1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states.	The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 *   tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
42#include <linux/sched/signal.h>
43#include <linux/sched/task.h>
44#include <linux/dax.h>
45#include <linux/ksm.h>
46#include <linux/rmap.h>
47#include <linux/export.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
51#include <linux/migrate.h>
52#include <linux/slab.h>
53#include <linux/swapops.h>
54#include <linux/hugetlb.h>
55#include <linux/memory_hotplug.h>
56#include <linux/mm_inline.h>
57#include <linux/memremap.h>
58#include <linux/kfifo.h>
59#include <linux/ratelimit.h>
60#include <linux/pagewalk.h>
61#include <linux/shmem_fs.h>
62#include <linux/sysctl.h>
63#include "swap.h"
64#include "internal.h"
65#include "ras/ras_event.h"
66
67static int sysctl_memory_failure_early_kill __read_mostly;
68
69static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72
73static bool hw_memory_failure __read_mostly = false;
74
75static DEFINE_MUTEX(mf_mutex);
76
77void num_poisoned_pages_inc(unsigned long pfn)
78{
79	atomic_long_inc(&num_poisoned_pages);
80	memblk_nr_poison_inc(pfn);
81}
82
83void num_poisoned_pages_sub(unsigned long pfn, long i)
84{
85	atomic_long_sub(i, &num_poisoned_pages);
86	if (pfn != -1UL)
87		memblk_nr_poison_sub(pfn, i);
88}
89
90/**
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
93 */
94#define MF_ATTR_RO(_name)					\
95static ssize_t _name##_show(struct device *dev,			\
96			    struct device_attribute *attr,	\
97			    char *buf)				\
98{								\
99	struct memory_failure_stats *mf_stats =			\
100		&NODE_DATA(dev->id)->mf_stats;			\
101	return sprintf(buf, "%lu\n", mf_stats->_name);		\
102}								\
103static DEVICE_ATTR_RO(_name)
104
105MF_ATTR_RO(total);
106MF_ATTR_RO(ignored);
107MF_ATTR_RO(failed);
108MF_ATTR_RO(delayed);
109MF_ATTR_RO(recovered);
110
111static struct attribute *memory_failure_attr[] = {
112	&dev_attr_total.attr,
113	&dev_attr_ignored.attr,
114	&dev_attr_failed.attr,
115	&dev_attr_delayed.attr,
116	&dev_attr_recovered.attr,
117	NULL,
118};
119
120const struct attribute_group memory_failure_attr_group = {
121	.name = "memory_failure",
122	.attrs = memory_failure_attr,
123};
124
125static struct ctl_table memory_failure_table[] = {
126	{
127		.procname	= "memory_failure_early_kill",
128		.data		= &sysctl_memory_failure_early_kill,
129		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
130		.mode		= 0644,
131		.proc_handler	= proc_dointvec_minmax,
132		.extra1		= SYSCTL_ZERO,
133		.extra2		= SYSCTL_ONE,
134	},
135	{
136		.procname	= "memory_failure_recovery",
137		.data		= &sysctl_memory_failure_recovery,
138		.maxlen		= sizeof(sysctl_memory_failure_recovery),
139		.mode		= 0644,
140		.proc_handler	= proc_dointvec_minmax,
141		.extra1		= SYSCTL_ZERO,
142		.extra2		= SYSCTL_ONE,
143	},
144	{ }
145};
146
147/*
148 * Return values:
149 *   1:   the page is dissolved (if needed) and taken off from buddy,
150 *   0:   the page is dissolved (if needed) and not taken off from buddy,
151 *   < 0: failed to dissolve.
152 */
153static int __page_handle_poison(struct page *page)
154{
155	int ret;
156
157	/*
158	 * zone_pcp_disable() can't be used here. It will
159	 * hold pcp_batch_high_lock and dissolve_free_huge_page() might hold
160	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
161	 * optimization is enabled. This will break current lock dependency
162	 * chain and leads to deadlock.
163	 * Disabling pcp before dissolving the page was a deterministic
164	 * approach because we made sure that those pages cannot end up in any
165	 * PCP list. Draining PCP lists expels those pages to the buddy system,
166	 * but nothing guarantees that those pages do not get back to a PCP
167	 * queue if we need to refill those.
168	 */
169	ret = dissolve_free_huge_page(page);
170	if (!ret) {
171		drain_all_pages(page_zone(page));
172		ret = take_page_off_buddy(page);
173	}
174
175	return ret;
176}
177
178static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
179{
180	if (hugepage_or_freepage) {
181		/*
182		 * Doing this check for free pages is also fine since dissolve_free_huge_page
183		 * returns 0 for non-hugetlb pages as well.
184		 */
185		if (__page_handle_poison(page) <= 0)
186			/*
187			 * We could fail to take off the target page from buddy
188			 * for example due to racy page allocation, but that's
189			 * acceptable because soft-offlined page is not broken
190			 * and if someone really want to use it, they should
191			 * take it.
192			 */
193			return false;
194	}
195
196	SetPageHWPoison(page);
197	if (release)
198		put_page(page);
199	page_ref_inc(page);
200	num_poisoned_pages_inc(page_to_pfn(page));
201
202	return true;
203}
204
205#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
206
207u32 hwpoison_filter_enable = 0;
208u32 hwpoison_filter_dev_major = ~0U;
209u32 hwpoison_filter_dev_minor = ~0U;
210u64 hwpoison_filter_flags_mask;
211u64 hwpoison_filter_flags_value;
212EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
213EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
214EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
215EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
216EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
217
218static int hwpoison_filter_dev(struct page *p)
219{
220	struct address_space *mapping;
221	dev_t dev;
222
223	if (hwpoison_filter_dev_major == ~0U &&
224	    hwpoison_filter_dev_minor == ~0U)
225		return 0;
226
227	mapping = page_mapping(p);
228	if (mapping == NULL || mapping->host == NULL)
229		return -EINVAL;
230
231	dev = mapping->host->i_sb->s_dev;
232	if (hwpoison_filter_dev_major != ~0U &&
233	    hwpoison_filter_dev_major != MAJOR(dev))
234		return -EINVAL;
235	if (hwpoison_filter_dev_minor != ~0U &&
236	    hwpoison_filter_dev_minor != MINOR(dev))
237		return -EINVAL;
238
239	return 0;
240}
241
242static int hwpoison_filter_flags(struct page *p)
243{
244	if (!hwpoison_filter_flags_mask)
245		return 0;
246
247	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248				    hwpoison_filter_flags_value)
249		return 0;
250	else
251		return -EINVAL;
252}
253
254/*
255 * This allows stress tests to limit test scope to a collection of tasks
256 * by putting them under some memcg. This prevents killing unrelated/important
257 * processes such as /sbin/init. Note that the target task may share clean
258 * pages with init (eg. libc text), which is harmless. If the target task
259 * share _dirty_ pages with another task B, the test scheme must make sure B
260 * is also included in the memcg. At last, due to race conditions this filter
261 * can only guarantee that the page either belongs to the memcg tasks, or is
262 * a freed page.
263 */
264#ifdef CONFIG_MEMCG
265u64 hwpoison_filter_memcg;
266EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
267static int hwpoison_filter_task(struct page *p)
268{
269	if (!hwpoison_filter_memcg)
270		return 0;
271
272	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
273		return -EINVAL;
274
275	return 0;
276}
277#else
278static int hwpoison_filter_task(struct page *p) { return 0; }
279#endif
280
281int hwpoison_filter(struct page *p)
282{
283	if (!hwpoison_filter_enable)
284		return 0;
285
286	if (hwpoison_filter_dev(p))
287		return -EINVAL;
288
289	if (hwpoison_filter_flags(p))
290		return -EINVAL;
291
292	if (hwpoison_filter_task(p))
293		return -EINVAL;
294
295	return 0;
296}
297#else
298int hwpoison_filter(struct page *p)
299{
300	return 0;
301}
302#endif
303
304EXPORT_SYMBOL_GPL(hwpoison_filter);
305
306/*
307 * Kill all processes that have a poisoned page mapped and then isolate
308 * the page.
309 *
310 * General strategy:
311 * Find all processes having the page mapped and kill them.
312 * But we keep a page reference around so that the page is not
313 * actually freed yet.
314 * Then stash the page away
315 *
316 * There's no convenient way to get back to mapped processes
317 * from the VMAs. So do a brute-force search over all
318 * running processes.
319 *
320 * Remember that machine checks are not common (or rather
321 * if they are common you have other problems), so this shouldn't
322 * be a performance issue.
323 *
324 * Also there are some races possible while we get from the
325 * error detection to actually handle it.
326 */
327
328struct to_kill {
329	struct list_head nd;
330	struct task_struct *tsk;
331	unsigned long addr;
332	short size_shift;
333};
334
335/*
336 * Send all the processes who have the page mapped a signal.
337 * ``action optional'' if they are not immediately affected by the error
338 * ``action required'' if error happened in current execution context
339 */
340static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
341{
342	struct task_struct *t = tk->tsk;
343	short addr_lsb = tk->size_shift;
344	int ret = 0;
345
346	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
347			pfn, t->comm, t->pid);
348
349	if ((flags & MF_ACTION_REQUIRED) && (t == current))
350		ret = force_sig_mceerr(BUS_MCEERR_AR,
351				 (void __user *)tk->addr, addr_lsb);
352	else
353		/*
354		 * Signal other processes sharing the page if they have
355		 * PF_MCE_EARLY set.
356		 * Don't use force here, it's convenient if the signal
357		 * can be temporarily blocked.
358		 * This could cause a loop when the user sets SIGBUS
359		 * to SIG_IGN, but hopefully no one will do that?
360		 */
361		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
362				      addr_lsb, t);
363	if (ret < 0)
364		pr_info("Error sending signal to %s:%d: %d\n",
365			t->comm, t->pid, ret);
366	return ret;
367}
368
369/*
370 * Unknown page type encountered. Try to check whether it can turn PageLRU by
371 * lru_add_drain_all.
372 */
373void shake_page(struct page *p)
374{
375	if (PageHuge(p))
376		return;
377	/*
378	 * TODO: Could shrink slab caches here if a lightweight range-based
379	 * shrinker will be available.
