1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave     Allocate memory interleaved over a set of nodes,
16 *                with normal fallback if it fails.
17 *                For VMA based allocations this interleaves based on the
18 *                offset into the backing object or offset into the mapping
19 *                for anonymous memory. For process policy an process counter
20 *                is used.
21 *
22 * weighted interleave
23 *                Allocate memory interleaved over a set of nodes based on
24 *                a set of weights (per-node), with normal fallback if it
25 *                fails.  Otherwise operates the same as interleave.
26 *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27 *                on node 0 for every 1 page allocated on node 1.
28 *
29 * bind           Only allocate memory on a specific set of nodes,
30 *                no fallback.
31 *                FIXME: memory is allocated starting with the first node
32 *                to the last. It would be better if bind would truly restrict
33 *                the allocation to memory nodes instead
34 *
35 * preferred      Try a specific node first before normal fallback.
36 *                As a special case NUMA_NO_NODE here means do the allocation
37 *                on the local CPU. This is normally identical to default,
38 *                but useful to set in a VMA when you have a non default
39 *                process policy.
40 *
41 * preferred many Try a set of nodes first before normal fallback. This is
42 *                similar to preferred without the special case.
43 *
44 * default        Allocate on the local node first, or when on a VMA
45 *                use the process policy. This is what Linux always did
46 *		  in a NUMA aware kernel and still does by, ahem, default.
47 *
48 * The process policy is applied for most non interrupt memory allocations
49 * in that process' context. Interrupts ignore the policies and always
50 * try to allocate on the local CPU. The VMA policy is only applied for memory
51 * allocations for a VMA in the VM.
52 *
53 * Currently there are a few corner cases in swapping where the policy
54 * is not applied, but the majority should be handled. When process policy
55 * is used it is not remembered over swap outs/swap ins.
56 *
57 * Only the highest zone in the zone hierarchy gets policied. Allocations
58 * requesting a lower zone just use default policy. This implies that
59 * on systems with highmem kernel lowmem allocation don't get policied.
60 * Same with GFP_DMA allocations.
61 *
62 * For shmem/tmpfs shared memory the policy is shared between
63 * all users and remembered even when nobody has memory mapped.
64 */
65
66/* Notebook:
67   fix mmap readahead to honour policy and enable policy for any page cache
68   object
69   statistics for bigpages
70   global policy for page cache? currently it uses process policy. Requires
71   first item above.
72   handle mremap for shared memory (currently ignored for the policy)
73   grows down?
74   make bind policy root only? It can trigger oom much faster and the
75   kernel is not always grateful with that.
76*/
77
78#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79
80#include <linux/mempolicy.h>
81#include <linux/pagewalk.h>
82#include <linux/highmem.h>
83#include <linux/hugetlb.h>
84#include <linux/kernel.h>
85#include <linux/sched.h>
86#include <linux/sched/mm.h>
87#include <linux/sched/numa_balancing.h>
88#include <linux/sched/task.h>
89#include <linux/nodemask.h>
90#include <linux/cpuset.h>
91#include <linux/slab.h>
92#include <linux/string.h>
93#include <linux/export.h>
94#include <linux/nsproxy.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compat.h>
98#include <linux/ptrace.h>
99#include <linux/swap.h>
100#include <linux/seq_file.h>
101#include <linux/proc_fs.h>
102#include <linux/migrate.h>
103#include <linux/ksm.h>
104#include <linux/rmap.h>
105#include <linux/security.h>
106#include <linux/syscalls.h>
107#include <linux/ctype.h>
108#include <linux/mm_inline.h>
109#include <linux/mmu_notifier.h>
110#include <linux/printk.h>
111#include <linux/swapops.h>
112
113#include <asm/tlbflush.h>
114#include <asm/tlb.h>
115#include <linux/uaccess.h>
116
117#include "internal.h"
118
119/* Internal flags */
120#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
121#define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
122#define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
123
124static struct kmem_cache *policy_cache;
125static struct kmem_cache *sn_cache;
126
127/* Highest zone. An specific allocation for a zone below that is not
128   policied. */
129enum zone_type policy_zone = 0;
130
131/*
132 * run-time system-wide default policy => local allocation
133 */
134static struct mempolicy default_policy = {
135	.refcnt = ATOMIC_INIT(1), /* never free it */
136	.mode = MPOL_LOCAL,
137};
138
139static struct mempolicy preferred_node_policy[MAX_NUMNODES];
140
141/*
142 * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143 * system-default value should be used. A NULL iw_table also denotes that
144 * system-default values should be used. Until the system-default table
145 * is implemented, the system-default is always 1.
146 *
147 * iw_table is RCU protected
148 */
149static u8 __rcu *iw_table;
150static DEFINE_MUTEX(iw_table_lock);
151
152static u8 get_il_weight(int node)
153{
154	u8 *table;
155	u8 weight;
156
157	rcu_read_lock();
158	table = rcu_dereference(iw_table);
159	/* if no iw_table, use system default */
160	weight = table ? table[node] : 1;
161	/* if value in iw_table is 0, use system default */
162	weight = weight ? weight : 1;
163	rcu_read_unlock();
164	return weight;
165}
166
167/**
168 * numa_nearest_node - Find nearest node by state
169 * @node: Node id to start the search
170 * @state: State to filter the search
171 *
172 * Lookup the closest node by distance if @nid is not in state.
173 *
174 * Return: this @node if it is in state, otherwise the closest node by distance
175 */
176int numa_nearest_node(int node, unsigned int state)
177{
178	int min_dist = INT_MAX, dist, n, min_node;
179
180	if (state >= NR_NODE_STATES)
181		return -EINVAL;
182
183	if (node == NUMA_NO_NODE || node_state(node, state))
184		return node;
185
186	min_node = node;
187	for_each_node_state(n, state) {
188		dist = node_distance(node, n);
189		if (dist < min_dist) {
190			min_dist = dist;
191			min_node = n;
192		}
193	}
194
195	return min_node;
196}
197EXPORT_SYMBOL_GPL(numa_nearest_node);
198
199struct mempolicy *get_task_policy(struct task_struct *p)
200{
201	struct mempolicy *pol = p->mempolicy;
202	int node;
203
204	if (pol)
205		return pol;
206
207	node = numa_node_id();
208	if (node != NUMA_NO_NODE) {
209		pol = &preferred_node_policy[node];
210		/* preferred_node_policy is not initialised early in boot */
211		if (pol->mode)
212			return pol;
213	}
214
215	return &default_policy;
216}
217
218static const struct mempolicy_operations {
219	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221} mpol_ops[MPOL_MAX];
222
223static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
224{
225	return pol->flags & MPOL_MODE_FLAGS;
226}
227
228static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229				   const nodemask_t *rel)
230{
231	nodemask_t tmp;
232	nodes_fold(tmp, *orig, nodes_weight(*rel));
233	nodes_onto(*ret, tmp, *rel);
234}
235
236static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
237{
238	if (nodes_empty(*nodes))
239		return -EINVAL;
240	pol->nodes = *nodes;
241	return 0;
242}
243
244static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
245{
246	if (nodes_empty(*nodes))
247		return -EINVAL;
248
249	nodes_clear(pol->nodes);
250	node_set(first_node(*nodes), pol->nodes);
251	return 0;
252}
253
254/*
255 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256 * any, for the new policy.  mpol_new() has already validated the nodes
257 * parameter with respect to the policy mode and flags.
258 *
259 * Must be called holding task's alloc_lock to protect task's mems_allowed
260 * and mempolicy.  May also be called holding the mmap_lock for write.
261 */
262static int mpol_set_nodemask(struct mempolicy *pol,
263		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
264{
265	int ret;
266
267	/*
268	 * Default (pol==NULL) resp. local memory policies are not a
269	 * subject of any remapping. They also do not need any special
270	 * constructor.
271	 */
272	if (!pol || pol->mode == MPOL_LOCAL)
273		return 0;
274
275	/* Check N_MEMORY */
276	nodes_and(nsc->mask1,
277		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
278
279	VM_BUG_ON(!nodes);
280
281	if (pol->flags & MPOL_F_RELATIVE_NODES)
282		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283	else
284		nodes_and(nsc->mask2, *nodes, nsc->mask1);
285
286	if (mpol_store_user_nodemask(pol))
287		pol->w.user_nodemask = *nodes;
288	else
289		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
290
291	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292	return ret;
293}
294
295/*
296 * This function just creates a new policy, does some check and simple
297 * initialization. You must invoke mpol_set_nodemask() to set nodes.
298 */
299static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300				  nodemask_t *nodes)
301{
302	struct mempolicy *policy;
303
304	if (mode == MPOL_DEFAULT) {
305		if (nodes && !nodes_empty(*nodes))
306			return ERR_PTR(-EINVAL);
307		return NULL;
308	}
309	VM_BUG_ON(!nodes);
310
311	/*
312	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314	 * All other modes require a valid pointer to a non-empty nodemask.
315	 */
316	if (mode == MPOL_PREFERRED) {
317		if (nodes_empty(*nodes)) {
318			if (((flags & MPOL_F_STATIC_NODES) ||
319			     (flags & MPOL_F_RELATIVE_NODES)))
320				return ERR_PTR(-EINVAL);
321
322			mode = MPOL_LOCAL;
323		}
324	} else if (mode == MPOL_LOCAL) {
325		if (!nodes_empty(*nodes) ||
326		    (flags & MPOL_F_STATIC_NODES) ||
327		    (flags & MPOL_F_RELATIVE_NODES))
328			return ERR_PTR(-EINVAL);
329	} else if (nodes_empty(*nodes))
330		return ERR_PTR(-EINVAL);
331
332	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333	if (!policy)
334		return ERR_PTR(-ENOMEM);
335	atomic_set(&policy->refcnt, 1);
336	policy->mode = mode;
337	policy->flags = flags;
338	policy->home_node = NUMA_NO_NODE;
339
340	return policy;
341}
342
343/* Slow path of a mpol destructor. */
344void __mpol_put(struct mempolicy *pol)
345{
346	if (!atomic_dec_and_test(&pol->refcnt))
347		return;
348	kmem_cache_free(policy_cache, pol);
349}
350
351static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
352{
353}
354
355static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
356{
357	nodemask_t tmp;
358
359	if (pol->flags & MPOL_F_STATIC_NODES)
360		nodes_and(tmp, pol->w.user_nodemask, *nodes);
361	else if (pol->flags & MPOL_F_RELATIVE_NODES)
362		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363	else {
364		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365								*nodes);
366		pol->w.cpuset_mems_allowed = *nodes;
367	}
368
369	if (nodes_empty(tmp))
370		tmp = *nodes;
371
372	pol->nodes = tmp;
373}
374
375static void mpol_rebind_preferred(struct mempolicy *pol,
376						const nodemask_t *nodes)
377{
378	pol->w.cpuset_mems_allowed = *nodes;
379}
380
381/*
382 * mpol_rebind_policy - Migrate a policy to a different set of nodes
383 *
384 * Per-vma policies are protected by mmap_lock. Allocations using per-task
385 * policies are protected by task->mems_allowed_seq to prevent a premature
386 * OOM/allocation failure due to parallel nodemask modification.
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
389{
390	if (!pol || pol->mode == MPOL_LOCAL)
391		return;
392	if (!mpol_store_user_nodemask(pol) &&
393	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394		return;
395
396	mpol_ops[pol->mode].rebind(pol, newmask);
397}
398
399/*
400 * Wrapper for mpol_rebind_policy() that just requires task
401 * pointer, and updates task mempolicy.
402 *
403 * Called with task's alloc_lock held.
404 */
405void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
406{
407	mpol_rebind_policy(tsk->mempolicy, new);
408}
409
410/*
411 * Rebind each vma in mm to new nodemask.
412 *
413 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
414 */
415void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
416{
417	struct vm_area_struct *vma;
418	VMA_ITERATOR(vmi, mm, 0);
419
420	mmap_write_lock(mm);
421	for_each_vma(vmi, vma) {
422		vma_start_write(vma);
423		mpol_rebind_policy(vma->vm_policy, new);
424	}
425	mmap_write_unlock(mm);
426}
427
428static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429	[MPOL_DEFAULT] = {
430		.rebind = mpol_rebind_default,
431	},
432	[MPOL_INTERLEAVE] = {
433		.create = mpol_new_nodemask,
434		.rebind = mpol_rebind_nodemask,
435	},
436	[MPOL_PREFERRED] = {
437		.create = mpol_new_preferred,
438		.rebind = mpol_rebind_preferred,
439	},
440	[MPOL_BIND] = {
441		.create = mpol_new_nodemask,
442		.rebind = mpol_rebind_nodemask,
443	},
444	[MPOL_LOCAL] = {
445		.rebind = mpol_rebind_default,
446	},
447	[MPOL_PREFERRED_MANY] = {
448		.create = mpol_new_nodemask,
449		.rebind = mpol_rebind_preferred,
450	},
451	[MPOL_WEIGHTED_INTERLEAVE] = {
452		.create = mpol_new_nodemask,
453		.rebind = mpol_rebind_nodemask,
454	},
455};
456
457static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458				unsigned long flags);
459static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460				pgoff_t ilx, int *nid);
461
462static bool strictly_unmovable(unsigned long flags)
463{
464	/*
465	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466	 * if any misplaced page is found.
