1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Device Memory Migration functionality.
4 *
5 * Originally written by J��r��me Glisse.
6 */
7#include <linux/export.h>
8#include <linux/memremap.h>
9#include <linux/migrate.h>
10#include <linux/mm.h>
11#include <linux/mm_inline.h>
12#include <linux/mmu_notifier.h>
13#include <linux/oom.h>
14#include <linux/pagewalk.h>
15#include <linux/rmap.h>
16#include <linux/swapops.h>
17#include <asm/tlbflush.h>
18#include "internal.h"
19
20static int migrate_vma_collect_skip(unsigned long start,
21				    unsigned long end,
22				    struct mm_walk *walk)
23{
24	struct migrate_vma *migrate = walk->private;
25	unsigned long addr;
26
27	for (addr = start; addr < end; addr += PAGE_SIZE) {
28		migrate->dst[migrate->npages] = 0;
29		migrate->src[migrate->npages++] = 0;
30	}
31
32	return 0;
33}
34
35static int migrate_vma_collect_hole(unsigned long start,
36				    unsigned long end,
37				    __always_unused int depth,
38				    struct mm_walk *walk)
39{
40	struct migrate_vma *migrate = walk->private;
41	unsigned long addr;
42
43	/* Only allow populating anonymous memory. */
44	if (!vma_is_anonymous(walk->vma))
45		return migrate_vma_collect_skip(start, end, walk);
46
47	for (addr = start; addr < end; addr += PAGE_SIZE) {
48		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49		migrate->dst[migrate->npages] = 0;
50		migrate->npages++;
51		migrate->cpages++;
52	}
53
54	return 0;
55}
56
57static int migrate_vma_collect_pmd(pmd_t *pmdp,
58				   unsigned long start,
59				   unsigned long end,
60				   struct mm_walk *walk)
61{
62	struct migrate_vma *migrate = walk->private;
63	struct vm_area_struct *vma = walk->vma;
64	struct mm_struct *mm = vma->vm_mm;
65	unsigned long addr = start, unmapped = 0;
66	spinlock_t *ptl;
67	pte_t *ptep;
68
69again:
70	if (pmd_none(*pmdp))
71		return migrate_vma_collect_hole(start, end, -1, walk);
72
73	if (pmd_trans_huge(*pmdp)) {
74		struct page *page;
75
76		ptl = pmd_lock(mm, pmdp);
77		if (unlikely(!pmd_trans_huge(*pmdp))) {
78			spin_unlock(ptl);
79			goto again;
80		}
81
82		page = pmd_page(*pmdp);
83		if (is_huge_zero_page(page)) {
84			spin_unlock(ptl);
85			split_huge_pmd(vma, pmdp, addr);
86		} else {
87			int ret;
88
89			get_page(page);
90			spin_unlock(ptl);
91			if (unlikely(!trylock_page(page)))
92				return migrate_vma_collect_skip(start, end,
93								walk);
94			ret = split_huge_page(page);
95			unlock_page(page);
96			put_page(page);
97			if (ret)
98				return migrate_vma_collect_skip(start, end,
99								walk);
100		}
101	}
102
103	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
104	if (!ptep)
105		goto again;
106	arch_enter_lazy_mmu_mode();
107
108	for (; addr < end; addr += PAGE_SIZE, ptep++) {
109		unsigned long mpfn = 0, pfn;
110		struct folio *folio;
111		struct page *page;
112		swp_entry_t entry;
113		pte_t pte;
114
115		pte = ptep_get(ptep);
116
117		if (pte_none(pte)) {
118			if (vma_is_anonymous(vma)) {
119				mpfn = MIGRATE_PFN_MIGRATE;
120				migrate->cpages++;
121			}
122			goto next;
123		}
124
125		if (!pte_present(pte)) {
126			/*
127			 * Only care about unaddressable device page special
128			 * page table entry. Other special swap entries are not
129			 * migratable, and we ignore regular swapped page.