380	 */
381	if (PageSlab(p))
382		return;
383
384	lru_add_drain_all();
385}
386EXPORT_SYMBOL_GPL(shake_page);
387
388static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
389		unsigned long address)
390{
391	unsigned long ret = 0;
392	pgd_t *pgd;
393	p4d_t *p4d;
394	pud_t *pud;
395	pmd_t *pmd;
396	pte_t *pte;
397	pte_t ptent;
398
399	VM_BUG_ON_VMA(address == -EFAULT, vma);
400	pgd = pgd_offset(vma->vm_mm, address);
401	if (!pgd_present(*pgd))
402		return 0;
403	p4d = p4d_offset(pgd, address);
404	if (!p4d_present(*p4d))
405		return 0;
406	pud = pud_offset(p4d, address);
407	if (!pud_present(*pud))
408		return 0;
409	if (pud_devmap(*pud))
410		return PUD_SHIFT;
411	pmd = pmd_offset(pud, address);
412	if (!pmd_present(*pmd))
413		return 0;
414	if (pmd_devmap(*pmd))
415		return PMD_SHIFT;
416	pte = pte_offset_map(pmd, address);
417	if (!pte)
418		return 0;
419	ptent = ptep_get(pte);
420	if (pte_present(ptent) && pte_devmap(ptent))
421		ret = PAGE_SHIFT;
422	pte_unmap(pte);
423	return ret;
424}
425
426/*
427 * Failure handling: if we can't find or can't kill a process there's
428 * not much we can do.	We just print a message and ignore otherwise.
429 */
430
431#define FSDAX_INVALID_PGOFF ULONG_MAX
432
433/*
434 * Schedule a process for later kill.
435 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
436 *
437 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
438 * filesystem with a memory failure handler has claimed the
439 * memory_failure event. In all other cases, page->index and
440 * page->mapping are sufficient for mapping the page back to its
441 * corresponding user virtual address.
442 */
443static void __add_to_kill(struct task_struct *tsk, struct page *p,
444			  struct vm_area_struct *vma, struct list_head *to_kill,
445			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
446{
447	struct to_kill *tk;
448
449	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
450	if (!tk) {
451		pr_err("Out of memory while machine check handling\n");
452		return;
453	}
454
455	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
456	if (is_zone_device_page(p)) {
457		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
458			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
459		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
460	} else
461		tk->size_shift = page_shift(compound_head(p));
462
463	/*
464	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
465	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
466	 * so "tk->size_shift == 0" effectively checks no mapping on
467	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
468	 * to a process' address space, it's possible not all N VMAs
469	 * contain mappings for the page, but at least one VMA does.
470	 * Only deliver SIGBUS with payload derived from the VMA that
471	 * has a mapping for the page.
472	 */
473	if (tk->addr == -EFAULT) {
474		pr_info("Unable to find user space address %lx in %s\n",
475			page_to_pfn(p), tsk->comm);
476	} else if (tk->size_shift == 0) {
477		kfree(tk);
478		return;
479	}
480
481	get_task_struct(tsk);
482	tk->tsk = tsk;
483	list_add_tail(&tk->nd, to_kill);
484}
485
486static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
487				  struct vm_area_struct *vma,
488				  struct list_head *to_kill)
489{
490	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
491}
492
493#ifdef CONFIG_KSM
494static bool task_in_to_kill_list(struct list_head *to_kill,
495				 struct task_struct *tsk)
496{
497	struct to_kill *tk, *next;
498
499	list_for_each_entry_safe(tk, next, to_kill, nd) {
500		if (tk->tsk == tsk)
501			return true;
502	}
503
504	return false;
505}
506void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
507		     struct vm_area_struct *vma, struct list_head *to_kill,
508		     unsigned long ksm_addr)
509{
510	if (!task_in_to_kill_list(to_kill, tsk))
511		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
512}
513#endif
514/*
515 * Kill the processes that have been collected earlier.
516 *
517 * Only do anything when FORCEKILL is set, otherwise just free the
518 * list (this is used for clean pages which do not need killing)
519 * Also when FAIL is set do a force kill because something went
520 * wrong earlier.
521 */
522static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
523		unsigned long pfn, int flags)
524{
525	struct to_kill *tk, *next;
526
527	list_for_each_entry_safe(tk, next, to_kill, nd) {
528		if (forcekill) {
529			/*
530			 * In case something went wrong with munmapping
531			 * make sure the process doesn't catch the
532			 * signal and then access the memory. Just kill it.
533			 */
534			if (fail || tk->addr == -EFAULT) {
535				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
536				       pfn, tk->tsk->comm, tk->tsk->pid);
537				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
538						 tk->tsk, PIDTYPE_PID);
539			}
540
541			/*
542			 * In theory the process could have mapped
543			 * something else on the address in-between. We could
544			 * check for that, but we need to tell the
545			 * process anyways.
546			 */
547			else if (kill_proc(tk, pfn, flags) < 0)
548				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
549				       pfn, tk->tsk->comm, tk->tsk->pid);
550		}
551		list_del(&tk->nd);
552		put_task_struct(tk->tsk);
553		kfree(tk);
554	}
555}
556
557/*
558 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
559 * on behalf of the thread group. Return task_struct of the (first found)
560 * dedicated thread if found, and return NULL otherwise.
561 *
562 * We already hold rcu lock in the caller, so we don't have to call
563 * rcu_read_lock/unlock() in this function.
564 */
565static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
566{
567	struct task_struct *t;
568
569	for_each_thread(tsk, t) {
570		if (t->flags & PF_MCE_PROCESS) {
571			if (t->flags & PF_MCE_EARLY)
572				return t;
573		} else {
574			if (sysctl_memory_failure_early_kill)
575				return t;
576		}
577	}
578	return NULL;
579}
580
581/*
582 * Determine whether a given process is "early kill" process which expects
583 * to be signaled when some page under the process is hwpoisoned.
584 * Return task_struct of the dedicated thread (main thread unless explicitly
585 * specified) if the process is "early kill" and otherwise returns NULL.
586 *
587 * Note that the above is true for Action Optional case. For Action Required
588 * case, it's only meaningful to the current thread which need to be signaled
589 * with SIGBUS, this error is Action Optional for other non current
590 * processes sharing the same error page,if the process is "early kill", the
591 * task_struct of the dedicated thread will also be returned.
592 */
593struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
594{
595	if (!tsk->mm)
596		return NULL;
597	/*
598	 * Comparing ->mm here because current task might represent
599	 * a subthread, while tsk always points to the main thread.
600	 */
601	if (force_early && tsk->mm == current->mm)
602		return current;
603
604	return find_early_kill_thread(tsk);
605}
606
607/*
608 * Collect processes when the error hit an anonymous page.
609 */
610static void collect_procs_anon(struct folio *folio, struct page *page,
611		struct list_head *to_kill, int force_early)
612{
613	struct vm_area_struct *vma;
614	struct task_struct *tsk;
615	struct anon_vma *av;
616	pgoff_t pgoff;
617
618	av = folio_lock_anon_vma_read(folio, NULL);
619	if (av == NULL)	/* Not actually mapped anymore */
620		return;
621
622	pgoff = page_to_pgoff(page);
623	rcu_read_lock();
624	for_each_process(tsk) {
625		struct anon_vma_chain *vmac;
626		struct task_struct *t = task_early_kill(tsk, force_early);
627
628		if (!t)
629			continue;
630		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631					       pgoff, pgoff) {
632			vma = vmac->vma;
633			if (vma->vm_mm != t->mm)
634				continue;
635			if (!page_mapped_in_vma(page, vma))
636				continue;
637			add_to_kill_anon_file(t, page, vma, to_kill);
638		}
639	}
640	rcu_read_unlock();
641	anon_vma_unlock_read(av);
642}
643
644/*
645 * Collect processes when the error hit a file mapped page.
646 */
647static void collect_procs_file(struct folio *folio, struct page *page,
648		struct list_head *to_kill, int force_early)
649{
650	struct vm_area_struct *vma;
651	struct task_struct *tsk;
652	struct address_space *mapping = folio->mapping;
653	pgoff_t pgoff;
654
655	i_mmap_lock_read(mapping);
656	rcu_read_lock();
657	pgoff = page_to_pgoff(page);
658	for_each_process(tsk) {
659		struct task_struct *t = task_early_kill(tsk, force_early);
660
661		if (!t)
662			continue;
663		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664				      pgoff) {
665			/*
666			 * Send early kill signal to tasks where a vma covers
667			 * the page but the corrupted page is not necessarily
668			 * mapped in its pte.
669			 * Assume applications who requested early kill want
670			 * to be informed of all such data corruptions.
671			 */
672			if (vma->vm_mm == t->mm)
673				add_to_kill_anon_file(t, page, vma, to_kill);
674		}
675	}
676	rcu_read_unlock();
677	i_mmap_unlock_read(mapping);
678}
679
680#ifdef CONFIG_FS_DAX
681static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
682			      struct vm_area_struct *vma,
683			      struct list_head *to_kill, pgoff_t pgoff)
684{
685	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
686}
687
688/*
689 * Collect processes when the error hit a fsdax page.
690 */
691static void collect_procs_fsdax(struct page *page,
692		struct address_space *mapping, pgoff_t pgoff,
693		struct list_head *to_kill, bool pre_remove)
694{
695	struct vm_area_struct *vma;
696	struct task_struct *tsk;
697
698	i_mmap_lock_read(mapping);
699	rcu_read_lock();
700	for_each_process(tsk) {
701		struct task_struct *t = tsk;
702
703		/*
704		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
705		 * the current may not be the one accessing the fsdax page.
706		 * Otherwise, search for the current task.
707		 */
708		if (!pre_remove)
709			t = task_early_kill(tsk, true);
710		if (!t)
711			continue;
712		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
713			if (vma->vm_mm == t->mm)
714				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
715		}
716	}
717	rcu_read_unlock();
718	i_mmap_unlock_read(mapping);
719}
720#endif /* CONFIG_FS_DAX */
721
722/*
723 * Collect the processes who have the corrupted page mapped to kill.
