1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/pagevec.h>
37#include <linux/vm_event_item.h>
38#include <linux/smp.h>
39#include <linux/page-flags.h>
40#include <linux/backing-dev.h>
41#include <linux/bit_spinlock.h>
42#include <linux/rcupdate.h>
43#include <linux/limits.h>
44#include <linux/export.h>
45#include <linux/mutex.h>
46#include <linux/rbtree.h>
47#include <linux/slab.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/spinlock.h>
51#include <linux/eventfd.h>
52#include <linux/poll.h>
53#include <linux/sort.h>
54#include <linux/fs.h>
55#include <linux/seq_file.h>
56#include <linux/vmpressure.h>
57#include <linux/memremap.h>
58#include <linux/mm_inline.h>
59#include <linux/swap_cgroup.h>
60#include <linux/cpu.h>
61#include <linux/oom.h>
62#include <linux/lockdep.h>
63#include <linux/file.h>
64#include <linux/resume_user_mode.h>
65#include <linux/psi.h>
66#include <linux/seq_buf.h>
67#include <linux/sched/isolation.h>
68#include <linux/kmemleak.h>
69#include "internal.h"
70#include <net/sock.h>
71#include <net/ip.h>
72#include "slab.h"
73#include "swap.h"
74
75#include <linux/uaccess.h>
76
77#include <trace/events/vmscan.h>
78
79struct cgroup_subsys memory_cgrp_subsys __read_mostly;
80EXPORT_SYMBOL(memory_cgrp_subsys);
81
82struct mem_cgroup *root_mem_cgroup __read_mostly;
83
84/* Active memory cgroup to use from an interrupt context */
85DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
86EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
87
88/* Socket memory accounting disabled? */
89static bool cgroup_memory_nosocket __ro_after_init;
90
91/* Kernel memory accounting disabled? */
92static bool cgroup_memory_nokmem __ro_after_init;
93
94/* BPF memory accounting disabled? */
95static bool cgroup_memory_nobpf __ro_after_init;
96
97#ifdef CONFIG_CGROUP_WRITEBACK
98static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99#endif
100
101/* Whether legacy memory+swap accounting is active */
102static bool do_memsw_account(void)
103{
104	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
105}
106
107#define THRESHOLDS_EVENTS_TARGET 128
108#define SOFTLIMIT_EVENTS_TARGET 1024
109
110/*
111 * Cgroups above their limits are maintained in a RB-Tree, independent of
112 * their hierarchy representation
113 */
114
115struct mem_cgroup_tree_per_node {
116	struct rb_root rb_root;
117	struct rb_node *rb_rightmost;
118	spinlock_t lock;
119};
120
121struct mem_cgroup_tree {
122	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123};
124
125static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126
127/* for OOM */
128struct mem_cgroup_eventfd_list {
129	struct list_head list;
130	struct eventfd_ctx *eventfd;
131};
132
133/*
134 * cgroup_event represents events which userspace want to receive.
135 */
136struct mem_cgroup_event {
137	/*
138	 * memcg which the event belongs to.
139	 */
140	struct mem_cgroup *memcg;
141	/*
142	 * eventfd to signal userspace about the event.
143	 */
144	struct eventfd_ctx *eventfd;
145	/*
146	 * Each of these stored in a list by the cgroup.
147	 */
148	struct list_head list;
149	/*
150	 * register_event() callback will be used to add new userspace
151	 * waiter for changes related to this event.  Use eventfd_signal()
152	 * on eventfd to send notification to userspace.
153	 */
154	int (*register_event)(struct mem_cgroup *memcg,
155			      struct eventfd_ctx *eventfd, const char *args);
156	/*
157	 * unregister_event() callback will be called when userspace closes
158	 * the eventfd or on cgroup removing.  This callback must be set,
159	 * if you want provide notification functionality.
160	 */
161	void (*unregister_event)(struct mem_cgroup *memcg,
162				 struct eventfd_ctx *eventfd);
163	/*
164	 * All fields below needed to unregister event when
165	 * userspace closes eventfd.
166	 */
167	poll_table pt;
168	wait_queue_head_t *wqh;
169	wait_queue_entry_t wait;
170	struct work_struct remove;
171};
172
173static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175
176/* Stuffs for move charges at task migration. */
177/*
178 * Types of charges to be moved.
179 */
180#define MOVE_ANON	0x1U
181#define MOVE_FILE	0x2U
182#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
183
184/* "mc" and its members are protected by cgroup_mutex */
185static struct move_charge_struct {
186	spinlock_t	  lock; /* for from, to */
187	struct mm_struct  *mm;
188	struct mem_cgroup *from;
189	struct mem_cgroup *to;
190	unsigned long flags;
191	unsigned long precharge;
192	unsigned long moved_charge;
193	unsigned long moved_swap;
194	struct task_struct *moving_task;	/* a task moving charges */
195	wait_queue_head_t waitq;		/* a waitq for other context */
196} mc = {
197	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199};
200
201/*
202 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
203 * limit reclaim to prevent infinite loops, if they ever occur.
204 */
205#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
206#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
207
208/* for encoding cft->private value on file */
209enum res_type {
210	_MEM,
211	_MEMSWAP,
212	_KMEM,
213	_TCP,
214};
215
216#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218#define MEMFILE_ATTR(val)	((val) & 0xffff)
219
220/*
221 * Iteration constructs for visiting all cgroups (under a tree).  If
222 * loops are exited prematurely (break), mem_cgroup_iter_break() must
223 * be used for reference counting.
224 */
225#define for_each_mem_cgroup_tree(iter, root)		\
226	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
227	     iter != NULL;				\
228	     iter = mem_cgroup_iter(root, iter, NULL))
229
230#define for_each_mem_cgroup(iter)			\
231	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
232	     iter != NULL;				\
233	     iter = mem_cgroup_iter(NULL, iter, NULL))
234
235static inline bool task_is_dying(void)
236{
237	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
238		(current->flags & PF_EXITING);
239}
240
241/* Some nice accessors for the vmpressure. */
242struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
243{
244	if (!memcg)
245		memcg = root_mem_cgroup;
246	return &memcg->vmpressure;
247}
248
249struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
250{
251	return container_of(vmpr, struct mem_cgroup, vmpressure);
252}
253
254#define CURRENT_OBJCG_UPDATE_BIT 0
255#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
256
257#ifdef CONFIG_MEMCG_KMEM
258static DEFINE_SPINLOCK(objcg_lock);
259
260bool mem_cgroup_kmem_disabled(void)
261{
262	return cgroup_memory_nokmem;
263}
264
265static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266				      unsigned int nr_pages);
267
268static void obj_cgroup_release(struct percpu_ref *ref)
269{
270	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
271	unsigned int nr_bytes;
272	unsigned int nr_pages;
273	unsigned long flags;
274
275	/*
276	 * At this point all allocated objects are freed, and
277	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279	 *
280	 * The following sequence can lead to it:
281	 * 1) CPU0: objcg == stock->cached_objcg
282	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283	 *          PAGE_SIZE bytes are charged
284	 * 3) CPU1: a process from another memcg is allocating something,
285	 *          the stock if flushed,
286	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
287	 * 5) CPU0: we do release this object,
288	 *          92 bytes are added to stock->nr_bytes
289	 * 6) CPU0: stock is flushed,
290	 *          92 bytes are added to objcg->nr_charged_bytes
291	 *
292	 * In the result, nr_charged_bytes == PAGE_SIZE.
293	 * This page will be uncharged in obj_cgroup_release().
294	 */
295	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297	nr_pages = nr_bytes >> PAGE_SHIFT;
298
299	if (nr_pages)
300		obj_cgroup_uncharge_pages(objcg, nr_pages);
301
302	spin_lock_irqsave(&objcg_lock, flags);
303	list_del(&objcg->list);
304	spin_unlock_irqrestore(&objcg_lock, flags);
305
306	percpu_ref_exit(ref);
307	kfree_rcu(objcg, rcu);
308}
309
310static struct obj_cgroup *obj_cgroup_alloc(void)
311{
312	struct obj_cgroup *objcg;
313	int ret;
314
315	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316	if (!objcg)
317		return NULL;
318
319	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320			      GFP_KERNEL);
321	if (ret) {
322		kfree(objcg);
323		return NULL;
324	}
325	INIT_LIST_HEAD(&objcg->list);
326	return objcg;
327}
328
329static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330				  struct mem_cgroup *parent)
331{
332	struct obj_cgroup *objcg, *iter;
333
334	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335
336	spin_lock_irq(&objcg_lock);
337
338	/* 1) Ready to reparent active objcg. */
339	list_add(&objcg->list, &memcg->objcg_list);
340	/* 2) Reparent active objcg and already reparented objcgs to parent. */
341	list_for_each_entry(iter, &memcg->objcg_list, list)
342		WRITE_ONCE(iter->memcg, parent);
343	/* 3) Move already reparented objcgs to the parent's list */
344	list_splice(&memcg->objcg_list, &parent->objcg_list);
345
346	spin_unlock_irq(&objcg_lock);
347
348	percpu_ref_kill(&objcg->refcnt);
349}
350
351/*
352 * A lot of the calls to the cache allocation functions are expected to be
353 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
354 * conditional to this static branch, we'll have to allow modules that does
355 * kmem_cache_alloc and the such to see this symbol as well
356 */
357DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
358EXPORT_SYMBOL(memcg_kmem_online_key);
359
360DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
361EXPORT_SYMBOL(memcg_bpf_enabled_key);
362#endif
363
364/**
365 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
366 * @folio: folio of interest
367 *
368 * If memcg is bound to the default hierarchy, css of the memcg associated
369 * with @folio is returned.  The returned css remains associated with @folio
370 * until it is released.
371 *
372 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
373 * is returned.
374 */
375struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
376{
377	struct mem_cgroup *memcg = folio_memcg(folio);
378
379	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
380		memcg = root_mem_cgroup;
381
382	return &memcg->css;
383}
384
385/**
386 * page_cgroup_ino - return inode number of the memcg a page is charged to
387 * @page: the page
388 *
389 * Look up the closest online ancestor of the memory cgroup @page is charged to
390 * and return its inode number or 0 if @page is not charged to any cgroup. It
391 * is safe to call this function without holding a reference to @page.
392 *
393 * Note, this function is inherently racy, because there is nothing to prevent
394 * the cgroup inode from getting torn down and potentially reallocated a moment
395 * after page_cgroup_ino() returns, so it only should be used by callers that
396 * do not care (such as procfs interfaces).
397 */
398ino_t page_cgroup_ino(struct page *page)
399{
400	struct mem_cgroup *memcg;
401	unsigned long ino = 0;
402
403	rcu_read_lock();
404	/* page_folio() is racy here, but the entire function is racy anyway */
405	memcg = folio_memcg_check(page_folio(page));
406
407	while (memcg && !(memcg->css.flags & CSS_ONLINE))
408		memcg = parent_mem_cgroup(memcg);
409	if (memcg)
410		ino = cgroup_ino(memcg->css.cgroup);
411	rcu_read_unlock();
412	return ino;
413}
414
415static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
416					 struct mem_cgroup_tree_per_node *mctz,
417					 unsigned long new_usage_in_excess)
418{
419	struct rb_node **p = &mctz->rb_root.rb_node;
420	struct rb_node *parent = NULL;
421	struct mem_cgroup_per_node *mz_node;
422	bool rightmost = true;
423
424	if (mz->on_tree)
425		return;
426
427	mz->usage_in_excess = new_usage_in_excess;
428	if (!mz->usage_in_excess)
429		return;
430	while (*p) {
431		parent = *p;
432		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
433					tree_node);
434		if (mz->usage_in_excess < mz_node->usage_in_excess) {
435			p = &(*p)->rb_left;
436			rightmost = false;
437		} else {
438			p = &(*p)->rb_right;
439		}
440	}
441
442	if (rightmost)
443		mctz->rb_rightmost = &mz->tree_node;
444
445	rb_link_node(&mz->tree_node, parent, p);
446	rb_insert_color(&mz->tree_node, &mctz->rb_root);
447	mz->on_tree = true;
448}
449
450static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
451					 struct mem_cgroup_tree_per_node *mctz)
452{
453	if (!mz->on_tree)
454		return;
455
456	if (&mz->tree_node == mctz->rb_rightmost)
457		mctz->rb_rightmost = rb_prev(&mz->tree_node);
458
459	rb_erase(&mz->tree_node, &mctz->rb_root);
460	mz->on_tree = false;
461}
462
463static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
464				       struct mem_cgroup_tree_per_node *mctz)
465{
466	unsigned long flags;
467
468	spin_lock_irqsave(&mctz->lock, flags);
469	__mem_cgroup_remove_exceeded(mz, mctz);
470	spin_unlock_irqrestore(&mctz->lock, flags);
471}
472
473static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
474{
475	unsigned long nr_pages = page_counter_read(&memcg->memory);
476	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
477	unsigned long excess = 0;
478
479	if (nr_pages > soft_limit)
480		excess = nr_pages - soft_limit;
481
482	return excess;
483}
484
485static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
486{
487	unsigned long excess;
488	struct mem_cgroup_per_node *mz;
489	struct mem_cgroup_tree_per_node *mctz;
490
491	if (lru_gen_enabled()) {
492		if (soft_limit_excess(memcg))
493			lru_gen_soft_reclaim(memcg, nid);
494		return;
495	}
496
497	mctz = soft_limit_tree.rb_tree_per_node[nid];
498	if (!mctz)
499		return;
500	/*
501	 * Necessary to update all ancestors when hierarchy is used.
502	 * because their event counter is not touched.
503	 */
504	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
505		mz = memcg->nodeinfo[nid];
506		excess = soft_limit_excess(memcg);
507		/*
508		 * We have to update the tree if mz is on RB-tree or
509		 * mem is over its softlimit.