130			 */
131			entry = pte_to_swp_entry(pte);
132			if (!is_device_private_entry(entry))
133				goto next;
134
135			page = pfn_swap_entry_to_page(entry);
136			if (!(migrate->flags &
137				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
138			    page->pgmap->owner != migrate->pgmap_owner)
139				goto next;
140
141			mpfn = migrate_pfn(page_to_pfn(page)) |
142					MIGRATE_PFN_MIGRATE;
143			if (is_writable_device_private_entry(entry))
144				mpfn |= MIGRATE_PFN_WRITE;
145		} else {
146			pfn = pte_pfn(pte);
147			if (is_zero_pfn(pfn) &&
148			    (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
149				mpfn = MIGRATE_PFN_MIGRATE;
150				migrate->cpages++;
151				goto next;
152			}
153			page = vm_normal_page(migrate->vma, addr, pte);
154			if (page && !is_zone_device_page(page) &&
155			    !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
156				goto next;
157			else if (page && is_device_coherent_page(page) &&
158			    (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
159			     page->pgmap->owner != migrate->pgmap_owner))
160				goto next;
161			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
162			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
163		}
164
165		/* FIXME support THP */
166		if (!page || !page->mapping || PageTransCompound(page)) {
167			mpfn = 0;
168			goto next;
169		}
170
171		/*
172		 * By getting a reference on the folio we pin it and that blocks
173		 * any kind of migration. Side effect is that it "freezes" the
174		 * pte.
175		 *
176		 * We drop this reference after isolating the folio from the lru
177		 * for non device folio (device folio are not on the lru and thus
178		 * can't be dropped from it).
179		 */
180		folio = page_folio(page);
181		folio_get(folio);
182
183		/*
184		 * We rely on folio_trylock() to avoid deadlock between
185		 * concurrent migrations where each is waiting on the others
186		 * folio lock. If we can't immediately lock the folio we fail this
187		 * migration as it is only best effort anyway.
188		 *
189		 * If we can lock the folio it's safe to set up a migration entry
190		 * now. In the common case where the folio is mapped once in a
191		 * single process setting up the migration entry now is an
192		 * optimisation to avoid walking the rmap later with
193		 * try_to_migrate().
194		 */
195		if (folio_trylock(folio)) {
196			bool anon_exclusive;
197			pte_t swp_pte;
198
199			flush_cache_page(vma, addr, pte_pfn(pte));
200			anon_exclusive = folio_test_anon(folio) &&
201					  PageAnonExclusive(page);
202			if (anon_exclusive) {
203				pte = ptep_clear_flush(vma, addr, ptep);
204
205				if (folio_try_share_anon_rmap_pte(folio, page)) {
206					set_pte_at(mm, addr, ptep, pte);
207					folio_unlock(folio);
208					folio_put(folio);
209					mpfn = 0;
210					goto next;
211				}
212			} else {
213				pte = ptep_get_and_clear(mm, addr, ptep);
214			}
215
216			migrate->cpages++;
217
218			/* Set the dirty flag on the folio now the pte is gone. */
219			if (pte_dirty(pte))
220				folio_mark_dirty(folio);
221
222			/* Setup special migration page table entry */
223			if (mpfn & MIGRATE_PFN_WRITE)
224				entry = make_writable_migration_entry(
225							page_to_pfn(page));
226			else if (anon_exclusive)
227				entry = make_readable_exclusive_migration_entry(
228							page_to_pfn(page));
229			else
230				entry = make_readable_migration_entry(
231							page_to_pfn(page));
232			if (pte_present(pte)) {
233				if (pte_young(pte))
234					entry = make_migration_entry_young(entry);
235				if (pte_dirty(pte))
236					entry = make_migration_entry_dirty(entry);
237			}
238			swp_pte = swp_entry_to_pte(entry);
239			if (pte_present(pte)) {
240				if (pte_soft_dirty(pte))
241					swp_pte = pte_swp_mksoft_dirty(swp_pte);
242				if (pte_uffd_wp(pte))
243					swp_pte = pte_swp_mkuffd_wp(swp_pte);
244			} else {
245				if (pte_swp_soft_dirty(pte))
246					swp_pte = pte_swp_mksoft_dirty(swp_pte);
247				if (pte_swp_uffd_wp(pte))
248					swp_pte = pte_swp_mkuffd_wp(swp_pte);
249			}
250			set_pte_at(mm, addr, ptep, swp_pte);
251
252			/*
253			 * This is like regular unmap: we remove the rmap and
254			 * drop the folio refcount. The folio won't be freed, as
255			 * we took a reference just above.