467	 */
468	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469			 MPOL_MF_STRICT;
470}
471
472struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
473	struct mempolicy *pol;
474	pgoff_t ilx;
475};
476
477struct queue_pages {
478	struct list_head *pagelist;
479	unsigned long flags;
480	nodemask_t *nmask;
481	unsigned long start;
482	unsigned long end;
483	struct vm_area_struct *first;
484	struct folio *large;		/* note last large folio encountered */
485	long nr_failed;			/* could not be isolated at this time */
486};
487
488/*
489 * Check if the folio's nid is in qp->nmask.
490 *
491 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492 * in the invert of qp->nmask.
493 */
494static inline bool queue_folio_required(struct folio *folio,
495					struct queue_pages *qp)
496{
497	int nid = folio_nid(folio);
498	unsigned long flags = qp->flags;
499
500	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
501}
502
503static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
504{
505	struct folio *folio;
506	struct queue_pages *qp = walk->private;
507
508	if (unlikely(is_pmd_migration_entry(*pmd))) {
509		qp->nr_failed++;
510		return;
511	}
512	folio = pfn_folio(pmd_pfn(*pmd));
513	if (is_huge_zero_page(&folio->page)) {
514		walk->action = ACTION_CONTINUE;
515		return;
516	}
517	if (!queue_folio_required(folio, qp))
518		return;
519	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520	    !vma_migratable(walk->vma) ||
521	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
522		qp->nr_failed++;
523}
524
525/*
526 * Scan through folios, checking if they satisfy the required conditions,
527 * moving them from LRU to local pagelist for migration if they do (or not).
528 *
529 * queue_folios_pte_range() has two possible return values:
530 * 0 - continue walking to scan for more, even if an existing folio on the
531 *     wrong node could not be isolated and queued for migration.
532 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533 *        and an existing folio was on a node that does not follow the policy.
534 */
535static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536			unsigned long end, struct mm_walk *walk)
537{
538	struct vm_area_struct *vma = walk->vma;
539	struct folio *folio;
540	struct queue_pages *qp = walk->private;
541	unsigned long flags = qp->flags;
542	pte_t *pte, *mapped_pte;
543	pte_t ptent;
544	spinlock_t *ptl;
545
546	ptl = pmd_trans_huge_lock(pmd, vma);
547	if (ptl) {
548		queue_folios_pmd(pmd, walk);
549		spin_unlock(ptl);
550		goto out;
551	}
552
553	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554	if (!pte) {
555		walk->action = ACTION_AGAIN;
556		return 0;
557	}
558	for (; addr != end; pte++, addr += PAGE_SIZE) {
559		ptent = ptep_get(pte);
560		if (pte_none(ptent))
561			continue;
562		if (!pte_present(ptent)) {
563			if (is_migration_entry(pte_to_swp_entry(ptent)))
564				qp->nr_failed++;
565			continue;
566		}
567		folio = vm_normal_folio(vma, addr, ptent);
568		if (!folio || folio_is_zone_device(folio))
569			continue;
570		/*
571		 * vm_normal_folio() filters out zero pages, but there might
572		 * still be reserved folios to skip, perhaps in a VDSO.
573		 */
574		if (folio_test_reserved(folio))
575			continue;
576		if (!queue_folio_required(folio, qp))
577			continue;
578		if (folio_test_large(folio)) {
579			/*
580			 * A large folio can only be isolated from LRU once,
581			 * but may be mapped by many PTEs (and Copy-On-Write may
582			 * intersperse PTEs of other, order 0, folios).  This is
583			 * a common case, so don't mistake it for failure (but
584			 * there can be other cases of multi-mapped pages which
585			 * this quick check does not help to filter out - and a
586			 * search of the pagelist might grow to be prohibitive).
587			 *
588			 * migrate_pages(&pagelist) returns nr_failed folios, so
589			 * check "large" now so that queue_pages_range() returns
590			 * a comparable nr_failed folios.  This does imply that
591			 * if folio could not be isolated for some racy reason
592			 * at its first PTE, later PTEs will not give it another
593			 * chance of isolation; but keeps the accounting simple.
594			 */
595			if (folio == qp->large)
596				continue;
597			qp->large = folio;
598		}
599		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600		    !vma_migratable(vma) ||
601		    !migrate_folio_add(folio, qp->pagelist, flags)) {
602			qp->nr_failed++;
603			if (strictly_unmovable(flags))
604				break;
605		}
606	}
607	pte_unmap_unlock(mapped_pte, ptl);
608	cond_resched();
609out:
610	if (qp->nr_failed && strictly_unmovable(flags))
611		return -EIO;
612	return 0;
613}
614
615static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616			       unsigned long addr, unsigned long end,
617			       struct mm_walk *walk)
618{
619#ifdef CONFIG_HUGETLB_PAGE
620	struct queue_pages *qp = walk->private;
621	unsigned long flags = qp->flags;
622	struct folio *folio;
623	spinlock_t *ptl;
624	pte_t entry;
625
626	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627	entry = huge_ptep_get(pte);
628	if (!pte_present(entry)) {
629		if (unlikely(is_hugetlb_entry_migration(entry)))
630			qp->nr_failed++;
631		goto unlock;
632	}
633	folio = pfn_folio(pte_pfn(entry));
634	if (!queue_folio_required(folio, qp))
635		goto unlock;
636	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637	    !vma_migratable(walk->vma)) {
638		qp->nr_failed++;
639		goto unlock;
640	}
641	/*
642	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643	 * Choosing not to migrate a shared folio is not counted as a failure.
644	 *
645	 * To check if the folio is shared, ideally we want to make sure
646	 * every page is mapped to the same process. Doing that is very
647	 * expensive, so check the estimated sharers of the folio instead.
648	 */
649	if ((flags & MPOL_MF_MOVE_ALL) ||
650	    (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte)))
651		if (!isolate_hugetlb(folio, qp->pagelist))
652			qp->nr_failed++;
653unlock:
654	spin_unlock(ptl);
655	if (qp->nr_failed && strictly_unmovable(flags))
656		return -EIO;
657#endif
658	return 0;
659}
660
661#ifdef CONFIG_NUMA_BALANCING
662/*
663 * This is used to mark a range of virtual addresses to be inaccessible.
664 * These are later cleared by a NUMA hinting fault. Depending on these
665 * faults, pages may be migrated for better NUMA placement.
666 *
667 * This is assuming that NUMA faults are handled using PROT_NONE. If
668 * an architecture makes a different choice, it will need further
669 * changes to the core.
670 */
671unsigned long change_prot_numa(struct vm_area_struct *vma,
672			unsigned long addr, unsigned long end)
673{
674	struct mmu_gather tlb;
675	long nr_updated;
676
677	tlb_gather_mmu(&tlb, vma->vm_mm);
678
679	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
680	if (nr_updated > 0)
681		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
682
683	tlb_finish_mmu(&tlb);
684
685	return nr_updated;
686}
687#endif /* CONFIG_NUMA_BALANCING */
688
689static int queue_pages_test_walk(unsigned long start, unsigned long end,
690				struct mm_walk *walk)
691{
692	struct vm_area_struct *next, *vma = walk->vma;
693	struct queue_pages *qp = walk->private;
694	unsigned long flags = qp->flags;
695
696	/* range check first */
697	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
698
699	if (!qp->first) {
700		qp->first = vma;
701		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
702			(qp->start < vma->vm_start))
703			/* hole at head side of range */
704			return -EFAULT;
705	}
706	next = find_vma(vma->vm_mm, vma->vm_end);
707	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
708		((vma->vm_end < qp->end) &&
709		(!next || vma->vm_end < next->vm_start)))
710		/* hole at middle or tail of range */
711		return -EFAULT;
712
713	/*
714	 * Need check MPOL_MF_STRICT to return -EIO if possible
715	 * regardless of vma_migratable
716	 */
717	if (!vma_migratable(vma) &&
718	    !(flags & MPOL_MF_STRICT))
719		return 1;
720
721	/*
722	 * Check page nodes, and queue pages to move, in the current vma.
723	 * But if no moving, and no strict checking, the scan can be skipped.
724	 */
725	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
726		return 0;
727	return 1;
728}
729
730static const struct mm_walk_ops queue_pages_walk_ops = {
731	.hugetlb_entry		= queue_folios_hugetlb,
732	.pmd_entry		= queue_folios_pte_range,
733	.test_walk		= queue_pages_test_walk,
734	.walk_lock		= PGWALK_RDLOCK,
735};
736
737static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
738	.hugetlb_entry		= queue_folios_hugetlb,
739	.pmd_entry		= queue_folios_pte_range,
740	.test_walk		= queue_pages_test_walk,
741	.walk_lock		= PGWALK_WRLOCK,
742};
743
744/*
745 * Walk through page tables and collect pages to be migrated.
746 *
747 * If pages found in a given range are not on the required set of @nodes,
748 * and migration is allowed, they are isolated and queued to @pagelist.
749 *
750 * queue_pages_range() may return:
751 * 0 - all pages already on the right node, or successfully queued for moving
752 *     (or neither strict checking nor moving requested: only range checking).
753 * >0 - this number of misplaced folios could not be queued for moving
754 *      (a hugetlbfs page or a transparent huge page being counted as 1).
755 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
756 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
757 */
758static long
759queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
760		nodemask_t *nodes, unsigned long flags,
761		struct list_head *pagelist)
762{
763	int err;
764	struct queue_pages qp = {
765		.pagelist = pagelist,
766		.flags = flags,
767		.nmask = nodes,
768		.start = start,
769		.end = end,
770		.first = NULL,
771	};
772	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
773			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
774
775	err = walk_page_range(mm, start, end, ops, &qp);
776
777	if (!qp.first)
778		/* whole range in hole */
779		err = -EFAULT;
780
781	return err ? : qp.nr_failed;
782}
783
784/*
785 * Apply policy to a single VMA
786 * This must be called with the mmap_lock held for writing.
787 */
788static int vma_replace_policy(struct vm_area_struct *vma,
789				struct mempolicy *pol)
790{
791	int err;
792	struct mempolicy *old;
793	struct mempolicy *new;
794
795	vma_assert_write_locked(vma);
796
797	new = mpol_dup(pol);
798	if (IS_ERR(new))
799		return PTR_ERR(new);
800
801	if (vma->vm_ops && vma->vm_ops->set_policy) {
802		err = vma->vm_ops->set_policy(vma, new);
803		if (err)
804			goto err_out;
805	}
806
807	old = vma->vm_policy;
808	vma->vm_policy = new; /* protected by mmap_lock */
809	mpol_put(old);
810
811	return 0;
812 err_out:
813	mpol_put(new);
814	return err;
815}
816
817/* Split or merge the VMA (if required) and apply the new policy */
818static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
819		struct vm_area_struct **prev, unsigned long start,
820		unsigned long end, struct mempolicy *new_pol)
821{
822	unsigned long vmstart, vmend;
823
824	vmend = min(end, vma->vm_end);
825	if (start > vma->vm_start) {
826		*prev = vma;
827		vmstart = start;
828	} else {
829		vmstart = vma->vm_start;
830	}
831
832	if (mpol_equal(vma->vm_policy, new_pol)) {
833		*prev = vma;
834		return 0;
835	}
836
837	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
838	if (IS_ERR(vma))
839		return PTR_ERR(vma);
840
841	*prev = vma;
842	return vma_replace_policy(vma, new_pol);
843}
844
845/* Set the process memory policy */
846static long do_set_mempolicy(unsigned short mode, unsigned short flags,
847			     nodemask_t *nodes)
848{
849	struct mempolicy *new, *old;
850	NODEMASK_SCRATCH(scratch);
851	int ret;
852
853	if (!scratch)
854		return -ENOMEM;
855
856	new = mpol_new(mode, flags, nodes);
857	if (IS_ERR(new)) {
858		ret = PTR_ERR(new);
859		goto out;
860	}
861
862	task_lock(current);
863	ret = mpol_set_nodemask(new, nodes, scratch);
864	if (ret) {
865		task_unlock(current);
866		mpol_put(new);
867		goto out;
868	}
869
870	old = current->mempolicy;
871	current->mempolicy = new;
872	if (new && (new->mode == MPOL_INTERLEAVE ||
873		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
874		current->il_prev = MAX_NUMNODES-1;
875		current->il_weight = 0;
876	}
877	task_unlock(current);
878	mpol_put(old);
879	ret = 0;
880out:
881	NODEMASK_SCRATCH_FREE(scratch);
882	return ret;
883}
884
885/*
886 * Return nodemask for policy for get_mempolicy() query
887 *
888 * Called with task's alloc_lock held
889 */
890static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
891{
892	nodes_clear(*nodes);
893	if (pol == &default_policy)
894		return;
895
896	switch (pol->mode) {
897	case MPOL_BIND:
898	case MPOL_INTERLEAVE:
899	case MPOL_PREFERRED:
900	case MPOL_PREFERRED_MANY:
901	case MPOL_WEIGHTED_INTERLEAVE:
902		*nodes = pol->nodes;
903		break;
904	case MPOL_LOCAL:
905		/* return empty node mask for local allocation */
906		break;
907	default:
908		BUG();
909	}
910}
911
912static int lookup_node(struct mm_struct *mm, unsigned long addr)
913{
914	struct page *p = NULL;
915	int ret;
916
917	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
918	if (ret > 0) {
919		ret = page_to_nid(p);
920		put_page(p);
921	}
922	return ret;
923}
924
925/* Retrieve NUMA policy */
926static long do_get_mempolicy(int *policy, nodemask_t *nmask,
927			     unsigned long addr, unsigned long flags)
928{
929	int err;
930	struct mm_struct *mm = current->mm;
931	struct vm_area_struct *vma = NULL;
932	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
933
934	if (flags &
935		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
936		return -EINVAL;
937
938	if (flags & MPOL_F_MEMS_ALLOWED) {
939		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
940			return -EINVAL;
941		*policy = 0;	/* just so it's initialized */
942		task_lock(current);
943		*nmask  = cpuset_current_mems_allowed;
944		task_unlock(current);
945		return 0;
946	}
947
948	if (flags & MPOL_F_ADDR) {
949		pgoff_t ilx;		/* ignored here */
950		/*
951		 * Do NOT fall back to task policy if the
952		 * vma/shared policy at addr is NULL.  We
953		 * want to return MPOL_DEFAULT in this case.
