm,
3350 * prior to moving page table entries, to effect an mremap move.
3351 */
3352struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3353	unsigned long addr, unsigned long len, pgoff_t pgoff,
3354	bool *need_rmap_locks)
3355{
3356	struct vm_area_struct *vma = *vmap;
3357	unsigned long vma_start = vma->vm_start;
3358	struct mm_struct *mm = vma->vm_mm;
3359	struct vm_area_struct *new_vma, *prev;
3360	bool faulted_in_anon_vma = true;
3361	VMA_ITERATOR(vmi, mm, addr);
3362
3363	/*
3364	 * If anonymous vma has not yet been faulted, update new pgoff
3365	 * to match new location, to increase its chance of merging.
3366	 */
3367	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3368		pgoff = addr >> PAGE_SHIFT;
3369		faulted_in_anon_vma = false;
3370	}
3371
3372	new_vma = find_vma_prev(mm, addr, &prev);
3373	if (new_vma && new_vma->vm_start < addr + len)
3374		return NULL;	/* should never get here */
3375
3376	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3377	if (new_vma) {
3378		/*
3379		 * Source vma may have been merged into new_vma
3380		 */
3381		if (unlikely(vma_start >= new_vma->vm_start &&
3382			     vma_start < new_vma->vm_end)) {
3383			/*
3384			 * The only way we can get a vma_merge with
3385			 * self during an mremap is if the vma hasn't
3386			 * been faulted in yet and we were allowed to
3387			 * reset the dst vma->vm_pgoff to the
3388			 * destination address of the mremap to allow
3389			 * the merge to happen. mremap must change the
3390			 * vm_pgoff linearity between src and dst vmas
3391			 * (in turn preventing a vma_merge) to be
3392			 * safe. It is only safe to keep the vm_pgoff
3393			 * linear if there are no pages mapped yet.
3394			 */
3395			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3396			*vmap = vma = new_vma;
3397		}
3398		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3399	} else {
3400		new_vma = vm_area_dup(vma);
3401		if (!new_vma)
3402			goto out;
3403		vma_set_range(new_vma, addr, addr + len, pgoff);
3404		if (vma_dup_policy(vma, new_vma))
3405			goto out_free_vma;
3406		if (anon_vma_clone(new_vma, vma))
3407			goto out_free_mempol;
3408		if (new_vma->vm_file)
3409			get_file(new_vma->vm_file);
3410		if (new_vma->vm_ops && new_vma->vm_ops->open)
3411			new_vma->vm_ops->open(new_vma);
3412		if (vma_link(mm, new_vma))
3413			goto out_vma_link;
3414		*need_rmap_locks = false;
3415	}
3416	return new_vma;
3417
3418out_vma_link:
3419	if (new_vma->vm_ops && new_vma->vm_ops->close)
3420		new_vma->vm_ops->close(new_vma);
3421
3422	if (new_vma->vm_file)
3423		fput(new_vma->vm_file);
3424
3425	unlink_anon_vmas(new_vma);
3426out_free_mempol:
3427	mpol_put(vma_policy(new_vma));
3428out_free_vma:
3429	vm_area_free(new_vma);
3430out:
3431	return NULL;
3432}
3433
3434/*
3435 * Return true if the calling process may expand its vm space by the passed
3436 * number of pages
3437 */
3438bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3439{
3440	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3441		return false;
3442
3443	if (is_data_mapping(flags) &&
3444	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3445		/* Workaround for Valgrind */
3446		if (rlimit(RLIMIT_DATA) == 0 &&
3447		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3448			return true;
3449
3450		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3451			     current->comm, current->pid,
3452			     (mm->data_vm + npages) << PAGE_SHIFT,
3453			     rlimit(RLIMIT_DATA),
3454			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3455
3456		if (!ignore_rlimit_data)
3457			return false;
3458	}
3459
3460	return true;
3461}
3462
3463void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3464{
3465	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3466
3467	if (is_exec_mapping(flags))
3468		mm->exec_vm += npages;
3469	else if (is_stack_mapping(flags))
3470		mm->stack_vm += npages;
3471	else if (is_data_mapping(flags))
3472		mm->data_vm += npages;
3473}
3474
3475static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3476
3477/*
3478 * Having a close hook prevents vma merging regardless of flags.
3479 */
3480static void special_mapping_close(struct vm_area_struct *vma)
3481{
3482}
3483
3484static const char *special_mapping_name(struct vm_area_struct *vma)
3485{
3486	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3487}
3488
3489static int special_mapping_mremap(struct vm_area_struct *new_vma)
3490{
3491	struct vm_special_mapping *sm = new_vma->vm_private_data;
3492
3493	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3494		return -EFAULT;
3495
3496	if (sm->mremap)
3497		return sm->mremap(sm, new_vma);
3498
3499	return 0;
3500}
3501
3502static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3503{
3504	/*
3505	 * Forbid splitting special mappings - kernel has expectations over
3506	 * the number of pages in mapping. Together with VM_DONTEXPAND
3507	 * the size of vma should stay the same over the special mapping's
3508	 * lifetime.
