1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/mm/mempool.c
4 *
5 *  memory buffer pool support. Such pools are mostly used
6 *  for guaranteed, deadlock-free memory allocations during
7 *  extreme VM load.
8 *
9 *  started by Ingo Molnar, Copyright (C) 2001
10 *  debugging by David Rientjes, Copyright (C) 2015
11 */
12
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/highmem.h>
16#include <linux/kasan.h>
17#include <linux/kmemleak.h>
18#include <linux/export.h>
19#include <linux/mempool.h>
20#include <linux/writeback.h>
21#include "slab.h"
22
23#ifdef CONFIG_SLUB_DEBUG_ON
24static void poison_error(mempool_t *pool, void *element, size_t size,
25			 size_t byte)
26{
27	const int nr = pool->curr_nr;
28	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30	int i;
31
32	pr_err("BUG: mempool element poison mismatch\n");
33	pr_err("Mempool %p size %zu\n", pool, size);
34	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35	for (i = start; i < end; i++)
36		pr_cont("%x ", *(u8 *)(element + i));
37	pr_cont("%s\n", end < size ? "..." : "");
38	dump_stack();
39}
40
41static void __check_element(mempool_t *pool, void *element, size_t size)
42{
43	u8 *obj = element;
44	size_t i;
45
46	for (i = 0; i < size; i++) {
47		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48
49		if (obj[i] != exp) {
50			poison_error(pool, element, size, i);
51			return;
52		}
53	}
54	memset(obj, POISON_INUSE, size);
55}
56
57static void check_element(mempool_t *pool, void *element)
58{
59	/* Skip checking: KASAN might save its metadata in the element. */
60	if (kasan_enabled())
61		return;
62
63	/* Mempools backed by slab allocator */
64	if (pool->free == mempool_kfree) {
65		__check_element(pool, element, (size_t)pool->pool_data);
66	} else if (pool->free == mempool_free_slab) {
67		__check_element(pool, element, kmem_cache_size(pool->pool_data));
68	} else if (pool->free == mempool_free_pages) {
69		/* Mempools backed by page allocator */
70		int order = (int)(long)pool->pool_data;
71		void *addr = kmap_local_page((struct page *)element);
72
73		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
74		kunmap_local(addr);
75	}
76}
77
78static void __poison_element(void *element, size_t size)
79{
80	u8 *obj = element;
81
82	memset(obj, POISON_FREE, size - 1);
83	obj[size - 1] = POISON_END;
84}
85
86static void poison_element(mempool_t *pool, void *element)
87{
88	/* Skip poisoning: KASAN might save its metadata in the element. */
89	if (kasan_enabled())
90		return;
91
92	/* Mempools backed by slab allocator */
93	if (pool->alloc == mempool_kmalloc) {
94		__poison_element(element, (size_t)pool->pool_data);
95	} else if (pool->alloc == mempool_alloc_slab) {
96		__poison_element(element, kmem_cache_size(pool->pool_data));
97	} else if (pool->alloc == mempool_alloc_pages) {
98		/* Mempools backed by page allocator */
99		int order = (int)(long)pool->pool_data;
100		void *addr = kmap_local_page((struct page *)element);
101
102		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
103		kunmap_local(addr);
104	}
105}
106#else /* CONFIG_SLUB_DEBUG_ON */
107static inline void check_element(mempool_t *pool, void *element)
108{
109}
110static inline void poison_element(mempool_t *pool, void *element)
111{
112}
113#endif /* CONFIG_SLUB_DEBUG_ON */
114
115static __always_inline bool kasan_poison_element(mempool_t *pool, void *element)
116{
117	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
118		return kasan_mempool_poison_object(element);
119	else if (pool->alloc == mempool_alloc_pages)
120		return kasan_mempool_poison_pages(element,
121						(unsigned long)pool->pool_data);
122	return true;
123}
124
125static void kasan_unpoison_element(mempool_t *pool, void *element)
126{
127	if (pool->alloc == mempool_kmalloc)
128		kasan_mempool_unpoison_object(element, (size_t)pool->pool_data);
129	else if (pool->alloc == mempool_alloc_slab)
130		kasan_mempool_unpoison_object(element,
131					      kmem_cache_size(pool->pool_data));
132	else if (pool->alloc == mempool_alloc_pages)
133		kasan_mempool_unpoison_pages(element,
134					     (unsigned long)pool->pool_data);
135}
136
137static __always_inline void add_element(mempool_t *pool, void *element)
138{
139	BUG_ON(pool->curr_nr >= pool->min_nr);
140	poison_element(pool, element);
141	if (kasan_poison_element(pool, element))
142		pool->elements[pool->curr_nr++] = element;
143}
144
145static void *remove_element(mempool_t *pool)
146{
147	void *element = pool->elements[--pool->curr_nr];
148
149	BUG_ON(pool->curr_nr < 0);
150	kasan_unpoison_element(pool, element);
151	check_element(pool, element);
152	return element;
153}
154
155/**
156 * mempool_exit - exit a mempool initialized with mempool_init()
157 * @pool:      pointer to the memory pool which was initialized with
158 *             mempool_init().