724 */
725static void collect_procs(struct folio *folio, struct page *page,
726		struct list_head *tokill, int force_early)
727{
728	if (!folio->mapping)
729		return;
730	if (unlikely(PageKsm(page)))
731		collect_procs_ksm(page, tokill, force_early);
732	else if (PageAnon(page))
733		collect_procs_anon(folio, page, tokill, force_early);
734	else
735		collect_procs_file(folio, page, tokill, force_early);
736}
737
738struct hwpoison_walk {
739	struct to_kill tk;
740	unsigned long pfn;
741	int flags;
742};
743
744static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
745{
746	tk->addr = addr;
747	tk->size_shift = shift;
748}
749
750static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
751				unsigned long poisoned_pfn, struct to_kill *tk)
752{
753	unsigned long pfn = 0;
754
755	if (pte_present(pte)) {
756		pfn = pte_pfn(pte);
757	} else {
758		swp_entry_t swp = pte_to_swp_entry(pte);
759
760		if (is_hwpoison_entry(swp))
761			pfn = swp_offset_pfn(swp);
762	}
763
764	if (!pfn || pfn != poisoned_pfn)
765		return 0;
766
767	set_to_kill(tk, addr, shift);
768	return 1;
769}
770
771#ifdef CONFIG_TRANSPARENT_HUGEPAGE
772static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
773				      struct hwpoison_walk *hwp)
774{
775	pmd_t pmd = *pmdp;
776	unsigned long pfn;
777	unsigned long hwpoison_vaddr;
778
779	if (!pmd_present(pmd))
780		return 0;
781	pfn = pmd_pfn(pmd);
782	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
783		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
784		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
785		return 1;
786	}
787	return 0;
788}
789#else
790static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
791				      struct hwpoison_walk *hwp)
792{
793	return 0;
794}
795#endif
796
797static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
798			      unsigned long end, struct mm_walk *walk)
799{
800	struct hwpoison_walk *hwp = walk->private;
801	int ret = 0;
802	pte_t *ptep, *mapped_pte;
803	spinlock_t *ptl;
804
805	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
806	if (ptl) {
807		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
808		spin_unlock(ptl);
809		goto out;
810	}
811
812	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
813						addr, &ptl);
814	if (!ptep)
815		goto out;
816
817	for (; addr != end; ptep++, addr += PAGE_SIZE) {
818		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
819					     hwp->pfn, &hwp->tk);
820		if (ret == 1)
821			break;
822	}
823	pte_unmap_unlock(mapped_pte, ptl);
824out:
825	cond_resched();
826	return ret;
827}
828
829#ifdef CONFIG_HUGETLB_PAGE
830static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
831			    unsigned long addr, unsigned long end,
832			    struct mm_walk *walk)
833{
834	struct hwpoison_walk *hwp = walk->private;
835	pte_t pte = huge_ptep_get(ptep);
836	struct hstate *h = hstate_vma(walk->vma);
837
838	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
839				      hwp->pfn, &hwp->tk);
840}
841#else
842#define hwpoison_hugetlb_range	NULL
843#endif
844
845static const struct mm_walk_ops hwpoison_walk_ops = {
846	.pmd_entry = hwpoison_pte_range,
847	.hugetlb_entry = hwpoison_hugetlb_range,
848	.walk_lock = PGWALK_RDLOCK,
849};
850
851/*
852 * Sends SIGBUS to the current process with error info.
853 *
854 * This function is intended to handle "Action Required" MCEs on already
855 * hardware poisoned pages. They could happen, for example, when
856 * memory_failure() failed to unmap the error page at the first call, or
857 * when multiple local machine checks happened on different CPUs.
858 *
859 * MCE handler currently has no easy access to the error virtual address,
860 * so this function walks page table to find it. The returned virtual address
861 * is proper in most cases, but it could be wrong when the application
862 * process has multiple entries mapping the error page.
863 */
864static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
865				  int flags)
866{
867	int ret;
868	struct hwpoison_walk priv = {
869		.pfn = pfn,
870	};
871	priv.tk.tsk = p;
872
873	if (!p->mm)
874		return -EFAULT;
875
876	mmap_read_lock(p->mm);
877	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
878			      (void *)&priv);
879	if (ret == 1 && priv.tk.addr)
880		kill_proc(&priv.tk, pfn, flags);
881	else
882		ret = 0;
883	mmap_read_unlock(p->mm);
884	return ret > 0 ? -EHWPOISON : -EFAULT;
885}
886
887static const char *action_name[] = {
888	[MF_IGNORED] = "Ignored",
889	[MF_FAILED] = "Failed",
890	[MF_DELAYED] = "Delayed",
891	[MF_RECOVERED] = "Recovered",
892};
893
894static const char * const action_page_types[] = {
895	[MF_MSG_KERNEL]			= "reserved kernel page",
896	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
897	[MF_MSG_SLAB]			= "kernel slab page",
898	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
899	[MF_MSG_HUGE]			= "huge page",
900	[MF_MSG_FREE_HUGE]		= "free huge page",
901	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
902	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
903	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
904	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
905	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
906	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
907	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
908	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
909	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
910	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
911	[MF_MSG_BUDDY]			= "free buddy page",
912	[MF_MSG_DAX]			= "dax page",
913	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
914	[MF_MSG_UNKNOWN]		= "unknown page",
915};
916
917/*
918 * XXX: It is possible that a page is isolated from LRU cache,
919 * and then kept in swap cache or failed to remove from page cache.
920 * The page count will stop it from being freed by unpoison.
921 * Stress tests should be aware of this memory leak problem.
922 */
923static int delete_from_lru_cache(struct folio *folio)
924{
925	if (folio_isolate_lru(folio)) {
926		/*
927		 * Clear sensible page flags, so that the buddy system won't
928		 * complain when the folio is unpoison-and-freed.
929		 */
930		folio_clear_active(folio);
931		folio_clear_unevictable(folio);
932
933		/*
934		 * Poisoned page might never drop its ref count to 0 so we have
935		 * to uncharge it manually from its memcg.
936		 */
937		mem_cgroup_uncharge(folio);
938
939		/*
940		 * drop the refcount elevated by folio_isolate_lru()
941		 */
942		folio_put(folio);
943		return 0;
944	}
945	return -EIO;
946}
947
948static int truncate_error_folio(struct folio *folio, unsigned long pfn,
949				struct address_space *mapping)
950{
951	int ret = MF_FAILED;
952
953	if (mapping->a_ops->error_remove_folio) {
954		int err = mapping->a_ops->error_remove_folio(mapping, folio);
955
956		if (err != 0)
957			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
958		else if (!filemap_release_folio(folio, GFP_NOIO))
959			pr_info("%#lx: failed to release buffers\n", pfn);
960		else
961			ret = MF_RECOVERED;
962	} else {
963		/*
964		 * If the file system doesn't support it just invalidate
965		 * This fails on dirty or anything with private pages
966		 */
967		if (mapping_evict_folio(mapping, folio))
968			ret = MF_RECOVERED;
969		else
970			pr_info("%#lx: Failed to invalidate\n",	pfn);
971	}
972
973	return ret;
974}
975
976struct page_state {
977	unsigned long mask;
978	unsigned long res;
979	enum mf_action_page_type type;
980
981	/* Callback ->action() has to unlock the relevant page inside it. */
982	int (*action)(struct page_state *ps, struct page *p);
983};
984
985/*
986 * Return true if page is still referenced by others, otherwise return
987 * false.
988 *
989 * The extra_pins is true when one extra refcount is expected.
990 */
991static bool has_extra_refcount(struct page_state *ps, struct page *p,
992			       bool extra_pins)
993{
994	int count = page_count(p) - 1;
995
996	if (extra_pins)
997		count -= folio_nr_pages(page_folio(p));
998
999	if (count > 0) {
1000		pr_err("%#lx: %s still referenced by %d users\n",
1001		       page_to_pfn(p), action_page_types[ps->type], count);
1002		return true;
1003	}
1004
1005	return false;
1006}
1007
1008/*
1009 * Error hit kernel page.
1010 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1011 * could be more sophisticated.
1012 */
1013static int me_kernel(struct page_state *ps, struct page *p)
1014{
1015	unlock_page(p);
1016	return MF_IGNORED;
1017}
1018
1019/*
1020 * Page in unknown state. Do nothing.
1021 */
1022static int me_unknown(struct page_state *ps, struct page *p)
1023{
1024	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1025	unlock_page(p);
1026	return MF_FAILED;
1027}
1028
1029/*
1030 * Clean (or cleaned) page cache page.
1031 */
1032static int me_pagecache_clean(struct page_state *ps, struct page *p)
1033{
1034	struct folio *folio = page_folio(p);
1035	int ret;
1036	struct address_space *mapping;
1037	bool extra_pins;
1038
1039	delete_from_lru_cache(folio);
1040
1041	/*
1042	 * For anonymous folios the only reference left
1043	 * should be the one m_f() holds.
1044	 */
1045	if (folio_test_anon(folio)) {
1046		ret = MF_RECOVERED;
1047		goto out;
1048	}
1049
1050	/*
1051	 * Now truncate the page in the page cache. This is really
1052	 * more like a "temporary hole punch"
1053	 * Don't do this for block devices when someone else
1054	 * has a reference, because it could be file system metadata
1055	 * and that's not safe to truncate.
1056	 */
1057	mapping = folio_mapping(folio);
1058	if (!mapping) {
1059		/* Folio has been torn down in the meantime */
1060		ret = MF_FAILED;
1061		goto out;
1062	}
1063
1064	/*
1065	 * The shmem page is kept in page cache instead of truncating
1066	 * so is expected to have an extra refcount after error-handling.
1067	 */
1068	extra_pins = shmem_mapping(mapping);
1069
1070	/*
1071	 * Truncation is a bit tricky. Enable it per file system for now.
1072	 *
1073	 * Open: to take i_rwsem or not for this? Right now we don't.
1074	 */
1075	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1076	if (has_extra_refcount(ps, p, extra_pins))
1077		ret = MF_FAILED;
1078
1079out:
1080	folio_unlock(folio);
1081
1082	return ret;
1083}
1084
1085/*
1086 * Dirty pagecache page
1087 * Issues: when the error hit a hole page the error is not properly
1088 * propagated.
