1// SPDX-License-Identifier: GPL-2.0
2#include <linux/slab.h>
3#include <linux/lockdep.h>
4#include <linux/sysfs.h>
5#include <linux/kobject.h>
6#include <linux/memory.h>
7#include <linux/memory-tiers.h>
8#include <linux/notifier.h>
9
10#include "internal.h"
11
12struct memory_tier {
13	/* hierarchy of memory tiers */
14	struct list_head list;
15	/* list of all memory types part of this tier */
16	struct list_head memory_types;
17	/*
18	 * start value of abstract distance. memory tier maps
19	 * an abstract distance  range,
20	 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
21	 */
22	int adistance_start;
23	struct device dev;
24	/* All the nodes that are part of all the lower memory tiers. */
25	nodemask_t lower_tier_mask;
26};
27
28struct demotion_nodes {
29	nodemask_t preferred;
30};
31
32struct node_memory_type_map {
33	struct memory_dev_type *memtype;
34	int map_count;
35};
36
37static DEFINE_MUTEX(memory_tier_lock);
38static LIST_HEAD(memory_tiers);
39static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
40struct memory_dev_type *default_dram_type;
41
42static const struct bus_type memory_tier_subsys = {
43	.name = "memory_tiering",
44	.dev_name = "memory_tier",
45};
46
47#ifdef CONFIG_MIGRATION
48static int top_tier_adistance;
49/*
50 * node_demotion[] examples:
51 *
52 * Example 1:
53 *
54 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
55 *
56 * node distances:
57 * node   0    1    2    3
58 *    0  10   20   30   40
59 *    1  20   10   40   30
60 *    2  30   40   10   40
61 *    3  40   30   40   10
62 *
63 * memory_tiers0 = 0-1
64 * memory_tiers1 = 2-3
65 *
66 * node_demotion[0].preferred = 2
67 * node_demotion[1].preferred = 3
68 * node_demotion[2].preferred = <empty>
69 * node_demotion[3].preferred = <empty>
70 *
71 * Example 2:
72 *
73 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
74 *
75 * node distances:
76 * node   0    1    2
77 *    0  10   20   30
78 *    1  20   10   30
79 *    2  30   30   10
80 *
81 * memory_tiers0 = 0-2
82 *
83 * node_demotion[0].preferred = <empty>
84 * node_demotion[1].preferred = <empty>
85 * node_demotion[2].preferred = <empty>
86 *
87 * Example 3:
88 *
89 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
90 *
91 * node distances:
92 * node   0    1    2
93 *    0  10   20   30
94 *    1  20   10   40
95 *    2  30   40   10
96 *
97 * memory_tiers0 = 1
98 * memory_tiers1 = 0
99 * memory_tiers2 = 2
100 *
101 * node_demotion[0].preferred = 2
102 * node_demotion[1].preferred = 0
103 * node_demotion[2].preferred = <empty>
104 *
105 */
106static struct demotion_nodes *node_demotion __read_mostly;
107#endif /* CONFIG_MIGRATION */
108
109static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
110
111static bool default_dram_perf_error;
112static struct access_coordinate default_dram_perf;
113static int default_dram_perf_ref_nid = NUMA_NO_NODE;
114static const char *default_dram_perf_ref_source;
115
116static inline struct memory_tier *to_memory_tier(struct device *device)
117{
118	return container_of(device, struct memory_tier, dev);
119}
120
121static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
122{
123	nodemask_t nodes = NODE_MASK_NONE;
124	struct memory_dev_type *memtype;
125
126	list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
127		nodes_or(nodes, nodes, memtype->nodes);
128
129	return nodes;
130}
131
132static void memory_tier_device_release(struct device *dev)
133{
134	struct memory_tier *tier = to_memory_tier(dev);
135	/*
136	 * synchronize_rcu in clear_node_memory_tier makes sure
137	 * we don't have rcu access to this memory tier.