510		 */
511		if (excess || mz->on_tree) {
512			unsigned long flags;
513
514			spin_lock_irqsave(&mctz->lock, flags);
515			/* if on-tree, remove it */
516			if (mz->on_tree)
517				__mem_cgroup_remove_exceeded(mz, mctz);
518			/*
519			 * Insert again. mz->usage_in_excess will be updated.
520			 * If excess is 0, no tree ops.
521			 */
522			__mem_cgroup_insert_exceeded(mz, mctz, excess);
523			spin_unlock_irqrestore(&mctz->lock, flags);
524		}
525	}
526}
527
528static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
529{
530	struct mem_cgroup_tree_per_node *mctz;
531	struct mem_cgroup_per_node *mz;
532	int nid;
533
534	for_each_node(nid) {
535		mz = memcg->nodeinfo[nid];
536		mctz = soft_limit_tree.rb_tree_per_node[nid];
537		if (mctz)
538			mem_cgroup_remove_exceeded(mz, mctz);
539	}
540}
541
542static struct mem_cgroup_per_node *
543__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
544{
545	struct mem_cgroup_per_node *mz;
546
547retry:
548	mz = NULL;
549	if (!mctz->rb_rightmost)
550		goto done;		/* Nothing to reclaim from */
551
552	mz = rb_entry(mctz->rb_rightmost,
553		      struct mem_cgroup_per_node, tree_node);
554	/*
555	 * Remove the node now but someone else can add it back,
556	 * we will to add it back at the end of reclaim to its correct
557	 * position in the tree.
558	 */
559	__mem_cgroup_remove_exceeded(mz, mctz);
560	if (!soft_limit_excess(mz->memcg) ||
561	    !css_tryget(&mz->memcg->css))
562		goto retry;
563done:
564	return mz;
565}
566
567static struct mem_cgroup_per_node *
568mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
569{
570	struct mem_cgroup_per_node *mz;
571
572	spin_lock_irq(&mctz->lock);
573	mz = __mem_cgroup_largest_soft_limit_node(mctz);
574	spin_unlock_irq(&mctz->lock);
575	return mz;
576}
577
578/* Subset of vm_event_item to report for memcg event stats */
579static const unsigned int memcg_vm_event_stat[] = {
580	PGPGIN,
581	PGPGOUT,
582	PGSCAN_KSWAPD,
583	PGSCAN_DIRECT,
584	PGSCAN_KHUGEPAGED,
585	PGSTEAL_KSWAPD,
586	PGSTEAL_DIRECT,
587	PGSTEAL_KHUGEPAGED,
588	PGFAULT,
589	PGMAJFAULT,
590	PGREFILL,
591	PGACTIVATE,
592	PGDEACTIVATE,
593	PGLAZYFREE,
594	PGLAZYFREED,
595#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
596	ZSWPIN,
597	ZSWPOUT,
598	ZSWPWB,
599#endif
600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
601	THP_FAULT_ALLOC,
602	THP_COLLAPSE_ALLOC,
603	THP_SWPOUT,
604	THP_SWPOUT_FALLBACK,
605#endif
606};
607
608#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
609static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
610
611static void init_memcg_events(void)
612{
613	int i;
614
615	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
616		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
617}
618
619static inline int memcg_events_index(enum vm_event_item idx)
620{
621	return mem_cgroup_events_index[idx] - 1;
622}
623
624struct memcg_vmstats_percpu {
625	/* Stats updates since the last flush */
626	unsigned int			stats_updates;
627
628	/* Cached pointers for fast iteration in memcg_rstat_updated() */
629	struct memcg_vmstats_percpu	*parent;
630	struct memcg_vmstats		*vmstats;
631
632	/* The above should fit a single cacheline for memcg_rstat_updated() */
633
634	/* Local (CPU and cgroup) page state & events */
635	long			state[MEMCG_NR_STAT];
636	unsigned long		events[NR_MEMCG_EVENTS];
637
638	/* Delta calculation for lockless upward propagation */
639	long			state_prev[MEMCG_NR_STAT];
640	unsigned long		events_prev[NR_MEMCG_EVENTS];
641
642	/* Cgroup1: threshold notifications & softlimit tree updates */
643	unsigned long		nr_page_events;
644	unsigned long		targets[MEM_CGROUP_NTARGETS];
645} ____cacheline_aligned;
646
647struct memcg_vmstats {
648	/* Aggregated (CPU and subtree) page state & events */
649	long			state[MEMCG_NR_STAT];
650	unsigned long		events[NR_MEMCG_EVENTS];
651
652	/* Non-hierarchical (CPU aggregated) page state & events */
653	long			state_local[MEMCG_NR_STAT];
654	unsigned long		events_local[NR_MEMCG_EVENTS];
655
656	/* Pending child counts during tree propagation */
657	long			state_pending[MEMCG_NR_STAT];
658	unsigned long		events_pending[NR_MEMCG_EVENTS];
659
660	/* Stats updates since the last flush */
661	atomic64_t		stats_updates;
662};
663
664/*
665 * memcg and lruvec stats flushing
666 *
667 * Many codepaths leading to stats update or read are performance sensitive and
668 * adding stats flushing in such codepaths is not desirable. So, to optimize the
669 * flushing the kernel does:
670 *
671 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
672 *    rstat update tree grow unbounded.
673 *
674 * 2) Flush the stats synchronously on reader side only when there are more than
675 *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
676 *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
677 *    only for 2 seconds due to (1).
678 */
679static void flush_memcg_stats_dwork(struct work_struct *w);
680static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
681static u64 flush_last_time;
682
683#define FLUSH_TIME (2UL*HZ)
684
685/*
686 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
687 * not rely on this as part of an acquired spinlock_t lock. These functions are
688 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
689 * is sufficient.
690 */
691static void memcg_stats_lock(void)
692{
693	preempt_disable_nested();
694	VM_WARN_ON_IRQS_ENABLED();
695}
696
697static void __memcg_stats_lock(void)
698{
699	preempt_disable_nested();
700}
701
702static void memcg_stats_unlock(void)
703{
704	preempt_enable_nested();
705}
706
707
708static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
709{
710	return atomic64_read(&vmstats->stats_updates) >
711		MEMCG_CHARGE_BATCH * num_online_cpus();
712}
713
714static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
715{
716	struct memcg_vmstats_percpu *statc;
717	int cpu = smp_processor_id();
718
719	if (!val)
720		return;
721
722	cgroup_rstat_updated(memcg->css.cgroup, cpu);
723	statc = this_cpu_ptr(memcg->vmstats_percpu);
724	for (; statc; statc = statc->parent) {
725		statc->stats_updates += abs(val);
726		if (statc->stats_updates < MEMCG_CHARGE_BATCH)
727			continue;
728
729		/*
730		 * If @memcg is already flush-able, increasing stats_updates is
731		 * redundant. Avoid the overhead of the atomic update.
732		 */
733		if (!memcg_vmstats_needs_flush(statc->vmstats))
734			atomic64_add(statc->stats_updates,
735				     &statc->vmstats->stats_updates);
736		statc->stats_updates = 0;
737	}
738}
739
740static void do_flush_stats(struct mem_cgroup *memcg)
741{
742	if (mem_cgroup_is_root(memcg))
743		WRITE_ONCE(flush_last_time, jiffies_64);
744
745	cgroup_rstat_flush(memcg->css.cgroup);
746}
747
748/*
749 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
750 * @memcg: root of the subtree to flush
751 *
752 * Flushing is serialized by the underlying global rstat lock. There is also a
753 * minimum amount of work to be done even if there are no stat updates to flush.
754 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
755 * avoids unnecessary work and contention on the underlying lock.
756 */
757void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
758{
759	if (mem_cgroup_disabled())
760		return;
761
762	if (!memcg)
763		memcg = root_mem_cgroup;
764
765	if (memcg_vmstats_needs_flush(memcg->vmstats))
766		do_flush_stats(memcg);
767}
768
769void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
770{
771	/* Only flush if the periodic flusher is one full cycle late */
772	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
773		mem_cgroup_flush_stats(memcg);
774}
775
776static void flush_memcg_stats_dwork(struct work_struct *w)
777{
778	/*
779	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
780	 * in latency-sensitive paths is as cheap as possible.
781	 */
782	do_flush_stats(root_mem_cgroup);
783	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
784}
785
786unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
787{
788	long x = READ_ONCE(memcg->vmstats->state[idx]);
789#ifdef CONFIG_SMP
790	if (x < 0)
791		x = 0;
792#endif
793	return x;
794}
795
796static int memcg_page_state_unit(int item);
797
798/*
799 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
800 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
801 */
802static int memcg_state_val_in_pages(int idx, int val)
803{
804	int unit = memcg_page_state_unit(idx);
805
806	if (!val || unit == PAGE_SIZE)
807		return val;
808	else
809		return max(val * unit / PAGE_SIZE, 1UL);
810}
811
812/**
813 * __mod_memcg_state - update cgroup memory statistics
814 * @memcg: the memory cgroup
815 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
816 * @val: delta to add to the counter, can be negative
817 */
818void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
819{
820	if (mem_cgroup_disabled())
821		return;
822
823	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
824	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
825}
826
827/* idx can be of type enum memcg_stat_item or node_stat_item. */
828static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
829{
830	long x = READ_ONCE(memcg->vmstats->state_local[idx]);
831
832#ifdef CONFIG_SMP
833	if (x < 0)
834		x = 0;
835#endif
836	return x;
837}
838
839void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840			      int val)
841{
842	struct mem_cgroup_per_node *pn;
843	struct mem_cgroup *memcg;
844
845	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
846	memcg = pn->memcg;
847
848	/*
849	 * The caller from rmap relies on disabled preemption because they never
850	 * update their counter from in-interrupt context. For these two
851	 * counters we check that the update is never performed from an
852	 * interrupt context while other caller need to have disabled interrupt.
853	 */
854	__memcg_stats_lock();
855	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
856		switch (idx) {
857		case NR_ANON_MAPPED:
858		case NR_FILE_MAPPED:
859		case NR_ANON_THPS:
860		case NR_SHMEM_PMDMAPPED:
861		case NR_FILE_PMDMAPPED:
862			WARN_ON_ONCE(!in_task());
863			break;
864		default:
865			VM_WARN_ON_IRQS_ENABLED();
866		}
867	}
868
869	/* Update memcg */
870	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
871
872	/* Update lruvec */
873	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
874
875	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
876	memcg_stats_unlock();
877}
878
879/**
880 * __mod_lruvec_state - update lruvec memory statistics
881 * @lruvec: the lruvec
882 * @idx: the stat item
883 * @val: delta to add to the counter, can be negative
884 *
885 * The lruvec is the intersection of the NUMA node and a cgroup. This
886 * function updates the all three counters that are affected by a
887 * change of state at this level: per-node, per-cgroup, per-lruvec.
888 */
889void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
890			int val)
891{
892	/* Update node */
893	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
894
895	/* Update memcg and lruvec */
896	if (!mem_cgroup_disabled())
897		__mod_memcg_lruvec_state(lruvec, idx, val);
898}
899
900void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
901			     int val)
902{
903	struct mem_cgroup *memcg;
904	pg_data_t *pgdat = folio_pgdat(folio);
905	struct lruvec *lruvec;
906
907	rcu_read_lock();
908	memcg = folio_memcg(folio);
909	/* Untracked pages have no memcg, no lruvec. Update only the node */
910	if (!memcg) {
911		rcu_read_unlock();
912		__mod_node_page_state(pgdat, idx, val);
913		return;
914	}
915
916	lruvec = mem_cgroup_lruvec(memcg, pgdat);
917	__mod_lruvec_state(lruvec, idx, val);
918	rcu_read_unlock();
919}
920EXPORT_SYMBOL(__lruvec_stat_mod_folio);
921
922void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
923{
924	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
925	struct mem_cgroup *memcg;
926	struct lruvec *lruvec;
927
928	rcu_read_lock();
929	memcg = mem_cgroup_from_slab_obj(p);
930
931	/*
932	 * Untracked pages have no memcg, no lruvec. Update only the
933	 * node. If we reparent the slab objects to the root memcg,
934	 * when we free the slab object, we need to update the per-memcg
935	 * vmstats to keep it correct for the root memcg.
936	 */
937	if (!memcg) {
938		__mod_node_page_state(pgdat, idx, val);
939	} else {
940		lruvec = mem_cgroup_lruvec(memcg, pgdat);
941		__mod_lruvec_state(lruvec, idx, val);
942	}
943	rcu_read_unlock();
944}
945
946/**
947 * __count_memcg_events - account VM events in a cgroup
948 * @memcg: the memory cgroup
949 * @idx: the event item
950 * @count: the number of events that occurred
951 */
952void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
953			  unsigned long count)
954{
955	int index = memcg_events_index(idx);
956
957	if (mem_cgroup_disabled() || index < 0)
958		return;
959
960	memcg_stats_lock();
961	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
962	memcg_rstat_updated(memcg, count);
963	memcg_stats_unlock();
964}
965
966static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
967{
968	int index = memcg_events_index(event);
969
970	if (index < 0)
971		return 0;
972	return READ_ONCE(memcg->vmstats->events[index]);
973}
974
975static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
976{
977	int index = memcg_events_index(event);
978
979	if (index < 0)
980		return 0;
981
982	return READ_ONCE(memcg->vmstats->events_local[index]);
983}
984
985static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
986					 int nr_pages)
987{
988	/* pagein of a big page is an event. So, ignore page size */
989	if (nr_pages > 0)
990		__count_memcg_events(memcg, PGPGIN, 1);
991	else {
992		__count_memcg_events(memcg, PGPGOUT, 1);
993		nr_pages = -nr_pages; /* for event */
994	}
995
996	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
997}
998
999static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000				       enum mem_cgroup_events_target target)
1001{
1002	unsigned long val, next;
1003
1004	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
1005	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
1006	/* from time_after() in jiffies.h */
1007	if ((long)(next - val) < 0) {
1008		switch (target) {
1009		case MEM_CGROUP_TARGET_THRESH:
1010			next = val + THRESHOLDS_EVENTS_TARGET;
1011			break;
1012		case MEM_CGROUP_TARGET_SOFTLIMIT:
1013			next = val + SOFTLIMIT_EVENTS_TARGET;
1014			break;
1015		default:
1016			break;
1017		}
1018		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
1019		return true;
1020	}
1021	return false;
1022}
1023
1024/*
1025 * Check events in order.