159 *
160 * Free all reserved elements in @pool and @pool itself.  This function
161 * only sleeps if the free_fn() function sleeps.
162 *
163 * May be called on a zeroed but uninitialized mempool (i.e. allocated with
164 * kzalloc()).
165 */
166void mempool_exit(mempool_t *pool)
167{
168	while (pool->curr_nr) {
169		void *element = remove_element(pool);
170		pool->free(element, pool->pool_data);
171	}
172	kfree(pool->elements);
173	pool->elements = NULL;
174}
175EXPORT_SYMBOL(mempool_exit);
176
177/**
178 * mempool_destroy - deallocate a memory pool
179 * @pool:      pointer to the memory pool which was allocated via
180 *             mempool_create().
181 *
182 * Free all reserved elements in @pool and @pool itself.  This function
183 * only sleeps if the free_fn() function sleeps.
184 */
185void mempool_destroy(mempool_t *pool)
186{
187	if (unlikely(!pool))
188		return;
189
190	mempool_exit(pool);
191	kfree(pool);
192}
193EXPORT_SYMBOL(mempool_destroy);
194
195int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
196		      mempool_free_t *free_fn, void *pool_data,
197		      gfp_t gfp_mask, int node_id)
198{
199	spin_lock_init(&pool->lock);
200	pool->min_nr	= min_nr;
201	pool->pool_data = pool_data;
202	pool->alloc	= alloc_fn;
203	pool->free	= free_fn;
204	init_waitqueue_head(&pool->wait);
205
206	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
207					    gfp_mask, node_id);
208	if (!pool->elements)
209		return -ENOMEM;
210
211	/*
212	 * First pre-allocate the guaranteed number of buffers.
213	 */
214	while (pool->curr_nr < pool->min_nr) {
215		void *element;
216
217		element = pool->alloc(gfp_mask, pool->pool_data);
218		if (unlikely(!element)) {
219			mempool_exit(pool);
220			return -ENOMEM;
221		}
222		add_element(pool, element);
223	}
224
225	return 0;
226}
227EXPORT_SYMBOL(mempool_init_node);
228
229/**
230 * mempool_init - initialize a memory pool
231 * @pool:      pointer to the memory pool that should be initialized
232 * @min_nr:    the minimum number of elements guaranteed to be
233 *             allocated for this pool.
234 * @alloc_fn:  user-defined element-allocation function.
235 * @free_fn:   user-defined element-freeing function.
236 * @pool_data: optional private data available to the user-defined functions.
237 *
238 * Like mempool_create(), but initializes the pool in (i.e. embedded in another
239 * structure).
240 *
241 * Return: %0 on success, negative error code otherwise.
242 */
243int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
244		 mempool_free_t *free_fn, void *pool_data)
245{
246	return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
247				 pool_data, GFP_KERNEL, NUMA_NO_NODE);
248
249}
250EXPORT_SYMBOL(mempool_init);
251
252/**
253 * mempool_create - create a memory pool
254 * @min_nr:    the minimum number of elements guaranteed to be
255 *             allocated for this pool.