138	 */
139	kfree(tier);
140}
141
142static ssize_t nodelist_show(struct device *dev,
143			     struct device_attribute *attr, char *buf)
144{
145	int ret;
146	nodemask_t nmask;
147
148	mutex_lock(&memory_tier_lock);
149	nmask = get_memtier_nodemask(to_memory_tier(dev));
150	ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
151	mutex_unlock(&memory_tier_lock);
152	return ret;
153}
154static DEVICE_ATTR_RO(nodelist);
155
156static struct attribute *memtier_dev_attrs[] = {
157	&dev_attr_nodelist.attr,
158	NULL
159};
160
161static const struct attribute_group memtier_dev_group = {
162	.attrs = memtier_dev_attrs,
163};
164
165static const struct attribute_group *memtier_dev_groups[] = {
166	&memtier_dev_group,
167	NULL
168};
169
170static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
171{
172	int ret;
173	bool found_slot = false;
174	struct memory_tier *memtier, *new_memtier;
175	int adistance = memtype->adistance;
176	unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
177
178	lockdep_assert_held_once(&memory_tier_lock);
179
180	adistance = round_down(adistance, memtier_adistance_chunk_size);
181	/*
182	 * If the memtype is already part of a memory tier,
183	 * just return that.
184	 */
185	if (!list_empty(&memtype->tier_sibling)) {
186		list_for_each_entry(memtier, &memory_tiers, list) {
187			if (adistance == memtier->adistance_start)
188				return memtier;
189		}
190		WARN_ON(1);
191		return ERR_PTR(-EINVAL);
192	}
193
194	list_for_each_entry(memtier, &memory_tiers, list) {
195		if (adistance == memtier->adistance_start) {
196			goto link_memtype;
197		} else if (adistance < memtier->adistance_start) {
198			found_slot = true;
199			break;
200		}
201	}
202
203	new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
204	if (!new_memtier)
205		return ERR_PTR(-ENOMEM);
206
207	new_memtier->adistance_start = adistance;
208	INIT_LIST_HEAD(&new_memtier->list);
209	INIT_LIST_HEAD(&new_memtier->memory_types);
210	if (found_slot)
211		list_add_tail(&new_memtier->list, &memtier->list);
212	else
213		list_add_tail(&new_memtier->list, &memory_tiers);
214
215	new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
216	new_memtier->dev.bus = &memory_tier_subsys;
217	new_memtier->dev.release = memory_tier_device_release;
218	new_memtier->dev.groups = memtier_dev_groups;
219
220	ret = device_register(&new_memtier->dev);
221	if (ret) {
222		list_del(&new_memtier->list);
223		put_device(&new_memtier->dev);
224		return ERR_PTR(ret);
225	}
226	memtier = new_memtier;
227
228link_memtype:
229	list_add(&memtype->tier_sibling, &memtier->memory_types);
230	return memtier;
231}
232
233static struct memory_tier *__node_get_memory_tier(int node)
234{
235	pg_data_t *pgdat;
236
237	pgdat = NODE_DATA(node);
238	if (!pgdat)
239		return NULL;
240	/*
241	 * Since we hold memory_tier_lock, we can avoid
242	 * RCU read locks when accessing the details. No
243	 * parallel updates are possible here.
244	 */
245	return rcu_dereference_check(pgdat->memtier,
246				     lockdep_is_held(&memory_tier_lock));
247}
248
249#ifdef CONFIG_MIGRATION
250bool node_is_toptier(int node)
251{
252	bool toptier;
253	pg_data_t *pgdat;
254	struct memory_tier *memtier;
255
256	pgdat = NODE_DATA(node);
257	if (!pgdat)
258		return false;
259
260	rcu_read_lock();
261	memtier = rcu_dereference(pgdat->memtier);
262	if (!memtier) {
263		toptier = true;
264		goto out;
265	}
266	if (memtier->adistance_start <= top_tier_adistance)
267		toptier = true;
268	else
269		toptier = false;
270out:
271	rcu_read_unlock();
272	return toptier;
273}
274
275void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
276{
277	struct memory_tier *memtier;
278
279	/*
280	 * pg_data_t.memtier updates includes a synchronize_rcu()
281	 * which ensures that we either find NULL or a valid memtier
282	 * in NODE_DATA. protect the access via rcu_read_lock();
283	 */
284	rcu_read_lock();
285	memtier = rcu_dereference(pgdat->memtier);
286	if (memtier)
287		*targets = memtier->lower_tier_mask;
288	else
289		*targets = NODE_MASK_NONE;
290	rcu_read_unlock();
291}
292
293/**
294 * next_demotion_node() - Get the next node in the demotion path
295 * @node: The starting node to lookup the next node
296 *
297 * Return: node id for next memory node in the demotion path hierarchy
298 * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
299 * @node online or guarantee that it *continues* to be the next demotion
300 * target.