1026 *
1027 */
1028static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1029{
1030	if (IS_ENABLED(CONFIG_PREEMPT_RT))
1031		return;
1032
1033	/* threshold event is triggered in finer grain than soft limit */
1034	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1035						MEM_CGROUP_TARGET_THRESH))) {
1036		bool do_softlimit;
1037
1038		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1039						MEM_CGROUP_TARGET_SOFTLIMIT);
1040		mem_cgroup_threshold(memcg);
1041		if (unlikely(do_softlimit))
1042			mem_cgroup_update_tree(memcg, nid);
1043	}
1044}
1045
1046struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047{
1048	/*
1049	 * mm_update_next_owner() may clear mm->owner to NULL
1050	 * if it races with swapoff, page migration, etc.
1051	 * So this can be called with p == NULL.
1052	 */
1053	if (unlikely(!p))
1054		return NULL;
1055
1056	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1057}
1058EXPORT_SYMBOL(mem_cgroup_from_task);
1059
1060static __always_inline struct mem_cgroup *active_memcg(void)
1061{
1062	if (!in_task())
1063		return this_cpu_read(int_active_memcg);
1064	else
1065		return current->active_memcg;
1066}
1067
1068/**
1069 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1070 * @mm: mm from which memcg should be extracted. It can be NULL.
1071 *
1072 * Obtain a reference on mm->memcg and returns it if successful. If mm
1073 * is NULL, then the memcg is chosen as follows:
1074 * 1) The active memcg, if set.
1075 * 2) current->mm->memcg, if available
1076 * 3) root memcg
1077 * If mem_cgroup is disabled, NULL is returned.
1078 */
1079struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1080{
1081	struct mem_cgroup *memcg;
1082
1083	if (mem_cgroup_disabled())
1084		return NULL;
1085
1086	/*
1087	 * Page cache insertions can happen without an
1088	 * actual mm context, e.g. during disk probing
1089	 * on boot, loopback IO, acct() writes etc.
1090	 *
1091	 * No need to css_get on root memcg as the reference
1092	 * counting is disabled on the root level in the
1093	 * cgroup core. See CSS_NO_REF.
1094	 */
1095	if (unlikely(!mm)) {
1096		memcg = active_memcg();
1097		if (unlikely(memcg)) {
1098			/* remote memcg must hold a ref */
1099			css_get(&memcg->css);
1100			return memcg;
1101		}
1102		mm = current->mm;
1103		if (unlikely(!mm))
1104			return root_mem_cgroup;
1105	}
1106
1107	rcu_read_lock();
1108	do {
1109		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1110		if (unlikely(!memcg))
1111			memcg = root_mem_cgroup;
1112	} while (!css_tryget(&memcg->css));
1113	rcu_read_unlock();
1114	return memcg;
1115}
1116EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1117
1118/**
1119 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1120 */
1121struct mem_cgroup *get_mem_cgroup_from_current(void)
1122{
1123	struct mem_cgroup *memcg;
1124
1125	if (mem_cgroup_disabled())
1126		return NULL;
1127
1128again:
1129	rcu_read_lock();
1130	memcg = mem_cgroup_from_task(current);
1131	if (!css_tryget(&memcg->css)) {
1132		rcu_read_unlock();
1133		goto again;
1134	}
1135	rcu_read_unlock();
1136	return memcg;
1137}
1138
1139/**
1140 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1141 * @root: hierarchy root
1142 * @prev: previously returned memcg, NULL on first invocation
1143 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1144 *
1145 * Returns references to children of the hierarchy below @root, or
1146 * @root itself, or %NULL after a full round-trip.
1147 *
1148 * Caller must pass the return value in @prev on subsequent
1149 * invocations for reference counting, or use mem_cgroup_iter_break()
1150 * to cancel a hierarchy walk before the round-trip is complete.
1151 *
1152 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1153 * in the hierarchy among all concurrent reclaimers operating on the
1154 * same node.
1155 */
1156struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1157				   struct mem_cgroup *prev,
1158				   struct mem_cgroup_reclaim_cookie *reclaim)
1159{
1160	struct mem_cgroup_reclaim_iter *iter;
1161	struct cgroup_subsys_state *css = NULL;
1162	struct mem_cgroup *memcg = NULL;
1163	struct mem_cgroup *pos = NULL;
1164
1165	if (mem_cgroup_disabled())
1166		return NULL;
1167
1168	if (!root)
1169		root = root_mem_cgroup;
1170
1171	rcu_read_lock();
1172
1173	if (reclaim) {
1174		struct mem_cgroup_per_node *mz;
1175
1176		mz = root->nodeinfo[reclaim->pgdat->node_id];
1177		iter = &mz->iter;
1178
1179		/*
1180		 * On start, join the current reclaim iteration cycle.
1181		 * Exit when a concurrent walker completes it.
1182		 */
1183		if (!prev)
1184			reclaim->generation = iter->generation;
1185		else if (reclaim->generation != iter->generation)
1186			goto out_unlock;
1187
1188		while (1) {
1189			pos = READ_ONCE(iter->position);
1190			if (!pos || css_tryget(&pos->css))
1191				break;
1192			/*
1193			 * css reference reached zero, so iter->position will
1194			 * be cleared by ->css_released. However, we should not
1195			 * rely on this happening soon, because ->css_released
1196			 * is called from a work queue, and by busy-waiting we
1197			 * might block it. So we clear iter->position right
1198			 * away.
1199			 */
1200			(void)cmpxchg(&iter->position, pos, NULL);
1201		}
1202	} else if (prev) {
1203		pos = prev;
1204	}
1205
1206	if (pos)
1207		css = &pos->css;
1208
1209	for (;;) {
1210		css = css_next_descendant_pre(css, &root->css);
1211		if (!css) {
1212			/*
1213			 * Reclaimers share the hierarchy walk, and a
1214			 * new one might jump in right at the end of
1215			 * the hierarchy - make sure they see at least
1216			 * one group and restart from the beginning.
1217			 */
1218			if (!prev)
1219				continue;
1220			break;
1221		}
1222
1223		/*
1224		 * Verify the css and acquire a reference.  The root
1225		 * is provided by the caller, so we know it's alive
1226		 * and kicking, and don't take an extra reference.
1227		 */
1228		if (css == &root->css || css_tryget(css)) {
1229			memcg = mem_cgroup_from_css(css);
1230			break;
1231		}
1232	}
1233
1234	if (reclaim) {
1235		/*
1236		 * The position could have already been updated by a competing
1237		 * thread, so check that the value hasn't changed since we read
1238		 * it to avoid reclaiming from the same cgroup twice.
1239		 */
1240		(void)cmpxchg(&iter->position, pos, memcg);
1241
1242		if (pos)
1243			css_put(&pos->css);
1244
1245		if (!memcg)
1246			iter->generation++;
1247	}
1248
1249out_unlock:
1250	rcu_read_unlock();
1251	if (prev && prev != root)
1252		css_put(&prev->css);
1253
1254	return memcg;
1255}
1256
1257/**
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261 */
1262void mem_cgroup_iter_break(struct mem_cgroup *root,
1263			   struct mem_cgroup *prev)
1264{
1265	if (!root)
1266		root = root_mem_cgroup;
1267	if (prev && prev != root)
1268		css_put(&prev->css);
1269}
1270
1271static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1272					struct mem_cgroup *dead_memcg)
1273{
1274	struct mem_cgroup_reclaim_iter *iter;
1275	struct mem_cgroup_per_node *mz;
1276	int nid;
1277
1278	for_each_node(nid) {
1279		mz = from->nodeinfo[nid];
1280		iter = &mz->iter;
1281		cmpxchg(&iter->position, dead_memcg, NULL);
1282	}
1283}
1284
1285static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1286{
1287	struct mem_cgroup *memcg = dead_memcg;
1288	struct mem_cgroup *last;
1289
1290	do {
1291		__invalidate_reclaim_iterators(memcg, dead_memcg);
1292		last = memcg;
1293	} while ((memcg = parent_mem_cgroup(memcg)));
1294
1295	/*
1296	 * When cgroup1 non-hierarchy mode is used,
1297	 * parent_mem_cgroup() does not walk all the way up to the
1298	 * cgroup root (root_mem_cgroup). So we have to handle
1299	 * dead_memcg from cgroup root separately.
1300	 */
1301	if (!mem_cgroup_is_root(last))
1302		__invalidate_reclaim_iterators(root_mem_cgroup,
1303						dead_memcg);
1304}
1305
1306/**
1307 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1308 * @memcg: hierarchy root
1309 * @fn: function to call for each task
1310 * @arg: argument passed to @fn
1311 *
1312 * This function iterates over tasks attached to @memcg or to any of its
1313 * descendants and calls @fn for each task. If @fn returns a non-zero
1314 * value, the function breaks the iteration loop. Otherwise, it will iterate
1315 * over all tasks and return 0.
1316 *
1317 * This function must not be called for the root memory cgroup.
1318 */
1319void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1320			   int (*fn)(struct task_struct *, void *), void *arg)
1321{
1322	struct mem_cgroup *iter;
1323	int ret = 0;
1324
1325	BUG_ON(mem_cgroup_is_root(memcg));
1326
1327	for_each_mem_cgroup_tree(iter, memcg) {
1328		struct css_task_iter it;
1329		struct task_struct *task;
1330
1331		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1332		while (!ret && (task = css_task_iter_next(&it)))
1333			ret = fn(task, arg);
1334		css_task_iter_end(&it);
1335		if (ret) {
1336			mem_cgroup_iter_break(memcg, iter);
1337			break;
1338		}
1339	}
1340}
1341
1342#ifdef CONFIG_DEBUG_VM
1343void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1344{
1345	struct mem_cgroup *memcg;
1346
1347	if (mem_cgroup_disabled())
1348		return;
1349
1350	memcg = folio_memcg(folio);
1351
1352	if (!memcg)
1353		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1354	else
1355		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1356}
1357#endif
1358
1359/**
1360 * folio_lruvec_lock - Lock the lruvec for a folio.
1361 * @folio: Pointer to the folio.
1362 *
1363 * These functions are safe to use under any of the following conditions:
1364 * - folio locked
1365 * - folio_test_lru false
1366 * - folio_memcg_lock()
1367 * - folio frozen (refcount of 0)
1368 *
1369 * Return: The lruvec this folio is on with its lock held.
1370 */
1371struct lruvec *folio_lruvec_lock(struct folio *folio)
1372{
1373	struct lruvec *lruvec = folio_lruvec(folio);
1374
1375	spin_lock(&lruvec->lru_lock);
1376	lruvec_memcg_debug(lruvec, folio);
1377
1378	return lruvec;
1379}
1380
1381/**
1382 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1383 * @folio: Pointer to the folio.
1384 *
1385 * These functions are safe to use under any of the following conditions:
1386 * - folio locked
1387 * - folio_test_lru false
1388 * - folio_memcg_lock()
1389 * - folio frozen (refcount of 0)
1390 *
1391 * Return: The lruvec this folio is on with its lock held and interrupts
1392 * disabled.
1393 */
1394struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1395{
1396	struct lruvec *lruvec = folio_lruvec(folio);
1397
1398	spin_lock_irq(&lruvec->lru_lock);
1399	lruvec_memcg_debug(lruvec, folio);
1400
1401	return lruvec;
1402}
1403
1404/**
1405 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1406 * @folio: Pointer to the folio.
1407 * @flags: Pointer to irqsave flags.
1408 *
1409 * These functions are safe to use under any of the following conditions:
1410 * - folio locked
1411 * - folio_test_lru false
1412 * - folio_memcg_lock()
1413 * - folio frozen (refcount of 0)
1414 *
1415 * Return: The lruvec this folio is on with its lock held and interrupts
1416 * disabled.
1417 */
1418struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1419		unsigned long *flags)
1420{
1421	struct lruvec *lruvec = folio_lruvec(folio);
1422
1423	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1424	lruvec_memcg_debug(lruvec, folio);
1425
1426	return lruvec;
1427}
1428
1429/**
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @zid: zone id of the accounted pages
1434 * @nr_pages: positive when adding or negative when removing
1435 *
1436 * This function must be called under lru_lock, just before a page is added
1437 * to or just after a page is removed from an lru list.
1438 */
1439void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1440				int zid, int nr_pages)
1441{
1442	struct mem_cgroup_per_node *mz;
1443	unsigned long *lru_size;
1444	long size;
1445
1446	if (mem_cgroup_disabled())
1447		return;
1448
1449	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1450	lru_size = &mz->lru_zone_size[zid][lru];
1451
1452	if (nr_pages < 0)
1453		*lru_size += nr_pages;
1454
1455	size = *lru_size;
1456	if (WARN_ONCE(size < 0,
1457		"%s(%p, %d, %d): lru_size %ld\n",
1458		__func__, lruvec, lru, nr_pages, size)) {
1459		VM_BUG_ON(1);
1460		*lru_size = 0;
1461	}
1462
1463	if (nr_pages > 0)
1464		*lru_size += nr_pages;
1465}
1466
1467/**
1468 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1469 * @memcg: the memory cgroup
1470 *
1471 * Returns the maximum amount of memory @mem can be charged with, in
1472 * pages.