954		 */
955		mmap_read_lock(mm);
956		vma = vma_lookup(mm, addr);
957		if (!vma) {
958			mmap_read_unlock(mm);
959			return -EFAULT;
960		}
961		pol = __get_vma_policy(vma, addr, &ilx);
962	} else if (addr)
963		return -EINVAL;
964
965	if (!pol)
966		pol = &default_policy;	/* indicates default behavior */
967
968	if (flags & MPOL_F_NODE) {
969		if (flags & MPOL_F_ADDR) {
970			/*
971			 * Take a refcount on the mpol, because we are about to
972			 * drop the mmap_lock, after which only "pol" remains
973			 * valid, "vma" is stale.
974			 */
975			pol_refcount = pol;
976			vma = NULL;
977			mpol_get(pol);
978			mmap_read_unlock(mm);
979			err = lookup_node(mm, addr);
980			if (err < 0)
981				goto out;
982			*policy = err;
983		} else if (pol == current->mempolicy &&
984				pol->mode == MPOL_INTERLEAVE) {
985			*policy = next_node_in(current->il_prev, pol->nodes);
986		} else if (pol == current->mempolicy &&
987				pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
988			if (current->il_weight)
989				*policy = current->il_prev;
990			else
991				*policy = next_node_in(current->il_prev,
992						       pol->nodes);
993		} else {
994			err = -EINVAL;
995			goto out;
996		}
997	} else {
998		*policy = pol == &default_policy ? MPOL_DEFAULT :
999						pol->mode;
1000		/*
1001		 * Internal mempolicy flags must be masked off before exposing
1002		 * the policy to userspace.
1003		 */
1004		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1005	}
1006
1007	err = 0;
1008	if (nmask) {
1009		if (mpol_store_user_nodemask(pol)) {
1010			*nmask = pol->w.user_nodemask;
1011		} else {
1012			task_lock(current);
1013			get_policy_nodemask(pol, nmask);
1014			task_unlock(current);
1015		}
1016	}
1017
1018 out:
1019	mpol_cond_put(pol);
1020	if (vma)
1021		mmap_read_unlock(mm);
1022	if (pol_refcount)
1023		mpol_put(pol_refcount);
1024	return err;
1025}
1026
1027#ifdef CONFIG_MIGRATION
1028static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1029				unsigned long flags)
1030{
1031	/*
1032	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1033	 * Choosing not to migrate a shared folio is not counted as a failure.
1034	 *
1035	 * To check if the folio is shared, ideally we want to make sure
1036	 * every page is mapped to the same process. Doing that is very
1037	 * expensive, so check the estimated sharers of the folio instead.
1038	 */
1039	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1040		if (folio_isolate_lru(folio)) {
1041			list_add_tail(&folio->lru, foliolist);
1042			node_stat_mod_folio(folio,
1043				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1044				folio_nr_pages(folio));
1045		} else {
1046			/*
1047			 * Non-movable folio may reach here.  And, there may be
1048			 * temporary off LRU folios or non-LRU movable folios.
1049			 * Treat them as unmovable folios since they can't be
1050			 * isolated, so they can't be moved at the moment.
1051			 */
1052			return false;
1053		}
1054	}
1055	return true;
1056}
1057
1058/*
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1061 */
1062static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1063			    int flags)
1064{
1065	nodemask_t nmask;
1066	struct vm_area_struct *vma;
1067	LIST_HEAD(pagelist);
1068	long nr_failed;
1069	long err = 0;
1070	struct migration_target_control mtc = {
1071		.nid = dest,
1072		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1073	};
1074
1075	nodes_clear(nmask);
1076	node_set(source, nmask);
1077
1078	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1079
1080	mmap_read_lock(mm);
1081	vma = find_vma(mm, 0);
1082
1083	/*
1084	 * This does not migrate the range, but isolates all pages that
1085	 * need migration.  Between passing in the full user address
1086	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1087	 * but passes back the count of pages which could not be isolated.
1088	 */
1089	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1090				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1091	mmap_read_unlock(mm);
1092
1093	if (!list_empty(&pagelist)) {
1094		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1095			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1096		if (err)
1097			putback_movable_pages(&pagelist);
1098	}
1099
1100	if (err >= 0)
1101		err += nr_failed;
1102	return err;
1103}
1104
1105/*
1106 * Move pages between the two nodesets so as to preserve the physical
1107 * layout as much as possible.
1108 *
1109 * Returns the number of page that could not be moved.
1110 */
1111int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1112		     const nodemask_t *to, int flags)
1113{
1114	long nr_failed = 0;
1115	long err = 0;
1116	nodemask_t tmp;
1117
1118	lru_cache_disable();
1119
1120	/*
1121	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1122	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1123	 * bit in 'tmp', and return that <source, dest> pair for migration.
1124	 * The pair of nodemasks 'to' and 'from' define the map.
1125	 *
1126	 * If no pair of bits is found that way, fallback to picking some
1127	 * pair of 'source' and 'dest' bits that are not the same.  If the
1128	 * 'source' and 'dest' bits are the same, this represents a node
1129	 * that will be migrating to itself, so no pages need move.
1130	 *
1131	 * If no bits are left in 'tmp', or if all remaining bits left
1132	 * in 'tmp' correspond to the same bit in 'to', return false
1133	 * (nothing left to migrate).
1134	 *
1135	 * This lets us pick a pair of nodes to migrate between, such that
1136	 * if possible the dest node is not already occupied by some other
1137	 * source node, minimizing the risk of overloading the memory on a
1138	 * node that would happen if we migrated incoming memory to a node
1139	 * before migrating outgoing memory source that same node.
1140	 *
1141	 * A single scan of tmp is sufficient.  As we go, we remember the
1142	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1143	 * that not only moved, but what's better, moved to an empty slot
1144	 * (d is not set in tmp), then we break out then, with that pair.
1145	 * Otherwise when we finish scanning from_tmp, we at least have the
1146	 * most recent <s, d> pair that moved.  If we get all the way through
1147	 * the scan of tmp without finding any node that moved, much less
1148	 * moved to an empty node, then there is nothing left worth migrating.
1149	 */
1150
1151	tmp = *from;
1152	while (!nodes_empty(tmp)) {
1153		int s, d;
1154		int source = NUMA_NO_NODE;
1155		int dest = 0;
1156
1157		for_each_node_mask(s, tmp) {
1158
1159			/*
1160			 * do_migrate_pages() tries to maintain the relative
1161			 * node relationship of the pages established between
1162			 * threads and memory areas.
1163                         *
1164			 * However if the number of source nodes is not equal to
1165			 * the number of destination nodes we can not preserve
1166			 * this node relative relationship.  In that case, skip
1167			 * copying memory from a node that is in the destination
1168			 * mask.
1169			 *
1170			 * Example: [2,3,4] -> [3,4,5] moves everything.
1171			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1172			 */
1173
1174			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1175						(node_isset(s, *to)))
1176				continue;
1177
1178			d = node_remap(s, *from, *to);
1179			if (s == d)
1180				continue;
1181
1182			source = s;	/* Node moved. Memorize */
1183			dest = d;
1184
1185			/* dest not in remaining from nodes? */
1186			if (!node_isset(dest, tmp))
1187				break;
1188		}
1189		if (source == NUMA_NO_NODE)
1190			break;
1191
1192		node_clear(source, tmp);
1193		err = migrate_to_node(mm, source, dest, flags);
1194		if (err > 0)
1195			nr_failed += err;
1196		if (err < 0)
1197			break;
1198	}
1199
1200	lru_cache_enable();
1201	if (err < 0)
1202		return err;
1203	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1204}
1205
1206/*
1207 * Allocate a new folio for page migration, according to NUMA mempolicy.
1208 */
1209static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1210						    unsigned long private)
1211{
1212	struct migration_mpol *mmpol = (struct migration_mpol *)private;
1213	struct mempolicy *pol = mmpol->pol;
1214	pgoff_t ilx = mmpol->ilx;
1215	struct page *page;
1216	unsigned int order;
1217	int nid = numa_node_id();
1218	gfp_t gfp;
1219
1220	order = folio_order(src);
1221	ilx += src->index >> order;
1222
1223	if (folio_test_hugetlb(src)) {
1224		nodemask_t *nodemask;
1225		struct hstate *h;
1226
1227		h = folio_hstate(src);
1228		gfp = htlb_alloc_mask(h);
1229		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1230		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp);
1231	}
1232
1233	if (folio_test_large(src))
1234		gfp = GFP_TRANSHUGE;
1235	else
1236		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1237
1238	page = alloc_pages_mpol(gfp, order, pol, ilx, nid);
1239	return page_rmappable_folio(page);
1240}
1241#else
1242
1243static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1244				unsigned long flags)
1245{
1246	return false;
1247}
1248
1249int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1250		     const nodemask_t *to, int flags)
1251{
1252	return -ENOSYS;
1253}
1254
1255static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1256						    unsigned long private)
1257{
1258	return NULL;
1259}
1260#endif
1261
1262static long do_mbind(unsigned long start, unsigned long len,
1263		     unsigned short mode, unsigned short mode_flags,
1264		     nodemask_t *nmask, unsigned long flags)
1265{
1266	struct mm_struct *mm = current->mm;
1267	struct vm_area_struct *vma, *prev;
1268	struct vma_iterator vmi;
1269	struct migration_mpol mmpol;
1270	struct mempolicy *new;
1271	unsigned long end;
1272	long err;
1273	long nr_failed;
1274	LIST_HEAD(pagelist);
1275
1276	if (flags & ~(unsigned long)MPOL_MF_VALID)
1277		return -EINVAL;
1278	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1279		return -EPERM;
1280
1281	if (start & ~PAGE_MASK)
1282		return -EINVAL;
1283
1284	if (mode == MPOL_DEFAULT)
1285		flags &= ~MPOL_MF_STRICT;
1286
1287	len = PAGE_ALIGN(len);
1288	end = start + len;
1289
1290	if (end < start)
1291		return -EINVAL;
1292	if (end == start)
1293		return 0;
1294
1295	new = mpol_new(mode, mode_flags, nmask);
1296	if (IS_ERR(new))
1297		return PTR_ERR(new);
1298
1299	/*
1300	 * If we are using the default policy then operation
1301	 * on discontinuous address spaces is okay after all
1302	 */
1303	if (!new)
1304		flags |= MPOL_MF_DISCONTIG_OK;
1305
1306	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1307		lru_cache_disable();
1308	{
1309		NODEMASK_SCRATCH(scratch);
1310		if (scratch) {
1311			mmap_write_lock(mm);
1312			err = mpol_set_nodemask(new, nmask, scratch);
1313			if (err)
1314				mmap_write_unlock(mm);
1315		} else
1316			err = -ENOMEM;
1317		NODEMASK_SCRATCH_FREE(scratch);
1318	}
1319	if (err)
1320		goto mpol_out;
1321
1322	/*
1323	 * Lock the VMAs before scanning for pages to migrate,
1324	 * to ensure we don't miss a concurrently inserted page.
1325	 */
1326	nr_failed = queue_pages_range(mm, start, end, nmask,
1327			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1328
1329	if (nr_failed < 0) {
1330		err = nr_failed;
1331		nr_failed = 0;
1332	} else {
1333		vma_iter_init(&vmi, mm, start);
1334		prev = vma_prev(&vmi);
1335		for_each_vma_range(vmi, vma, end) {
1336			err = mbind_range(&vmi, vma, &prev, start, end, new);
1337			if (err)
1338				break;
1339		}
1340	}
1341
1342	if (!err && !list_empty(&pagelist)) {
1343		/* Convert MPOL_DEFAULT's NULL to task or default policy */
1344		if (!new) {
1345			new = get_task_policy(current);
1346			mpol_get(new);
1347		}
1348		mmpol.pol = new;
1349		mmpol.ilx = 0;
1350
1351		/*
1352		 * In the interleaved case, attempt to allocate on exactly the
1353		 * targeted nodes, for the first VMA to be migrated; for later
1354		 * VMAs, the nodes will still be interleaved from the targeted
1355		 * nodemask, but one by one may be selected differently.