301 */
302int next_demotion_node(int node)
303{
304	struct demotion_nodes *nd;
305	int target;
306
307	if (!node_demotion)
308		return NUMA_NO_NODE;
309
310	nd = &node_demotion[node];
311
312	/*
313	 * node_demotion[] is updated without excluding this
314	 * function from running.
315	 *
316	 * Make sure to use RCU over entire code blocks if
317	 * node_demotion[] reads need to be consistent.
318	 */
319	rcu_read_lock();
320	/*
321	 * If there are multiple target nodes, just select one
322	 * target node randomly.
323	 *
324	 * In addition, we can also use round-robin to select
325	 * target node, but we should introduce another variable
326	 * for node_demotion[] to record last selected target node,
327	 * that may cause cache ping-pong due to the changing of
328	 * last target node. Or introducing per-cpu data to avoid
329	 * caching issue, which seems more complicated. So selecting
330	 * target node randomly seems better until now.
331	 */
332	target = node_random(&nd->preferred);
333	rcu_read_unlock();
334
335	return target;
336}
337
338static void disable_all_demotion_targets(void)
339{
340	struct memory_tier *memtier;
341	int node;
342
343	for_each_node_state(node, N_MEMORY) {
344		node_demotion[node].preferred = NODE_MASK_NONE;
345		/*
346		 * We are holding memory_tier_lock, it is safe
347		 * to access pgda->memtier.
348		 */
349		memtier = __node_get_memory_tier(node);
350		if (memtier)
351			memtier->lower_tier_mask = NODE_MASK_NONE;
352	}
353	/*
354	 * Ensure that the "disable" is visible across the system.
355	 * Readers will see either a combination of before+disable
356	 * state or disable+after.  They will never see before and
357	 * after state together.
358	 */
359	synchronize_rcu();
360}
361
362static void dump_demotion_targets(void)
363{
364	int node;
365
366	for_each_node_state(node, N_MEMORY) {
367		struct memory_tier *memtier = __node_get_memory_tier(node);
368		nodemask_t preferred = node_demotion[node].preferred;
369
370		if (!memtier)
371			continue;
372
373		if (nodes_empty(preferred))
374			pr_info("Demotion targets for Node %d: null\n", node);
375		else
376			pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
377				node, nodemask_pr_args(&preferred),
378				nodemask_pr_args(&memtier->lower_tier_mask));
379	}
380}
381
382/*
383 * Find an automatic demotion target for all memory
384 * nodes. Failing here is OK.  It might just indicate
385 * being at the end of a chain.
386 */
387static void establish_demotion_targets(void)
388{
389	struct memory_tier *memtier;
390	struct demotion_nodes *nd;
391	int target = NUMA_NO_NODE, node;
392	int distance, best_distance;
393	nodemask_t tier_nodes, lower_tier;
394
395	lockdep_assert_held_once(&memory_tier_lock);
396
397	if (!node_demotion)
398		return;
399
400	disable_all_demotion_targets();
401
402	for_each_node_state(node, N_MEMORY) {
403		best_distance = -1;
404		nd = &node_demotion[node];
405
406		memtier = __node_get_memory_tier(node);
407		if (!memtier || list_is_last(&memtier->list, &memory_tiers))
408			continue;
409		/*
410		 * Get the lower memtier to find the  demotion node list.