1473 */
1474static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1475{
1476	unsigned long margin = 0;
1477	unsigned long count;
1478	unsigned long limit;
1479
1480	count = page_counter_read(&memcg->memory);
1481	limit = READ_ONCE(memcg->memory.max);
1482	if (count < limit)
1483		margin = limit - count;
1484
1485	if (do_memsw_account()) {
1486		count = page_counter_read(&memcg->memsw);
1487		limit = READ_ONCE(memcg->memsw.max);
1488		if (count < limit)
1489			margin = min(margin, limit - count);
1490		else
1491			margin = 0;
1492	}
1493
1494	return margin;
1495}
1496
1497/*
1498 * A routine for checking "mem" is under move_account() or not.
1499 *
1500 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1501 * moving cgroups. This is for waiting at high-memory pressure
1502 * caused by "move".
1503 */
1504static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1505{
1506	struct mem_cgroup *from;
1507	struct mem_cgroup *to;
1508	bool ret = false;
1509	/*
1510	 * Unlike task_move routines, we access mc.to, mc.from not under
1511	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1512	 */
1513	spin_lock(&mc.lock);
1514	from = mc.from;
1515	to = mc.to;
1516	if (!from)
1517		goto unlock;
1518
1519	ret = mem_cgroup_is_descendant(from, memcg) ||
1520		mem_cgroup_is_descendant(to, memcg);
1521unlock:
1522	spin_unlock(&mc.lock);
1523	return ret;
1524}
1525
1526static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1527{
1528	if (mc.moving_task && current != mc.moving_task) {
1529		if (mem_cgroup_under_move(memcg)) {
1530			DEFINE_WAIT(wait);
1531			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1532			/* moving charge context might have finished. */
1533			if (mc.moving_task)
1534				schedule();
1535			finish_wait(&mc.waitq, &wait);
1536			return true;
1537		}
1538	}
1539	return false;
1540}
1541
1542struct memory_stat {
1543	const char *name;
1544	unsigned int idx;
1545};
1546
1547static const struct memory_stat memory_stats[] = {
1548	{ "anon",			NR_ANON_MAPPED			},
1549	{ "file",			NR_FILE_PAGES			},
1550	{ "kernel",			MEMCG_KMEM			},
1551	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1552	{ "pagetables",			NR_PAGETABLE			},
1553	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1554	{ "percpu",			MEMCG_PERCPU_B			},
1555	{ "sock",			MEMCG_SOCK			},
1556	{ "vmalloc",			MEMCG_VMALLOC			},
1557	{ "shmem",			NR_SHMEM			},
1558#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1559	{ "zswap",			MEMCG_ZSWAP_B			},
1560	{ "zswapped",			MEMCG_ZSWAPPED			},
1561#endif
1562	{ "file_mapped",		NR_FILE_MAPPED			},
1563	{ "file_dirty",			NR_FILE_DIRTY			},
1564	{ "file_writeback",		NR_WRITEBACK			},
1565#ifdef CONFIG_SWAP
1566	{ "swapcached",			NR_SWAPCACHE			},
1567#endif
1568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1569	{ "anon_thp",			NR_ANON_THPS			},
1570	{ "file_thp",			NR_FILE_THPS			},
1571	{ "shmem_thp",			NR_SHMEM_THPS			},
1572#endif
1573	{ "inactive_anon",		NR_INACTIVE_ANON		},
1574	{ "active_anon",		NR_ACTIVE_ANON			},
1575	{ "inactive_file",		NR_INACTIVE_FILE		},
1576	{ "active_file",		NR_ACTIVE_FILE			},
1577	{ "unevictable",		NR_UNEVICTABLE			},
1578	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1579	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1580
1581	/* The memory events */
1582	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1583	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1584	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1585	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1586	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1587	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1588	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1589};
1590
1591/* The actual unit of the state item, not the same as the output unit */
1592static int memcg_page_state_unit(int item)
1593{
1594	switch (item) {
1595	case MEMCG_PERCPU_B:
1596	case MEMCG_ZSWAP_B:
1597	case NR_SLAB_RECLAIMABLE_B:
1598	case NR_SLAB_UNRECLAIMABLE_B:
1599		return 1;
1600	case NR_KERNEL_STACK_KB:
1601		return SZ_1K;
1602	default:
1603		return PAGE_SIZE;
1604	}
1605}
1606
1607/* Translate stat items to the correct unit for memory.stat output */
1608static int memcg_page_state_output_unit(int item)
1609{
1610	/*
1611	 * Workingset state is actually in pages, but we export it to userspace
1612	 * as a scalar count of events, so special case it here.
1613	 */
1614	switch (item) {
1615	case WORKINGSET_REFAULT_ANON:
1616	case WORKINGSET_REFAULT_FILE:
1617	case WORKINGSET_ACTIVATE_ANON:
1618	case WORKINGSET_ACTIVATE_FILE:
1619	case WORKINGSET_RESTORE_ANON:
1620	case WORKINGSET_RESTORE_FILE:
1621	case WORKINGSET_NODERECLAIM:
1622		return 1;
1623	default:
1624		return memcg_page_state_unit(item);
1625	}
1626}
1627
1628static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1629						    int item)
1630{
1631	return memcg_page_state(memcg, item) *
1632		memcg_page_state_output_unit(item);
1633}
1634
1635static inline unsigned long memcg_page_state_local_output(
1636		struct mem_cgroup *memcg, int item)
1637{
1638	return memcg_page_state_local(memcg, item) *
1639		memcg_page_state_output_unit(item);
1640}
1641
1642static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1643{
1644	int i;
1645
1646	/*
1647	 * Provide statistics on the state of the memory subsystem as
1648	 * well as cumulative event counters that show past behavior.
1649	 *
1650	 * This list is ordered following a combination of these gradients:
1651	 * 1) generic big picture -> specifics and details
1652	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1653	 *
1654	 * Current memory state:
1655	 */
1656	mem_cgroup_flush_stats(memcg);
1657
1658	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1659		u64 size;
1660
1661		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1662		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1663
1664		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1665			size += memcg_page_state_output(memcg,
1666							NR_SLAB_RECLAIMABLE_B);
1667			seq_buf_printf(s, "slab %llu\n", size);
1668		}
1669	}
1670
1671	/* Accumulated memory events */
1672	seq_buf_printf(s, "pgscan %lu\n",
1673		       memcg_events(memcg, PGSCAN_KSWAPD) +
1674		       memcg_events(memcg, PGSCAN_DIRECT) +
1675		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1676	seq_buf_printf(s, "pgsteal %lu\n",
1677		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1678		       memcg_events(memcg, PGSTEAL_DIRECT) +
1679		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1680
1681	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1682		if (memcg_vm_event_stat[i] == PGPGIN ||
1683		    memcg_vm_event_stat[i] == PGPGOUT)
1684			continue;
1685
1686		seq_buf_printf(s, "%s %lu\n",
1687			       vm_event_name(memcg_vm_event_stat[i]),
1688			       memcg_events(memcg, memcg_vm_event_stat[i]));
1689	}
1690
1691	/* The above should easily fit into one page */
1692	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1693}
1694
1695static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1696
1697static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1698{
1699	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1700		memcg_stat_format(memcg, s);
1701	else
1702		memcg1_stat_format(memcg, s);
1703	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1704}
1705
1706/**
1707 * mem_cgroup_print_oom_context: Print OOM information relevant to
1708 * memory controller.
1709 * @memcg: The memory cgroup that went over limit
1710 * @p: Task that is going to be killed
1711 *
1712 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1713 * enabled
1714 */
1715void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1716{
1717	rcu_read_lock();
1718
1719	if (memcg) {
1720		pr_cont(",oom_memcg=");
1721		pr_cont_cgroup_path(memcg->css.cgroup);
1722	} else
1723		pr_cont(",global_oom");
1724	if (p) {
1725		pr_cont(",task_memcg=");
1726		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1727	}
1728	rcu_read_unlock();
1729}
1730
1731/**
1732 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1733 * memory controller.
1734 * @memcg: The memory cgroup that went over limit
1735 */
1736void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1737{
1738	/* Use static buffer, for the caller is holding oom_lock. */
1739	static char buf[PAGE_SIZE];
1740	struct seq_buf s;
1741
1742	lockdep_assert_held(&oom_lock);
1743
1744	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1745		K((u64)page_counter_read(&memcg->memory)),
1746		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1747	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1748		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1749			K((u64)page_counter_read(&memcg->swap)),
1750			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1751	else {
1752		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1753			K((u64)page_counter_read(&memcg->memsw)),
1754			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1755		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1756			K((u64)page_counter_read(&memcg->kmem)),
1757			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1758	}
1759
1760	pr_info("Memory cgroup stats for ");
1761	pr_cont_cgroup_path(memcg->css.cgroup);
1762	pr_cont(":");
1763	seq_buf_init(&s, buf, sizeof(buf));
1764	memory_stat_format(memcg, &s);
1765	seq_buf_do_printk(&s, KERN_INFO);
1766}
1767
1768/*
1769 * Return the memory (and swap, if configured) limit for a memcg.
1770 */
1771unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1772{
1773	unsigned long max = READ_ONCE(memcg->memory.max);
1774
1775	if (do_memsw_account()) {
1776		if (mem_cgroup_swappiness(memcg)) {
1777			/* Calculate swap excess capacity from memsw limit */
1778			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1779
1780			max += min(swap, (unsigned long)total_swap_pages);
1781		}
1782	} else {
1783		if (mem_cgroup_swappiness(memcg))
1784			max += min(READ_ONCE(memcg->swap.max),
1785				   (unsigned long)total_swap_pages);
1786	}
1787	return max;
1788}
1789
1790unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1791{
1792	return page_counter_read(&memcg->memory);
1793}
1794
1795static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1796				     int order)
1797{
1798	struct oom_control oc = {
1799		.zonelist = NULL,
1800		.nodemask = NULL,
1801		.memcg = memcg,
1802		.gfp_mask = gfp_mask,
1803		.order = order,
1804	};
1805	bool ret = true;
1806
1807	if (mutex_lock_killable(&oom_lock))
1808		return true;
1809
1810	if (mem_cgroup_margin(memcg) >= (1 << order))
1811		goto unlock;
1812
1813	/*
1814	 * A few threads which were not waiting at mutex_lock_killable() can
1815	 * fail to bail out. Therefore, check again after holding oom_lock.
1816	 */
1817	ret = task_is_dying() || out_of_memory(&oc);
1818
1819unlock:
1820	mutex_unlock(&oom_lock);
1821	return ret;
1822}
1823
1824static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1825				   pg_data_t *pgdat,
1826				   gfp_t gfp_mask,
1827				   unsigned long *total_scanned)
1828{
1829	struct mem_cgroup *victim = NULL;
1830	int total = 0;
1831	int loop = 0;
1832	unsigned long excess;
1833	unsigned long nr_scanned;
1834	struct mem_cgroup_reclaim_cookie reclaim = {
1835		.pgdat = pgdat,
1836	};
1837
1838	excess = soft_limit_excess(root_memcg);
1839
1840	while (1) {
1841		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1842		if (!victim) {
1843			loop++;
1844			if (loop >= 2) {
1845				/*
1846				 * If we have not been able to reclaim
1847				 * anything, it might because there are
1848				 * no reclaimable pages under this hierarchy
1849				 */
1850				if (!total)
1851					break;
1852				/*
1853				 * We want to do more targeted reclaim.
1854				 * excess >> 2 is not to excessive so as to
1855				 * reclaim too much, nor too less that we keep
1856				 * coming back to reclaim from this cgroup
1857				 */
1858				if (total >= (excess >> 2) ||
1859					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1860					break;
1861			}
1862			continue;
1863		}
1864		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1865					pgdat, &nr_scanned);
1866		*total_scanned += nr_scanned;
1867		if (!soft_limit_excess(root_memcg))
1868			break;
1869	}
1870	mem_cgroup_iter_break(root_memcg, victim);
1871	return total;
1872}
1873
1874#ifdef CONFIG_LOCKDEP
1875static struct lockdep_map memcg_oom_lock_dep_map = {
1876	.name = "memcg_oom_lock",
1877};
1878#endif
1879
1880static DEFINE_SPINLOCK(memcg_oom_lock);
1881
1882/*
1883 * Check OOM-Killer is already running under our hierarchy.
1884 * If someone is running, return false.
1885 */
1886static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1887{
1888	struct mem_cgroup *iter, *failed = NULL;
1889
1890	spin_lock(&memcg_oom_lock);
1891
1892	for_each_mem_cgroup_tree(iter, memcg) {
1893		if (iter->oom_lock) {
1894			/*
1895			 * this subtree of our hierarchy is already locked
1896			 * so we cannot give a lock.
1897			 */
1898			failed = iter;
1899			mem_cgroup_iter_break(memcg, iter);
1900			break;
1901		} else
1902			iter->oom_lock = true;
1903	}
1904
1905	if (failed) {
1906		/*
1907		 * OK, we failed to lock the whole subtree so we have
1908		 * to clean up what we set up to the failing subtree
1909		 */
1910		for_each_mem_cgroup_tree(iter, memcg) {
1911			if (iter == failed) {
1912				mem_cgroup_iter_break(memcg, iter);
1913				break;
1914			}
1915			iter->oom_lock = false;
1916		}
1917	} else
1918		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1919
1920	spin_unlock(&memcg_oom_lock);
1921
1922	return !failed;
1923}
1924
1925static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1926{
1927	struct mem_cgroup *iter;
1928
1929	spin_lock(&memcg_oom_lock);
1930	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1931	for_each_mem_cgroup_tree(iter, memcg)
1932		iter->oom_lock = false;
1933	spin_unlock(&memcg_oom_lock);
1934}
1935
1936static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1937{
1938	struct mem_cgroup *iter;
1939
1940	spin_lock(&memcg_oom_lock);
1941	for_each_mem_cgroup_tree(iter, memcg)
1942		iter->under_oom++;
1943	spin_unlock(&memcg_oom_lock);
1944}
1945
1946static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1947{
1948	struct mem_cgroup *iter;
1949
1950	/*
1951	 * Be careful about under_oom underflows because a child memcg
1952	 * could have been added after mem_cgroup_mark_under_oom.