3509	 */
3510	return -EINVAL;
3511}
3512
3513static const struct vm_operations_struct special_mapping_vmops = {
3514	.close = special_mapping_close,
3515	.fault = special_mapping_fault,
3516	.mremap = special_mapping_mremap,
3517	.name = special_mapping_name,
3518	/* vDSO code relies that VVAR can't be accessed remotely */
3519	.access = NULL,
3520	.may_split = special_mapping_split,
3521};
3522
3523static const struct vm_operations_struct legacy_special_mapping_vmops = {
3524	.close = special_mapping_close,
3525	.fault = special_mapping_fault,
3526};
3527
3528static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3529{
3530	struct vm_area_struct *vma = vmf->vma;
3531	pgoff_t pgoff;
3532	struct page **pages;
3533
3534	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3535		pages = vma->vm_private_data;
3536	} else {
3537		struct vm_special_mapping *sm = vma->vm_private_data;
3538
3539		if (sm->fault)
3540			return sm->fault(sm, vmf->vma, vmf);
3541
3542		pages = sm->pages;
3543	}
3544
3545	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3546		pgoff--;
3547
3548	if (*pages) {
3549		struct page *page = *pages;
3550		get_page(page);
3551		vmf->page = page;
3552		return 0;
3553	}
3554
3555	return VM_FAULT_SIGBUS;
3556}
3557
3558static struct vm_area_struct *__install_special_mapping(
3559	struct mm_struct *mm,
3560	unsigned long addr, unsigned long len,
3561	unsigned long vm_flags, void *priv,
3562	const struct vm_operations_struct *ops)
3563{
3564	int ret;
3565	struct vm_area_struct *vma;
3566
3567	vma = vm_area_alloc(mm);
3568	if (unlikely(vma == NULL))
3569		return ERR_PTR(-ENOMEM);
3570
3571	vma_set_range(vma, addr, addr + len, 0);
3572	vm_flags_init(vma, (vm_flags | mm->def_flags |
3573		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3574	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3575
3576	vma->vm_ops = ops;
3577	vma->vm_private_data = priv;
3578
3579	ret = insert_vm_struct(mm, vma);
3580	if (ret)
3581		goto out;
3582
3583	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3584
3585	perf_event_mmap(vma);
3586
3587	return vma;
3588
3589out:
3590	vm_area_free(vma);
3591	return ERR_PTR(ret);
3592}
3593
3594bool vma_is_special_mapping(const struct vm_area_struct *vma,
3595	const struct vm_special_mapping *sm)
3596{
3597	return vma->vm_private_data == sm &&
3598		(vma->vm_ops == &special_mapping_vmops ||
3599		 vma->vm_ops == &legacy_special_mapping_vmops);
3600}
3601
3602/*
3603 * Called with mm->mmap_lock held for writing.
3604 * Insert a new vma covering the given region, with the given flags.
3605 * Its pages are supplied by the given array of struct page *.
3606 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3607 * The region past the last page supplied will always produce SIGBUS.
3608 * The array pointer and the pages it points to are assumed to stay alive
3609 * for as long as this mapping might exist.
3610 */
3611struct vm_area_struct *_install_special_mapping(
3612	struct mm_struct *mm,
3613	unsigned long addr, unsigned long len,
3614	unsigned long vm_flags, const struct vm_special_mapping *spec)
3615{
3616	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3617					&special_mapping_vmops);
3618}
3619
3620int install_special_mapping(struct mm_struct *mm,
3621			    unsigned long addr, unsigned long len,
3622			    unsigned long vm_flags, struct page **pages)
3623{
3624	struct vm_area_struct *vma = __install_special_mapping(
3625		mm, addr, len, vm_flags, (void *)pages,
3626		&legacy_special_mapping_vmops);
3627
3628	return PTR_ERR_OR_ZERO(vma);
3629}
3630
3631static DEFINE_MUTEX(mm_all_locks_mutex);
3632
3633static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3634{
3635	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3636		/*
3637		 * The LSB of head.next can't change from under us
3638		 * because we hold the mm_all_locks_mutex.
3639		 */
3640		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3641		/*
3642		 * We can safely modify head.next after taking the
3643		 * anon_vma->root->rwsem. If some other vma in this mm shares
3644		 * the same anon_vma we won't take it again.