256			 */
257			folio_remove_rmap_pte(folio, page, vma);
258			folio_put(folio);
259
260			if (pte_present(pte))
261				unmapped++;
262		} else {
263			folio_put(folio);
264			mpfn = 0;
265		}
266
267next:
268		migrate->dst[migrate->npages] = 0;
269		migrate->src[migrate->npages++] = mpfn;
270	}
271
272	/* Only flush the TLB if we actually modified any entries */
273	if (unmapped)
274		flush_tlb_range(walk->vma, start, end);
275
276	arch_leave_lazy_mmu_mode();
277	pte_unmap_unlock(ptep - 1, ptl);
278
279	return 0;
280}
281
282static const struct mm_walk_ops migrate_vma_walk_ops = {
283	.pmd_entry		= migrate_vma_collect_pmd,
284	.pte_hole		= migrate_vma_collect_hole,
285	.walk_lock		= PGWALK_RDLOCK,
286};
287
288/*
289 * migrate_vma_collect() - collect pages over a range of virtual addresses
290 * @migrate: migrate struct containing all migration information
291 *
292 * This will walk the CPU page table. For each virtual address backed by a
293 * valid page, it updates the src array and takes a reference on the page, in
294 * order to pin the page until we lock it and unmap it.
295 */
296static void migrate_vma_collect(struct migrate_vma *migrate)
297{
298	struct mmu_notifier_range range;
299
300	/*
301	 * Note that the pgmap_owner is passed to the mmu notifier callback so
302	 * that the registered device driver can skip invalidating device
303	 * private page mappings that won't be migrated.
304	 */
305	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
306		migrate->vma->vm_mm, migrate->start, migrate->end,
307		migrate->pgmap_owner);
308	mmu_notifier_invalidate_range_start(&range);
309
310	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
311			&migrate_vma_walk_ops, migrate);
312
313	mmu_notifier_invalidate_range_end(&range);
314	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
315}
316
317/*
318 * migrate_vma_check_page() - check if page is pinned or not
319 * @page: struct page to check
320 *
321 * Pinned pages cannot be migrated. This is the same test as in
322 * folio_migrate_mapping(), except that here we allow migration of a
323 * ZONE_DEVICE page.
324 */
325static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
326{
327	/*
328	 * One extra ref because caller holds an extra reference, either from
329	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
330	 * a device page.
331	 */
332	int extra = 1 + (page == fault_page);
333
334	/*
335	 * FIXME support THP (transparent huge page), it is bit more complex to
336	 * check them than regular pages, because they can be mapped with a pmd
337	 * or with a pte (split pte mapping).
338	 */
339	if (PageCompound(page))
340		return false;
341
342	/* Page from ZONE_DEVICE have one extra reference */
343	if (is_zone_device_page(page))
344		extra++;
345
346	/* For file back page */
347	if (page_mapping(page))
348		extra += 1 + page_has_private(page);
349
350	if ((page_count(page) - extra) > page_mapcount(page))
351		return false;
352
353	return true;
354}
355
356/*
357 * Unmaps pages for migration. Returns number of source pfns marked as
358 * migrating.
359 */
360static unsigned long migrate_device_unmap(unsigned long *src_pfns,
361					  unsigned long npages,
362					  struct page *fault_page)
363{
364	unsigned long i, restore = 0;
365	bool allow_drain = true;
366	unsigned long unmapped = 0;
367
368	lru_add_drain();
369
370	for (i = 0; i < npages; i++) {
371		struct page *page = migrate_pfn_to_page(src_pfns[i]);
372		struct folio *folio;
373
374		if (!page) {
375			if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
376				unmapped++;
377			continue;
378		}
379
380		/* ZONE_DEVICE pages are not on LRU */
381		if (!is_zone_device_page(page)) {
382			if (!PageLRU(page) && allow_drain) {
383				/* Drain CPU's lru cache */
384				lru_add_drain_all();
385				allow_drain = false;
386			}
387
388			if (!isolate_lru_page(page)) {
389				src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
390				restore++;
391				continue;
392			}
393
394			/* Drop the reference we took in collect */
395			put_page(page);
396		}
397
398		folio = page_folio(page);
399		if (folio_mapped(folio))
400			try_to_migrate(folio, 0);
401
402		if (page_mapped(page) ||
403		    !migrate_vma_check_page(page, fault_page)) {
404			if (!is_zone_device_page(page)) {
405				get_page(page);
406				putback_lru_page(page);
407			}
408
409			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
410			restore++;
411			continue;
412		}
413
414		unmapped++;
415	}
416
417	for (i = 0; i < npages && restore; i++) {
418		struct page *page = migrate_pfn_to_page(src_pfns[i]);
419		struct folio *folio;
420
421		if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
422			continue;
423
424		folio = page_folio(page);
425		remove_migration_ptes(folio, folio, false);
426
427		src_pfns[i] = 0;
428		folio_unlock(folio);
429		folio_put(folio);
430		restore--;
431	}
432
433	return unmapped;
434}
435
436/*
437 * migrate_vma_unmap() - replace page mapping with special migration pte entry
438 * @migrate: migrate struct containing all migration information
439 *
440 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
441 * special migration pte entry and check if it has been pinned. Pinned pages are
442 * restored because we cannot migrate them.