1953	 */
1954	spin_lock(&memcg_oom_lock);
1955	for_each_mem_cgroup_tree(iter, memcg)
1956		if (iter->under_oom > 0)
1957			iter->under_oom--;
1958	spin_unlock(&memcg_oom_lock);
1959}
1960
1961static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1962
1963struct oom_wait_info {
1964	struct mem_cgroup *memcg;
1965	wait_queue_entry_t	wait;
1966};
1967
1968static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1969	unsigned mode, int sync, void *arg)
1970{
1971	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1972	struct mem_cgroup *oom_wait_memcg;
1973	struct oom_wait_info *oom_wait_info;
1974
1975	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1976	oom_wait_memcg = oom_wait_info->memcg;
1977
1978	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1979	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1980		return 0;
1981	return autoremove_wake_function(wait, mode, sync, arg);
1982}
1983
1984static void memcg_oom_recover(struct mem_cgroup *memcg)
1985{
1986	/*
1987	 * For the following lockless ->under_oom test, the only required
1988	 * guarantee is that it must see the state asserted by an OOM when
1989	 * this function is called as a result of userland actions
1990	 * triggered by the notification of the OOM.  This is trivially
1991	 * achieved by invoking mem_cgroup_mark_under_oom() before
1992	 * triggering notification.
1993	 */
1994	if (memcg && memcg->under_oom)
1995		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1996}
1997
1998/*
1999 * Returns true if successfully killed one or more processes. Though in some
2000 * corner cases it can return true even without killing any process.
2001 */
2002static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2003{
2004	bool locked, ret;
2005
2006	if (order > PAGE_ALLOC_COSTLY_ORDER)
2007		return false;
2008
2009	memcg_memory_event(memcg, MEMCG_OOM);
2010
2011	/*
2012	 * We are in the middle of the charge context here, so we
2013	 * don't want to block when potentially sitting on a callstack
2014	 * that holds all kinds of filesystem and mm locks.
2015	 *
2016	 * cgroup1 allows disabling the OOM killer and waiting for outside
2017	 * handling until the charge can succeed; remember the context and put
2018	 * the task to sleep at the end of the page fault when all locks are
2019	 * released.
2020	 *
2021	 * On the other hand, in-kernel OOM killer allows for an async victim
2022	 * memory reclaim (oom_reaper) and that means that we are not solely
2023	 * relying on the oom victim to make a forward progress and we can
2024	 * invoke the oom killer here.
2025	 *
2026	 * Please note that mem_cgroup_out_of_memory might fail to find a
2027	 * victim and then we have to bail out from the charge path.
2028	 */
2029	if (READ_ONCE(memcg->oom_kill_disable)) {
2030		if (current->in_user_fault) {
2031			css_get(&memcg->css);
2032			current->memcg_in_oom = memcg;
2033			current->memcg_oom_gfp_mask = mask;
2034			current->memcg_oom_order = order;
2035		}
2036		return false;
2037	}
2038
2039	mem_cgroup_mark_under_oom(memcg);
2040
2041	locked = mem_cgroup_oom_trylock(memcg);
2042
2043	if (locked)
2044		mem_cgroup_oom_notify(memcg);
2045
2046	mem_cgroup_unmark_under_oom(memcg);
2047	ret = mem_cgroup_out_of_memory(memcg, mask, order);
2048
2049	if (locked)
2050		mem_cgroup_oom_unlock(memcg);
2051
2052	return ret;
2053}
2054
2055/**
2056 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2057 * @handle: actually kill/wait or just clean up the OOM state
2058 *
2059 * This has to be called at the end of a page fault if the memcg OOM
2060 * handler was enabled.
2061 *
2062 * Memcg supports userspace OOM handling where failed allocations must
2063 * sleep on a waitqueue until the userspace task resolves the
2064 * situation.  Sleeping directly in the charge context with all kinds
2065 * of locks held is not a good idea, instead we remember an OOM state
2066 * in the task and mem_cgroup_oom_synchronize() has to be called at
2067 * the end of the page fault to complete the OOM handling.
2068 *
2069 * Returns %true if an ongoing memcg OOM situation was detected and
2070 * completed, %false otherwise.
2071 */
2072bool mem_cgroup_oom_synchronize(bool handle)
2073{
2074	struct mem_cgroup *memcg = current->memcg_in_oom;
2075	struct oom_wait_info owait;
2076	bool locked;
2077
2078	/* OOM is global, do not handle */
2079	if (!memcg)
2080		return false;
2081
2082	if (!handle)
2083		goto cleanup;
2084
2085	owait.memcg = memcg;
2086	owait.wait.flags = 0;
2087	owait.wait.func = memcg_oom_wake_function;
2088	owait.wait.private = current;
2089	INIT_LIST_HEAD(&owait.wait.entry);
2090
2091	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2092	mem_cgroup_mark_under_oom(memcg);
2093
2094	locked = mem_cgroup_oom_trylock(memcg);
2095
2096	if (locked)
2097		mem_cgroup_oom_notify(memcg);
2098
2099	schedule();
2100	mem_cgroup_unmark_under_oom(memcg);
2101	finish_wait(&memcg_oom_waitq, &owait.wait);
2102
2103	if (locked)
2104		mem_cgroup_oom_unlock(memcg);
2105cleanup:
2106	current->memcg_in_oom = NULL;
2107	css_put(&memcg->css);
2108	return true;
2109}
2110
2111/**
2112 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2113 * @victim: task to be killed by the OOM killer
2114 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2115 *
2116 * Returns a pointer to a memory cgroup, which has to be cleaned up
2117 * by killing all belonging OOM-killable tasks.
2118 *
2119 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2120 */
2121struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2122					    struct mem_cgroup *oom_domain)
2123{
2124	struct mem_cgroup *oom_group = NULL;
2125	struct mem_cgroup *memcg;
2126
2127	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2128		return NULL;
2129
2130	if (!oom_domain)
2131		oom_domain = root_mem_cgroup;
2132
2133	rcu_read_lock();
2134
2135	memcg = mem_cgroup_from_task(victim);
2136	if (mem_cgroup_is_root(memcg))
2137		goto out;
2138
2139	/*
2140	 * If the victim task has been asynchronously moved to a different
2141	 * memory cgroup, we might end up killing tasks outside oom_domain.
2142	 * In this case it's better to ignore memory.group.oom.
2143	 */
2144	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2145		goto out;
2146
2147	/*
2148	 * Traverse the memory cgroup hierarchy from the victim task's
2149	 * cgroup up to the OOMing cgroup (or root) to find the
2150	 * highest-level memory cgroup with oom.group set.
2151	 */
2152	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2153		if (READ_ONCE(memcg->oom_group))
2154			oom_group = memcg;
2155
2156		if (memcg == oom_domain)
2157			break;
2158	}
2159
2160	if (oom_group)
2161		css_get(&oom_group->css);
2162out:
2163	rcu_read_unlock();
2164
2165	return oom_group;
2166}
2167
2168void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2169{
2170	pr_info("Tasks in ");
2171	pr_cont_cgroup_path(memcg->css.cgroup);
2172	pr_cont(" are going to be killed due to memory.oom.group set\n");
2173}
2174
2175/**
2176 * folio_memcg_lock - Bind a folio to its memcg.
2177 * @folio: The folio.
2178 *
2179 * This function prevents unlocked LRU folios from being moved to
2180 * another cgroup.
2181 *
2182 * It ensures lifetime of the bound memcg.  The caller is responsible
2183 * for the lifetime of the folio.
2184 */
2185void folio_memcg_lock(struct folio *folio)
2186{
2187	struct mem_cgroup *memcg;
2188	unsigned long flags;
2189
2190	/*
2191	 * The RCU lock is held throughout the transaction.  The fast
2192	 * path can get away without acquiring the memcg->move_lock
2193	 * because page moving starts with an RCU grace period.
2194         */
2195	rcu_read_lock();
2196
2197	if (mem_cgroup_disabled())
2198		return;
2199again:
2200	memcg = folio_memcg(folio);
2201	if (unlikely(!memcg))
2202		return;
2203
2204#ifdef CONFIG_PROVE_LOCKING
2205	local_irq_save(flags);
2206	might_lock(&memcg->move_lock);
2207	local_irq_restore(flags);
2208#endif
2209
2210	if (atomic_read(&memcg->moving_account) <= 0)
2211		return;
2212
2213	spin_lock_irqsave(&memcg->move_lock, flags);
2214	if (memcg != folio_memcg(folio)) {
2215		spin_unlock_irqrestore(&memcg->move_lock, flags);
2216		goto again;
2217	}
2218
2219	/*
2220	 * When charge migration first begins, we can have multiple
2221	 * critical sections holding the fast-path RCU lock and one
2222	 * holding the slowpath move_lock. Track the task who has the
2223	 * move_lock for folio_memcg_unlock().
2224	 */
2225	memcg->move_lock_task = current;
2226	memcg->move_lock_flags = flags;
2227}
2228
2229static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2230{
2231	if (memcg && memcg->move_lock_task == current) {
2232		unsigned long flags = memcg->move_lock_flags;
2233
2234		memcg->move_lock_task = NULL;
2235		memcg->move_lock_flags = 0;
2236
2237		spin_unlock_irqrestore(&memcg->move_lock, flags);
2238	}
2239
2240	rcu_read_unlock();
2241}
2242
2243/**
2244 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2245 * @folio: The folio.
2246 *
2247 * This releases the binding created by folio_memcg_lock().  This does
2248 * not change the accounting of this folio to its memcg, but it does
2249 * permit others to change it.
2250 */
2251void folio_memcg_unlock(struct folio *folio)
2252{
2253	__folio_memcg_unlock(folio_memcg(folio));
2254}
2255
2256struct memcg_stock_pcp {
2257	local_lock_t stock_lock;
2258	struct mem_cgroup *cached; /* this never be root cgroup */
2259	unsigned int nr_pages;
2260
2261#ifdef CONFIG_MEMCG_KMEM
2262	struct obj_cgroup *cached_objcg;
2263	struct pglist_data *cached_pgdat;
2264	unsigned int nr_bytes;
2265	int nr_slab_reclaimable_b;
2266	int nr_slab_unreclaimable_b;
2267#endif
2268
2269	struct work_struct work;
2270	unsigned long flags;
2271#define FLUSHING_CACHED_CHARGE	0
2272};
2273static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2274	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2275};
2276static DEFINE_MUTEX(percpu_charge_mutex);
2277
2278#ifdef CONFIG_MEMCG_KMEM
2279static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2280static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2281				     struct mem_cgroup *root_memcg);
2282static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2283
2284#else
2285static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2286{
2287	return NULL;
2288}
2289static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2290				     struct mem_cgroup *root_memcg)
2291{
2292	return false;
2293}
2294static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2295{
2296}
2297#endif
2298
2299/**
2300 * consume_stock: Try to consume stocked charge on this cpu.
2301 * @memcg: memcg to consume from.
2302 * @nr_pages: how many pages to charge.
2303 *
2304 * The charges will only happen if @memcg matches the current cpu's memcg
2305 * stock, and at least @nr_pages are available in that stock.  Failure to
2306 * service an allocation will refill the stock.
2307 *
2308 * returns true if successful, false otherwise.
2309 */
2310static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2311{
2312	struct memcg_stock_pcp *stock;
2313	unsigned long flags;
2314	bool ret = false;
2315
2316	if (nr_pages > MEMCG_CHARGE_BATCH)
2317		return ret;
2318
2319	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2320
2321	stock = this_cpu_ptr(&memcg_stock);
2322	if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2323		stock->nr_pages -= nr_pages;
2324		ret = true;
2325	}
2326
2327	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328
2329	return ret;
2330}
2331
2332/*
2333 * Returns stocks cached in percpu and reset cached information.
2334 */
2335static void drain_stock(struct memcg_stock_pcp *stock)
2336{
2337	struct mem_cgroup *old = READ_ONCE(stock->cached);
2338
2339	if (!old)
2340		return;
2341
2342	if (stock->nr_pages) {
2343		page_counter_uncharge(&old->memory, stock->nr_pages);
2344		if (do_memsw_account())
2345			page_counter_uncharge(&old->memsw, stock->nr_pages);
2346		stock->nr_pages = 0;
2347	}
2348
2349	css_put(&old->css);
2350	WRITE_ONCE(stock->cached, NULL);
2351}
2352
2353static void drain_local_stock(struct work_struct *dummy)
2354{
2355	struct memcg_stock_pcp *stock;
2356	struct obj_cgroup *old = NULL;
2357	unsigned long flags;
2358
2359	/*
2360	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2361	 * drain_stock races is that we always operate on local CPU stock
2362	 * here with IRQ disabled
2363	 */
2364	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2365
2366	stock = this_cpu_ptr(&memcg_stock);
2367	old = drain_obj_stock(stock);
2368	drain_stock(stock);
2369	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2370
2371	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2372	if (old)
2373		obj_cgroup_put(old);
2374}
2375
2376/*
2377 * Cache charges(val) to local per_cpu area.
2378 * This will be consumed by consume_stock() function, later.
2379 */
2380static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2381{
2382	struct memcg_stock_pcp *stock;
2383
2384	stock = this_cpu_ptr(&memcg_stock);
2385	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2386		drain_stock(stock);
2387		css_get(&memcg->css);
2388		WRITE_ONCE(stock->cached, memcg);
2389	}
2390	stock->nr_pages += nr_pages;
2391
2392	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2393		drain_stock(stock);
2394}
2395
2396static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2397{
2398	unsigned long flags;
2399
2400	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2401	__refill_stock(memcg, nr_pages);
2402	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2403}
2404
2405/*
2406 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2407 * of the hierarchy under it.