3645		 *
3646		 * No need of atomic instructions here, head.next
3647		 * can't change from under us thanks to the
3648		 * anon_vma->root->rwsem.
3649		 */
3650		if (__test_and_set_bit(0, (unsigned long *)
3651				       &anon_vma->root->rb_root.rb_root.rb_node))
3652			BUG();
3653	}
3654}
3655
3656static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3657{
3658	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3659		/*
3660		 * AS_MM_ALL_LOCKS can't change from under us because
3661		 * we hold the mm_all_locks_mutex.
3662		 *
3663		 * Operations on ->flags have to be atomic because
3664		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3665		 * mm_all_locks_mutex, there may be other cpus
3666		 * changing other bitflags in parallel to us.
3667		 */
3668		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3669			BUG();
3670		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3671	}
3672}
3673
3674/*
3675 * This operation locks against the VM for all pte/vma/mm related
3676 * operations that could ever happen on a certain mm. This includes
3677 * vmtruncate, try_to_unmap, and all page faults.
3678 *
3679 * The caller must take the mmap_lock in write mode before calling
3680 * mm_take_all_locks(). The caller isn't allowed to release the
3681 * mmap_lock until mm_drop_all_locks() returns.
3682 *
3683 * mmap_lock in write mode is required in order to block all operations
3684 * that could modify pagetables and free pages without need of
3685 * altering the vma layout. It's also needed in write mode to avoid new
3686 * anon_vmas to be associated with existing vmas.
3687 *
3688 * A single task can't take more than one mm_take_all_locks() in a row
3689 * or it would deadlock.
3690 *
3691 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3692 * mapping->flags avoid to take the same lock twice, if more than one
3693 * vma in this mm is backed by the same anon_vma or address_space.
3694 *
3695 * We take locks in following order, accordingly to comment at beginning
3696 * of mm/rmap.c:
3697 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3698 *     hugetlb mapping);
3699 *   - all vmas marked locked
3700 *   - all i_mmap_rwsem locks;
3701 *   - all anon_vma->rwseml
3702 *
3703 * We can take all locks within these types randomly because the VM code
3704 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3705 * mm_all_locks_mutex.
3706 *
3707 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3708 * that may have to take thousand of locks.
3709 *
3710 * mm_take_all_locks() can fail if it's interrupted by signals.
3711 */
3712int mm_take_all_locks(struct mm_struct *mm)
3713{
3714	struct vm_area_struct *vma;
3715	struct anon_vma_chain *avc;
3716	MA_STATE(mas, &mm->mm_mt, 0, 0);
3717
3718	mmap_assert_write_locked(mm);
3719
3720	mutex_lock(&mm_all_locks_mutex);
3721
3722	/*
3723	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3724	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3725	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3726	 * is reached.
3727	 */
3728	mas_for_each(&mas, vma, ULONG_MAX) {
3729		if (signal_pending(current))
3730			goto out_unlock;
3731		vma_start_write(vma);
3732	}
3733
3734	mas_set(&mas, 0);
3735	mas_for_each(&mas, vma, ULONG_MAX) {
3736		if (signal_pending(current))
3737			goto out_unlock;
3738		if (vma->vm_file && vma->vm_file->f_mapping &&
3739				is_vm_hugetlb_page(vma))
3740			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3741	}
3742
3743	mas_set(&mas, 0);
3744	mas_for_each(&mas, vma, ULONG_MAX) {
3745		if (signal_pending(current))
3746			goto out_unlock;
3747		if (vma->vm_file && vma->vm_file->f_mapping &&
3748				!is_vm_hugetlb_page(vma))
3749			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3750	}
3751
3752	mas_set(&mas, 0);
3753	mas_for_each(&mas, vma, ULONG_MAX) {
3754		if (signal_pending(current))
3755			goto out_unlock;
3756		if (vma->anon_vma)
3757			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3758				vm_lock_anon_vma(mm, avc->anon_vma);
3759	}
3760
3761	return 0;
3762
3763out_unlock:
3764	mm_drop_all_locks(mm);
3765	return -EINTR;
3766}
3767
3768static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3769{
3770	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3771		/*
3772		 * The LSB of head.next can't change to 0 from under
3773		 * us because we hold the mm_all_locks_mutex.
3774		 *
3775		 * We must however clear the bitflag before unlocking
3776		 * the vma so the users using the anon_vma->rb_root will
3777		 * never see our bitflag.
3778		 *
3779		 * No need of atomic instructions here, head.next
3780		 * can't change from under us until we release the
3781		 * anon_vma->root->rwsem.