443 *
444 * This is the last step before we call the device driver callback to allocate
445 * destination memory and copy contents of original page over to new page.
446 */
447static void migrate_vma_unmap(struct migrate_vma *migrate)
448{
449	migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
450					migrate->fault_page);
451}
452
453/**
454 * migrate_vma_setup() - prepare to migrate a range of memory
455 * @args: contains the vma, start, and pfns arrays for the migration
456 *
457 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
458 * without an error.
459 *
460 * Prepare to migrate a range of memory virtual address range by collecting all
461 * the pages backing each virtual address in the range, saving them inside the
462 * src array.  Then lock those pages and unmap them. Once the pages are locked
463 * and unmapped, check whether each page is pinned or not.  Pages that aren't
464 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
465 * corresponding src array entry.  Then restores any pages that are pinned, by
466 * remapping and unlocking those pages.
467 *
468 * The caller should then allocate destination memory and copy source memory to
469 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
470 * flag set).  Once these are allocated and copied, the caller must update each
471 * corresponding entry in the dst array with the pfn value of the destination
472 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
473 * lock_page().
474 *
475 * Note that the caller does not have to migrate all the pages that are marked
476 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
477 * device memory to system memory.  If the caller cannot migrate a device page
478 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
479 * consequences for the userspace process, so it must be avoided if at all
480 * possible.
481 *
482 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
483 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
484 * allowing the caller to allocate device memory for those unbacked virtual
485 * addresses.  For this the caller simply has to allocate device memory and
486 * properly set the destination entry like for regular migration.  Note that
487 * this can still fail, and thus inside the device driver you must check if the
488 * migration was successful for those entries after calling migrate_vma_pages(),
489 * just like for regular migration.
490 *
491 * After that, the callers must call migrate_vma_pages() to go over each entry
492 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
493 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
494 * then migrate_vma_pages() to migrate struct page information from the source
495 * struct page to the destination struct page.  If it fails to migrate the
496 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
497 * src array.
498 *
499 * At this point all successfully migrated pages have an entry in the src
500 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
501 * array entry with MIGRATE_PFN_VALID flag set.
502 *
503 * Once migrate_vma_pages() returns the caller may inspect which pages were
504 * successfully migrated, and which were not.  Successfully migrated pages will
505 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
506 *
507 * It is safe to update device page table after migrate_vma_pages() because
508 * both destination and source page are still locked, and the mmap_lock is held
509 * in read mode (hence no one can unmap the range being migrated).
510 *
511 * Once the caller is done cleaning up things and updating its page table (if it
512 * chose to do so, this is not an obligation) it finally calls
513 * migrate_vma_finalize() to update the CPU page table to point to new pages
514 * for successfully migrated pages or otherwise restore the CPU page table to
515 * point to the original source pages.
516 */
517int migrate_vma_setup(struct migrate_vma *args)
518{
519	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
520
521	args->start &= PAGE_MASK;
522	args->end &= PAGE_MASK;
523	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
524	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
525		return -EINVAL;
526	if (nr_pages <= 0)
527		return -EINVAL;
528	if (args->start < args->vma->vm_start ||
529	    args->start >= args->vma->vm_end)
530		return -EINVAL;
531	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
532		return -EINVAL;
533	if (!args->src || !args->dst)
534		return -EINVAL;
535	if (args->fault_page && !is_device_private_page(args->fault_page))
536		return -EINVAL;
537
538	memset(args->src, 0, sizeof(*args->src) * nr_pages);
539	args->cpages = 0;
540	args->npages = 0;
541
542	migrate_vma_collect(args);
543
544	if (args->cpages)
545		migrate_vma_unmap(args);
546
547	/*
548	 * At this point pages are locked and unmapped, and thus they have
549	 * stable content and can safely be copied to destination memory that
550	 * is allocated by the drivers.