411		 */
412		memtier = list_next_entry(memtier, list);
413		tier_nodes = get_memtier_nodemask(memtier);
414		/*
415		 * find_next_best_node, use 'used' nodemask as a skip list.
416		 * Add all memory nodes except the selected memory tier
417		 * nodelist to skip list so that we find the best node from the
418		 * memtier nodelist.
419		 */
420		nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
421
422		/*
423		 * Find all the nodes in the memory tier node list of same best distance.
424		 * add them to the preferred mask. We randomly select between nodes
425		 * in the preferred mask when allocating pages during demotion.
426		 */
427		do {
428			target = find_next_best_node(node, &tier_nodes);
429			if (target == NUMA_NO_NODE)
430				break;
431
432			distance = node_distance(node, target);
433			if (distance == best_distance || best_distance == -1) {
434				best_distance = distance;
435				node_set(target, nd->preferred);
436			} else {
437				break;
438			}
439		} while (1);
440	}
441	/*
442	 * Promotion is allowed from a memory tier to higher
443	 * memory tier only if the memory tier doesn't include
444	 * compute. We want to skip promotion from a memory tier,
445	 * if any node that is part of the memory tier have CPUs.
446	 * Once we detect such a memory tier, we consider that tier
447	 * as top tiper from which promotion is not allowed.
448	 */
449	list_for_each_entry_reverse(memtier, &memory_tiers, list) {
450		tier_nodes = get_memtier_nodemask(memtier);
451		nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
452		if (!nodes_empty(tier_nodes)) {
453			/*
454			 * abstract distance below the max value of this memtier
455			 * is considered toptier.
456			 */
457			top_tier_adistance = memtier->adistance_start +
458						MEMTIER_CHUNK_SIZE - 1;
459			break;
460		}
461	}
462	/*
463	 * Now build the lower_tier mask for each node collecting node mask from
464	 * all memory tier below it. This allows us to fallback demotion page
465	 * allocation to a set of nodes that is closer the above selected
466	 * preferred node.
467	 */
468	lower_tier = node_states[N_MEMORY];
469	list_for_each_entry(memtier, &memory_tiers, list) {
470		/*
471		 * Keep removing current tier from lower_tier nodes,
472		 * This will remove all nodes in current and above
473		 * memory tier from the lower_tier mask.
474		 */
475		tier_nodes = get_memtier_nodemask(memtier);
476		nodes_andnot(lower_tier, lower_tier, tier_nodes);
477		memtier->lower_tier_mask = lower_tier;
478	}
479
480	dump_demotion_targets();
481}
482
483#else
484static inline void establish_demotion_targets(void) {}
485#endif /* CONFIG_MIGRATION */
486
487static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
488{
489	if (!node_memory_types[node].memtype)
490		node_memory_types[node].memtype = memtype;
491	/*
492	 * for each device getting added in the same NUMA node
493	 * with this specific memtype, bump the map count. We
494	 * Only take memtype device reference once, so that
495	 * changing a node memtype can be done by droping the
496	 * only reference count taken here.
497	 */
498
499	if (node_memory_types[node].memtype == memtype) {
500		if (!node_memory_types[node].map_count++)
501			kref_get(&memtype->kref);
502	}
503}
504
505static struct memory_tier *set_node_memory_tier(int node)
506{
507	struct memory_tier *memtier;
508	struct memory_dev_type *memtype;
509	pg_data_t *pgdat = NODE_DATA(node);
510
511
512	lockdep_assert_held_once(&memory_tier_lock);
513
514	if (!node_state(node, N_MEMORY))
515		return ERR_PTR(-EINVAL);
516
517	__init_node_memory_type(node, default_dram_type);
518
519	memtype = node_memory_types[node].memtype;
520	node_set(node, memtype->nodes);
521	memtier = find_create_memory_tier(memtype);
522	if (!IS_ERR(memtier))
523		rcu_assign_pointer(pgdat->memtier, memtier);
524	return memtier;
525}
526
527static void destroy_memory_tier(struct memory_tier *memtier)
528{
529	list_del(&memtier->list);
530	device_unregister(&memtier->dev);
531}
532
533static bool clear_node_memory_tier(int node)
534{
535	bool cleared = false;
536	pg_data_t *pgdat;
537	struct memory_tier *memtier;
538
539	pgdat = NODE_DATA(node);
540	if (!pgdat)
541		return false;
542
543	/*
544	 * Make sure that anybody looking at NODE_DATA who finds
545	 * a valid memtier finds memory_dev_types with nodes still
546	 * linked to the memtier. We achieve this by waiting for
547	 * rcu read section to finish using synchronize_rcu.