2408 */
2409static void drain_all_stock(struct mem_cgroup *root_memcg)
2410{
2411	int cpu, curcpu;
2412
2413	/* If someone's already draining, avoid adding running more workers. */
2414	if (!mutex_trylock(&percpu_charge_mutex))
2415		return;
2416	/*
2417	 * Notify other cpus that system-wide "drain" is running
2418	 * We do not care about races with the cpu hotplug because cpu down
2419	 * as well as workers from this path always operate on the local
2420	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2421	 */
2422	migrate_disable();
2423	curcpu = smp_processor_id();
2424	for_each_online_cpu(cpu) {
2425		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2426		struct mem_cgroup *memcg;
2427		bool flush = false;
2428
2429		rcu_read_lock();
2430		memcg = READ_ONCE(stock->cached);
2431		if (memcg && stock->nr_pages &&
2432		    mem_cgroup_is_descendant(memcg, root_memcg))
2433			flush = true;
2434		else if (obj_stock_flush_required(stock, root_memcg))
2435			flush = true;
2436		rcu_read_unlock();
2437
2438		if (flush &&
2439		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2440			if (cpu == curcpu)
2441				drain_local_stock(&stock->work);
2442			else if (!cpu_is_isolated(cpu))
2443				schedule_work_on(cpu, &stock->work);
2444		}
2445	}
2446	migrate_enable();
2447	mutex_unlock(&percpu_charge_mutex);
2448}
2449
2450static int memcg_hotplug_cpu_dead(unsigned int cpu)
2451{
2452	struct memcg_stock_pcp *stock;
2453
2454	stock = &per_cpu(memcg_stock, cpu);
2455	drain_stock(stock);
2456
2457	return 0;
2458}
2459
2460static unsigned long reclaim_high(struct mem_cgroup *memcg,
2461				  unsigned int nr_pages,
2462				  gfp_t gfp_mask)
2463{
2464	unsigned long nr_reclaimed = 0;
2465
2466	do {
2467		unsigned long pflags;
2468
2469		if (page_counter_read(&memcg->memory) <=
2470		    READ_ONCE(memcg->memory.high))
2471			continue;
2472
2473		memcg_memory_event(memcg, MEMCG_HIGH);
2474
2475		psi_memstall_enter(&pflags);
2476		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2477							gfp_mask,
2478							MEMCG_RECLAIM_MAY_SWAP);
2479		psi_memstall_leave(&pflags);
2480	} while ((memcg = parent_mem_cgroup(memcg)) &&
2481		 !mem_cgroup_is_root(memcg));
2482
2483	return nr_reclaimed;
2484}
2485
2486static void high_work_func(struct work_struct *work)
2487{
2488	struct mem_cgroup *memcg;
2489
2490	memcg = container_of(work, struct mem_cgroup, high_work);
2491	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2492}
2493
2494/*
2495 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2496 * enough to still cause a significant slowdown in most cases, while still
2497 * allowing diagnostics and tracing to proceed without becoming stuck.
2498 */
2499#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2500
2501/*
2502 * When calculating the delay, we use these either side of the exponentiation to
2503 * maintain precision and scale to a reasonable number of jiffies (see the table
2504 * below.
2505 *
2506 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2507 *   overage ratio to a delay.
2508 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2509 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2510 *   to produce a reasonable delay curve.
2511 *
2512 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2513 * reasonable delay curve compared to precision-adjusted overage, not
2514 * penalising heavily at first, but still making sure that growth beyond the
2515 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2516 * example, with a high of 100 megabytes:
2517 *
2518 *  +-------+------------------------+
2519 *  | usage | time to allocate in ms |
2520 *  +-------+------------------------+
2521 *  | 100M  |                      0 |
2522 *  | 101M  |                      6 |
2523 *  | 102M  |                     25 |
2524 *  | 103M  |                     57 |
2525 *  | 104M  |                    102 |
2526 *  | 105M  |                    159 |
2527 *  | 106M  |                    230 |
2528 *  | 107M  |                    313 |
2529 *  | 108M  |                    409 |
2530 *  | 109M  |                    518 |
2531 *  | 110M  |                    639 |
2532 *  | 111M  |                    774 |
2533 *  | 112M  |                    921 |
2534 *  | 113M  |                   1081 |
2535 *  | 114M  |                   1254 |
2536 *  | 115M  |                   1439 |
2537 *  | 116M  |                   1638 |
2538 *  | 117M  |                   1849 |
2539 *  | 118M  |                   2000 |
2540 *  | 119M  |                   2000 |
2541 *  | 120M  |                   2000 |
2542 *  +-------+------------------------+
2543 */
2544 #define MEMCG_DELAY_PRECISION_SHIFT 20
2545 #define MEMCG_DELAY_SCALING_SHIFT 14
2546
2547static u64 calculate_overage(unsigned long usage, unsigned long high)
2548{
2549	u64 overage;
2550
2551	if (usage <= high)
2552		return 0;
2553
2554	/*
2555	 * Prevent division by 0 in overage calculation by acting as if
2556	 * it was a threshold of 1 page
2557	 */
2558	high = max(high, 1UL);
2559
2560	overage = usage - high;
2561	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2562	return div64_u64(overage, high);
2563}
2564
2565static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2566{
2567	u64 overage, max_overage = 0;
2568
2569	do {
2570		overage = calculate_overage(page_counter_read(&memcg->memory),
2571					    READ_ONCE(memcg->memory.high));
2572		max_overage = max(overage, max_overage);
2573	} while ((memcg = parent_mem_cgroup(memcg)) &&
2574		 !mem_cgroup_is_root(memcg));
2575
2576	return max_overage;
2577}
2578
2579static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2580{
2581	u64 overage, max_overage = 0;
2582
2583	do {
2584		overage = calculate_overage(page_counter_read(&memcg->swap),
2585					    READ_ONCE(memcg->swap.high));
2586		if (overage)
2587			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2588		max_overage = max(overage, max_overage);
2589	} while ((memcg = parent_mem_cgroup(memcg)) &&
2590		 !mem_cgroup_is_root(memcg));
2591
2592	return max_overage;
2593}
2594
2595/*
2596 * Get the number of jiffies that we should penalise a mischievous cgroup which
2597 * is exceeding its memory.high by checking both it and its ancestors.
2598 */
2599static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2600					  unsigned int nr_pages,
2601					  u64 max_overage)
2602{
2603	unsigned long penalty_jiffies;
2604
2605	if (!max_overage)
2606		return 0;
2607
2608	/*
2609	 * We use overage compared to memory.high to calculate the number of
2610	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2611	 * fairly lenient on small overages, and increasingly harsh when the
2612	 * memcg in question makes it clear that it has no intention of stopping
2613	 * its crazy behaviour, so we exponentially increase the delay based on
2614	 * overage amount.
2615	 */
2616	penalty_jiffies = max_overage * max_overage * HZ;
2617	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2618	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2619
2620	/*
2621	 * Factor in the task's own contribution to the overage, such that four
2622	 * N-sized allocations are throttled approximately the same as one
2623	 * 4N-sized allocation.
2624	 *
2625	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2626	 * larger the current charge patch is than that.
2627	 */
2628	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2629}
2630
2631/*
2632 * Reclaims memory over the high limit. Called directly from
2633 * try_charge() (context permitting), as well as from the userland
2634 * return path where reclaim is always able to block.
2635 */
2636void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2637{
2638	unsigned long penalty_jiffies;
2639	unsigned long pflags;
2640	unsigned long nr_reclaimed;
2641	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2642	int nr_retries = MAX_RECLAIM_RETRIES;
2643	struct mem_cgroup *memcg;
2644	bool in_retry = false;
2645
2646	if (likely(!nr_pages))
2647		return;
2648
2649	memcg = get_mem_cgroup_from_mm(current->mm);
2650	current->memcg_nr_pages_over_high = 0;
2651
2652retry_reclaim:
2653	/*
2654	 * Bail if the task is already exiting. Unlike memory.max,
2655	 * memory.high enforcement isn't as strict, and there is no
2656	 * OOM killer involved, which means the excess could already
2657	 * be much bigger (and still growing) than it could for
2658	 * memory.max; the dying task could get stuck in fruitless
2659	 * reclaim for a long time, which isn't desirable.
2660	 */
2661	if (task_is_dying())
2662		goto out;
2663
2664	/*
2665	 * The allocating task should reclaim at least the batch size, but for
2666	 * subsequent retries we only want to do what's necessary to prevent oom
2667	 * or breaching resource isolation.
2668	 *
2669	 * This is distinct from memory.max or page allocator behaviour because
2670	 * memory.high is currently batched, whereas memory.max and the page
2671	 * allocator run every time an allocation is made.
2672	 */
2673	nr_reclaimed = reclaim_high(memcg,
2674				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2675				    gfp_mask);
2676
2677	/*
2678	 * memory.high is breached and reclaim is unable to keep up. Throttle
2679	 * allocators proactively to slow down excessive growth.
2680	 */
2681	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2682					       mem_find_max_overage(memcg));
2683
2684	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2685						swap_find_max_overage(memcg));
2686
2687	/*
2688	 * Clamp the max delay per usermode return so as to still keep the
2689	 * application moving forwards and also permit diagnostics, albeit
2690	 * extremely slowly.
2691	 */
2692	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2693
2694	/*
2695	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2696	 * that it's not even worth doing, in an attempt to be nice to those who
2697	 * go only a small amount over their memory.high value and maybe haven't
2698	 * been aggressively reclaimed enough yet.
2699	 */
2700	if (penalty_jiffies <= HZ / 100)
2701		goto out;
2702
2703	/*
2704	 * If reclaim is making forward progress but we're still over
2705	 * memory.high, we want to encourage that rather than doing allocator
2706	 * throttling.
2707	 */
2708	if (nr_reclaimed || nr_retries--) {
2709		in_retry = true;
2710		goto retry_reclaim;
2711	}
2712
2713	/*
2714	 * Reclaim didn't manage to push usage below the limit, slow
2715	 * this allocating task down.
2716	 *
2717	 * If we exit early, we're guaranteed to die (since
2718	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2719	 * need to account for any ill-begotten jiffies to pay them off later.
2720	 */
2721	psi_memstall_enter(&pflags);
2722	schedule_timeout_killable(penalty_jiffies);
2723	psi_memstall_leave(&pflags);
2724
2725out:
2726	css_put(&memcg->css);
2727}
2728
2729static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2730			unsigned int nr_pages)
2731{
2732	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2733	int nr_retries = MAX_RECLAIM_RETRIES;
2734	struct mem_cgroup *mem_over_limit;
2735	struct page_counter *counter;
2736	unsigned long nr_reclaimed;
2737	bool passed_oom = false;
2738	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2739	bool drained = false;
2740	bool raised_max_event = false;
2741	unsigned long pflags;
2742
2743retry:
2744	if (consume_stock(memcg, nr_pages))
2745		return 0;
2746
2747	if (!do_memsw_account() ||
2748	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2749		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2750			goto done_restock;
2751		if (do_memsw_account())
2752			page_counter_uncharge(&memcg->memsw, batch);
2753		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2754	} else {
2755		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2756		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2757	}
2758
2759	if (batch > nr_pages) {
2760		batch = nr_pages;
2761		goto retry;
2762	}
2763
2764	/*
2765	 * Prevent unbounded recursion when reclaim operations need to
2766	 * allocate memory. This might exceed the limits temporarily,
2767	 * but we prefer facilitating memory reclaim and getting back
2768	 * under the limit over triggering OOM kills in these cases.
2769	 */
2770	if (unlikely(current->flags & PF_MEMALLOC))
2771		goto force;
2772
2773	if (unlikely(task_in_memcg_oom(current)))
2774		goto nomem;
2775
2776	if (!gfpflags_allow_blocking(gfp_mask))
2777		goto nomem;
2778
2779	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2780	raised_max_event = true;
2781
2782	psi_memstall_enter(&pflags);
2783	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2784						    gfp_mask, reclaim_options);
2785	psi_memstall_leave(&pflags);
2786
2787	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2788		goto retry;
2789
2790	if (!drained) {
2791		drain_all_stock(mem_over_limit);
2792		drained = true;
2793		goto retry;
2794	}
2795
2796	if (gfp_mask & __GFP_NORETRY)
2797		goto nomem;
2798	/*
2799	 * Even though the limit is exceeded at this point, reclaim
2800	 * may have been able to free some pages.  Retry the charge
2801	 * before killing the task.
2802	 *
2803	 * Only for regular pages, though: huge pages are rather
2804	 * unlikely to succeed so close to the limit, and we fall back
2805	 * to regular pages anyway in case of failure.
2806	 */
2807	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2808		goto retry;
2809	/*
2810	 * At task move, charge accounts can be doubly counted. So, it's
2811	 * better to wait until the end of task_move if something is going on.
2812	 */
2813	if (mem_cgroup_wait_acct_move(mem_over_limit))
2814		goto retry;
2815
2816	if (nr_retries--)
2817		goto retry;
2818
2819	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2820		goto nomem;
2821
2822	/* Avoid endless loop for tasks bypassed by the oom killer */
2823	if (passed_oom && task_is_dying())
2824		goto nomem;
2825
2826	/*
2827	 * keep retrying as long as the memcg oom killer is able to make
2828	 * a forward progress or bypass the charge if the oom killer
2829	 * couldn't make any progress.
2830	 */
2831	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2832			   get_order(nr_pages * PAGE_SIZE))) {
2833		passed_oom = true;
2834		nr_retries = MAX_RECLAIM_RETRIES;
2835		goto retry;
2836	}
2837nomem:
2838	/*
2839	 * Memcg doesn't have a dedicated reserve for atomic
2840	 * allocations. But like the global atomic pool, we need to
2841	 * put the burden of reclaim on regular allocation requests
2842	 * and let these go through as privileged allocations.
2843	 */
2844	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2845		return -ENOMEM;
2846force:
2847	/*
2848	 * If the allocation has to be enforced, don't forget to raise
2849	 * a MEMCG_MAX event.
2850	 */
2851	if (!raised_max_event)
2852		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2853
2854	/*
2855	 * The allocation either can't fail or will lead to more memory
2856	 * being freed very soon.  Allow memory usage go over the limit
2857	 * temporarily by force charging it.