256 * @alloc_fn:  user-defined element-allocation function.
257 * @free_fn:   user-defined element-freeing function.
258 * @pool_data: optional private data available to the user-defined functions.
259 *
260 * this function creates and allocates a guaranteed size, preallocated
261 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
262 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
263 * functions might sleep - as long as the mempool_alloc() function is not called
264 * from IRQ contexts.
265 *
266 * Return: pointer to the created memory pool object or %NULL on error.
267 */
268mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
269				mempool_free_t *free_fn, void *pool_data)
270{
271	return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data,
272				   GFP_KERNEL, NUMA_NO_NODE);
273}
274EXPORT_SYMBOL(mempool_create);
275
276mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
277			       mempool_free_t *free_fn, void *pool_data,
278			       gfp_t gfp_mask, int node_id)
279{
280	mempool_t *pool;
281
282	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
283	if (!pool)
284		return NULL;
285
286	if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
287			      gfp_mask, node_id)) {
288		kfree(pool);
289		return NULL;
290	}
291
292	return pool;
293}
294EXPORT_SYMBOL(mempool_create_node);
295
296/**
297 * mempool_resize - resize an existing memory pool
298 * @pool:       pointer to the memory pool which was allocated via
299 *              mempool_create().
300 * @new_min_nr: the new minimum number of elements guaranteed to be
301 *              allocated for this pool.
302 *
303 * This function shrinks/grows the pool. In the case of growing,
304 * it cannot be guaranteed that the pool will be grown to the new
305 * size immediately, but new mempool_free() calls will refill it.
306 * This function may sleep.
307 *
308 * Note, the caller must guarantee that no mempool_destroy is called
309 * while this function is running. mempool_alloc() & mempool_free()
310 * might be called (eg. from IRQ contexts) while this function executes.
311 *
312 * Return: %0 on success, negative error code otherwise.
313 */
314int mempool_resize(mempool_t *pool, int new_min_nr)
315{
316	void *element;
317	void **new_elements;
318	unsigned long flags;
319
320	BUG_ON(new_min_nr <= 0);
321	might_sleep();
322
323	spin_lock_irqsave(&pool->lock, flags);
324	if (new_min_nr <= pool->min_nr) {
325		while (new_min_nr < pool->curr_nr) {
326			element = remove_element(pool);
327			spin_unlock_irqrestore(&pool->lock, flags);
328			pool->free(element, pool->pool_data);
329			spin_lock_irqsave(&pool->lock, flags);
330		}
331		pool->min_nr = new_min_nr;
332		goto out_unlock;
333	}
334	spin_unlock_irqrestore(&pool->lock, flags);
335
336	/* Grow the pool */
337	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
338				     GFP_KERNEL);
339	if (!new_elements)
340		return -ENOMEM;
341
342	spin_lock_irqsave(&pool->lock, flags);
343	if (unlikely(new_min_nr <= pool->min_nr)) {
344		/* Raced, other resize will do our work */
345		spin_unlock_irqrestore(&pool->lock, flags);
346		kfree(new_elements);
347		goto out;
348	}
349	memcpy(new_elements, pool->elements,
350			pool->curr_nr * sizeof(*new_elements));
351	kfree(pool->elements);
352	pool->elements = new_elements;
353	pool->min_nr = new_min_nr;
354
355	while (pool->curr_nr < pool->min_nr) {
356		spin_unlock_irqrestore(&pool->lock, flags);
357		element = pool->alloc(GFP_KERNEL, pool->pool_data);
358		if (!element)
359			goto out;
360		spin_lock_irqsave(&pool->lock, flags);
361		if (pool->curr_nr < pool->min_nr) {
362			add_element(pool, element);
363		} else {
364			spin_unlock_irqrestore(&pool->lock, flags);
365			pool->free(element, pool->pool_data);	/* Raced */
366			goto out;
367		}
368	}
369out_unlock:
370	spin_unlock_irqrestore(&pool->lock, flags);
371out:
372	return 0;
373}
374EXPORT_SYMBOL(mempool_resize);
375
376/**
377 * mempool_alloc - allocate an element from a specific memory pool
378 * @pool:      pointer to the memory pool which was allocated via
379 *             mempool_create().