548	 * This also enables us to free the destroyed memory tier
549	 * with kfree instead of kfree_rcu
550	 */
551	memtier = __node_get_memory_tier(node);
552	if (memtier) {
553		struct memory_dev_type *memtype;
554
555		rcu_assign_pointer(pgdat->memtier, NULL);
556		synchronize_rcu();
557		memtype = node_memory_types[node].memtype;
558		node_clear(node, memtype->nodes);
559		if (nodes_empty(memtype->nodes)) {
560			list_del_init(&memtype->tier_sibling);
561			if (list_empty(&memtier->memory_types))
562				destroy_memory_tier(memtier);
563		}
564		cleared = true;
565	}
566	return cleared;
567}
568
569static void release_memtype(struct kref *kref)
570{
571	struct memory_dev_type *memtype;
572
573	memtype = container_of(kref, struct memory_dev_type, kref);
574	kfree(memtype);
575}
576
577struct memory_dev_type *alloc_memory_type(int adistance)
578{
579	struct memory_dev_type *memtype;
580
581	memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
582	if (!memtype)
583		return ERR_PTR(-ENOMEM);
584
585	memtype->adistance = adistance;
586	INIT_LIST_HEAD(&memtype->tier_sibling);
587	memtype->nodes  = NODE_MASK_NONE;
588	kref_init(&memtype->kref);
589	return memtype;
590}
591EXPORT_SYMBOL_GPL(alloc_memory_type);
592
593void put_memory_type(struct memory_dev_type *memtype)
594{
595	kref_put(&memtype->kref, release_memtype);
596}
597EXPORT_SYMBOL_GPL(put_memory_type);
598
599void init_node_memory_type(int node, struct memory_dev_type *memtype)
600{
601
602	mutex_lock(&memory_tier_lock);
603	__init_node_memory_type(node, memtype);
604	mutex_unlock(&memory_tier_lock);
605}
606EXPORT_SYMBOL_GPL(init_node_memory_type);
607
608void clear_node_memory_type(int node, struct memory_dev_type *memtype)
609{
610	mutex_lock(&memory_tier_lock);
611	if (node_memory_types[node].memtype == memtype || !memtype)
612		node_memory_types[node].map_count--;
613	/*
614	 * If we umapped all the attached devices to this node,
615	 * clear the node memory type.
616	 */
617	if (!node_memory_types[node].map_count) {
618		memtype = node_memory_types[node].memtype;
619		node_memory_types[node].memtype = NULL;
620		put_memory_type(memtype);
621	}
622	mutex_unlock(&memory_tier_lock);
623}
624EXPORT_SYMBOL_GPL(clear_node_memory_type);
625
626static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
627{
628	pr_info(
629"%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
630		prefix, coord->read_latency, coord->write_latency,
631		coord->read_bandwidth, coord->write_bandwidth);
632}
633
634int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
635			     const char *source)
636{
637	int rc = 0;
638
639	mutex_lock(&memory_tier_lock);
640	if (default_dram_perf_error) {
641		rc = -EIO;
642		goto out;
643	}
644
645	if (perf->read_latency + perf->write_latency == 0 ||
646	    perf->read_bandwidth + perf->write_bandwidth == 0) {
647		rc = -EINVAL;
648		goto out;
649	}
650
651	if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
652		default_dram_perf = *perf;
653		default_dram_perf_ref_nid = nid;
654		default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
655		goto out;
656	}
657
658	/*
659	 * The performance of all default DRAM nodes is expected to be
660	 * same (that is, the variation is less than 10%).  And it
661	 * will be used as base to calculate the abstract distance of
662	 * other memory nodes.