551	 */
552	return 0;
553
554}
555EXPORT_SYMBOL(migrate_vma_setup);
556
557/*
558 * This code closely matches the code in:
559 *   __handle_mm_fault()
560 *     handle_pte_fault()
561 *       do_anonymous_page()
562 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
563 * private or coherent page.
564 */
565static void migrate_vma_insert_page(struct migrate_vma *migrate,
566				    unsigned long addr,
567				    struct page *page,
568				    unsigned long *src)
569{
570	struct folio *folio = page_folio(page);
571	struct vm_area_struct *vma = migrate->vma;
572	struct mm_struct *mm = vma->vm_mm;
573	bool flush = false;
574	spinlock_t *ptl;
575	pte_t entry;
576	pgd_t *pgdp;
577	p4d_t *p4dp;
578	pud_t *pudp;
579	pmd_t *pmdp;
580	pte_t *ptep;
581	pte_t orig_pte;
582
583	/* Only allow populating anonymous memory */
584	if (!vma_is_anonymous(vma))
585		goto abort;
586
587	pgdp = pgd_offset(mm, addr);
588	p4dp = p4d_alloc(mm, pgdp, addr);
589	if (!p4dp)
590		goto abort;
591	pudp = pud_alloc(mm, p4dp, addr);
592	if (!pudp)
593		goto abort;
594	pmdp = pmd_alloc(mm, pudp, addr);
595	if (!pmdp)
596		goto abort;
597	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
598		goto abort;
599	if (pte_alloc(mm, pmdp))
600		goto abort;
601	if (unlikely(anon_vma_prepare(vma)))
602		goto abort;
603	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
604		goto abort;
605
606	/*
607	 * The memory barrier inside __folio_mark_uptodate makes sure that
608	 * preceding stores to the folio contents become visible before
609	 * the set_pte_at() write.
610	 */
611	__folio_mark_uptodate(folio);
612
613	if (folio_is_device_private(folio)) {
614		swp_entry_t swp_entry;
615
616		if (vma->vm_flags & VM_WRITE)
617			swp_entry = make_writable_device_private_entry(
618						page_to_pfn(page));
619		else
620			swp_entry = make_readable_device_private_entry(
621						page_to_pfn(page));
622		entry = swp_entry_to_pte(swp_entry);
623	} else {
624		if (folio_is_zone_device(folio) &&
625		    !folio_is_device_coherent(folio)) {
626			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
627			goto abort;
628		}
629		entry = mk_pte(page, vma->vm_page_prot);
630		if (vma->vm_flags & VM_WRITE)
631			entry = pte_mkwrite(pte_mkdirty(entry), vma);
632	}
633
634	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
635	if (!ptep)
636		goto abort;
637	orig_pte = ptep_get(ptep);
638
639	if (check_stable_address_space(mm))
640		goto unlock_abort;
641
642	if (pte_present(orig_pte)) {
643		unsigned long pfn = pte_pfn(orig_pte);
644
645		if (!is_zero_pfn(pfn))
646			goto unlock_abort;
647		flush = true;
648	} else if (!pte_none(orig_pte))
649		goto unlock_abort;
650
651	/*
652	 * Check for userfaultfd but do not deliver the fault. Instead,
653	 * just back off.
654	 */
655	if (userfaultfd_missing(vma))
656		goto unlock_abort;
657
658	inc_mm_counter(mm, MM_ANONPAGES);
659	folio_add_new_anon_rmap(folio, vma, addr);
660	if (!folio_is_zone_device(folio))
661		folio_add_lru_vma(folio, vma);
662	folio_get(folio);
663
664	if (flush) {
665		flush_cache_page(vma, addr, pte_pfn(orig_pte));
666		ptep_clear_flush(vma, addr, ptep);
667		set_pte_at_notify(mm, addr, ptep, entry);
668		update_mmu_cache(vma, addr, ptep);
669	} else {
670		/* No need to invalidate - it was non-present before */
671		set_pte_at(mm, addr, ptep, entry);
672		update_mmu_cache(vma, addr, ptep);
673	}
674
675	pte_unmap_unlock(ptep, ptl);
676	*src = MIGRATE_PFN_MIGRATE;
677	return;
678
679unlock_abort:
680	pte_unmap_unlock(ptep, ptl);
681abort:
682	*src &= ~MIGRATE_PFN_MIGRATE;
683}
684
685static void __migrate_device_pages(unsigned long *src_pfns,
686				unsigned long *dst_pfns, unsigned long npages,
687				struct migrate_vma *migrate)
688{
689	struct mmu_notifier_range range;
690	unsigned long i;
691	bool notified = false;
692
693	for (i = 0; i < npages; i++) {
694		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
695		struct page *page = migrate_pfn_to_page(src_pfns[i]);
696		struct address_space *mapping;
697		int r;
698
699		if (!newpage) {
700			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
701			continue;
702		}
703
704		if (!page) {
705			unsigned long addr;
706
707			if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
708				continue;
709
710			/*
711			 * The only time there is no vma is when called from
712			 * migrate_device_coherent_page(). However this isn't
713			 * called if the page could not be unmapped.