1089 */
1090static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1091{
1092	struct address_space *mapping = page_mapping(p);
1093
1094	SetPageError(p);
1095	/* TBD: print more information about the file. */
1096	if (mapping) {
1097		/*
1098		 * IO error will be reported by write(), fsync(), etc.
1099		 * who check the mapping.
1100		 * This way the application knows that something went
1101		 * wrong with its dirty file data.
1102		 *
1103		 * There's one open issue:
1104		 *
1105		 * The EIO will be only reported on the next IO
1106		 * operation and then cleared through the IO map.
1107		 * Normally Linux has two mechanisms to pass IO error
1108		 * first through the AS_EIO flag in the address space
1109		 * and then through the PageError flag in the page.
1110		 * Since we drop pages on memory failure handling the
1111		 * only mechanism open to use is through AS_AIO.
1112		 *
1113		 * This has the disadvantage that it gets cleared on
1114		 * the first operation that returns an error, while
1115		 * the PageError bit is more sticky and only cleared
1116		 * when the page is reread or dropped.  If an
1117		 * application assumes it will always get error on
1118		 * fsync, but does other operations on the fd before
1119		 * and the page is dropped between then the error
1120		 * will not be properly reported.
1121		 *
1122		 * This can already happen even without hwpoisoned
1123		 * pages: first on metadata IO errors (which only
1124		 * report through AS_EIO) or when the page is dropped
1125		 * at the wrong time.
1126		 *
1127		 * So right now we assume that the application DTRT on
1128		 * the first EIO, but we're not worse than other parts
1129		 * of the kernel.
1130		 */
1131		mapping_set_error(mapping, -EIO);
1132	}
1133
1134	return me_pagecache_clean(ps, p);
1135}
1136
1137/*
1138 * Clean and dirty swap cache.
1139 *
1140 * Dirty swap cache page is tricky to handle. The page could live both in page
1141 * cache and swap cache(ie. page is freshly swapped in). So it could be
1142 * referenced concurrently by 2 types of PTEs:
1143 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1145 * and then
1146 *      - clear dirty bit to prevent IO
1147 *      - remove from LRU
1148 *      - but keep in the swap cache, so that when we return to it on
1149 *        a later page fault, we know the application is accessing
1150 *        corrupted data and shall be killed (we installed simple
1151 *        interception code in do_swap_page to catch it).
1152 *
1153 * Clean swap cache pages can be directly isolated. A later page fault will
1154 * bring in the known good data from disk.
1155 */
1156static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1157{
1158	struct folio *folio = page_folio(p);
1159	int ret;
1160	bool extra_pins = false;
1161
1162	folio_clear_dirty(folio);
1163	/* Trigger EIO in shmem: */
1164	folio_clear_uptodate(folio);
1165
1166	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1167	folio_unlock(folio);
1168
1169	if (ret == MF_DELAYED)
1170		extra_pins = true;
1171
1172	if (has_extra_refcount(ps, p, extra_pins))
1173		ret = MF_FAILED;
1174
1175	return ret;
1176}
1177
1178static int me_swapcache_clean(struct page_state *ps, struct page *p)
1179{
1180	struct folio *folio = page_folio(p);
1181	int ret;
1182
1183	delete_from_swap_cache(folio);
1184
1185	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1186	folio_unlock(folio);
1187
1188	if (has_extra_refcount(ps, p, false))
1189		ret = MF_FAILED;
1190
1191	return ret;
1192}
1193
1194/*
1195 * Huge pages. Needs work.
1196 * Issues:
1197 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1198 *   To narrow down kill region to one page, we need to break up pmd.
1199 */
1200static int me_huge_page(struct page_state *ps, struct page *p)
1201{
1202	struct folio *folio = page_folio(p);
1203	int res;
1204	struct address_space *mapping;
1205	bool extra_pins = false;
1206
1207	mapping = folio_mapping(folio);
1208	if (mapping) {
1209		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1210		/* The page is kept in page cache. */
1211		extra_pins = true;
1212		folio_unlock(folio);
1213	} else {
1214		folio_unlock(folio);
1215		/*
1216		 * migration entry prevents later access on error hugepage,
1217		 * so we can free and dissolve it into buddy to save healthy
1218		 * subpages.
1219		 */
1220		folio_put(folio);
1221		if (__page_handle_poison(p) >= 0) {
1222			page_ref_inc(p);
1223			res = MF_RECOVERED;
1224		} else {
1225			res = MF_FAILED;
1226		}
1227	}
1228
1229	if (has_extra_refcount(ps, p, extra_pins))
1230		res = MF_FAILED;
1231
1232	return res;
1233}
1234
1235/*
1236 * Various page states we can handle.
1237 *
1238 * A page state is defined by its current page->flags bits.
1239 * The table matches them in order and calls the right handler.
1240 *
1241 * This is quite tricky because we can access page at any time
1242 * in its live cycle, so all accesses have to be extremely careful.
1243 *
1244 * This is not complete. More states could be added.
1245 * For any missing state don't attempt recovery.
1246 */
1247
1248#define dirty		(1UL << PG_dirty)
1249#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1250#define unevict		(1UL << PG_unevictable)
1251#define mlock		(1UL << PG_mlocked)
1252#define lru		(1UL << PG_lru)
1253#define head		(1UL << PG_head)
1254#define slab		(1UL << PG_slab)
1255#define reserved	(1UL << PG_reserved)
1256
1257static struct page_state error_states[] = {
1258	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1259	/*
1260	 * free pages are specially detected outside this table:
1261	 * PG_buddy pages only make a small fraction of all free pages.
1262	 */
1263
1264	/*
1265	 * Could in theory check if slab page is free or if we can drop
1266	 * currently unused objects without touching them. But just
1267	 * treat it as standard kernel for now.
1268	 */
1269	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1270
1271	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1272
1273	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1274	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1275
1276	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1277	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1278
1279	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1280	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1281
1282	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1283	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1284
1285	/*
1286	 * Catchall entry: must be at end.
1287	 */
1288	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1289};
1290
1291#undef dirty
1292#undef sc
1293#undef unevict
1294#undef mlock
1295#undef lru
1296#undef head
1297#undef slab
1298#undef reserved
1299
1300static void update_per_node_mf_stats(unsigned long pfn,
1301				     enum mf_result result)
1302{
1303	int nid = MAX_NUMNODES;
1304	struct memory_failure_stats *mf_stats = NULL;
1305
1306	nid = pfn_to_nid(pfn);
1307	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1308		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1309		return;
1310	}
1311
1312	mf_stats = &NODE_DATA(nid)->mf_stats;
1313	switch (result) {
1314	case MF_IGNORED:
1315		++mf_stats->ignored;
1316		break;
1317	case MF_FAILED:
1318		++mf_stats->failed;
1319		break;
1320	case MF_DELAYED:
1321		++mf_stats->delayed;
1322		break;
1323	case MF_RECOVERED:
1324		++mf_stats->recovered;
1325		break;
1326	default:
1327		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1328		break;
1329	}
1330	++mf_stats->total;
1331}
1332
1333/*
1334 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1335 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1336 */
1337static int action_result(unsigned long pfn, enum mf_action_page_type type,
1338			 enum mf_result result)
1339{
1340	trace_memory_failure_event(pfn, type, result);
1341
1342	num_poisoned_pages_inc(pfn);
1343
1344	update_per_node_mf_stats(pfn, result);
1345
1346	pr_err("%#lx: recovery action for %s: %s\n",
1347		pfn, action_page_types[type], action_name[result]);
1348
1349	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1350}
1351
1352static int page_action(struct page_state *ps, struct page *p,
1353			unsigned long pfn)
1354{
1355	int result;
1356
1357	/* page p should be unlocked after returning from ps->action().  */
1358	result = ps->action(ps, p);
1359
1360	/* Could do more checks here if page looks ok */
1361	/*
1362	 * Could adjust zone counters here to correct for the missing page.
1363	 */
1364
1365	return action_result(pfn, ps->type, result);
1366}
1367
1368static inline bool PageHWPoisonTakenOff(struct page *page)
1369{
1370	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1371}
1372
1373void SetPageHWPoisonTakenOff(struct page *page)
1374{
1375	set_page_private(page, MAGIC_HWPOISON);
1376}
1377
1378void ClearPageHWPoisonTakenOff(struct page *page)
1379{
1380	if (PageHWPoison(page))
1381		set_page_private(page, 0);
1382}
1383
1384/*
1385 * Return true if a page type of a given page is supported by hwpoison
1386 * mechanism (while handling could fail), otherwise false.  This function
1387 * does not return true for hugetlb or device memory pages, so it's assumed
1388 * to be called only in the context where we never have such pages.
1389 */
1390static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1391{
1392	if (PageSlab(page))
1393		return false;
1394
1395	/* Soft offline could migrate non-LRU movable pages */
1396	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1397		return true;
1398
1399	return PageLRU(page) || is_free_buddy_page(page);
1400}
1401
1402static int __get_hwpoison_page(struct page *page, unsigned long flags)
1403{
1404	struct folio *folio = page_folio(page);
1405	int ret = 0;
1406	bool hugetlb = false;
1407
1408	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1409	if (hugetlb) {
1410		/* Make sure hugetlb demotion did not happen from under us. */
1411		if (folio == page_folio(page))
1412			return ret;
1413		if (ret > 0) {
1414			folio_put(folio);
1415			folio = page_folio(page);
1416		}
1417	}
1418
1419	/*
1420	 * This check prevents from calling folio_try_get() for any
1421	 * unsupported type of folio in order to reduce the risk of unexpected
1422	 * races caused by taking a folio refcount.
1423	 */
1424	if (!HWPoisonHandlable(&folio->page, flags))
1425		return -EBUSY;
1426
1427	if (folio_try_get(folio)) {
1428		if (folio == page_folio(page))
1429			return 1;
1430
1431		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1432		folio_put(folio);
1433	}
1434
1435	return 0;
1436}
1437
1438static int get_any_page(struct page *p, unsigned long flags)
1439{
1440	int ret = 0, pass = 0;
1441	bool count_increased = false;
1442
1443	if (flags & MF_COUNT_INCREASED)
1444		count_increased = true;
1445
1446try_again:
1447	if (!count_increased) {
1448		ret = __get_hwpoison_page(p, flags);
1449		if (!ret) {
1450			if (page_count(p)) {
1451				/* We raced with an allocation, retry. */
1452				if (pass++ < 3)
1453					goto try_again;
1454				ret = -EBUSY;
1455			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1456				/* We raced with put_page, retry. */
1457				if (pass++ < 3)
1458					goto try_again;
1459				ret = -EIO;
1460			}
1461			goto out;
1462		} else if (ret == -EBUSY) {
1463			/*
1464			 * We raced with (possibly temporary) unhandlable
1465			 * page, retry.