1356		 */
1357		if (new->mode == MPOL_INTERLEAVE ||
1358		    new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1359			struct folio *folio;
1360			unsigned int order;
1361			unsigned long addr = -EFAULT;
1362
1363			list_for_each_entry(folio, &pagelist, lru) {
1364				if (!folio_test_ksm(folio))
1365					break;
1366			}
1367			if (!list_entry_is_head(folio, &pagelist, lru)) {
1368				vma_iter_init(&vmi, mm, start);
1369				for_each_vma_range(vmi, vma, end) {
1370					addr = page_address_in_vma(
1371						folio_page(folio, 0), vma);
1372					if (addr != -EFAULT)
1373						break;
1374				}
1375			}
1376			if (addr != -EFAULT) {
1377				order = folio_order(folio);
1378				/* We already know the pol, but not the ilx */
1379				mpol_cond_put(get_vma_policy(vma, addr, order,
1380							     &mmpol.ilx));
1381				/* Set base from which to increment by index */
1382				mmpol.ilx -= folio->index >> order;
1383			}
1384		}
1385	}
1386
1387	mmap_write_unlock(mm);
1388
1389	if (!err && !list_empty(&pagelist)) {
1390		nr_failed |= migrate_pages(&pagelist,
1391				alloc_migration_target_by_mpol, NULL,
1392				(unsigned long)&mmpol, MIGRATE_SYNC,
1393				MR_MEMPOLICY_MBIND, NULL);
1394	}
1395
1396	if (nr_failed && (flags & MPOL_MF_STRICT))
1397		err = -EIO;
1398	if (!list_empty(&pagelist))
1399		putback_movable_pages(&pagelist);
1400mpol_out:
1401	mpol_put(new);
1402	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1403		lru_cache_enable();
1404	return err;
1405}
1406
1407/*
1408 * User space interface with variable sized bitmaps for nodelists.
1409 */
1410static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1411		      unsigned long maxnode)
1412{
1413	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1414	int ret;
1415
1416	if (in_compat_syscall())
1417		ret = compat_get_bitmap(mask,
1418					(const compat_ulong_t __user *)nmask,
1419					maxnode);
1420	else
1421		ret = copy_from_user(mask, nmask,
1422				     nlongs * sizeof(unsigned long));
1423
1424	if (ret)
1425		return -EFAULT;
1426
1427	if (maxnode % BITS_PER_LONG)
1428		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1429
1430	return 0;
1431}
1432
1433/* Copy a node mask from user space. */
1434static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1435		     unsigned long maxnode)
1436{
1437	--maxnode;
1438	nodes_clear(*nodes);
1439	if (maxnode == 0 || !nmask)
1440		return 0;
1441	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1442		return -EINVAL;
1443
1444	/*
1445	 * When the user specified more nodes than supported just check
1446	 * if the non supported part is all zero, one word at a time,
1447	 * starting at the end.
1448	 */
1449	while (maxnode > MAX_NUMNODES) {
1450		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1451		unsigned long t;
1452
1453		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1454			return -EFAULT;
1455
1456		if (maxnode - bits >= MAX_NUMNODES) {
1457			maxnode -= bits;
1458		} else {
1459			maxnode = MAX_NUMNODES;
1460			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1461		}
1462		if (t)
1463			return -EINVAL;
1464	}
1465
1466	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1467}
1468
1469/* Copy a kernel node mask to user space */
1470static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1471			      nodemask_t *nodes)
1472{
1473	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1474	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1475	bool compat = in_compat_syscall();
1476
1477	if (compat)
1478		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1479
1480	if (copy > nbytes) {
1481		if (copy > PAGE_SIZE)
1482			return -EINVAL;
1483		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1484			return -EFAULT;
1485		copy = nbytes;
1486		maxnode = nr_node_ids;
1487	}
1488
1489	if (compat)
1490		return compat_put_bitmap((compat_ulong_t __user *)mask,
1491					 nodes_addr(*nodes), maxnode);
1492
1493	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1494}
1495
1496/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1497static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1498{
1499	*flags = *mode & MPOL_MODE_FLAGS;
1500	*mode &= ~MPOL_MODE_FLAGS;
1501
1502	if ((unsigned int)(*mode) >=  MPOL_MAX)
1503		return -EINVAL;
1504	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1505		return -EINVAL;
1506	if (*flags & MPOL_F_NUMA_BALANCING) {
1507		if (*mode != MPOL_BIND)
1508			return -EINVAL;
1509		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1510	}
1511	return 0;
1512}
1513
1514static long kernel_mbind(unsigned long start, unsigned long len,
1515			 unsigned long mode, const unsigned long __user *nmask,
1516			 unsigned long maxnode, unsigned int flags)
1517{
1518	unsigned short mode_flags;
1519	nodemask_t nodes;
1520	int lmode = mode;
1521	int err;
1522
1523	start = untagged_addr(start);
1524	err = sanitize_mpol_flags(&lmode, &mode_flags);
1525	if (err)
1526		return err;
1527
1528	err = get_nodes(&nodes, nmask, maxnode);
1529	if (err)
1530		return err;
1531
1532	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1533}
1534
1535SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1536		unsigned long, home_node, unsigned long, flags)
1537{
1538	struct mm_struct *mm = current->mm;
1539	struct vm_area_struct *vma, *prev;
1540	struct mempolicy *new, *old;
1541	unsigned long end;
1542	int err = -ENOENT;
1543	VMA_ITERATOR(vmi, mm, start);
1544
1545	start = untagged_addr(start);
1546	if (start & ~PAGE_MASK)
1547		return -EINVAL;
1548	/*
1549	 * flags is used for future extension if any.
1550	 */
1551	if (flags != 0)
1552		return -EINVAL;
1553
1554	/*
1555	 * Check home_node is online to avoid accessing uninitialized
1556	 * NODE_DATA.
1557	 */
1558	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1559		return -EINVAL;
1560
1561	len = PAGE_ALIGN(len);
1562	end = start + len;
1563
1564	if (end < start)
1565		return -EINVAL;
1566	if (end == start)
1567		return 0;
1568	mmap_write_lock(mm);
1569	prev = vma_prev(&vmi);
1570	for_each_vma_range(vmi, vma, end) {
1571		/*
1572		 * If any vma in the range got policy other than MPOL_BIND
1573		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1574		 * the home node for vmas we already updated before.
1575		 */
1576		old = vma_policy(vma);
1577		if (!old) {
1578			prev = vma;
1579			continue;
1580		}
1581		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1582			err = -EOPNOTSUPP;
1583			break;
1584		}
1585		new = mpol_dup(old);
1586		if (IS_ERR(new)) {
1587			err = PTR_ERR(new);
1588			break;
1589		}
1590
1591		vma_start_write(vma);
1592		new->home_node = home_node;
1593		err = mbind_range(&vmi, vma, &prev, start, end, new);
1594		mpol_put(new);
1595		if (err)
1596			break;
1597	}
1598	mmap_write_unlock(mm);
1599	return err;
1600}
1601
1602SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1603		unsigned long, mode, const unsigned long __user *, nmask,
1604		unsigned long, maxnode, unsigned int, flags)
1605{
1606	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1607}
1608
1609/* Set the process memory policy */
1610static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1611				 unsigned long maxnode)
1612{
1613	unsigned short mode_flags;
1614	nodemask_t nodes;
1615	int lmode = mode;
1616	int err;
1617
1618	err = sanitize_mpol_flags(&lmode, &mode_flags);
1619	if (err)
1620		return err;
1621
1622	err = get_nodes(&nodes, nmask, maxnode);
1623	if (err)
1624		return err;
1625
1626	return do_set_mempolicy(lmode, mode_flags, &nodes);
1627}
1628
1629SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1630		unsigned long, maxnode)
1631{
1632	return kernel_set_mempolicy(mode, nmask, maxnode);
1633}
1634
1635static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1636				const unsigned long __user *old_nodes,
1637				const unsigned long __user *new_nodes)
1638{
1639	struct mm_struct *mm = NULL;
1640	struct task_struct *task;
1641	nodemask_t task_nodes;
1642	int err;
1643	nodemask_t *old;
1644	nodemask_t *new;
1645	NODEMASK_SCRATCH(scratch);
1646
1647	if (!scratch)
1648		return -ENOMEM;
1649
1650	old = &scratch->mask1;
1651	new = &scratch->mask2;
1652
1653	err = get_nodes(old, old_nodes, maxnode);
1654	if (err)
1655		goto out;
1656
1657	err = get_nodes(new, new_nodes, maxnode);
1658	if (err)
1659		goto out;
1660
1661	/* Find the mm_struct */
1662	rcu_read_lock();
1663	task = pid ? find_task_by_vpid(pid) : current;
1664	if (!task) {
1665		rcu_read_unlock();
1666		err = -ESRCH;
1667		goto out;
1668	}
1669	get_task_struct(task);
1670
1671	err = -EINVAL;
1672
1673	/*
1674	 * Check if this process has the right to modify the specified process.
1675	 * Use the regular "ptrace_may_access()" checks.
1676	 */
1677	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1678		rcu_read_unlock();
1679		err = -EPERM;
1680		goto out_put;
1681	}
1682	rcu_read_unlock();
1683
1684	task_nodes = cpuset_mems_allowed(task);
1685	/* Is the user allowed to access the target nodes? */
1686	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1687		err = -EPERM;
1688		goto out_put;
1689	}
1690
1691	task_nodes = cpuset_mems_allowed(current);
1692	nodes_and(*new, *new, task_nodes);
1693	if (nodes_empty(*new))
1694		goto out_put;
1695
1696	err = security_task_movememory(task);
1697	if (err)
1698		goto out_put;
1699
1700	mm = get_task_mm(task);
1701	put_task_struct(task);
1702
1703	if (!mm) {
1704		err = -EINVAL;
1705		goto out;
1706	}
1707
1708	err = do_migrate_pages(mm, old, new,
1709		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1710
1711	mmput(mm);
1712out:
1713	NODEMASK_SCRATCH_FREE(scratch);
1714
1715	return err;
1716
1717out_put:
1718	put_task_struct(task);
1719	goto out;
1720}
1721
1722SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1723		const unsigned long __user *, old_nodes,
1724		const unsigned long __user *, new_nodes)
1725{
1726	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1727}
1728
1729/* Retrieve NUMA policy */
1730static int kernel_get_mempolicy(int __user *policy,
1731				unsigned long __user *nmask,
1732				unsigned long maxnode,
1733				unsigned long addr,
1734				unsigned long flags)
1735{
1736	int err;
1737	int pval;
1738	nodemask_t nodes;
1739
1740	if (nmask != NULL && maxnode < nr_node_ids)
1741		return -EINVAL;
1742
1743	addr = untagged_addr(addr);
1744
1745	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1746
1747	if (err)
1748		return err;
1749
1750	if (policy && put_user(pval, policy))
1751		return -EFAULT;
1752
1753	if (nmask)
1754		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1755
1756	return err;
1757}
1758
1759SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1760		unsigned long __user *, nmask, unsigned long, maxnode,
1761		unsigned long, addr, unsigned long, flags)
1762{
1763	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1764}
1765
1766bool vma_migratable(struct vm_area_struct *vma)
1767{
1768	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1769		return false;
1770
1771	/*
1772	 * DAX device mappings require predictable access latency, so avoid
1773	 * incurring periodic faults.
1774	 */
1775	if (vma_is_dax(vma))
1776		return false;
1777
1778	if (is_vm_hugetlb_page(vma) &&
1779		!hugepage_migration_supported(hstate_vma(vma)))
1780		return false;
1781
1782	/*
1783	 * Migration allocates pages in the highest zone. If we cannot
1784	 * do so then migration (at least from node to node) is not
1785	 * possible.
1786	 */
1787	if (vma->vm_file &&
1788		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1789			< policy_zone)
1790		return false;
1791	return true;
1792}
1793
1794struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1795				   unsigned long addr, pgoff_t *ilx)
1796{
1797	*ilx = 0;
1798	return (vma->vm_ops && vma->vm_ops->get_policy) ?
1799		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1800}
1801
1802/*
1803 * get_vma_policy(@vma, @addr, @order, @ilx)
1804 * @vma: virtual memory area whose policy is sought
1805 * @addr: address in @vma for shared policy lookup
1806 * @order: 0, or appropriate huge_page_order for interleaving
1807 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1808 *       MPOL_WEIGHTED_INTERLEAVE
1809 *
1810 * Returns effective policy for a VMA at specified address.
1811 * Falls back to current->mempolicy or system default policy, as necessary.
1812 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1813 * count--added by the get_policy() vm_op, as appropriate--to protect against
1814 * freeing by another task.  It is the caller's responsibility to free the
1815 * extra reference for shared policies.