2858	 */
2859	page_counter_charge(&memcg->memory, nr_pages);
2860	if (do_memsw_account())
2861		page_counter_charge(&memcg->memsw, nr_pages);
2862
2863	return 0;
2864
2865done_restock:
2866	if (batch > nr_pages)
2867		refill_stock(memcg, batch - nr_pages);
2868
2869	/*
2870	 * If the hierarchy is above the normal consumption range, schedule
2871	 * reclaim on returning to userland.  We can perform reclaim here
2872	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2873	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2874	 * not recorded as it most likely matches current's and won't
2875	 * change in the meantime.  As high limit is checked again before
2876	 * reclaim, the cost of mismatch is negligible.
2877	 */
2878	do {
2879		bool mem_high, swap_high;
2880
2881		mem_high = page_counter_read(&memcg->memory) >
2882			READ_ONCE(memcg->memory.high);
2883		swap_high = page_counter_read(&memcg->swap) >
2884			READ_ONCE(memcg->swap.high);
2885
2886		/* Don't bother a random interrupted task */
2887		if (!in_task()) {
2888			if (mem_high) {
2889				schedule_work(&memcg->high_work);
2890				break;
2891			}
2892			continue;
2893		}
2894
2895		if (mem_high || swap_high) {
2896			/*
2897			 * The allocating tasks in this cgroup will need to do
2898			 * reclaim or be throttled to prevent further growth
2899			 * of the memory or swap footprints.
2900			 *
2901			 * Target some best-effort fairness between the tasks,
2902			 * and distribute reclaim work and delay penalties
2903			 * based on how much each task is actually allocating.
2904			 */
2905			current->memcg_nr_pages_over_high += batch;
2906			set_notify_resume(current);
2907			break;
2908		}
2909	} while ((memcg = parent_mem_cgroup(memcg)));
2910
2911	/*
2912	 * Reclaim is set up above to be called from the userland
2913	 * return path. But also attempt synchronous reclaim to avoid
2914	 * excessive overrun while the task is still inside the
2915	 * kernel. If this is successful, the return path will see it
2916	 * when it rechecks the overage and simply bail out.
2917	 */
2918	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2919	    !(current->flags & PF_MEMALLOC) &&
2920	    gfpflags_allow_blocking(gfp_mask))
2921		mem_cgroup_handle_over_high(gfp_mask);
2922	return 0;
2923}
2924
2925static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2926			     unsigned int nr_pages)
2927{
2928	if (mem_cgroup_is_root(memcg))
2929		return 0;
2930
2931	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2932}
2933
2934/**
2935 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2936 * @memcg: memcg previously charged.
2937 * @nr_pages: number of pages previously charged.
2938 */
2939void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2940{
2941	if (mem_cgroup_is_root(memcg))
2942		return;
2943
2944	page_counter_uncharge(&memcg->memory, nr_pages);
2945	if (do_memsw_account())
2946		page_counter_uncharge(&memcg->memsw, nr_pages);
2947}
2948
2949static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2950{
2951	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2952	/*
2953	 * Any of the following ensures page's memcg stability:
2954	 *
2955	 * - the page lock
2956	 * - LRU isolation
2957	 * - folio_memcg_lock()
2958	 * - exclusive reference
2959	 * - mem_cgroup_trylock_pages()
2960	 */
2961	folio->memcg_data = (unsigned long)memcg;
2962}
2963
2964/**
2965 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2966 * @folio: folio to commit the charge to.
2967 * @memcg: memcg previously charged.
2968 */
2969void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2970{
2971	css_get(&memcg->css);
2972	commit_charge(folio, memcg);
2973
2974	local_irq_disable();
2975	mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2976	memcg_check_events(memcg, folio_nid(folio));
2977	local_irq_enable();
2978}
2979
2980#ifdef CONFIG_MEMCG_KMEM
2981/*
2982 * The allocated objcg pointers array is not accounted directly.
2983 * Moreover, it should not come from DMA buffer and is not readily
2984 * reclaimable. So those GFP bits should be masked off.
2985 */
2986#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2987				 __GFP_ACCOUNT | __GFP_NOFAIL)
2988
2989/*
2990 * mod_objcg_mlstate() may be called with irq enabled, so
2991 * mod_memcg_lruvec_state() should be used.
2992 */
2993static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2994				     struct pglist_data *pgdat,
2995				     enum node_stat_item idx, int nr)
2996{
2997	struct mem_cgroup *memcg;
2998	struct lruvec *lruvec;
2999
3000	rcu_read_lock();
3001	memcg = obj_cgroup_memcg(objcg);
3002	lruvec = mem_cgroup_lruvec(memcg, pgdat);
3003	mod_memcg_lruvec_state(lruvec, idx, nr);
3004	rcu_read_unlock();
3005}
3006
3007int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
3008				 gfp_t gfp, bool new_slab)
3009{
3010	unsigned int objects = objs_per_slab(s, slab);
3011	unsigned long memcg_data;
3012	void *vec;
3013
3014	gfp &= ~OBJCGS_CLEAR_MASK;
3015	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
3016			   slab_nid(slab));
3017	if (!vec)
3018		return -ENOMEM;
3019
3020	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
3021	if (new_slab) {
3022		/*
3023		 * If the slab is brand new and nobody can yet access its
3024		 * memcg_data, no synchronization is required and memcg_data can
3025		 * be simply assigned.
3026		 */
3027		slab->memcg_data = memcg_data;
3028	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
3029		/*
3030		 * If the slab is already in use, somebody can allocate and
3031		 * assign obj_cgroups in parallel. In this case the existing
3032		 * objcg vector should be reused.
3033		 */
3034		kfree(vec);
3035		return 0;
3036	}
3037
3038	kmemleak_not_leak(vec);
3039	return 0;
3040}
3041
3042static __always_inline
3043struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
3044{
3045	/*
3046	 * Slab objects are accounted individually, not per-page.
3047	 * Memcg membership data for each individual object is saved in
3048	 * slab->memcg_data.
3049	 */
3050	if (folio_test_slab(folio)) {
3051		struct obj_cgroup **objcgs;
3052		struct slab *slab;
3053		unsigned int off;
3054
3055		slab = folio_slab(folio);
3056		objcgs = slab_objcgs(slab);
3057		if (!objcgs)
3058			return NULL;
3059
3060		off = obj_to_index(slab->slab_cache, slab, p);
3061		if (objcgs[off])
3062			return obj_cgroup_memcg(objcgs[off]);
3063
3064		return NULL;
3065	}
3066
3067	/*
3068	 * folio_memcg_check() is used here, because in theory we can encounter
3069	 * a folio where the slab flag has been cleared already, but
3070	 * slab->memcg_data has not been freed yet
3071	 * folio_memcg_check() will guarantee that a proper memory
3072	 * cgroup pointer or NULL will be returned.
3073	 */
3074	return folio_memcg_check(folio);
3075}
3076
3077/*
3078 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3079 *
3080 * A passed kernel object can be a slab object, vmalloc object or a generic
3081 * kernel page, so different mechanisms for getting the memory cgroup pointer
3082 * should be used.
3083 *
3084 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3085 * can not know for sure how the kernel object is implemented.
3086 * mem_cgroup_from_obj() can be safely used in such cases.
3087 *
3088 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3089 * cgroup_mutex, etc.
3090 */
3091struct mem_cgroup *mem_cgroup_from_obj(void *p)
3092{
3093	struct folio *folio;
3094
3095	if (mem_cgroup_disabled())
3096		return NULL;
3097
3098	if (unlikely(is_vmalloc_addr(p)))
3099		folio = page_folio(vmalloc_to_page(p));
3100	else
3101		folio = virt_to_folio(p);
3102
3103	return mem_cgroup_from_obj_folio(folio, p);
3104}
3105
3106/*
3107 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3108 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3109 * allocated using vmalloc().
3110 *
3111 * A passed kernel object must be a slab object or a generic kernel page.
3112 *
3113 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3114 * cgroup_mutex, etc.
3115 */
3116struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3117{
3118	if (mem_cgroup_disabled())
3119		return NULL;
3120
3121	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3122}
3123
3124static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3125{
3126	struct obj_cgroup *objcg = NULL;
3127
3128	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3129		objcg = rcu_dereference(memcg->objcg);
3130		if (likely(objcg && obj_cgroup_tryget(objcg)))
3131			break;
3132		objcg = NULL;
3133	}
3134	return objcg;
3135}
3136
3137static struct obj_cgroup *current_objcg_update(void)
3138{
3139	struct mem_cgroup *memcg;
3140	struct obj_cgroup *old, *objcg = NULL;
3141
3142	do {
3143		/* Atomically drop the update bit. */
3144		old = xchg(&current->objcg, NULL);
3145		if (old) {
3146			old = (struct obj_cgroup *)
3147				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3148			if (old)
3149				obj_cgroup_put(old);
3150
3151			old = NULL;
3152		}
3153
3154		/* If new objcg is NULL, no reason for the second atomic update. */
3155		if (!current->mm || (current->flags & PF_KTHREAD))
3156			return NULL;
3157
3158		/*
3159		 * Release the objcg pointer from the previous iteration,
3160		 * if try_cmpxcg() below fails.
3161		 */
3162		if (unlikely(objcg)) {
3163			obj_cgroup_put(objcg);
3164			objcg = NULL;
3165		}
3166
3167		/*
3168		 * Obtain the new objcg pointer. The current task can be
3169		 * asynchronously moved to another memcg and the previous
3170		 * memcg can be offlined. So let's get the memcg pointer
3171		 * and try get a reference to objcg under a rcu read lock.
3172		 */
3173
3174		rcu_read_lock();
3175		memcg = mem_cgroup_from_task(current);
3176		objcg = __get_obj_cgroup_from_memcg(memcg);
3177		rcu_read_unlock();
3178
3179		/*
3180		 * Try set up a new objcg pointer atomically. If it
3181		 * fails, it means the update flag was set concurrently, so
3182		 * the whole procedure should be repeated.
3183		 */
3184	} while (!try_cmpxchg(&current->objcg, &old, objcg));
3185
3186	return objcg;
3187}
3188
3189__always_inline struct obj_cgroup *current_obj_cgroup(void)
3190{
3191	struct mem_cgroup *memcg;
3192	struct obj_cgroup *objcg;
3193
3194	if (in_task()) {
3195		memcg = current->active_memcg;
3196		if (unlikely(memcg))
3197			goto from_memcg;
3198
3199		objcg = READ_ONCE(current->objcg);
3200		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3201			objcg = current_objcg_update();
3202		/*
3203		 * Objcg reference is kept by the task, so it's safe
3204		 * to use the objcg by the current task.
3205		 */
3206		return objcg;
3207	}
3208
3209	memcg = this_cpu_read(int_active_memcg);
3210	if (unlikely(memcg))
3211		goto from_memcg;
3212
3213	return NULL;
3214
3215from_memcg:
3216	objcg = NULL;
3217	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3218		/*
3219		 * Memcg pointer is protected by scope (see set_active_memcg())
3220		 * and is pinning the corresponding objcg, so objcg can't go
3221		 * away and can be used within the scope without any additional
3222		 * protection.
3223		 */
3224		objcg = rcu_dereference_check(memcg->objcg, 1);
3225		if (likely(objcg))
3226			break;
3227	}
3228
3229	return objcg;
3230}
3231
3232struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3233{
3234	struct obj_cgroup *objcg;
3235
3236	if (!memcg_kmem_online())
3237		return NULL;
3238
3239	if (folio_memcg_kmem(folio)) {
3240		objcg = __folio_objcg(folio);
3241		obj_cgroup_get(objcg);
3242	} else {
3243		struct mem_cgroup *memcg;
3244
3245		rcu_read_lock();
3246		memcg = __folio_memcg(folio);
3247		if (memcg)
3248			objcg = __get_obj_cgroup_from_memcg(memcg);
3249		else
3250			objcg = NULL;
3251		rcu_read_unlock();
3252	}
3253	return objcg;
3254}
3255
3256static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3257{
3258	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3259	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3260		if (nr_pages > 0)
3261			page_counter_charge(&memcg->kmem, nr_pages);
3262		else
3263			page_counter_uncharge(&memcg->kmem, -nr_pages);
3264	}
3265}
3266
3267
3268/*
3269 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3270 * @objcg: object cgroup to uncharge
3271 * @nr_pages: number of pages to uncharge
3272 */
3273static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3274				      unsigned int nr_pages)
3275{
3276	struct mem_cgroup *memcg;
3277
3278	memcg = get_mem_cgroup_from_objcg(objcg);
3279
3280	memcg_account_kmem(memcg, -nr_pages);
3281	refill_stock(memcg, nr_pages);
3282
3283	css_put(&memcg->css);
3284}
3285
3286/*
3287 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3288 * @objcg: object cgroup to charge
3289 * @gfp: reclaim mode
3290 * @nr_pages: number of pages to charge
3291 *
3292 * Returns 0 on success, an error code on failure.
3293 */
3294static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3295				   unsigned int nr_pages)
3296{
3297	struct mem_cgroup *memcg;
3298	int ret;
3299
3300	memcg = get_mem_cgroup_from_objcg(objcg);
3301
3302	ret = try_charge_memcg(memcg, gfp, nr_pages);
3303	if (ret)
3304		goto out;
3305
3306	memcg_account_kmem(memcg, nr_pages);
3307out:
3308	css_put(&memcg->css);
3309
3310	return ret;
3311}
3312
3313/**
3314 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3315 * @page: page to charge
3316 * @gfp: reclaim mode
3317 * @order: allocation order
3318 *
3319 * Returns 0 on success, an error code on failure.