1466			 */
1467			if (pass++ < 3) {
1468				shake_page(p);
1469				goto try_again;
1470			}
1471			ret = -EIO;
1472			goto out;
1473		}
1474	}
1475
1476	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1477		ret = 1;
1478	} else {
1479		/*
1480		 * A page we cannot handle. Check whether we can turn
1481		 * it into something we can handle.
1482		 */
1483		if (pass++ < 3) {
1484			put_page(p);
1485			shake_page(p);
1486			count_increased = false;
1487			goto try_again;
1488		}
1489		put_page(p);
1490		ret = -EIO;
1491	}
1492out:
1493	if (ret == -EIO)
1494		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1495
1496	return ret;
1497}
1498
1499static int __get_unpoison_page(struct page *page)
1500{
1501	struct folio *folio = page_folio(page);
1502	int ret = 0;
1503	bool hugetlb = false;
1504
1505	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1506	if (hugetlb) {
1507		/* Make sure hugetlb demotion did not happen from under us. */
1508		if (folio == page_folio(page))
1509			return ret;
1510		if (ret > 0)
1511			folio_put(folio);
1512	}
1513
1514	/*
1515	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1516	 * but also isolated from buddy freelist, so need to identify the
1517	 * state and have to cancel both operations to unpoison.
1518	 */
1519	if (PageHWPoisonTakenOff(page))
1520		return -EHWPOISON;
1521
1522	return get_page_unless_zero(page) ? 1 : 0;
1523}
1524
1525/**
1526 * get_hwpoison_page() - Get refcount for memory error handling
1527 * @p:		Raw error page (hit by memory error)
1528 * @flags:	Flags controlling behavior of error handling
1529 *
1530 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1531 * error on it, after checking that the error page is in a well-defined state
1532 * (defined as a page-type we can successfully handle the memory error on it,
1533 * such as LRU page and hugetlb page).
1534 *
1535 * Memory error handling could be triggered at any time on any type of page,
1536 * so it's prone to race with typical memory management lifecycle (like
1537 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1538 * extra care for the error page's state (as done in __get_hwpoison_page()),
1539 * and has some retry logic in get_any_page().
1540 *
1541 * When called from unpoison_memory(), the caller should already ensure that
1542 * the given page has PG_hwpoison. So it's never reused for other page
1543 * allocations, and __get_unpoison_page() never races with them.
1544 *
1545 * Return: 0 on failure,
1546 *         1 on success for in-use pages in a well-defined state,
1547 *         -EIO for pages on which we can not handle memory errors,
1548 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1549 *         operations like allocation and free,
1550 *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1551 */
1552static int get_hwpoison_page(struct page *p, unsigned long flags)
1553{
1554	int ret;
1555
1556	zone_pcp_disable(page_zone(p));
1557	if (flags & MF_UNPOISON)
1558		ret = __get_unpoison_page(p);
1559	else
1560		ret = get_any_page(p, flags);
1561	zone_pcp_enable(page_zone(p));
1562
1563	return ret;
1564}
1565
1566/*
1567 * Do all that is necessary to remove user space mappings. Unmap
1568 * the pages and send SIGBUS to the processes if the data was dirty.
1569 */
1570static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1571				  int flags, struct page *hpage)
1572{
1573	struct folio *folio = page_folio(hpage);
1574	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1575	struct address_space *mapping;
1576	LIST_HEAD(tokill);
1577	bool unmap_success;
1578	int forcekill;
1579	bool mlocked = PageMlocked(hpage);
1580
1581	/*
1582	 * Here we are interested only in user-mapped pages, so skip any
1583	 * other types of pages.
1584	 */
1585	if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
1586		return true;
1587	if (!(PageLRU(hpage) || PageHuge(p)))
1588		return true;
1589
1590	/*
1591	 * This check implies we don't kill processes if their pages
1592	 * are in the swap cache early. Those are always late kills.
1593	 */
1594	if (!page_mapped(p))
1595		return true;
1596
1597	if (PageSwapCache(p)) {
1598		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1599		ttu &= ~TTU_HWPOISON;
1600	}
1601
1602	/*
1603	 * Propagate the dirty bit from PTEs to struct page first, because we
1604	 * need this to decide if we should kill or just drop the page.
1605	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1606	 * be called inside page lock (it's recommended but not enforced).
1607	 */
1608	mapping = page_mapping(hpage);
1609	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1610	    mapping_can_writeback(mapping)) {
1611		if (page_mkclean(hpage)) {
1612			SetPageDirty(hpage);
1613		} else {
1614			ttu &= ~TTU_HWPOISON;
1615			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1616				pfn);
1617		}
1618	}
1619
1620	/*
1621	 * First collect all the processes that have the page
1622	 * mapped in dirty form.  This has to be done before try_to_unmap,
1623	 * because ttu takes the rmap data structures down.
1624	 */
1625	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1626
1627	if (PageHuge(hpage) && !PageAnon(hpage)) {
1628		/*
1629		 * For hugetlb pages in shared mappings, try_to_unmap
1630		 * could potentially call huge_pmd_unshare.  Because of
1631		 * this, take semaphore in write mode here and set
1632		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1633		 * at this higher level.
1634		 */
1635		mapping = hugetlb_page_mapping_lock_write(hpage);
1636		if (mapping) {
1637			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1638			i_mmap_unlock_write(mapping);
1639		} else
1640			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1641	} else {
1642		try_to_unmap(folio, ttu);
1643	}
1644
1645	unmap_success = !page_mapped(p);
1646	if (!unmap_success)
1647		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1648		       pfn, page_mapcount(p));
1649
1650	/*
1651	 * try_to_unmap() might put mlocked page in lru cache, so call
1652	 * shake_page() again to ensure that it's flushed.
1653	 */
1654	if (mlocked)
1655		shake_page(hpage);
1656
1657	/*
1658	 * Now that the dirty bit has been propagated to the
1659	 * struct page and all unmaps done we can decide if
1660	 * killing is needed or not.  Only kill when the page
1661	 * was dirty or the process is not restartable,
1662	 * otherwise the tokill list is merely
1663	 * freed.  When there was a problem unmapping earlier
1664	 * use a more force-full uncatchable kill to prevent
1665	 * any accesses to the poisoned memory.
1666	 */
1667	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1668		    !unmap_success;
1669	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1670
1671	return unmap_success;
1672}
1673
1674static int identify_page_state(unsigned long pfn, struct page *p,
1675				unsigned long page_flags)
1676{
1677	struct page_state *ps;
1678
1679	/*
1680	 * The first check uses the current page flags which may not have any
1681	 * relevant information. The second check with the saved page flags is
1682	 * carried out only if the first check can't determine the page status.
1683	 */
1684	for (ps = error_states;; ps++)
1685		if ((p->flags & ps->mask) == ps->res)
1686			break;
1687
1688	page_flags |= (p->flags & (1UL << PG_dirty));
1689
1690	if (!ps->mask)
1691		for (ps = error_states;; ps++)
1692			if ((page_flags & ps->mask) == ps->res)
1693				break;
1694	return page_action(ps, p, pfn);
1695}
1696
1697static int try_to_split_thp_page(struct page *page)
1698{
1699	int ret;
1700
1701	lock_page(page);
1702	ret = split_huge_page(page);
1703	unlock_page(page);
1704
1705	if (unlikely(ret))
1706		put_page(page);
1707
1708	return ret;
1709}
1710
1711static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1712		struct address_space *mapping, pgoff_t index, int flags)
1713{
1714	struct to_kill *tk;
1715	unsigned long size = 0;
1716
1717	list_for_each_entry(tk, to_kill, nd)
1718		if (tk->size_shift)
1719			size = max(size, 1UL << tk->size_shift);
1720
1721	if (size) {
1722		/*
1723		 * Unmap the largest mapping to avoid breaking up device-dax
1724		 * mappings which are constant size. The actual size of the
1725		 * mapping being torn down is communicated in siginfo, see
1726		 * kill_proc()
1727		 */
1728		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1729
1730		unmap_mapping_range(mapping, start, size, 0);
1731	}
1732
1733	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1734}
1735
1736/*
1737 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1738 * either do not claim or fails to claim a hwpoison event, or devdax.
1739 * The fsdax pages are initialized per base page, and the devdax pages
1740 * could be initialized either as base pages, or as compound pages with
1741 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1742 * hwpoison, such that, if a subpage of a compound page is poisoned,
1743 * simply mark the compound head page is by far sufficient.
1744 */
1745static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1746		struct dev_pagemap *pgmap)
1747{
1748	struct folio *folio = pfn_folio(pfn);
1749	LIST_HEAD(to_kill);
1750	dax_entry_t cookie;
1751	int rc = 0;
1752
1753	/*
1754	 * Prevent the inode from being freed while we are interrogating
1755	 * the address_space, typically this would be handled by
1756	 * lock_page(), but dax pages do not use the page lock. This
1757	 * also prevents changes to the mapping of this pfn until
1758	 * poison signaling is complete.
1759	 */
1760	cookie = dax_lock_folio(folio);
1761	if (!cookie)
1762		return -EBUSY;
1763
1764	if (hwpoison_filter(&folio->page)) {
1765		rc = -EOPNOTSUPP;
1766		goto unlock;
1767	}
1768
1769	switch (pgmap->type) {
1770	case MEMORY_DEVICE_PRIVATE:
1771	case MEMORY_DEVICE_COHERENT:
1772		/*
1773		 * TODO: Handle device pages which may need coordination
1774		 * with device-side memory.
1775		 */
1776		rc = -ENXIO;
1777		goto unlock;
1778	default:
1779		break;
1780	}
1781
1782	/*
1783	 * Use this flag as an indication that the dax page has been
1784	 * remapped UC to prevent speculative consumption of poison.