3782		 */
3783		if (!__test_and_clear_bit(0, (unsigned long *)
3784					  &anon_vma->root->rb_root.rb_root.rb_node))
3785			BUG();
3786		anon_vma_unlock_write(anon_vma);
3787	}
3788}
3789
3790static void vm_unlock_mapping(struct address_space *mapping)
3791{
3792	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3793		/*
3794		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3795		 * because we hold the mm_all_locks_mutex.
3796		 */
3797		i_mmap_unlock_write(mapping);
3798		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3799					&mapping->flags))
3800			BUG();
3801	}
3802}
3803
3804/*
3805 * The mmap_lock cannot be released by the caller until
3806 * mm_drop_all_locks() returns.
3807 */
3808void mm_drop_all_locks(struct mm_struct *mm)
3809{
3810	struct vm_area_struct *vma;
3811	struct anon_vma_chain *avc;
3812	MA_STATE(mas, &mm->mm_mt, 0, 0);
3813
3814	mmap_assert_write_locked(mm);
3815	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3816
3817	mas_for_each(&mas, vma, ULONG_MAX) {
3818		if (vma->anon_vma)
3819			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3820				vm_unlock_anon_vma(avc->anon_vma);
3821		if (vma->vm_file && vma->vm_file->f_mapping)
3822			vm_unlock_mapping(vma->vm_file->f_mapping);
3823	}
3824
3825	mutex_unlock(&mm_all_locks_mutex);
3826}
3827
3828/*
3829 * initialise the percpu counter for VM
3830 */
3831void __init mmap_init(void)
3832{
3833	int ret;
3834
3835	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3836	VM_BUG_ON(ret);
3837}
3838
3839/*
3840 * Initialise sysctl_user_reserve_kbytes.
3841 *
3842 * This is intended to prevent a user from starting a single memory hogging
3843 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3844 * mode.
3845 *
3846 * The default value is min(3% of free memory, 128MB)
3847 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3848 */
3849static int init_user_reserve(void)
3850{
3851	unsigned long free_kbytes;
3852
3853	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3854
3855	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3856	return 0;
3857}
3858subsys_initcall(init_user_reserve);
3859
3860/*
3861 * Initialise sysctl_admin_reserve_kbytes.
3862 *
3863 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3864 * to log in and kill a memory hogging process.
3865 *
3866 * Systems with more than 256MB will reserve 8MB, enough to recover
3867 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3868 * only reserve 3% of free pages by default.
3869 */
3870static int init_admin_reserve(void)
3871{
3872	unsigned long free_kbytes;
3873
3874	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3875
3876	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3877	return 0;
3878}
3879subsys_initcall(init_admin_reserve);
3880
3881/*
3882 * Reinititalise user and admin reserves if memory is added or removed.
3883 *
3884 * The default user reserve max is 128MB, and the default max for the
3885 * admin reserve is 8MB. These are usually, but not always, enough to
3886 * enable recovery from a memory hogging process using login/sshd, a shell,
3887 * and tools like top. It may make sense to increase or even disable the
3888 * reserve depending on the existence of swap or variations in the recovery
3889 * tools. So, the admin may have changed them.
3890 *
3891 * If memory is added and the reserves have been eliminated or increased above
3892 * the default max, then we'll trust the admin.
3893 *
3894 * If memory is removed and there isn't enough free memory, then we
3895 * need to reset the reserves.
3896 *
3897 * Otherwise keep the reserve set by the admin.
3898 */
3899static int reserve_mem_notifier(struct notifier_block *nb,
3900			     unsigned long action, void *data)
3901{
3902	unsigned long tmp, free_kbytes;
3903
3904	switch (action) {
3905	case MEM_ONLINE:
3906		/* Default max is 128MB. Leave alone if modified by operator. */
3907		tmp = sysctl_user_reserve_kbytes;
3908		if (tmp > 0 && tmp < SZ_128K)
3909			init_user_reserve();
3910
3911		/* Default max is 8MB.  Leave alone if modified by operator. */
3912		tmp = sysctl_admin_reserve_kbytes;
3913		if (tmp > 0 && tmp < SZ_8K)
3914			init_admin_reserve();
3915
3916		break;
3917	case MEM_OFFLINE:
3918		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3919
3920		if (sysctl_user_reserve_kbytes > free_kbytes) {
3921			init_user_reserve();
3922			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3923				sysctl_user_reserve_kbytes);
3924		}
3925
3926		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3927			init_admin_reserve();
3928			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3929				sysctl_admin_reserve_kbytes);
3930		}
3931		break;
3932	default:
3933		break;
3934	}
3935	return NOTIFY_OK;
3936}
3937
3938static int __meminit init_reserve_notifier(void)
3939{
3940	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3941		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3942
3943	return 0;
3944}
3945subsys_initcall(init_reserve_notifier);
3946