714			 */
715			VM_BUG_ON(!migrate);
716			addr = migrate->start + i*PAGE_SIZE;
717			if (!notified) {
718				notified = true;
719
720				mmu_notifier_range_init_owner(&range,
721					MMU_NOTIFY_MIGRATE, 0,
722					migrate->vma->vm_mm, addr, migrate->end,
723					migrate->pgmap_owner);
724				mmu_notifier_invalidate_range_start(&range);
725			}
726			migrate_vma_insert_page(migrate, addr, newpage,
727						&src_pfns[i]);
728			continue;
729		}
730
731		mapping = page_mapping(page);
732
733		if (is_device_private_page(newpage) ||
734		    is_device_coherent_page(newpage)) {
735			if (mapping) {
736				struct folio *folio;
737
738				folio = page_folio(page);
739
740				/*
741				 * For now only support anonymous memory migrating to
742				 * device private or coherent memory.
743				 *
744				 * Try to get rid of swap cache if possible.
745				 */
746				if (!folio_test_anon(folio) ||
747				    !folio_free_swap(folio)) {
748					src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
749					continue;
750				}
751			}
752		} else if (is_zone_device_page(newpage)) {
753			/*
754			 * Other types of ZONE_DEVICE page are not supported.
755			 */
756			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
757			continue;
758		}
759
760		if (migrate && migrate->fault_page == page)
761			r = migrate_folio_extra(mapping, page_folio(newpage),
762						page_folio(page),
763						MIGRATE_SYNC_NO_COPY, 1);
764		else
765			r = migrate_folio(mapping, page_folio(newpage),
766					page_folio(page), MIGRATE_SYNC_NO_COPY);
767		if (r != MIGRATEPAGE_SUCCESS)
768			src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
769	}
770
771	if (notified)
772		mmu_notifier_invalidate_range_end(&range);
773}
774
775/**
776 * migrate_device_pages() - migrate meta-data from src page to dst page
777 * @src_pfns: src_pfns returned from migrate_device_range()
778 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
779 * @npages: number of pages in the range
780 *
781 * Equivalent to migrate_vma_pages(). This is called to migrate struct page
782 * meta-data from source struct page to destination.
783 */
784void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
785			unsigned long npages)
786{
787	__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
788}
789EXPORT_SYMBOL(migrate_device_pages);
790
791/**
792 * migrate_vma_pages() - migrate meta-data from src page to dst page
793 * @migrate: migrate struct containing all migration information
794 *
795 * This migrates struct page meta-data from source struct page to destination
796 * struct page. This effectively finishes the migration from source page to the
797 * destination page.
798 */
799void migrate_vma_pages(struct migrate_vma *migrate)
800{
801	__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
802}
803EXPORT_SYMBOL(migrate_vma_pages);
804
805/*
806 * migrate_device_finalize() - complete page migration
807 * @src_pfns: src_pfns returned from migrate_device_range()
808 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
809 * @npages: number of pages in the range
810 *
811 * Completes migration of the page by removing special migration entries.
812 * Drivers must ensure copying of page data is complete and visible to the CPU
813 * before calling this.