1785	 */
1786	SetPageHWPoison(&folio->page);
1787
1788	/*
1789	 * Unlike System-RAM there is no possibility to swap in a
1790	 * different physical page at a given virtual address, so all
1791	 * userspace consumption of ZONE_DEVICE memory necessitates
1792	 * SIGBUS (i.e. MF_MUST_KILL)
1793	 */
1794	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1795	collect_procs(folio, &folio->page, &to_kill, true);
1796
1797	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1798unlock:
1799	dax_unlock_folio(folio, cookie);
1800	return rc;
1801}
1802
1803#ifdef CONFIG_FS_DAX
1804/**
1805 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1806 * @mapping:	address_space of the file in use
1807 * @index:	start pgoff of the range within the file
1808 * @count:	length of the range, in unit of PAGE_SIZE
1809 * @mf_flags:	memory failure flags
1810 */
1811int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1812		unsigned long count, int mf_flags)
1813{
1814	LIST_HEAD(to_kill);
1815	dax_entry_t cookie;
1816	struct page *page;
1817	size_t end = index + count;
1818	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1819
1820	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1821
1822	for (; index < end; index++) {
1823		page = NULL;
1824		cookie = dax_lock_mapping_entry(mapping, index, &page);
1825		if (!cookie)
1826			return -EBUSY;
1827		if (!page)
1828			goto unlock;
1829
1830		if (!pre_remove)
1831			SetPageHWPoison(page);
1832
1833		/*
1834		 * The pre_remove case is revoking access, the memory is still
1835		 * good and could theoretically be put back into service.
1836		 */
1837		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1838		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1839				index, mf_flags);
1840unlock:
1841		dax_unlock_mapping_entry(mapping, index, cookie);
1842	}
1843	return 0;
1844}
1845EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1846#endif /* CONFIG_FS_DAX */
1847
1848#ifdef CONFIG_HUGETLB_PAGE
1849
1850/*
1851 * Struct raw_hwp_page represents information about "raw error page",
1852 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1853 */
1854struct raw_hwp_page {
1855	struct llist_node node;
1856	struct page *page;
1857};
1858
1859static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1860{
1861	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1862}
1863
1864bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1865{
1866	struct llist_head *raw_hwp_head;
1867	struct raw_hwp_page *p;
1868	struct folio *folio = page_folio(page);
1869	bool ret = false;
1870
1871	if (!folio_test_hwpoison(folio))
1872		return false;
1873
1874	if (!folio_test_hugetlb(folio))
1875		return PageHWPoison(page);
1876
1877	/*
1878	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1879	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1880	 */
1881	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1882		return true;
1883
1884	mutex_lock(&mf_mutex);
1885
1886	raw_hwp_head = raw_hwp_list_head(folio);
1887	llist_for_each_entry(p, raw_hwp_head->first, node) {
1888		if (page == p->page) {
1889			ret = true;
1890			break;
1891		}
1892	}
1893
1894	mutex_unlock(&mf_mutex);
1895
1896	return ret;
1897}
1898
1899static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1900{
1901	struct llist_node *head;
1902	struct raw_hwp_page *p, *next;
1903	unsigned long count = 0;
1904
1905	head = llist_del_all(raw_hwp_list_head(folio));
1906	llist_for_each_entry_safe(p, next, head, node) {
1907		if (move_flag)
1908			SetPageHWPoison(p->page);
1909		else
1910			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1911		kfree(p);
1912		count++;
1913	}
1914	return count;
1915}
1916
1917static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1918{
1919	struct llist_head *head;
1920	struct raw_hwp_page *raw_hwp;
1921	struct raw_hwp_page *p, *next;
1922	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1923
1924	/*
1925	 * Once the hwpoison hugepage has lost reliable raw error info,
1926	 * there is little meaning to keep additional error info precisely,
1927	 * so skip to add additional raw error info.
1928	 */
1929	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1930		return -EHWPOISON;
1931	head = raw_hwp_list_head(folio);
1932	llist_for_each_entry_safe(p, next, head->first, node) {
1933		if (p->page == page)
1934			return -EHWPOISON;
1935	}
1936
1937	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1938	if (raw_hwp) {
1939		raw_hwp->page = page;
1940		llist_add(&raw_hwp->node, head);
1941		/* the first error event will be counted in action_result(). */
1942		if (ret)
1943			num_poisoned_pages_inc(page_to_pfn(page));
1944	} else {
1945		/*
1946		 * Failed to save raw error info.  We no longer trace all
1947		 * hwpoisoned subpages, and we need refuse to free/dissolve
1948		 * this hwpoisoned hugepage.
1949		 */
1950		folio_set_hugetlb_raw_hwp_unreliable(folio);
1951		/*
1952		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1953		 * used any more, so free it.
1954		 */
1955		__folio_free_raw_hwp(folio, false);
1956	}
1957	return ret;
1958}
1959
1960static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1961{
1962	/*
1963	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1964	 * pages for tail pages are required but they don't exist.
1965	 */
1966	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1967		return 0;
1968
1969	/*
1970	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1971	 * definition.
1972	 */
1973	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1974		return 0;
1975
1976	return __folio_free_raw_hwp(folio, move_flag);
1977}
1978
1979void folio_clear_hugetlb_hwpoison(struct folio *folio)
1980{
1981	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1982		return;
1983	if (folio_test_hugetlb_vmemmap_optimized(folio))
1984		return;
1985	folio_clear_hwpoison(folio);
1986	folio_free_raw_hwp(folio, true);
1987}
1988
1989/*
1990 * Called from hugetlb code with hugetlb_lock held.
1991 *
1992 * Return values:
1993 *   0             - free hugepage
1994 *   1             - in-use hugepage
1995 *   2             - not a hugepage
1996 *   -EBUSY        - the hugepage is busy (try to retry)
1997 *   -EHWPOISON    - the hugepage is already hwpoisoned
1998 */
1999int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2000				 bool *migratable_cleared)
2001{
2002	struct page *page = pfn_to_page(pfn);
2003	struct folio *folio = page_folio(page);
2004	int ret = 2;	/* fallback to normal page handling */
2005	bool count_increased = false;
2006
2007	if (!folio_test_hugetlb(folio))
2008		goto out;
2009
2010	if (flags & MF_COUNT_INCREASED) {
2011		ret = 1;
2012		count_increased = true;
2013	} else if (folio_test_hugetlb_freed(folio)) {
2014		ret = 0;
2015	} else if (folio_test_hugetlb_migratable(folio)) {
2016		ret = folio_try_get(folio);
2017		if (ret)
2018			count_increased = true;
2019	} else {
2020		ret = -EBUSY;
2021		if (!(flags & MF_NO_RETRY))
2022			goto out;
2023	}
2024
2025	if (folio_set_hugetlb_hwpoison(folio, page)) {
2026		ret = -EHWPOISON;
2027		goto out;
2028	}
2029
2030	/*
2031	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2032	 * from being migrated by memory hotremove.
2033	 */
2034	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2035		folio_clear_hugetlb_migratable(folio);
2036		*migratable_cleared = true;
2037	}
2038
2039	return ret;
2040out:
2041	if (count_increased)
2042		folio_put(folio);
2043	return ret;
2044}
2045
2046/*
2047 * Taking refcount of hugetlb pages needs extra care about race conditions
2048 * with basic operations like hugepage allocation/free/demotion.
2049 * So some of prechecks for hwpoison (pinning, and testing/setting
2050 * PageHWPoison) should be done in single hugetlb_lock range.
2051 */
2052static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2053{
2054	int res;
2055	struct page *p = pfn_to_page(pfn);
2056	struct folio *folio;
2057	unsigned long page_flags;
2058	bool migratable_cleared = false;
2059
2060	*hugetlb = 1;
2061retry:
2062	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2063	if (res == 2) { /* fallback to normal page handling */
2064		*hugetlb = 0;
2065		return 0;
2066	} else if (res == -EHWPOISON) {
2067		pr_err("%#lx: already hardware poisoned\n", pfn);
2068		if (flags & MF_ACTION_REQUIRED) {
2069			folio = page_folio(p);
2070			res = kill_accessing_process(current, folio_pfn(folio), flags);
2071		}
2072		return res;
2073	} else if (res == -EBUSY) {
2074		if (!(flags & MF_NO_RETRY)) {
2075			flags |= MF_NO_RETRY;
2076			goto retry;
2077		}
2078		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2079	}
2080
2081	folio = page_folio(p);
2082	folio_lock(folio);
2083
2084	if (hwpoison_filter(p)) {
2085		folio_clear_hugetlb_hwpoison(folio);
2086		if (migratable_cleared)
2087			folio_set_hugetlb_migratable(folio);
2088		folio_unlock(folio);
2089		if (res == 1)
2090			folio_put(folio);
2091		return -EOPNOTSUPP;
2092	}
2093
2094	/*
2095	 * Handling free hugepage.  The possible race with hugepage allocation
2096	 * or demotion can be prevented by PageHWPoison flag.
2097	 */
2098	if (res == 0) {
2099		folio_unlock(folio);
2100		if (__page_handle_poison(p) >= 0) {
2101			page_ref_inc(p);
2102			res = MF_RECOVERED;
2103		} else {
2104			res = MF_FAILED;
2105		}
2106		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2107	}
2108
2109	page_flags = folio->flags;
2110
2111	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2112		folio_unlock(folio);
2113		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2114	}
2115
2116	return identify_page_state(pfn, p, page_flags);
2117}
2118
2119#else
2120static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2121{
2122	return 0;
2123}
2124
2125static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2126{
2127	return 0;
2128}
2129#endif	/* CONFIG_HUGETLB_PAGE */
2130
2131/* Drop the extra refcount in case we come from madvise() */
2132static void put_ref_page(unsigned long pfn, int flags)
2133{
2134	struct page *page;
2135
2136	if (!(flags & MF_COUNT_INCREASED))
2137		return;
2138
2139	page = pfn_to_page(pfn);
2140	if (page)
2141		put_page(page);
2142}
2143
2144static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2145		struct dev_pagemap *pgmap)
2146{
2147	int rc = -ENXIO;
2148
2149	/* device metadata space is not recoverable */
2150	if (!pgmap_pfn_valid(pgmap, pfn))
2151		goto out;
2152
2153	/*
2154	 * Call driver's implementation to handle the memory failure, otherwise
2155	 * fall back to generic handler.