663	 */
664	if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
665	    default_dram_perf.read_latency ||
666	    abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
667	    default_dram_perf.write_latency ||
668	    abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
669	    default_dram_perf.read_bandwidth ||
670	    abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
671	    default_dram_perf.write_bandwidth) {
672		pr_info(
673"memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
674"DRAM node %d.\n", nid, default_dram_perf_ref_nid);
675		pr_info("  performance of reference DRAM node %d:\n",
676			default_dram_perf_ref_nid);
677		dump_hmem_attrs(&default_dram_perf, "    ");
678		pr_info("  performance of DRAM node %d:\n", nid);
679		dump_hmem_attrs(perf, "    ");
680		pr_info(
681"  disable default DRAM node performance based abstract distance algorithm.\n");
682		default_dram_perf_error = true;
683		rc = -EINVAL;
684	}
685
686out:
687	mutex_unlock(&memory_tier_lock);
688	return rc;
689}
690
691int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
692{
693	if (default_dram_perf_error)
694		return -EIO;
695
696	if (default_dram_perf_ref_nid == NUMA_NO_NODE)
697		return -ENOENT;
698
699	if (perf->read_latency + perf->write_latency == 0 ||
700	    perf->read_bandwidth + perf->write_bandwidth == 0)
701		return -EINVAL;
702
703	mutex_lock(&memory_tier_lock);
704	/*
705	 * The abstract distance of a memory node is in direct proportion to
706	 * its memory latency (read + write) and inversely proportional to its
707	 * memory bandwidth (read + write).  The abstract distance, memory
708	 * latency, and memory bandwidth of the default DRAM nodes are used as
709	 * the base.
710	 */
711	*adist = MEMTIER_ADISTANCE_DRAM *
712		(perf->read_latency + perf->write_latency) /
713		(default_dram_perf.read_latency + default_dram_perf.write_latency) *
714		(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
715		(perf->read_bandwidth + perf->write_bandwidth);
716	mutex_unlock(&memory_tier_lock);
717
718	return 0;
719}
720EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
721
722/**
723 * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
724 * @nb: The notifier block which describe the algorithm
725 *
726 * Return: 0 on success, errno on error.
727 *
728 * Every memory tiering abstract distance algorithm provider needs to
729 * register the algorithm with register_mt_adistance_algorithm().  To
730 * calculate the abstract distance for a specified memory node, the
731 * notifier function will be called unless some high priority
732 * algorithm has provided result.  The prototype of the notifier
733 * function is as follows,
734 *
735 *   int (*algorithm_notifier)(struct notifier_block *nb,
736 *                             unsigned long nid, void *data);
737 *
738 * Where "nid" specifies the memory node, "data" is the pointer to the
739 * returned abstract distance (that is, "int *adist").  If the
740 * algorithm provides the result, NOTIFY_STOP should be returned.
741 * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
742 * algorithm in the chain to provide the result.
743 */
744int register_mt_adistance_algorithm(struct notifier_block *nb)
745{
746	return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
747}
748EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
749
750/**
751 * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
752 * @nb: the notifier block which describe the algorithm
753 *
754 * Return: 0 on success, errno on error.
755 */
756int unregister_mt_adistance_algorithm(struct notifier_block *nb)
757{
758	return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
759}
760EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
761
762/**
763 * mt_calc_adistance() - Calculate abstract distance with registered algorithms
764 * @node: the node to calculate abstract distance for
765 * @adist: the returned abstract distance
766 *
767 * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
768 * abstract distance algorithm provides the result, and return it via
769 * @adist.  Otherwise, no algorithm can provide the result and @adist
770 * will be kept as it is.
771 */
772int mt_calc_adistance(int node, int *adist)
773{
774	return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
775}
776EXPORT_SYMBOL_GPL(mt_calc_adistance);
777
778static int __meminit memtier_hotplug_callback(struct notifier_block *self,
779					      unsigned long action, void *_arg)
780{
781	struct memory_tier *memtier;
782	struct memory_notify *arg = _arg;
783
784	/*
785	 * Only update the node migration order when a node is
786	 * changing status, like online->offline.