380 * @gfp_mask:  the usual allocation bitmask.
381 *
382 * this function only sleeps if the alloc_fn() function sleeps or
383 * returns NULL. Note that due to preallocation, this function
384 * *never* fails when called from process contexts. (it might
385 * fail if called from an IRQ context.)
386 * Note: using __GFP_ZERO is not supported.
387 *
388 * Return: pointer to the allocated element or %NULL on error.
389 */
390void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
391{
392	void *element;
393	unsigned long flags;
394	wait_queue_entry_t wait;
395	gfp_t gfp_temp;
396
397	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
398	might_alloc(gfp_mask);
399
400	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
401	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
402	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
403
404	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
405
406repeat_alloc:
407
408	element = pool->alloc(gfp_temp, pool->pool_data);
409	if (likely(element != NULL))
410		return element;
411
412	spin_lock_irqsave(&pool->lock, flags);
413	if (likely(pool->curr_nr)) {
414		element = remove_element(pool);
415		spin_unlock_irqrestore(&pool->lock, flags);
416		/* paired with rmb in mempool_free(), read comment there */
417		smp_wmb();
418		/*
419		 * Update the allocation stack trace as this is more useful
420		 * for debugging.
421		 */
422		kmemleak_update_trace(element);
423		return element;
424	}
425
426	/*
427	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
428	 * alloc failed with that and @pool was empty, retry immediately.
429	 */
430	if (gfp_temp != gfp_mask) {
431		spin_unlock_irqrestore(&pool->lock, flags);
432		gfp_temp = gfp_mask;
433		goto repeat_alloc;
434	}
435
436	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
437	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
438		spin_unlock_irqrestore(&pool->lock, flags);
439		return NULL;
440	}
441
442	/* Let's wait for someone else to return an element to @pool */
443	init_wait(&wait);
444	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
445
446	spin_unlock_irqrestore(&pool->lock, flags);
447
448	/*
449	 * FIXME: this should be io_schedule().  The timeout is there as a
450	 * workaround for some DM problems in 2.6.18.
451	 */
452	io_schedule_timeout(5*HZ);
453
454	finish_wait(&pool->wait, &wait);
455	goto repeat_alloc;
456}
457EXPORT_SYMBOL(mempool_alloc);
458
459/**
460 * mempool_alloc_preallocated - allocate an element from preallocated elements
461 *                              belonging to a specific memory pool
462 * @pool:      pointer to the memory pool which was allocated via
463 *             mempool_create().
464 *
465 * This function is similar to mempool_alloc, but it only attempts allocating
466 * an element from the preallocated elements. It does not sleep and immediately
467 * returns if no preallocated elements are available.
468 *
469 * Return: pointer to the allocated element or %NULL if no elements are
470 * available.
471 */
472void *mempool_alloc_preallocated(mempool_t *pool)
473{
474	void *element;
475	unsigned long flags;
476
477	spin_lock_irqsave(&pool->lock, flags);
478	if (likely(pool->curr_nr)) {
479		element = remove_element(pool);
480		spin_unlock_irqrestore(&pool->lock, flags);
481		/* paired with rmb in mempool_free(), read comment there */
482		smp_wmb();
483		/*
484		 * Update the allocation stack trace as this is more useful
485		 * for debugging.
486		 */
487		kmemleak_update_trace(element);
488		return element;
489	}
490	spin_unlock_irqrestore(&pool->lock, flags);
491
492	return NULL;
493}
494EXPORT_SYMBOL(mempool_alloc_preallocated);
495
496/**
497 * mempool_free - return an element to the pool.
498 * @element:   pool element pointer.