2156	 */
2157	if (pgmap_has_memory_failure(pgmap)) {
2158		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2159		/*
2160		 * Fall back to generic handler too if operation is not
2161		 * supported inside the driver/device/filesystem.
2162		 */
2163		if (rc != -EOPNOTSUPP)
2164			goto out;
2165	}
2166
2167	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2168out:
2169	/* drop pgmap ref acquired in caller */
2170	put_dev_pagemap(pgmap);
2171	if (rc != -EOPNOTSUPP)
2172		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2173	return rc;
2174}
2175
2176/**
2177 * memory_failure - Handle memory failure of a page.
2178 * @pfn: Page Number of the corrupted page
2179 * @flags: fine tune action taken
2180 *
2181 * This function is called by the low level machine check code
2182 * of an architecture when it detects hardware memory corruption
2183 * of a page. It tries its best to recover, which includes
2184 * dropping pages, killing processes etc.
2185 *
2186 * The function is primarily of use for corruptions that
2187 * happen outside the current execution context (e.g. when
2188 * detected by a background scrubber)
2189 *
2190 * Must run in process context (e.g. a work queue) with interrupts
2191 * enabled and no spinlocks held.
2192 *
2193 * Return: 0 for successfully handled the memory error,
2194 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2195 *         < 0(except -EOPNOTSUPP) on failure.
2196 */
2197int memory_failure(unsigned long pfn, int flags)
2198{
2199	struct page *p;
2200	struct page *hpage;
2201	struct dev_pagemap *pgmap;
2202	int res = 0;
2203	unsigned long page_flags;
2204	bool retry = true;
2205	int hugetlb = 0;
2206
2207	if (!sysctl_memory_failure_recovery)
2208		panic("Memory failure on page %lx", pfn);
2209
2210	mutex_lock(&mf_mutex);
2211
2212	if (!(flags & MF_SW_SIMULATED))
2213		hw_memory_failure = true;
2214
2215	p = pfn_to_online_page(pfn);
2216	if (!p) {
2217		res = arch_memory_failure(pfn, flags);
2218		if (res == 0)
2219			goto unlock_mutex;
2220
2221		if (pfn_valid(pfn)) {
2222			pgmap = get_dev_pagemap(pfn, NULL);
2223			put_ref_page(pfn, flags);
2224			if (pgmap) {
2225				res = memory_failure_dev_pagemap(pfn, flags,
2226								 pgmap);
2227				goto unlock_mutex;
2228			}
2229		}
2230		pr_err("%#lx: memory outside kernel control\n", pfn);
2231		res = -ENXIO;
2232		goto unlock_mutex;
2233	}
2234
2235try_again:
2236	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2237	if (hugetlb)
2238		goto unlock_mutex;
2239
2240	if (TestSetPageHWPoison(p)) {
2241		pr_err("%#lx: already hardware poisoned\n", pfn);
2242		res = -EHWPOISON;
2243		if (flags & MF_ACTION_REQUIRED)
2244			res = kill_accessing_process(current, pfn, flags);
2245		if (flags & MF_COUNT_INCREASED)
2246			put_page(p);
2247		goto unlock_mutex;
2248	}
2249
2250	/*
2251	 * We need/can do nothing about count=0 pages.
2252	 * 1) it's a free page, and therefore in safe hand:
2253	 *    check_new_page() will be the gate keeper.
2254	 * 2) it's part of a non-compound high order page.
2255	 *    Implies some kernel user: cannot stop them from
2256	 *    R/W the page; let's pray that the page has been
2257	 *    used and will be freed some time later.
2258	 * In fact it's dangerous to directly bump up page count from 0,
2259	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2260	 */
2261	if (!(flags & MF_COUNT_INCREASED)) {
2262		res = get_hwpoison_page(p, flags);
2263		if (!res) {
2264			if (is_free_buddy_page(p)) {
2265				if (take_page_off_buddy(p)) {
2266					page_ref_inc(p);
2267					res = MF_RECOVERED;
2268				} else {
2269					/* We lost the race, try again */
2270					if (retry) {
2271						ClearPageHWPoison(p);
2272						retry = false;
2273						goto try_again;
2274					}
2275					res = MF_FAILED;
2276				}
2277				res = action_result(pfn, MF_MSG_BUDDY, res);
2278			} else {
2279				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2280			}
2281			goto unlock_mutex;
2282		} else if (res < 0) {
2283			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2284			goto unlock_mutex;
2285		}
2286	}
2287
2288	hpage = compound_head(p);
2289	if (PageTransHuge(hpage)) {
2290		/*
2291		 * The flag must be set after the refcount is bumped
2292		 * otherwise it may race with THP split.
2293		 * And the flag can't be set in get_hwpoison_page() since
2294		 * it is called by soft offline too and it is just called
2295		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2296		 * place.
2297		 *
2298		 * Don't need care about the above error handling paths for
2299		 * get_hwpoison_page() since they handle either free page
2300		 * or unhandlable page.  The refcount is bumped iff the
2301		 * page is a valid handlable page.
2302		 */
2303		SetPageHasHWPoisoned(hpage);
2304		if (try_to_split_thp_page(p) < 0) {
2305			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2306			goto unlock_mutex;
2307		}
2308		VM_BUG_ON_PAGE(!page_count(p), p);
2309	}
2310
2311	/*
2312	 * We ignore non-LRU pages for good reasons.
2313	 * - PG_locked is only well defined for LRU pages and a few others
2314	 * - to avoid races with __SetPageLocked()
2315	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2316	 * The check (unnecessarily) ignores LRU pages being isolated and
2317	 * walked by the page reclaim code, however that's not a big loss.
2318	 */
2319	shake_page(p);
2320
2321	lock_page(p);
2322
2323	/*
2324	 * We're only intended to deal with the non-Compound page here.
2325	 * However, the page could have changed compound pages due to
2326	 * race window. If this happens, we could try again to hopefully
2327	 * handle the page next round.
2328	 */
2329	if (PageCompound(p)) {
2330		if (retry) {
2331			ClearPageHWPoison(p);
2332			unlock_page(p);
2333			put_page(p);
2334			flags &= ~MF_COUNT_INCREASED;
2335			retry = false;
2336			goto try_again;
2337		}
2338		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2339		goto unlock_page;
2340	}
2341
2342	/*
2343	 * We use page flags to determine what action should be taken, but
2344	 * the flags can be modified by the error containment action.  One
2345	 * example is an mlocked page, where PG_mlocked is cleared by
2346	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2347	 * status correctly, we save a copy of the page flags at this time.
2348	 */
2349	page_flags = p->flags;
2350
2351	if (hwpoison_filter(p)) {
2352		ClearPageHWPoison(p);
2353		unlock_page(p);
2354		put_page(p);
2355		res = -EOPNOTSUPP;
2356		goto unlock_mutex;
2357	}
2358
2359	/*
2360	 * __munlock_folio() may clear a writeback page's LRU flag without
2361	 * page_lock. We need wait writeback completion for this page or it
2362	 * may trigger vfs BUG while evict inode.
2363	 */
2364	if (!PageLRU(p) && !PageWriteback(p))
2365		goto identify_page_state;
2366
2367	/*
2368	 * It's very difficult to mess with pages currently under IO
2369	 * and in many cases impossible, so we just avoid it here.
2370	 */
2371	wait_on_page_writeback(p);
2372
2373	/*
2374	 * Now take care of user space mappings.
2375	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2376	 */
2377	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2378		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2379		goto unlock_page;
2380	}
2381
2382	/*
2383	 * Torn down by someone else?
2384	 */
2385	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2386		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2387		goto unlock_page;
2388	}
2389
2390identify_page_state:
2391	res = identify_page_state(pfn, p, page_flags);
2392	mutex_unlock(&mf_mutex);
2393	return res;
2394unlock_page:
2395	unlock_page(p);
2396unlock_mutex:
2397	mutex_unlock(&mf_mutex);
2398	return res;
2399}
2400EXPORT_SYMBOL_GPL(memory_failure);
2401
2402#define MEMORY_FAILURE_FIFO_ORDER	4
2403#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2404
2405struct memory_failure_entry {
2406	unsigned long pfn;
2407	int flags;
2408};
2409
2410struct memory_failure_cpu {
2411	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2412		      MEMORY_FAILURE_FIFO_SIZE);
2413	spinlock_t lock;
2414	struct work_struct work;
2415};
2416
2417static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2418
2419/**
2420 * memory_failure_queue - Schedule handling memory failure of a page.
2421 * @pfn: Page Number of the corrupted page
2422 * @flags: Flags for memory failure handling
2423 *
2424 * This function is called by the low level hardware error handler
2425 * when it detects hardware memory corruption of a page. It schedules
2426 * the recovering of error page, including dropping pages, killing
2427 * processes etc.
2428 *
2429 * The function is primarily of use for corruptions that
2430 * happen outside the current execution context (e.g. when
2431 * detected by a background scrubber)
2432 *
2433 * Can run in IRQ context.
2434 */
2435void memory_failure_queue(unsigned long pfn, int flags)
2436{
2437	struct memory_failure_cpu *mf_cpu;
2438	unsigned long proc_flags;
2439	struct memory_failure_entry entry = {
2440		.pfn =		pfn,
2441		.flags =	flags,
2442	};
2443
2444	mf_cpu = &get_cpu_var(memory_failure_cpu);
2445	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2446	if (kfifo_put(&mf_cpu->fifo, entry))
2447		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2448	else
2449		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2450		       pfn);
2451	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2452	put_cpu_var(memory_failure_cpu);
2453}
2454EXPORT_SYMBOL_GPL(memory_failure_queue);
2455
2456static void memory_failure_work_func(struct work_struct *work)
2457{
2458	struct memory_failure_cpu *mf_cpu;
2459	struct memory_failure_entry entry = { 0, };
2460	unsigned long proc_flags;
2461	int gotten;
2462
2463	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2464	for (;;) {
2465		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2466		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2467		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2468		if (!gotten)
2469			break;
2470		if (entry.flags & MF_SOFT_OFFLINE)
2471			soft_offline_page(entry.pfn, entry.flags);
2472		else
2473			memory_failure(entry.pfn, entry.flags);
2474	}
2475}
2476
2477/*
2478 * Process memory_failure work queued on the specified CPU.