1816 */
1817struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1818				 unsigned long addr, int order, pgoff_t *ilx)
1819{
1820	struct mempolicy *pol;
1821
1822	pol = __get_vma_policy(vma, addr, ilx);
1823	if (!pol)
1824		pol = get_task_policy(current);
1825	if (pol->mode == MPOL_INTERLEAVE ||
1826	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1827		*ilx += vma->vm_pgoff >> order;
1828		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1829	}
1830	return pol;
1831}
1832
1833bool vma_policy_mof(struct vm_area_struct *vma)
1834{
1835	struct mempolicy *pol;
1836
1837	if (vma->vm_ops && vma->vm_ops->get_policy) {
1838		bool ret = false;
1839		pgoff_t ilx;		/* ignored here */
1840
1841		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1842		if (pol && (pol->flags & MPOL_F_MOF))
1843			ret = true;
1844		mpol_cond_put(pol);
1845
1846		return ret;
1847	}
1848
1849	pol = vma->vm_policy;
1850	if (!pol)
1851		pol = get_task_policy(current);
1852
1853	return pol->flags & MPOL_F_MOF;
1854}
1855
1856bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1857{
1858	enum zone_type dynamic_policy_zone = policy_zone;
1859
1860	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1861
1862	/*
1863	 * if policy->nodes has movable memory only,
1864	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1865	 *
1866	 * policy->nodes is intersect with node_states[N_MEMORY].
1867	 * so if the following test fails, it implies
1868	 * policy->nodes has movable memory only.
1869	 */
1870	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1871		dynamic_policy_zone = ZONE_MOVABLE;
1872
1873	return zone >= dynamic_policy_zone;
1874}
1875
1876static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1877{
1878	unsigned int node;
1879	unsigned int cpuset_mems_cookie;
1880
1881retry:
1882	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1883	cpuset_mems_cookie = read_mems_allowed_begin();
1884	node = current->il_prev;
1885	if (!current->il_weight || !node_isset(node, policy->nodes)) {
1886		node = next_node_in(node, policy->nodes);
1887		if (read_mems_allowed_retry(cpuset_mems_cookie))
1888			goto retry;
1889		if (node == MAX_NUMNODES)
1890			return node;
1891		current->il_prev = node;
1892		current->il_weight = get_il_weight(node);
1893	}
1894	current->il_weight--;
1895	return node;
1896}
1897
1898/* Do dynamic interleaving for a process */
1899static unsigned int interleave_nodes(struct mempolicy *policy)
1900{
1901	unsigned int nid;
1902	unsigned int cpuset_mems_cookie;
1903
1904	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1905	do {
1906		cpuset_mems_cookie = read_mems_allowed_begin();
1907		nid = next_node_in(current->il_prev, policy->nodes);
1908	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1909
1910	if (nid < MAX_NUMNODES)
1911		current->il_prev = nid;
1912	return nid;
1913}
1914
1915/*
1916 * Depending on the memory policy provide a node from which to allocate the
1917 * next slab entry.
1918 */
1919unsigned int mempolicy_slab_node(void)
1920{
1921	struct mempolicy *policy;
1922	int node = numa_mem_id();
1923
1924	if (!in_task())
1925		return node;
1926
1927	policy = current->mempolicy;
1928	if (!policy)
1929		return node;
1930
1931	switch (policy->mode) {
1932	case MPOL_PREFERRED:
1933		return first_node(policy->nodes);
1934
1935	case MPOL_INTERLEAVE:
1936		return interleave_nodes(policy);
1937
1938	case MPOL_WEIGHTED_INTERLEAVE:
1939		return weighted_interleave_nodes(policy);
1940
1941	case MPOL_BIND:
1942	case MPOL_PREFERRED_MANY:
1943	{
1944		struct zoneref *z;
1945
1946		/*
1947		 * Follow bind policy behavior and start allocation at the
1948		 * first node.
1949		 */
1950		struct zonelist *zonelist;
1951		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1952		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1953		z = first_zones_zonelist(zonelist, highest_zoneidx,
1954							&policy->nodes);
1955		return z->zone ? zone_to_nid(z->zone) : node;
1956	}
1957	case MPOL_LOCAL:
1958		return node;
1959
1960	default:
1961		BUG();
1962	}
1963}
1964
1965static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1966					      nodemask_t *mask)
1967{
1968	/*
1969	 * barrier stabilizes the nodemask locally so that it can be iterated
1970	 * over safely without concern for changes. Allocators validate node
1971	 * selection does not violate mems_allowed, so this is safe.
1972	 */
1973	barrier();
1974	memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1975	barrier();
1976	return nodes_weight(*mask);
1977}
1978
1979static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1980{
1981	nodemask_t nodemask;
1982	unsigned int target, nr_nodes;
1983	u8 *table;
1984	unsigned int weight_total = 0;
1985	u8 weight;
1986	int nid;
1987
1988	nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1989	if (!nr_nodes)
1990		return numa_node_id();
1991
1992	rcu_read_lock();
1993	table = rcu_dereference(iw_table);
1994	/* calculate the total weight */
1995	for_each_node_mask(nid, nodemask) {
1996		/* detect system default usage */
1997		weight = table ? table[nid] : 1;
1998		weight = weight ? weight : 1;
1999		weight_total += weight;
2000	}
2001
2002	/* Calculate the node offset based on totals */
2003	target = ilx % weight_total;
2004	nid = first_node(nodemask);
2005	while (target) {
2006		/* detect system default usage */
2007		weight = table ? table[nid] : 1;
2008		weight = weight ? weight : 1;
2009		if (target < weight)
2010			break;
2011		target -= weight;
2012		nid = next_node_in(nid, nodemask);
2013	}
2014	rcu_read_unlock();
2015	return nid;
2016}
2017
2018/*
2019 * Do static interleaving for interleave index @ilx.  Returns the ilx'th
2020 * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2021 * exceeds the number of present nodes.
2022 */
2023static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2024{
2025	nodemask_t nodemask;
2026	unsigned int target, nnodes;
2027	int i;
2028	int nid;
2029
2030	nnodes = read_once_policy_nodemask(pol, &nodemask);
2031	if (!nnodes)
2032		return numa_node_id();
2033	target = ilx % nnodes;
2034	nid = first_node(nodemask);
2035	for (i = 0; i < target; i++)
2036		nid = next_node(nid, nodemask);
2037	return nid;
2038}
2039
2040/*
2041 * Return a nodemask representing a mempolicy for filtering nodes for
2042 * page allocation, together with preferred node id (or the input node id).
2043 */
2044static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2045				   pgoff_t ilx, int *nid)
2046{
2047	nodemask_t *nodemask = NULL;
2048
2049	switch (pol->mode) {
2050	case MPOL_PREFERRED:
2051		/* Override input node id */
2052		*nid = first_node(pol->nodes);
2053		break;
2054	case MPOL_PREFERRED_MANY:
2055		nodemask = &pol->nodes;
2056		if (pol->home_node != NUMA_NO_NODE)
2057			*nid = pol->home_node;
2058		break;
2059	case MPOL_BIND:
2060		/* Restrict to nodemask (but not on lower zones) */
2061		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2062		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2063			nodemask = &pol->nodes;
2064		if (pol->home_node != NUMA_NO_NODE)
2065			*nid = pol->home_node;
2066		/*
2067		 * __GFP_THISNODE shouldn't even be used with the bind policy
2068		 * because we might easily break the expectation to stay on the
2069		 * requested node and not break the policy.
2070		 */
2071		WARN_ON_ONCE(gfp & __GFP_THISNODE);
2072		break;
2073	case MPOL_INTERLEAVE:
2074		/* Override input node id */
2075		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2076			interleave_nodes(pol) : interleave_nid(pol, ilx);
2077		break;
2078	case MPOL_WEIGHTED_INTERLEAVE:
2079		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2080			weighted_interleave_nodes(pol) :
2081			weighted_interleave_nid(pol, ilx);
2082		break;
2083	}
2084
2085	return nodemask;
2086}
2087
2088#ifdef CONFIG_HUGETLBFS
2089/*
2090 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2091 * @vma: virtual memory area whose policy is sought
2092 * @addr: address in @vma for shared policy lookup and interleave policy
2093 * @gfp_flags: for requested zone
2094 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2095 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2096 *
2097 * Returns a nid suitable for a huge page allocation and a pointer
2098 * to the struct mempolicy for conditional unref after allocation.
2099 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2100 * to the mempolicy's @nodemask for filtering the zonelist.
2101 */
2102int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2103		struct mempolicy **mpol, nodemask_t **nodemask)
2104{
2105	pgoff_t ilx;
2106	int nid;
2107
2108	nid = numa_node_id();
2109	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2110	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2111	return nid;
2112}
2113
2114/*
2115 * init_nodemask_of_mempolicy
2116 *
2117 * If the current task's mempolicy is "default" [NULL], return 'false'
2118 * to indicate default policy.  Otherwise, extract the policy nodemask
2119 * for 'bind' or 'interleave' policy into the argument nodemask, or
2120 * initialize the argument nodemask to contain the single node for
2121 * 'preferred' or 'local' policy and return 'true' to indicate presence
2122 * of non-default mempolicy.
2123 *
2124 * We don't bother with reference counting the mempolicy [mpol_get/put]
2125 * because the current task is examining it's own mempolicy and a task's
2126 * mempolicy is only ever changed by the task itself.
2127 *
2128 * N.B., it is the caller's responsibility to free a returned nodemask.
2129 */
2130bool init_nodemask_of_mempolicy(nodemask_t *mask)
2131{
2132	struct mempolicy *mempolicy;
2133
2134	if (!(mask && current->mempolicy))
2135		return false;
2136
2137	task_lock(current);
2138	mempolicy = current->mempolicy;
2139	switch (mempolicy->mode) {
2140	case MPOL_PREFERRED:
2141	case MPOL_PREFERRED_MANY:
2142	case MPOL_BIND:
2143	case MPOL_INTERLEAVE:
2144	case MPOL_WEIGHTED_INTERLEAVE:
2145		*mask = mempolicy->nodes;
2146		break;
2147
2148	case MPOL_LOCAL:
2149		init_nodemask_of_node(mask, numa_node_id());
2150		break;
2151
2152	default:
2153		BUG();
2154	}
2155	task_unlock(current);
2156
2157	return true;
2158}
2159#endif
2160
2161/*
2162 * mempolicy_in_oom_domain
2163 *
2164 * If tsk's mempolicy is "bind", check for intersection between mask and
2165 * the policy nodemask. Otherwise, return true for all other policies
2166 * including "interleave", as a tsk with "interleave" policy may have
2167 * memory allocated from all nodes in system.
2168 *
2169 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2170 */
2171bool mempolicy_in_oom_domain(struct task_struct *tsk,
2172					const nodemask_t *mask)
2173{
2174	struct mempolicy *mempolicy;
2175	bool ret = true;
2176
2177	if (!mask)
2178		return ret;
2179
2180	task_lock(tsk);
2181	mempolicy = tsk->mempolicy;
2182	if (mempolicy && mempolicy->mode == MPOL_BIND)
2183		ret = nodes_intersects(mempolicy->nodes, *mask);
2184	task_unlock(tsk);
2185
2186	return ret;
2187}
2188
2189static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2190						int nid, nodemask_t *nodemask)
2191{
2192	struct page *page;
2193	gfp_t preferred_gfp;
2194
2195	/*
2196	 * This is a two pass approach. The first pass will only try the
2197	 * preferred nodes but skip the direct reclaim and allow the
2198	 * allocation to fail, while the second pass will try all the
2199	 * nodes in system.
2200	 */
2201	preferred_gfp = gfp | __GFP_NOWARN;
2202	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2203	page = __alloc_pages(preferred_gfp, order, nid, nodemask);
2204	if (!page)
2205		page = __alloc_pages(gfp, order, nid, NULL);
2206
2207	return page;
2208}
2209
2210/**
2211 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2212 * @gfp: GFP flags.
2213 * @order: Order of the page allocation.
2214 * @pol: Pointer to the NUMA mempolicy.
2215 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2216 * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2217 *
2218 * Return: The page on success or NULL if allocation fails.
2219 */
2220struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
2221		struct mempolicy *pol, pgoff_t ilx, int nid)
2222{
2223	nodemask_t *nodemask;
2224	struct page *page;
2225
2226	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2227
2228	if (pol->mode == MPOL_PREFERRED_MANY)
2229		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2230
2231	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2232	    /* filter "hugepage" allocation, unless from alloc_pages() */
2233	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2234		/*
2235		 * For hugepage allocation and non-interleave policy which
2236		 * allows the current node (or other explicitly preferred
2237		 * node) we only try to allocate from the current/preferred
2238		 * node and don't fall back to other nodes, as the cost of
2239		 * remote accesses would likely offset THP benefits.
2240		 *
2241		 * If the policy is interleave or does not allow the current
2242		 * node in its nodemask, we allocate the standard way.
2243		 */
2244		if (pol->mode != MPOL_INTERLEAVE &&
2245		    pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2246		    (!nodemask || node_isset(nid, *nodemask))) {
2247			/*
2248			 * First, try to allocate THP only on local node, but
2249			 * don't reclaim unnecessarily, just compact.