814 */
815void migrate_device_finalize(unsigned long *src_pfns,
816			unsigned long *dst_pfns, unsigned long npages)
817{
818	unsigned long i;
819
820	for (i = 0; i < npages; i++) {
821		struct folio *dst, *src;
822		struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
823		struct page *page = migrate_pfn_to_page(src_pfns[i]);
824
825		if (!page) {
826			if (newpage) {
827				unlock_page(newpage);
828				put_page(newpage);
829			}
830			continue;
831		}
832
833		if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
834			if (newpage) {
835				unlock_page(newpage);
836				put_page(newpage);
837			}
838			newpage = page;
839		}
840
841		src = page_folio(page);
842		dst = page_folio(newpage);
843		remove_migration_ptes(src, dst, false);
844		folio_unlock(src);
845
846		if (is_zone_device_page(page))
847			put_page(page);
848		else
849			putback_lru_page(page);
850
851		if (newpage != page) {
852			unlock_page(newpage);
853			if (is_zone_device_page(newpage))
854				put_page(newpage);
855			else
856				putback_lru_page(newpage);
857		}
858	}
859}
860EXPORT_SYMBOL(migrate_device_finalize);
861
862/**
863 * migrate_vma_finalize() - restore CPU page table entry
864 * @migrate: migrate struct containing all migration information
865 *
866 * This replaces the special migration pte entry with either a mapping to the
867 * new page if migration was successful for that page, or to the original page
868 * otherwise.
869 *
870 * This also unlocks the pages and puts them back on the lru, or drops the extra
871 * refcount, for device pages.
872 */
873void migrate_vma_finalize(struct migrate_vma *migrate)
874{
875	migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
876}
877EXPORT_SYMBOL(migrate_vma_finalize);
878
879/**
880 * migrate_device_range() - migrate device private pfns to normal memory.
881 * @src_pfns: array large enough to hold migrating source device private pfns.
882 * @start: starting pfn in the range to migrate.
883 * @npages: number of pages to migrate.
884 *
885 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
886 * instead of looking up pages based on virtual address mappings a range of
887 * device pfns that should be migrated to system memory is used instead.
888 *
889 * This is useful when a driver needs to free device memory but doesn't know the
890 * virtual mappings of every page that may be in device memory. For example this
891 * is often the case when a driver is being unloaded or unbound from a device.
892 *
893 * Like migrate_vma_setup() this function will take a reference and lock any
894 * migrating pages that aren't free before unmapping them. Drivers may then
895 * allocate destination pages and start copying data from the device to CPU
896 * memory before calling migrate_device_pages().
897 */
898int migrate_device_range(unsigned long *src_pfns, unsigned long start,
899			unsigned long npages)
900{
901	unsigned long i, pfn;
902
903	for (pfn = start, i = 0; i < npages; pfn++, i++) {
904		struct page *page = pfn_to_page(pfn);
905
906		if (!get_page_unless_zero(page)) {
907			src_pfns[i] = 0;
908			continue;
909		}
910
911		if (!trylock_page(page)) {
912			src_pfns[i] = 0;
913			put_page(page);
914			continue;
915		}
916
917		src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
918	}
919
920	migrate_device_unmap(src_pfns, npages, NULL);
921
922	return 0;
923}
924EXPORT_SYMBOL(migrate_device_range);
925
926/*
927 * Migrate a device coherent page back to normal memory. The caller should have
928 * a reference on page which will be copied to the new page if migration is
929 * successful or dropped on failure.
930 */
931int migrate_device_coherent_page(struct page *page)
932{
933	unsigned long src_pfn, dst_pfn = 0;
934	struct page *dpage;
935
936	WARN_ON_ONCE(PageCompound(page));
937
938	lock_page(page);
939	src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
940
941	/*
942	 * We don't have a VMA and don't need to walk the page tables to find
943	 * the source page. So call migrate_vma_unmap() directly to unmap the
944	 * page as migrate_vma_setup() will fail if args.vma == NULL.
945	 */
946	migrate_device_unmap(&src_pfn, 1, NULL);
947	if (!(src_pfn & MIGRATE_PFN_MIGRATE))
948		return -EBUSY;
949
950	dpage = alloc_page(GFP_USER | __GFP_NOWARN);
951	if (dpage) {
952		lock_page(dpage);
953		dst_pfn = migrate_pfn(page_to_pfn(dpage));
954	}
955
956	migrate_device_pages(&src_pfn, &dst_pfn, 1);
957	if (src_pfn & MIGRATE_PFN_MIGRATE)
958		copy_highpage(dpage, page);
959	migrate_device_finalize(&src_pfn, &dst_pfn, 1);
960
961	if (src_pfn & MIGRATE_PFN_MIGRATE)
962		return 0;
963	return -EBUSY;
964}
965