499 * @pool:      pointer to the memory pool which was allocated via
500 *             mempool_create().
501 *
502 * this function only sleeps if the free_fn() function sleeps.
503 */
504void mempool_free(void *element, mempool_t *pool)
505{
506	unsigned long flags;
507
508	if (unlikely(element == NULL))
509		return;
510
511	/*
512	 * Paired with the wmb in mempool_alloc().  The preceding read is
513	 * for @element and the following @pool->curr_nr.  This ensures
514	 * that the visible value of @pool->curr_nr is from after the
515	 * allocation of @element.  This is necessary for fringe cases
516	 * where @element was passed to this task without going through
517	 * barriers.
518	 *
519	 * For example, assume @p is %NULL at the beginning and one task
520	 * performs "p = mempool_alloc(...);" while another task is doing
521	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
522	 * may end up using curr_nr value which is from before allocation
523	 * of @p without the following rmb.
524	 */
525	smp_rmb();
526
527	/*
528	 * For correctness, we need a test which is guaranteed to trigger
529	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
530	 * without locking achieves that and refilling as soon as possible
531	 * is desirable.
532	 *
533	 * Because curr_nr visible here is always a value after the
534	 * allocation of @element, any task which decremented curr_nr below
535	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
536	 * incremented to min_nr afterwards.  If curr_nr gets incremented
537	 * to min_nr after the allocation of @element, the elements
538	 * allocated after that are subject to the same guarantee.
539	 *
540	 * Waiters happen iff curr_nr is 0 and the above guarantee also
541	 * ensures that there will be frees which return elements to the
542	 * pool waking up the waiters.
543	 */
544	if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
545		spin_lock_irqsave(&pool->lock, flags);
546		if (likely(pool->curr_nr < pool->min_nr)) {
547			add_element(pool, element);
548			spin_unlock_irqrestore(&pool->lock, flags);
549			wake_up(&pool->wait);
550			return;
551		}
552		spin_unlock_irqrestore(&pool->lock, flags);
553	}
554	pool->free(element, pool->pool_data);
555}
556EXPORT_SYMBOL(mempool_free);
557
558/*
559 * A commonly used alloc and free fn.
560 */
561void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
562{
563	struct kmem_cache *mem = pool_data;
564	VM_BUG_ON(mem->ctor);
565	return kmem_cache_alloc(mem, gfp_mask);
566}
567EXPORT_SYMBOL(mempool_alloc_slab);
568
569void mempool_free_slab(void *element, void *pool_data)
570{
571	struct kmem_cache *mem = pool_data;
572	kmem_cache_free(mem, element);
573}
574EXPORT_SYMBOL(mempool_free_slab);
575
576/*
577 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
578 * specified by pool_data
579 */
580void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
581{
582	size_t size = (size_t)pool_data;
583	return kmalloc(size, gfp_mask);
584}
585EXPORT_SYMBOL(mempool_kmalloc);
586
587void mempool_kfree(void *element, void *pool_data)
588{
589	kfree(element);
590}
591EXPORT_SYMBOL(mempool_kfree);
592
593void *mempool_kvmalloc(gfp_t gfp_mask, void *pool_data)
594{
595	size_t size = (size_t)pool_data;
596	return kvmalloc(size, gfp_mask);
597}
598EXPORT_SYMBOL(mempool_kvmalloc);
599
600void mempool_kvfree(void *element, void *pool_data)
601{
602	kvfree(element);
603}
604EXPORT_SYMBOL(mempool_kvfree);
605
606/*
607 * A simple mempool-backed page allocator that allocates pages
608 * of the order specified by pool_data.
609 */
610void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
611{
612	int order = (int)(long)pool_data;
613	return alloc_pages(gfp_mask, order);
614}
615EXPORT_SYMBOL(mempool_alloc_pages);
616
617void mempool_free_pages(void *element, void *pool_data)
618{
619	int order = (int)(long)pool_data;
620	__free_pages(element, order);
621}
622EXPORT_SYMBOL(mempool_free_pages);
623