2250			 */
2251			page = __alloc_pages_node(nid,
2252				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2253			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2254				return page;
2255			/*
2256			 * If hugepage allocations are configured to always
2257			 * synchronous compact or the vma has been madvised
2258			 * to prefer hugepage backing, retry allowing remote
2259			 * memory with both reclaim and compact as well.
2260			 */
2261		}
2262	}
2263
2264	page = __alloc_pages(gfp, order, nid, nodemask);
2265
2266	if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2267		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2268		if (static_branch_likely(&vm_numa_stat_key) &&
2269		    page_to_nid(page) == nid) {
2270			preempt_disable();
2271			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2272			preempt_enable();
2273		}
2274	}
2275
2276	return page;
2277}
2278
2279/**
2280 * vma_alloc_folio - Allocate a folio for a VMA.
2281 * @gfp: GFP flags.
2282 * @order: Order of the folio.
2283 * @vma: Pointer to VMA.
2284 * @addr: Virtual address of the allocation.  Must be inside @vma.
2285 * @hugepage: Unused (was: For hugepages try only preferred node if possible).
2286 *
2287 * Allocate a folio for a specific address in @vma, using the appropriate
2288 * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
2289 * VMA to prevent it from going away.  Should be used for all allocations
2290 * for folios that will be mapped into user space, excepting hugetlbfs, and
2291 * excepting where direct use of alloc_pages_mpol() is more appropriate.
2292 *
2293 * Return: The folio on success or NULL if allocation fails.
2294 */
2295struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2296		unsigned long addr, bool hugepage)
2297{
2298	struct mempolicy *pol;
2299	pgoff_t ilx;
2300	struct page *page;
2301
2302	pol = get_vma_policy(vma, addr, order, &ilx);
2303	page = alloc_pages_mpol(gfp | __GFP_COMP, order,
2304				pol, ilx, numa_node_id());
2305	mpol_cond_put(pol);
2306	return page_rmappable_folio(page);
2307}
2308EXPORT_SYMBOL(vma_alloc_folio);
2309
2310/**
2311 * alloc_pages - Allocate pages.
2312 * @gfp: GFP flags.
2313 * @order: Power of two of number of pages to allocate.
2314 *
2315 * Allocate 1 << @order contiguous pages.  The physical address of the
2316 * first page is naturally aligned (eg an order-3 allocation will be aligned
2317 * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2318 * process is honoured when in process context.
2319 *
2320 * Context: Can be called from any context, providing the appropriate GFP
2321 * flags are used.
2322 * Return: The page on success or NULL if allocation fails.
2323 */
2324struct page *alloc_pages(gfp_t gfp, unsigned int order)
2325{
2326	struct mempolicy *pol = &default_policy;
2327
2328	/*
2329	 * No reference counting needed for current->mempolicy
2330	 * nor system default_policy
2331	 */
2332	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2333		pol = get_task_policy(current);
2334
2335	return alloc_pages_mpol(gfp, order,
2336				pol, NO_INTERLEAVE_INDEX, numa_node_id());
2337}
2338EXPORT_SYMBOL(alloc_pages);
2339
2340struct folio *folio_alloc(gfp_t gfp, unsigned int order)
2341{
2342	return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order));
2343}
2344EXPORT_SYMBOL(folio_alloc);
2345
2346static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2347		struct mempolicy *pol, unsigned long nr_pages,
2348		struct page **page_array)
2349{
2350	int nodes;
2351	unsigned long nr_pages_per_node;
2352	int delta;
2353	int i;
2354	unsigned long nr_allocated;
2355	unsigned long total_allocated = 0;
2356
2357	nodes = nodes_weight(pol->nodes);
2358	nr_pages_per_node = nr_pages / nodes;
2359	delta = nr_pages - nodes * nr_pages_per_node;
2360
2361	for (i = 0; i < nodes; i++) {
2362		if (delta) {
2363			nr_allocated = __alloc_pages_bulk(gfp,
2364					interleave_nodes(pol), NULL,
2365					nr_pages_per_node + 1, NULL,
2366					page_array);
2367			delta--;
2368		} else {
2369			nr_allocated = __alloc_pages_bulk(gfp,
2370					interleave_nodes(pol), NULL,
2371					nr_pages_per_node, NULL, page_array);
2372		}
2373
2374		page_array += nr_allocated;
2375		total_allocated += nr_allocated;
2376	}
2377
2378	return total_allocated;
2379}
2380
2381static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2382		struct mempolicy *pol, unsigned long nr_pages,
2383		struct page **page_array)
2384{
2385	struct task_struct *me = current;
2386	unsigned int cpuset_mems_cookie;
2387	unsigned long total_allocated = 0;
2388	unsigned long nr_allocated = 0;
2389	unsigned long rounds;
2390	unsigned long node_pages, delta;
2391	u8 *table, *weights, weight;
2392	unsigned int weight_total = 0;
2393	unsigned long rem_pages = nr_pages;
2394	nodemask_t nodes;
2395	int nnodes, node;
2396	int resume_node = MAX_NUMNODES - 1;
2397	u8 resume_weight = 0;
2398	int prev_node;
2399	int i;
2400
2401	if (!nr_pages)
2402		return 0;
2403
2404	/* read the nodes onto the stack, retry if done during rebind */
2405	do {
2406		cpuset_mems_cookie = read_mems_allowed_begin();
2407		nnodes = read_once_policy_nodemask(pol, &nodes);
2408	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2409
2410	/* if the nodemask has become invalid, we cannot do anything */
2411	if (!nnodes)
2412		return 0;
2413
2414	/* Continue allocating from most recent node and adjust the nr_pages */
2415	node = me->il_prev;
2416	weight = me->il_weight;
2417	if (weight && node_isset(node, nodes)) {
2418		node_pages = min(rem_pages, weight);
2419		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2420						  NULL, page_array);
2421		page_array += nr_allocated;
2422		total_allocated += nr_allocated;
2423		/* if that's all the pages, no need to interleave */
2424		if (rem_pages <= weight) {
2425			me->il_weight -= rem_pages;
2426			return total_allocated;
2427		}
2428		/* Otherwise we adjust remaining pages, continue from there */
2429		rem_pages -= weight;
2430	}
2431	/* clear active weight in case of an allocation failure */
2432	me->il_weight = 0;
2433	prev_node = node;
2434
2435	/* create a local copy of node weights to operate on outside rcu */
2436	weights = kzalloc(nr_node_ids, GFP_KERNEL);
2437	if (!weights)
2438		return total_allocated;
2439
2440	rcu_read_lock();
2441	table = rcu_dereference(iw_table);
2442	if (table)
2443		memcpy(weights, table, nr_node_ids);
2444	rcu_read_unlock();
2445
2446	/* calculate total, detect system default usage */
2447	for_each_node_mask(node, nodes) {
2448		if (!weights[node])
2449			weights[node] = 1;
2450		weight_total += weights[node];
2451	}
2452
2453	/*
2454	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2455	 * Track which node weighted interleave should resume from.
2456	 *
2457	 * if (rounds > 0) and (delta == 0), resume_node will always be
2458	 * the node following prev_node and its weight.
2459	 */
2460	rounds = rem_pages / weight_total;
2461	delta = rem_pages % weight_total;
2462	resume_node = next_node_in(prev_node, nodes);
2463	resume_weight = weights[resume_node];
2464	for (i = 0; i < nnodes; i++) {
2465		node = next_node_in(prev_node, nodes);
2466		weight = weights[node];
2467		node_pages = weight * rounds;
2468		/* If a delta exists, add this node's portion of the delta */
2469		if (delta > weight) {
2470			node_pages += weight;
2471			delta -= weight;
2472		} else if (delta) {
2473			/* when delta is depleted, resume from that node */
2474			node_pages += delta;
2475			resume_node = node;
2476			resume_weight = weight - delta;
2477			delta = 0;
2478		}
2479		/* node_pages can be 0 if an allocation fails and rounds == 0 */
2480		if (!node_pages)
2481			break;
2482		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2483						  NULL, page_array);
2484		page_array += nr_allocated;
2485		total_allocated += nr_allocated;
2486		if (total_allocated == nr_pages)
2487			break;
2488		prev_node = node;
2489	}
2490	me->il_prev = resume_node;
2491	me->il_weight = resume_weight;
2492	kfree(weights);
2493	return total_allocated;
2494}
2495
2496static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2497		struct mempolicy *pol, unsigned long nr_pages,
2498		struct page **page_array)
2499{
2500	gfp_t preferred_gfp;
2501	unsigned long nr_allocated = 0;
2502
2503	preferred_gfp = gfp | __GFP_NOWARN;
2504	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2505
2506	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2507					   nr_pages, NULL, page_array);
2508
2509	if (nr_allocated < nr_pages)
2510		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2511				nr_pages - nr_allocated, NULL,
2512				page_array + nr_allocated);
2513	return nr_allocated;
2514}
2515
2516/* alloc pages bulk and mempolicy should be considered at the
2517 * same time in some situation such as vmalloc.
2518 *
2519 * It can accelerate memory allocation especially interleaving
2520 * allocate memory.
2521 */
2522unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2523		unsigned long nr_pages, struct page **page_array)
2524{
2525	struct mempolicy *pol = &default_policy;
2526	nodemask_t *nodemask;
2527	int nid;
2528
2529	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2530		pol = get_task_policy(current);
2531
2532	if (pol->mode == MPOL_INTERLEAVE)
2533		return alloc_pages_bulk_array_interleave(gfp, pol,
2534							 nr_pages, page_array);
2535
2536	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2537		return alloc_pages_bulk_array_weighted_interleave(
2538				  gfp, pol, nr_pages, page_array);
2539
2540	if (pol->mode == MPOL_PREFERRED_MANY)
2541		return alloc_pages_bulk_array_preferred_many(gfp,
2542				numa_node_id(), pol, nr_pages, page_array);
2543
2544	nid = numa_node_id();
2545	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2546	return __alloc_pages_bulk(gfp, nid, nodemask,
2547				  nr_pages, NULL, page_array);
2548}
2549
2550int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2551{
2552	struct mempolicy *pol = mpol_dup(src->vm_policy);
2553
2554	if (IS_ERR(pol))
2555		return PTR_ERR(pol);
2556	dst->vm_policy = pol;
2557	return 0;
2558}
2559
2560/*
2561 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2562 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2563 * with the mems_allowed returned by cpuset_mems_allowed().  This
2564 * keeps mempolicies cpuset relative after its cpuset moves.  See
2565 * further kernel/cpuset.c update_nodemask().
2566 *
2567 * current's mempolicy may be rebinded by the other task(the task that changes
2568 * cpuset's mems), so we needn't do rebind work for current task.
2569 */
2570
2571/* Slow path of a mempolicy duplicate */
2572struct mempolicy *__mpol_dup(struct mempolicy *old)
2573{
2574	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2575
2576	if (!new)
2577		return ERR_PTR(-ENOMEM);
2578
2579	/* task's mempolicy is protected by alloc_lock */
2580	if (old == current->mempolicy) {
2581		task_lock(current);
2582		*new = *old;
2583		task_unlock(current);
2584	} else
2585		*new = *old;
2586
2587	if (current_cpuset_is_being_rebound()) {
2588		nodemask_t mems = cpuset_mems_allowed(current);
2589		mpol_rebind_policy(new, &mems);
2590	}
2591	atomic_set(&new->refcnt, 1);
2592	return new;
2593}
2594
2595/* Slow path of a mempolicy comparison */
2596bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2597{
2598	if (!a || !b)
2599		return false;
2600	if (a->mode != b->mode)
2601		return false;
2602	if (a->flags != b->flags)
2603		return false;
2604	if (a->home_node != b->home_node)
2605		return false;
2606	if (mpol_store_user_nodemask(a))
2607		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2608			return false;
2609
2610	switch (a->mode) {
2611	case MPOL_BIND:
2612	case MPOL_INTERLEAVE:
2613	case MPOL_PREFERRED:
2614	case MPOL_PREFERRED_MANY:
2615	case MPOL_WEIGHTED_INTERLEAVE:
2616		return !!nodes_equal(a->nodes, b->nodes);
2617	case MPOL_LOCAL:
2618		return true;
2619	default:
2620		BUG();
2621		return false;
2622	}
2623}
2624
2625/*
2626 * Shared memory backing store policy support.
2627 *
2628 * Remember policies even when nobody has shared memory mapped.
2629 * The policies are kept in Red-Black tree linked from the inode.
2630 * They are protected by the sp->lock rwlock, which should be held
2631 * for any accesses to the tree.