2479 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2480 */
2481void memory_failure_queue_kick(int cpu)
2482{
2483	struct memory_failure_cpu *mf_cpu;
2484
2485	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2486	cancel_work_sync(&mf_cpu->work);
2487	memory_failure_work_func(&mf_cpu->work);
2488}
2489
2490static int __init memory_failure_init(void)
2491{
2492	struct memory_failure_cpu *mf_cpu;
2493	int cpu;
2494
2495	for_each_possible_cpu(cpu) {
2496		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2497		spin_lock_init(&mf_cpu->lock);
2498		INIT_KFIFO(mf_cpu->fifo);
2499		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2500	}
2501
2502	register_sysctl_init("vm", memory_failure_table);
2503
2504	return 0;
2505}
2506core_initcall(memory_failure_init);
2507
2508#undef pr_fmt
2509#define pr_fmt(fmt)	"" fmt
2510#define unpoison_pr_info(fmt, pfn, rs)			\
2511({							\
2512	if (__ratelimit(rs))				\
2513		pr_info(fmt, pfn);			\
2514})
2515
2516/**
2517 * unpoison_memory - Unpoison a previously poisoned page
2518 * @pfn: Page number of the to be unpoisoned page
2519 *
2520 * Software-unpoison a page that has been poisoned by
2521 * memory_failure() earlier.
2522 *
2523 * This is only done on the software-level, so it only works
2524 * for linux injected failures, not real hardware failures
2525 *
2526 * Returns 0 for success, otherwise -errno.
2527 */
2528int unpoison_memory(unsigned long pfn)
2529{
2530	struct folio *folio;
2531	struct page *p;
2532	int ret = -EBUSY, ghp;
2533	unsigned long count = 1;
2534	bool huge = false;
2535	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2536					DEFAULT_RATELIMIT_BURST);
2537
2538	if (!pfn_valid(pfn))
2539		return -ENXIO;
2540
2541	p = pfn_to_page(pfn);
2542	folio = page_folio(p);
2543
2544	mutex_lock(&mf_mutex);
2545
2546	if (hw_memory_failure) {
2547		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2548				 pfn, &unpoison_rs);
2549		ret = -EOPNOTSUPP;
2550		goto unlock_mutex;
2551	}
2552
2553	if (!PageHWPoison(p)) {
2554		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2555				 pfn, &unpoison_rs);
2556		goto unlock_mutex;
2557	}
2558
2559	if (folio_ref_count(folio) > 1) {
2560		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2561				 pfn, &unpoison_rs);
2562		goto unlock_mutex;
2563	}
2564
2565	if (folio_test_slab(folio) || PageTable(&folio->page) ||
2566	    folio_test_reserved(folio) || PageOffline(&folio->page))
2567		goto unlock_mutex;
2568
2569	/*
2570	 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2571	 * in folio_mapped() has to be done after folio_test_slab() is checked.
2572	 */
2573	if (folio_mapped(folio)) {
2574		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2575				 pfn, &unpoison_rs);
2576		goto unlock_mutex;
2577	}
2578
2579	if (folio_mapping(folio)) {
2580		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2581				 pfn, &unpoison_rs);
2582		goto unlock_mutex;
2583	}
2584
2585	ghp = get_hwpoison_page(p, MF_UNPOISON);
2586	if (!ghp) {
2587		if (PageHuge(p)) {
2588			huge = true;
2589			count = folio_free_raw_hwp(folio, false);
2590			if (count == 0)
2591				goto unlock_mutex;
2592		}
2593		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2594	} else if (ghp < 0) {
2595		if (ghp == -EHWPOISON) {
2596			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2597		} else {
2598			ret = ghp;
2599			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2600					 pfn, &unpoison_rs);
2601		}
2602	} else {
2603		if (PageHuge(p)) {
2604			huge = true;
2605			count = folio_free_raw_hwp(folio, false);
2606			if (count == 0) {
2607				folio_put(folio);
2608				goto unlock_mutex;
2609			}
2610		}
2611
2612		folio_put(folio);
2613		if (TestClearPageHWPoison(p)) {
2614			folio_put(folio);
2615			ret = 0;
2616		}
2617	}
2618
2619unlock_mutex:
2620	mutex_unlock(&mf_mutex);
2621	if (!ret) {
2622		if (!huge)
2623			num_poisoned_pages_sub(pfn, 1);
2624		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2625				 page_to_pfn(p), &unpoison_rs);
2626	}
2627	return ret;
2628}
2629EXPORT_SYMBOL(unpoison_memory);
2630
2631static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
2632{
2633	bool isolated = false;
2634
2635	if (folio_test_hugetlb(folio)) {
2636		isolated = isolate_hugetlb(folio, pagelist);
2637	} else {
2638		bool lru = !__folio_test_movable(folio);
2639
2640		if (lru)
2641			isolated = folio_isolate_lru(folio);
2642		else
2643			isolated = isolate_movable_page(&folio->page,
2644							ISOLATE_UNEVICTABLE);
2645
2646		if (isolated) {
2647			list_add(&folio->lru, pagelist);
2648			if (lru)
2649				node_stat_add_folio(folio, NR_ISOLATED_ANON +
2650						    folio_is_file_lru(folio));
2651		}
2652	}
2653
2654	/*
2655	 * If we succeed to isolate the folio, we grabbed another refcount on
2656	 * the folio, so we can safely drop the one we got from get_any_page().
2657	 * If we failed to isolate the folio, it means that we cannot go further
2658	 * and we will return an error, so drop the reference we got from
2659	 * get_any_page() as well.
2660	 */
2661	folio_put(folio);
2662	return isolated;
2663}
2664
2665/*
2666 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2667 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2668 * If the page is mapped, it migrates the contents over.
2669 */
2670static int soft_offline_in_use_page(struct page *page)
2671{
2672	long ret = 0;
2673	unsigned long pfn = page_to_pfn(page);
2674	struct folio *folio = page_folio(page);
2675	char const *msg_page[] = {"page", "hugepage"};
2676	bool huge = folio_test_hugetlb(folio);
2677	LIST_HEAD(pagelist);
2678	struct migration_target_control mtc = {
2679		.nid = NUMA_NO_NODE,
2680		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2681	};
2682
2683	if (!huge && folio_test_large(folio)) {
2684		if (try_to_split_thp_page(page)) {
2685			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2686			return -EBUSY;
2687		}
2688		folio = page_folio(page);
2689	}
2690
2691	folio_lock(folio);
2692	if (!huge)
2693		folio_wait_writeback(folio);
2694	if (PageHWPoison(page)) {
2695		folio_unlock(folio);
2696		folio_put(folio);
2697		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2698		return 0;
2699	}
2700
2701	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2702		/*
2703		 * Try to invalidate first. This should work for
2704		 * non dirty unmapped page cache pages.
2705		 */
2706		ret = mapping_evict_folio(folio_mapping(folio), folio);
2707	folio_unlock(folio);
2708
2709	if (ret) {
2710		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2711		page_handle_poison(page, false, true);
2712		return 0;
2713	}
2714
2715	if (mf_isolate_folio(folio, &pagelist)) {
2716		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2717			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2718		if (!ret) {
2719			bool release = !huge;
2720
2721			if (!page_handle_poison(page, huge, release))
2722				ret = -EBUSY;
2723		} else {
2724			if (!list_empty(&pagelist))
2725				putback_movable_pages(&pagelist);
2726
2727			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2728				pfn, msg_page[huge], ret, &page->flags);
2729			if (ret > 0)
2730				ret = -EBUSY;
2731		}
2732	} else {
2733		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2734			pfn, msg_page[huge], page_count(page), &page->flags);
2735		ret = -EBUSY;
2736	}
2737	return ret;
2738}
2739
2740/**
2741 * soft_offline_page - Soft offline a page.
2742 * @pfn: pfn to soft-offline
2743 * @flags: flags. Same as memory_failure().
2744 *
2745 * Returns 0 on success
2746 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2747 *         < 0 otherwise negated errno.
2748 *
2749 * Soft offline a page, by migration or invalidation,
2750 * without killing anything. This is for the case when
2751 * a page is not corrupted yet (so it's still valid to access),
2752 * but has had a number of corrected errors and is better taken
2753 * out.
2754 *
2755 * The actual policy on when to do that is maintained by
2756 * user space.
2757 *
2758 * This should never impact any application or cause data loss,
2759 * however it might take some time.
2760 *
2761 * This is not a 100% solution for all memory, but tries to be
2762 * ``good enough'' for the majority of memory.
2763 */
2764int soft_offline_page(unsigned long pfn, int flags)
2765{
2766	int ret;
2767	bool try_again = true;
2768	struct page *page;
2769
2770	if (!pfn_valid(pfn)) {
2771		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2772		return -ENXIO;
2773	}
2774
2775	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2776	page = pfn_to_online_page(pfn);
2777	if (!page) {
2778		put_ref_page(pfn, flags);
2779		return -EIO;
2780	}
2781
2782	mutex_lock(&mf_mutex);
2783
2784	if (PageHWPoison(page)) {
2785		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2786		put_ref_page(pfn, flags);
2787		mutex_unlock(&mf_mutex);
2788		return 0;
2789	}
2790
2791retry:
2792	get_online_mems();
2793	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2794	put_online_mems();
2795
2796	if (hwpoison_filter(page)) {
2797		if (ret > 0)
2798			put_page(page);
2799
2800		mutex_unlock(&mf_mutex);
2801		return -EOPNOTSUPP;
2802	}
2803
2804	if (ret > 0) {
2805		ret = soft_offline_in_use_page(page);
2806	} else if (ret == 0) {
2807		if (!page_handle_poison(page, true, false)) {
2808			if (try_again) {
2809				try_again = false;
2810				flags &= ~MF_COUNT_INCREASED;
2811				goto retry;
2812			}
2813			ret = -EBUSY;
2814		}
2815	}
2816
2817	mutex_unlock(&mf_mutex);
2818
2819	return ret;
2820}
2821