787	 */
788	if (arg->status_change_nid < 0)
789		return notifier_from_errno(0);
790
791	switch (action) {
792	case MEM_OFFLINE:
793		mutex_lock(&memory_tier_lock);
794		if (clear_node_memory_tier(arg->status_change_nid))
795			establish_demotion_targets();
796		mutex_unlock(&memory_tier_lock);
797		break;
798	case MEM_ONLINE:
799		mutex_lock(&memory_tier_lock);
800		memtier = set_node_memory_tier(arg->status_change_nid);
801		if (!IS_ERR(memtier))
802			establish_demotion_targets();
803		mutex_unlock(&memory_tier_lock);
804		break;
805	}
806
807	return notifier_from_errno(0);
808}
809
810static int __init memory_tier_init(void)
811{
812	int ret, node;
813	struct memory_tier *memtier;
814
815	ret = subsys_virtual_register(&memory_tier_subsys, NULL);
816	if (ret)
817		panic("%s() failed to register memory tier subsystem\n", __func__);
818
819#ifdef CONFIG_MIGRATION
820	node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
821				GFP_KERNEL);
822	WARN_ON(!node_demotion);
823#endif
824	mutex_lock(&memory_tier_lock);
825	/*
826	 * For now we can have 4 faster memory tiers with smaller adistance
827	 * than default DRAM tier.
828	 */
829	default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM);
830	if (IS_ERR(default_dram_type))
831		panic("%s() failed to allocate default DRAM tier\n", __func__);
832
833	/*
834	 * Look at all the existing N_MEMORY nodes and add them to
835	 * default memory tier or to a tier if we already have memory
836	 * types assigned.
837	 */
838	for_each_node_state(node, N_MEMORY) {
839		memtier = set_node_memory_tier(node);
840		if (IS_ERR(memtier))
841			/*
842			 * Continue with memtiers we are able to setup
843			 */
844			break;
845	}
846	establish_demotion_targets();
847	mutex_unlock(&memory_tier_lock);
848
849	hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
850	return 0;
851}
852subsys_initcall(memory_tier_init);
853
854bool numa_demotion_enabled = false;
855
856#ifdef CONFIG_MIGRATION
857#ifdef CONFIG_SYSFS
858static ssize_t demotion_enabled_show(struct kobject *kobj,
859				     struct kobj_attribute *attr, char *buf)
860{
861	return sysfs_emit(buf, "%s\n",
862			  numa_demotion_enabled ? "true" : "false");
863}
864
865static ssize_t demotion_enabled_store(struct kobject *kobj,
866				      struct kobj_attribute *attr,
867				      const char *buf, size_t count)
868{
869	ssize_t ret;
870
871	ret = kstrtobool(buf, &numa_demotion_enabled);
872	if (ret)
873		return ret;
874
875	return count;
876}
877
878static struct kobj_attribute numa_demotion_enabled_attr =
879	__ATTR_RW(demotion_enabled);
880
881static struct attribute *numa_attrs[] = {
882	&numa_demotion_enabled_attr.attr,
883	NULL,
884};
885
886static const struct attribute_group numa_attr_group = {
887	.attrs = numa_attrs,
888};
889
890static int __init numa_init_sysfs(void)
891{
892	int err;
893	struct kobject *numa_kobj;
894
895	numa_kobj = kobject_create_and_add("numa", mm_kobj);
896	if (!numa_kobj) {
897		pr_err("failed to create numa kobject\n");
898		return -ENOMEM;
899	}
900	err = sysfs_create_group(numa_kobj, &numa_attr_group);
901	if (err) {
902		pr_err("failed to register numa group\n");
903		goto delete_obj;
904	}
905	return 0;
906
907delete_obj:
908	kobject_put(numa_kobj);
909	return err;
910}
911subsys_initcall(numa_init_sysfs);
912#endif /* CONFIG_SYSFS */
913#endif
914