2632 */
2633
2634/*
2635 * lookup first element intersecting start-end.  Caller holds sp->lock for
2636 * reading or for writing
2637 */
2638static struct sp_node *sp_lookup(struct shared_policy *sp,
2639					pgoff_t start, pgoff_t end)
2640{
2641	struct rb_node *n = sp->root.rb_node;
2642
2643	while (n) {
2644		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2645
2646		if (start >= p->end)
2647			n = n->rb_right;
2648		else if (end <= p->start)
2649			n = n->rb_left;
2650		else
2651			break;
2652	}
2653	if (!n)
2654		return NULL;
2655	for (;;) {
2656		struct sp_node *w = NULL;
2657		struct rb_node *prev = rb_prev(n);
2658		if (!prev)
2659			break;
2660		w = rb_entry(prev, struct sp_node, nd);
2661		if (w->end <= start)
2662			break;
2663		n = prev;
2664	}
2665	return rb_entry(n, struct sp_node, nd);
2666}
2667
2668/*
2669 * Insert a new shared policy into the list.  Caller holds sp->lock for
2670 * writing.
2671 */
2672static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2673{
2674	struct rb_node **p = &sp->root.rb_node;
2675	struct rb_node *parent = NULL;
2676	struct sp_node *nd;
2677
2678	while (*p) {
2679		parent = *p;
2680		nd = rb_entry(parent, struct sp_node, nd);
2681		if (new->start < nd->start)
2682			p = &(*p)->rb_left;
2683		else if (new->end > nd->end)
2684			p = &(*p)->rb_right;
2685		else
2686			BUG();
2687	}
2688	rb_link_node(&new->nd, parent, p);
2689	rb_insert_color(&new->nd, &sp->root);
2690}
2691
2692/* Find shared policy intersecting idx */
2693struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2694						pgoff_t idx)
2695{
2696	struct mempolicy *pol = NULL;
2697	struct sp_node *sn;
2698
2699	if (!sp->root.rb_node)
2700		return NULL;
2701	read_lock(&sp->lock);
2702	sn = sp_lookup(sp, idx, idx+1);
2703	if (sn) {
2704		mpol_get(sn->policy);
2705		pol = sn->policy;
2706	}
2707	read_unlock(&sp->lock);
2708	return pol;
2709}
2710
2711static void sp_free(struct sp_node *n)
2712{
2713	mpol_put(n->policy);
2714	kmem_cache_free(sn_cache, n);
2715}
2716
2717/**
2718 * mpol_misplaced - check whether current folio node is valid in policy
2719 *
2720 * @folio: folio to be checked
2721 * @vma: vm area where folio mapped
2722 * @addr: virtual address in @vma for shared policy lookup and interleave policy
2723 *
2724 * Lookup current policy node id for vma,addr and "compare to" folio's
2725 * node id.  Policy determination "mimics" alloc_page_vma().
2726 * Called from fault path where we know the vma and faulting address.
2727 *
2728 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2729 * policy, or a suitable node ID to allocate a replacement folio from.
2730 */
2731int mpol_misplaced(struct folio *folio, struct vm_area_struct *vma,
2732		   unsigned long addr)
2733{
2734	struct mempolicy *pol;
2735	pgoff_t ilx;
2736	struct zoneref *z;
2737	int curnid = folio_nid(folio);
2738	int thiscpu = raw_smp_processor_id();
2739	int thisnid = cpu_to_node(thiscpu);
2740	int polnid = NUMA_NO_NODE;
2741	int ret = NUMA_NO_NODE;
2742
2743	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2744	if (!(pol->flags & MPOL_F_MOF))
2745		goto out;
2746
2747	switch (pol->mode) {
2748	case MPOL_INTERLEAVE:
2749		polnid = interleave_nid(pol, ilx);
2750		break;
2751
2752	case MPOL_WEIGHTED_INTERLEAVE:
2753		polnid = weighted_interleave_nid(pol, ilx);
2754		break;
2755
2756	case MPOL_PREFERRED:
2757		if (node_isset(curnid, pol->nodes))
2758			goto out;
2759		polnid = first_node(pol->nodes);
2760		break;
2761
2762	case MPOL_LOCAL:
2763		polnid = numa_node_id();
2764		break;
2765
2766	case MPOL_BIND:
2767		/* Optimize placement among multiple nodes via NUMA balancing */
2768		if (pol->flags & MPOL_F_MORON) {
2769			if (node_isset(thisnid, pol->nodes))
2770				break;
2771			goto out;
2772		}
2773		fallthrough;
2774
2775	case MPOL_PREFERRED_MANY:
2776		/*
2777		 * use current page if in policy nodemask,
2778		 * else select nearest allowed node, if any.
2779		 * If no allowed nodes, use current [!misplaced].
2780		 */
2781		if (node_isset(curnid, pol->nodes))
2782			goto out;
2783		z = first_zones_zonelist(
2784				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2785				gfp_zone(GFP_HIGHUSER),
2786				&pol->nodes);
2787		polnid = zone_to_nid(z->zone);
2788		break;
2789
2790	default:
2791		BUG();
2792	}
2793
2794	/* Migrate the folio towards the node whose CPU is referencing it */
2795	if (pol->flags & MPOL_F_MORON) {
2796		polnid = thisnid;
2797
2798		if (!should_numa_migrate_memory(current, folio, curnid,
2799						thiscpu))
2800			goto out;
2801	}
2802
2803	if (curnid != polnid)
2804		ret = polnid;
2805out:
2806	mpol_cond_put(pol);
2807
2808	return ret;
2809}
2810
2811/*
2812 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2813 * dropped after task->mempolicy is set to NULL so that any allocation done as
2814 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2815 * policy.
2816 */
2817void mpol_put_task_policy(struct task_struct *task)
2818{
2819	struct mempolicy *pol;
2820
2821	task_lock(task);
2822	pol = task->mempolicy;
2823	task->mempolicy = NULL;
2824	task_unlock(task);
2825	mpol_put(pol);
2826}
2827
2828static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2829{
2830	rb_erase(&n->nd, &sp->root);
2831	sp_free(n);
2832}
2833
2834static void sp_node_init(struct sp_node *node, unsigned long start,
2835			unsigned long end, struct mempolicy *pol)
2836{
2837	node->start = start;
2838	node->end = end;
2839	node->policy = pol;
2840}
2841
2842static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2843				struct mempolicy *pol)
2844{
2845	struct sp_node *n;
2846	struct mempolicy *newpol;
2847
2848	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2849	if (!n)
2850		return NULL;
2851
2852	newpol = mpol_dup(pol);
2853	if (IS_ERR(newpol)) {
2854		kmem_cache_free(sn_cache, n);
2855		return NULL;
2856	}
2857	newpol->flags |= MPOL_F_SHARED;
2858	sp_node_init(n, start, end, newpol);
2859
2860	return n;
2861}
2862
2863/* Replace a policy range. */
2864static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2865				 pgoff_t end, struct sp_node *new)
2866{
2867	struct sp_node *n;
2868	struct sp_node *n_new = NULL;
2869	struct mempolicy *mpol_new = NULL;
2870	int ret = 0;
2871
2872restart:
2873	write_lock(&sp->lock);
2874	n = sp_lookup(sp, start, end);
2875	/* Take care of old policies in the same range. */
2876	while (n && n->start < end) {
2877		struct rb_node *next = rb_next(&n->nd);
2878		if (n->start >= start) {
2879			if (n->end <= end)
2880				sp_delete(sp, n);
2881			else
2882				n->start = end;
2883		} else {
2884			/* Old policy spanning whole new range. */
2885			if (n->end > end) {
2886				if (!n_new)
2887					goto alloc_new;
2888
2889				*mpol_new = *n->policy;
2890				atomic_set(&mpol_new->refcnt, 1);
2891				sp_node_init(n_new, end, n->end, mpol_new);
2892				n->end = start;
2893				sp_insert(sp, n_new);
2894				n_new = NULL;
2895				mpol_new = NULL;
2896				break;
2897			} else
2898				n->end = start;
2899		}
2900		if (!next)
2901			break;
2902		n = rb_entry(next, struct sp_node, nd);
2903	}
2904	if (new)
2905		sp_insert(sp, new);
2906	write_unlock(&sp->lock);
2907	ret = 0;
2908
2909err_out:
2910	if (mpol_new)
2911		mpol_put(mpol_new);
2912	if (n_new)
2913		kmem_cache_free(sn_cache, n_new);
2914
2915	return ret;
2916
2917alloc_new:
2918	write_unlock(&sp->lock);
2919	ret = -ENOMEM;
2920	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2921	if (!n_new)
2922		goto err_out;
2923	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2924	if (!mpol_new)
2925		goto err_out;
2926	atomic_set(&mpol_new->refcnt, 1);
2927	goto restart;
2928}
2929
2930/**
2931 * mpol_shared_policy_init - initialize shared policy for inode
2932 * @sp: pointer to inode shared policy
2933 * @mpol:  struct mempolicy to install
2934 *
2935 * Install non-NULL @mpol in inode's shared policy rb-tree.
2936 * On entry, the current task has a reference on a non-NULL @mpol.
2937 * This must be released on exit.
2938 * This is called at get_inode() calls and we can use GFP_KERNEL.
2939 */
2940void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2941{
2942	int ret;
2943
2944	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2945	rwlock_init(&sp->lock);
2946
2947	if (mpol) {
2948		struct sp_node *sn;
2949		struct mempolicy *npol;
2950		NODEMASK_SCRATCH(scratch);
2951
2952		if (!scratch)
2953			goto put_mpol;
2954
2955		/* contextualize the tmpfs mount point mempolicy to this file */
2956		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2957		if (IS_ERR(npol))
2958			goto free_scratch; /* no valid nodemask intersection */
2959
2960		task_lock(current);
2961		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2962		task_unlock(current);
2963		if (ret)
2964			goto put_npol;
2965
2966		/* alloc node covering entire file; adds ref to file's npol */
2967		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2968		if (sn)
2969			sp_insert(sp, sn);
2970put_npol:
2971		mpol_put(npol);	/* drop initial ref on file's npol */
2972free_scratch:
2973		NODEMASK_SCRATCH_FREE(scratch);
2974put_mpol:
2975		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2976	}
2977}
2978
2979int mpol_set_shared_policy(struct shared_policy *sp,
2980			struct vm_area_struct *vma, struct mempolicy *pol)
2981{
2982	int err;
2983	struct sp_node *new = NULL;
2984	unsigned long sz = vma_pages(vma);
2985
2986	if (pol) {
2987		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
2988		if (!new)
2989			return -ENOMEM;
2990	}
2991	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
2992	if (err && new)
2993		sp_free(new);
2994	return err;
2995}
2996
2997/* Free a backing policy store on inode delete. */
2998void mpol_free_shared_policy(struct shared_policy *sp)
2999{
3000	struct sp_node *n;
3001	struct rb_node *next;
3002
3003	if (!sp->root.rb_node)
3004		return;
3005	write_lock(&sp->lock);
3006	next = rb_first(&sp->root);
3007	while (next) {
3008		n = rb_entry(next, struct sp_node, nd);
3009		next = rb_next(&n->nd);
3010		sp_delete(sp, n);
3011	}
3012	write_unlock(&sp->lock);
3013}
3014
3015#ifdef CONFIG_NUMA_BALANCING
3016static int __initdata numabalancing_override;
3017
3018static void __init check_numabalancing_enable(void)
3019{
3020	bool numabalancing_default = false;
3021
3022	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3023		numabalancing_default = true;
3024
3025	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3026	if (numabalancing_override)
3027		set_numabalancing_state(numabalancing_override == 1);
3028
3029	if (num_online_nodes() > 1 && !numabalancing_override) {
3030		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3031			numabalancing_default ? "Enabling" : "Disabling");
3032		set_numabalancing_state(numabalancing_default);
3033	}
3034}
3035
3036static int __init setup_numabalancing(char *str)
3037{
3038	int ret = 0;
3039	if (!str)
3040		goto out;
3041
3042	if (!strcmp(str, "enable")) {
3043		numabalancing_override = 1;
3044		ret = 1;
3045	} else if (!strcmp(str, "disable")) {
3046		numabalancing_override = -1;
3047		ret = 1;
3048	}
3049out:
3050	if (!ret)
3051		pr_warn("Unable to parse numa_balancing=\n");
3052
3053	return ret;
3054}
3055__setup("numa_balancing=", setup_numabalancing);
3056#else
3057static inline void __init check_numabalancing_enable(void)
3058{
3059}
3060#endif /* CONFIG_NUMA_BALANCING */
3061
3062void __init numa_policy_init(void)
3063{
3064	nodemask_t interleave_nodes;
3065	unsigned long largest = 0;
3066	int nid, prefer = 0;
3067
3068	policy_cache = kmem_cache_create("numa_policy",
3069					 sizeof(struct mempolicy),
3070					 0, SLAB_PANIC, NULL);
3071
3072	sn_cache = kmem_cache_create("shared_policy_node",
3073				     sizeof(struct sp_node),
3074				     0, SLAB_PANIC, NULL);
3075
3076	for_each_node(nid) {
3077		preferred_node_policy[nid] = (struct mempolicy) {
3078			.refcnt = ATOMIC_INIT(1),
3079			.mode = MPOL_PREFERRED,
3080			.flags = MPOL_F_MOF | MPOL_F_MORON,
3081			.nodes = nodemask_of_node(nid),
3082		};
3083	}
3084
3085	/*
3086	 * Set interleaving policy for system init. Interleaving is only
3087	 * enabled across suitably sized nodes (default is >= 16MB), or
3088	 * fall back to the largest node if they're all smaller.
3089	 */
3090	nodes_clear(interleave_nodes);
3091	for_each_node_state(nid, N_MEMORY) {
3092		unsigned long total_pages = node_present_pages(nid);
3093
3094		/* Preserve the largest node */
3095		if (largest < total_pages) {
3096			largest = total_pages;
3097			prefer = nid;
3098		}
3099
3100		/* Interleave this node? */
3101		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3102			node_set(nid, interleave_nodes);
3103	}
3104
3105	/* All too small, use the largest */
3106	if (unlikely(nodes_empty(interleave_nodes)))
3107		node_set(prefer, interleave_nodes);
3108
3109	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3110		pr_err("%s: interleaving failed\n", __func__);
3111
3112	check_numabalancing_enable();
3113}
3114
3115/* Reset policy of current process to default */
3116void numa_default_policy(void)
3117{
3118	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3119}
3120
3121/*
3122 * Parse and format mempolicy from/to strings
3123 */
3124static const char * const policy_modes[] =
3125{
3126	[MPOL_DEFAULT]    = "default",
3127	[MPOL_PREFERRED]  = "prefer",
3128	[MPOL_BIND]       = "bind",
3129	[MPOL_INTERLEAVE] = "interleave",
3130	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3131	[MPOL_LOCAL]      = "local",
3132	[MPOL_PREFERRED_MANY]  = "prefer (many)",
3133};
3134
3135#ifdef CONFIG_TMPFS
3136/**
3137 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3138 * @str:  string containing mempolicy to parse
3139 * @mpol:  pointer to struct mempolicy pointer, returned on success.
3140 *
3141 * Format of input:
3142 *	<mode>[=<flags>][:<nodelist>]
3143 *
3144 * Return: %0 on success, else %1
3145 */
3146int mpol_parse_str(char *str, struct mempolicy **mpol)
3147{
3148	struct mempolicy *new = NULL;
3149	unsigned short mode_flags;
3150	nodemask_t nodes;
3151	char *nodelist = strchr(str, ':');
3152	char *flags = strchr(str, '=');
3153	int err = 1, mode;
3154
3155	if (flags)
3156		*flags++ = '\0';	/* terminate mode string */
3157
3158	if (nodelist) {
3159		/* NUL-terminate mode or flags string */
3160		*nodelist++ = '\0';
3161		if (nodelist_parse(nodelist, nodes))
3162			goto out;
3163		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3164			goto out;
3165	} else
3166		nodes_clear(nodes);
3167
3168	mode = match_string(policy_modes, MPOL_MAX, str);
3169	if (mode < 0)
3170		goto out;
3171
3172	switch (mode) {
3173	case MPOL_PREFERRED:
3174		/*
3175		 * Insist on a nodelist of one node only, although later
3176		 * we use first_node(nodes) to grab a single node, so here
3177		 * nodelist (or nodes) cannot be empty.
3178		 */
3179		if (nodelist) {
3180			char *rest = nodelist;
3181			while (isdigit(*rest))
3182				rest++;
3183			if (*rest)
3184				goto out;
3185			if (nodes_empty(nodes))
3186				goto out;
3187		}
3188		break;
3189	case MPOL_INTERLEAVE:
3190	case MPOL_WEIGHTED_INTERLEAVE:
3191		/*
3192		 * Default to online nodes with memory if no nodelist
3193		 */
3194		if (!nodelist)
3195			nodes = node_states[N_MEMORY];
3196		break;
3197	case MPOL_LOCAL:
3198		/*
3199		 * Don't allow a nodelist;  mpol_new() checks flags
3200		 */
3201		if (nodelist)
3202			goto out;
3203		break;
3204	case MPOL_DEFAULT:
3205		/*
3206		 * Insist on a empty nodelist
3207		 */
3208		if (!nodelist)
3209			err = 0;
3210		goto out;
3211	case MPOL_PREFERRED_MANY:
3212	case MPOL_BIND:
3213		/*
3214		 * Insist on a nodelist
3215		 */
3216		if (!nodelist)
3217			goto out;
3218	}
3219
3220	mode_flags = 0;
3221	if (flags) {
3222		/*
3223		 * Currently, we only support two mutually exclusive
3224		 * mode flags.
3225		 */
3226		if (!strcmp(flags, "static"))
3227			mode_flags |= MPOL_F_STATIC_NODES;
3228		else if (!strcmp(flags, "relative"))
3229			mode_flags |= MPOL_F_RELATIVE_NODES;
3230		else
3231			goto out;
3232	}
3233
3234	new = mpol_new(mode, mode_flags, &nodes);
3235	if (IS_ERR(new))
3236		goto out;
3237
3238	/*
3239	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3240	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3241	 */
3242	if (mode != MPOL_PREFERRED) {
3243		new->nodes = nodes;
3244	} else if (nodelist) {
3245		nodes_clear(new->nodes);
3246		node_set(first_node(nodes), new->nodes);
3247	} else {
3248		new->mode = MPOL_LOCAL;
3249	}
3250
3251	/*
3252	 * Save nodes for contextualization: this will be used to "clone"
3253	 * the mempolicy in a specific context [cpuset] at a later time.
3254	 */
3255	new->w.user_nodemask = nodes;
3256
3257	err = 0;
3258
3259out:
3260	/* Restore string for error message */
3261	if (nodelist)
3262		*--nodelist = ':';
3263	if (flags)
3264		*--flags = '=';
3265	if (!err)
3266		*mpol = new;
3267	return err;
3268}
3269#endif /* CONFIG_TMPFS */
3270
3271/**
3272 * mpol_to_str - format a mempolicy structure for printing
3273 * @buffer:  to contain formatted mempolicy string
3274 * @maxlen:  length of @buffer
3275 * @pol:  pointer to mempolicy to be formatted
3276 *
3277 * Convert @pol into a string.  If @buffer is too short, truncate the string.
3278 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3279 * longest flag, "relative", and to display at least a few node ids.
3280 */
3281void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3282{
3283	char *p = buffer;
3284	nodemask_t nodes = NODE_MASK_NONE;
3285	unsigned short mode = MPOL_DEFAULT;
3286	unsigned short flags = 0;
3287
3288	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3289		mode = pol->mode;
3290		flags = pol->flags;
3291	}
3292
3293	switch (mode) {
3294	case MPOL_DEFAULT:
3295	case MPOL_LOCAL:
3296		break;
3297	case MPOL_PREFERRED:
3298	case MPOL_PREFERRED_MANY:
3299	case MPOL_BIND:
3300	case MPOL_INTERLEAVE:
3301	case MPOL_WEIGHTED_INTERLEAVE:
3302		nodes = pol->nodes;
3303		break;
3304	default:
3305		WARN_ON_ONCE(1);
3306		snprintf(p, maxlen, "unknown");
3307		return;
3308	}
3309
3310	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3311
3312	if (flags & MPOL_MODE_FLAGS) {
3313		p += snprintf(p, buffer + maxlen - p, "=");
3314
3315		/*
3316		 * Currently, the only defined flags are mutually exclusive
3317		 */
3318		if (flags & MPOL_F_STATIC_NODES)
3319			p += snprintf(p, buffer + maxlen - p, "static");
3320		else if (flags & MPOL_F_RELATIVE_NODES)
3321			p += snprintf(p, buffer + maxlen - p, "relative");
3322	}
3323
3324	if (!nodes_empty(nodes))
3325		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3326			       nodemask_pr_args(&nodes));
3327}
3328
3329#ifdef CONFIG_SYSFS
3330struct iw_node_attr {
3331	struct kobj_attribute kobj_attr;
3332	int nid;
3333};
3334
3335static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3336			 char *buf)
3337{
3338	struct iw_node_attr *node_attr;
3339	u8 weight;
3340
3341	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3342	weight = get_il_weight(node_attr->nid);
3343	return sysfs_emit(buf, "%d\n", weight);
3344}
3345
3346static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3347			  const char *buf, size_t count)
3348{
3349	struct iw_node_attr *node_attr;
3350	u8 *new;
3351	u8 *old;
3352	u8 weight = 0;
3353
3354	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3355	if (count == 0 || sysfs_streq(buf, ""))
3356		weight = 0;
3357	else if (kstrtou8(buf, 0, &weight))
3358		return -EINVAL;
3359
3360	new = kzalloc(nr_node_ids, GFP_KERNEL);
3361	if (!new)
3362		return -ENOMEM;
3363
3364	mutex_lock(&iw_table_lock);
3365	old = rcu_dereference_protected(iw_table,
3366					lockdep_is_held(&iw_table_lock));
3367	if (old)
3368		memcpy(new, old, nr_node_ids);
3369	new[node_attr->nid] = weight;
3370	rcu_assign_pointer(iw_table, new);
3371	mutex_unlock(&iw_table_lock);
3372	synchronize_rcu();
3373	kfree(old);
3374	return count;
3375}
3376
3377static struct iw_node_attr **node_attrs;
3378
3379static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3380				  struct kobject *parent)
3381{
3382	if (!node_attr)
3383		return;
3384	sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3385	kfree(node_attr->kobj_attr.attr.name);
3386	kfree(node_attr);
3387}
3388
3389static void sysfs_wi_release(struct kobject *wi_kobj)
3390{
3391	int i;
3392
3393	for (i = 0; i < nr_node_ids; i++)
3394		sysfs_wi_node_release(node_attrs[i], wi_kobj);
3395	kobject_put(wi_kobj);
3396}
3397
3398static const struct kobj_type wi_ktype = {
3399	.sysfs_ops = &kobj_sysfs_ops,
3400	.release = sysfs_wi_release,
3401};
3402
3403static int add_weight_node(int nid, struct kobject *wi_kobj)
3404{
3405	struct iw_node_attr *node_attr;
3406	char *name;
3407
3408	node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3409	if (!node_attr)
3410		return -ENOMEM;
3411
3412	name = kasprintf(GFP_KERNEL, "node%d", nid);
3413	if (!name) {
3414		kfree(node_attr);
3415		return -ENOMEM;
3416	}
3417
3418	sysfs_attr_init(&node_attr->kobj_attr.attr);
3419	node_attr->kobj_attr.attr.name = name;
3420	node_attr->kobj_attr.attr.mode = 0644;
3421	node_attr->kobj_attr.show = node_show;
3422	node_attr->kobj_attr.store = node_store;
3423	node_attr->nid = nid;
3424
3425	if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3426		kfree(node_attr->kobj_attr.attr.name);
3427		kfree(node_attr);
3428		pr_err("failed to add attribute to weighted_interleave\n");
3429		return -ENOMEM;
3430	}
3431
3432	node_attrs[nid] = node_attr;
3433	return 0;
3434}
3435
3436static int add_weighted_interleave_group(struct kobject *root_kobj)
3437{
3438	struct kobject *wi_kobj;
3439	int nid, err;
3440
3441	wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3442	if (!wi_kobj)
3443		return -ENOMEM;
3444
3445	err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3446				   "weighted_interleave");
3447	if (err) {
3448		kfree(wi_kobj);
3449		return err;
3450	}
3451
3452	for_each_node_state(nid, N_POSSIBLE) {
3453		err = add_weight_node(nid, wi_kobj);
3454		if (err) {
3455			pr_err("failed to add sysfs [node%d]\n", nid);
3456			break;
3457		}
3458	}
3459	if (err)
3460		kobject_put(wi_kobj);
3461	return 0;
3462}
3463
3464static void mempolicy_kobj_release(struct kobject *kobj)
3465{
3466	u8 *old;
3467
3468	mutex_lock(&iw_table_lock);
3469	old = rcu_dereference_protected(iw_table,
3470					lockdep_is_held(&iw_table_lock));
3471	rcu_assign_pointer(iw_table, NULL);
3472	mutex_unlock(&iw_table_lock);
3473	synchronize_rcu();
3474	kfree(old);
3475	kfree(node_attrs);
3476	kfree(kobj);
3477}
3478
3479static const struct kobj_type mempolicy_ktype = {
3480	.release = mempolicy_kobj_release
3481};
3482
3483static int __init mempolicy_sysfs_init(void)
3484{
3485	int err;
3486	static struct kobject *mempolicy_kobj;
3487
3488	mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3489	if (!mempolicy_kobj) {
3490		err = -ENOMEM;
3491		goto err_out;
3492	}
3493
3494	node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3495			     GFP_KERNEL);
3496	if (!node_attrs) {
3497		err = -ENOMEM;
3498		goto mempol_out;
3499	}
3500
3501	err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3502				   "mempolicy");
3503	if (err)
3504		goto node_out;
3505
3506	err = add_weighted_interleave_group(mempolicy_kobj);
3507	if (err) {
3508		pr_err("mempolicy sysfs structure failed to initialize\n");
3509		kobject_put(mempolicy_kobj);
3510		return err;
3511	}
3512
3513	return err;
3514node_out:
3515	kfree(node_attrs);
3516mempol_out:
3517	kfree(mempolicy_kobj);
3518err_out:
3519	pr_err("failed to add mempolicy kobject to the system\n");
3520	return err;
3521}
3522
3523late_initcall(mempolicy_sysfs_init);
3524#endif /* CONFIG_SYSFS */
3525