3320 */
3321int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3322{
3323	struct obj_cgroup *objcg;
3324	int ret = 0;
3325
3326	objcg = current_obj_cgroup();
3327	if (objcg) {
3328		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3329		if (!ret) {
3330			obj_cgroup_get(objcg);
3331			page->memcg_data = (unsigned long)objcg |
3332				MEMCG_DATA_KMEM;
3333			return 0;
3334		}
3335	}
3336	return ret;
3337}
3338
3339/**
3340 * __memcg_kmem_uncharge_page: uncharge a kmem page
3341 * @page: page to uncharge
3342 * @order: allocation order
3343 */
3344void __memcg_kmem_uncharge_page(struct page *page, int order)
3345{
3346	struct folio *folio = page_folio(page);
3347	struct obj_cgroup *objcg;
3348	unsigned int nr_pages = 1 << order;
3349
3350	if (!folio_memcg_kmem(folio))
3351		return;
3352
3353	objcg = __folio_objcg(folio);
3354	obj_cgroup_uncharge_pages(objcg, nr_pages);
3355	folio->memcg_data = 0;
3356	obj_cgroup_put(objcg);
3357}
3358
3359void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3360		     enum node_stat_item idx, int nr)
3361{
3362	struct memcg_stock_pcp *stock;
3363	struct obj_cgroup *old = NULL;
3364	unsigned long flags;
3365	int *bytes;
3366
3367	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3368	stock = this_cpu_ptr(&memcg_stock);
3369
3370	/*
3371	 * Save vmstat data in stock and skip vmstat array update unless
3372	 * accumulating over a page of vmstat data or when pgdat or idx
3373	 * changes.
3374	 */
3375	if (READ_ONCE(stock->cached_objcg) != objcg) {
3376		old = drain_obj_stock(stock);
3377		obj_cgroup_get(objcg);
3378		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3379				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3380		WRITE_ONCE(stock->cached_objcg, objcg);
3381		stock->cached_pgdat = pgdat;
3382	} else if (stock->cached_pgdat != pgdat) {
3383		/* Flush the existing cached vmstat data */
3384		struct pglist_data *oldpg = stock->cached_pgdat;
3385
3386		if (stock->nr_slab_reclaimable_b) {
3387			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3388					  stock->nr_slab_reclaimable_b);
3389			stock->nr_slab_reclaimable_b = 0;
3390		}
3391		if (stock->nr_slab_unreclaimable_b) {
3392			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3393					  stock->nr_slab_unreclaimable_b);
3394			stock->nr_slab_unreclaimable_b = 0;
3395		}
3396		stock->cached_pgdat = pgdat;
3397	}
3398
3399	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3400					       : &stock->nr_slab_unreclaimable_b;
3401	/*
3402	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3403	 * cached locally at least once before pushing it out.
3404	 */
3405	if (!*bytes) {
3406		*bytes = nr;
3407		nr = 0;
3408	} else {
3409		*bytes += nr;
3410		if (abs(*bytes) > PAGE_SIZE) {
3411			nr = *bytes;
3412			*bytes = 0;
3413		} else {
3414			nr = 0;
3415		}
3416	}
3417	if (nr)
3418		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3419
3420	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3421	if (old)
3422		obj_cgroup_put(old);
3423}
3424
3425static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3426{
3427	struct memcg_stock_pcp *stock;
3428	unsigned long flags;
3429	bool ret = false;
3430
3431	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3432
3433	stock = this_cpu_ptr(&memcg_stock);
3434	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3435		stock->nr_bytes -= nr_bytes;
3436		ret = true;
3437	}
3438
3439	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3440
3441	return ret;
3442}
3443
3444static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3445{
3446	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3447
3448	if (!old)
3449		return NULL;
3450
3451	if (stock->nr_bytes) {
3452		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3453		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3454
3455		if (nr_pages) {
3456			struct mem_cgroup *memcg;
3457
3458			memcg = get_mem_cgroup_from_objcg(old);
3459
3460			memcg_account_kmem(memcg, -nr_pages);
3461			__refill_stock(memcg, nr_pages);
3462
3463			css_put(&memcg->css);
3464		}
3465
3466		/*
3467		 * The leftover is flushed to the centralized per-memcg value.
3468		 * On the next attempt to refill obj stock it will be moved
3469		 * to a per-cpu stock (probably, on an other CPU), see
3470		 * refill_obj_stock().
3471		 *
3472		 * How often it's flushed is a trade-off between the memory
3473		 * limit enforcement accuracy and potential CPU contention,
3474		 * so it might be changed in the future.
3475		 */
3476		atomic_add(nr_bytes, &old->nr_charged_bytes);
3477		stock->nr_bytes = 0;
3478	}
3479
3480	/*
3481	 * Flush the vmstat data in current stock
3482	 */
3483	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3484		if (stock->nr_slab_reclaimable_b) {
3485			mod_objcg_mlstate(old, stock->cached_pgdat,
3486					  NR_SLAB_RECLAIMABLE_B,
3487					  stock->nr_slab_reclaimable_b);
3488			stock->nr_slab_reclaimable_b = 0;
3489		}
3490		if (stock->nr_slab_unreclaimable_b) {
3491			mod_objcg_mlstate(old, stock->cached_pgdat,
3492					  NR_SLAB_UNRECLAIMABLE_B,
3493					  stock->nr_slab_unreclaimable_b);
3494			stock->nr_slab_unreclaimable_b = 0;
3495		}
3496		stock->cached_pgdat = NULL;
3497	}
3498
3499	WRITE_ONCE(stock->cached_objcg, NULL);
3500	/*
3501	 * The `old' objects needs to be released by the caller via
3502	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3503	 */
3504	return old;
3505}
3506
3507static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3508				     struct mem_cgroup *root_memcg)
3509{
3510	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3511	struct mem_cgroup *memcg;
3512
3513	if (objcg) {
3514		memcg = obj_cgroup_memcg(objcg);
3515		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3516			return true;
3517	}
3518
3519	return false;
3520}
3521
3522static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3523			     bool allow_uncharge)
3524{
3525	struct memcg_stock_pcp *stock;
3526	struct obj_cgroup *old = NULL;
3527	unsigned long flags;
3528	unsigned int nr_pages = 0;
3529
3530	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3531
3532	stock = this_cpu_ptr(&memcg_stock);
3533	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3534		old = drain_obj_stock(stock);
3535		obj_cgroup_get(objcg);
3536		WRITE_ONCE(stock->cached_objcg, objcg);
3537		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3538				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3539		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3540	}
3541	stock->nr_bytes += nr_bytes;
3542
3543	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3544		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3545		stock->nr_bytes &= (PAGE_SIZE - 1);
3546	}
3547
3548	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3549	if (old)
3550		obj_cgroup_put(old);
3551
3552	if (nr_pages)
3553		obj_cgroup_uncharge_pages(objcg, nr_pages);
3554}
3555
3556int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3557{
3558	unsigned int nr_pages, nr_bytes;
3559	int ret;
3560
3561	if (consume_obj_stock(objcg, size))
3562		return 0;
3563
3564	/*
3565	 * In theory, objcg->nr_charged_bytes can have enough
3566	 * pre-charged bytes to satisfy the allocation. However,
3567	 * flushing objcg->nr_charged_bytes requires two atomic
3568	 * operations, and objcg->nr_charged_bytes can't be big.
3569	 * The shared objcg->nr_charged_bytes can also become a
3570	 * performance bottleneck if all tasks of the same memcg are
3571	 * trying to update it. So it's better to ignore it and try
3572	 * grab some new pages. The stock's nr_bytes will be flushed to
3573	 * objcg->nr_charged_bytes later on when objcg changes.
3574	 *
3575	 * The stock's nr_bytes may contain enough pre-charged bytes
3576	 * to allow one less page from being charged, but we can't rely
3577	 * on the pre-charged bytes not being changed outside of
3578	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3579	 * pre-charged bytes as well when charging pages. To avoid a
3580	 * page uncharge right after a page charge, we set the
3581	 * allow_uncharge flag to false when calling refill_obj_stock()
3582	 * to temporarily allow the pre-charged bytes to exceed the page
3583	 * size limit. The maximum reachable value of the pre-charged
3584	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3585	 * race.
3586	 */
3587	nr_pages = size >> PAGE_SHIFT;
3588	nr_bytes = size & (PAGE_SIZE - 1);
3589
3590	if (nr_bytes)
3591		nr_pages += 1;
3592
3593	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3594	if (!ret && nr_bytes)
3595		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3596
3597	return ret;
3598}
3599
3600void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3601{
3602	refill_obj_stock(objcg, size, true);
3603}
3604
3605#endif /* CONFIG_MEMCG_KMEM */
3606
3607/*
3608 * Because page_memcg(head) is not set on tails, set it now.
3609 */
3610void split_page_memcg(struct page *head, int old_order, int new_order)
3611{
3612	struct folio *folio = page_folio(head);
3613	struct mem_cgroup *memcg = folio_memcg(folio);
3614	int i;
3615	unsigned int old_nr = 1 << old_order;
3616	unsigned int new_nr = 1 << new_order;
3617
3618	if (mem_cgroup_disabled() || !memcg)
3619		return;
3620
3621	for (i = new_nr; i < old_nr; i += new_nr)
3622		folio_page(folio, i)->memcg_data = folio->memcg_data;
3623
3624	if (folio_memcg_kmem(folio))
3625		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3626	else
3627		css_get_many(&memcg->css, old_nr / new_nr - 1);
3628}
3629
3630#ifdef CONFIG_SWAP
3631/**
3632 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3633 * @entry: swap entry to be moved
3634 * @from:  mem_cgroup which the entry is moved from
3635 * @to:  mem_cgroup which the entry is moved to
3636 *
3637 * It succeeds only when the swap_cgroup's record for this entry is the same
3638 * as the mem_cgroup's id of @from.
3639 *
3640 * Returns 0 on success, -EINVAL on failure.
3641 *
3642 * The caller must have charged to @to, IOW, called page_counter_charge() about
3643 * both res and memsw, and called css_get().
3644 */
3645static int mem_cgroup_move_swap_account(swp_entry_t entry,
3646				struct mem_cgroup *from, struct mem_cgroup *to)
3647{
3648	unsigned short old_id, new_id;
3649
3650	old_id = mem_cgroup_id(from);
3651	new_id = mem_cgroup_id(to);
3652
3653	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3654		mod_memcg_state(from, MEMCG_SWAP, -1);
3655		mod_memcg_state(to, MEMCG_SWAP, 1);
3656		return 0;
3657	}
3658	return -EINVAL;
3659}
3660#else
3661static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3662				struct mem_cgroup *from, struct mem_cgroup *to)
3663{
3664	return -EINVAL;
3665}
3666#endif
3667
3668static DEFINE_MUTEX(memcg_max_mutex);
3669
3670static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3671				 unsigned long max, bool memsw)
3672{
3673	bool enlarge = false;
3674	bool drained = false;
3675	int ret;
3676	bool limits_invariant;
3677	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3678
3679	do {
3680		if (signal_pending(current)) {
3681			ret = -EINTR;
3682			break;
3683		}
3684
3685		mutex_lock(&memcg_max_mutex);
3686		/*
3687		 * Make sure that the new limit (memsw or memory limit) doesn't
3688		 * break our basic invariant rule memory.max <= memsw.max.
3689		 */
3690		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3691					   max <= memcg->memsw.max;
3692		if (!limits_invariant) {
3693			mutex_unlock(&memcg_max_mutex);
3694			ret = -EINVAL;
3695			break;
3696		}
3697		if (max > counter->max)
3698			enlarge = true;
3699		ret = page_counter_set_max(counter, max);
3700		mutex_unlock(&memcg_max_mutex);
3701
3702		if (!ret)
3703			break;
3704
3705		if (!drained) {
3706			drain_all_stock(memcg);
3707			drained = true;
3708			continue;
3709		}
3710
3711		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3712					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3713			ret = -EBUSY;
3714			break;
3715		}
3716	} while (true);
3717
3718	if (!ret && enlarge)
3719		memcg_oom_recover(memcg);
3720
3721	return ret;
3722}
3723
3724unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3725					    gfp_t gfp_mask,
3726					    unsigned long *total_scanned)
3727{
3728	unsigned long nr_reclaimed = 0;
3729	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3730	unsigned long reclaimed;
3731	int loop = 0;
3732	struct mem_cgroup_tree_per_node *mctz;
3733	unsigned long excess;
3734
3735	if (lru_gen_enabled())
3736		return 0;
3737
3738	if (order > 0)
3739		return 0;
3740
3741	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3742
3743	/*
3744	 * Do not even bother to check the largest node if the root
3745	 * is empty. Do it lockless to prevent lock bouncing. Races
3746	 * are acceptable as soft limit is best effort anyway.
3747	 */
3748	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3749		return 0;
3750
3751	/*
3752	 * This loop can run a while, specially if mem_cgroup's continuously
3753	 * keep exceeding their soft limit and putting the system under
3754	 * pressure
3755	 */
3756	do {
3757		if (next_mz)
3758			mz = next_mz;
3759		else
3760			mz = mem_cgroup_largest_soft_limit_node(mctz);
3761		if (!mz)
3762			break;
3763
3764		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3765						    gfp_mask, total_scanned);
3766		nr_reclaimed += reclaimed;
3767		spin_lock_irq(&mctz->lock);
3768
3769		/*
3770		 * If we failed to reclaim anything from this memory cgroup
3771		 * it is time to move on to the next cgroup
3772		 */
3773		next_mz = NULL;
3774		if (!reclaimed)
3775			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3776
3777		excess = soft_limit_excess(mz->memcg);
3778		/*
3779		 * One school of thought says that we should not add
3780		 * back the node to the tree if reclaim returns 0.
3781		 * But our reclaim could return 0, simply because due
3782		 * to priority we are exposing a smaller subset of
3783		 * memory to reclaim from. Consider this as a longer
3784		 * term TODO.
3785		 */
3786		/* If excess == 0, no tree ops */
3787		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3788		spin_unlock_irq(&mctz->lock);
3789		css_put(&mz->memcg->css);
3790		loop++;
3791		/*
3792		 * Could not reclaim anything and there are no more
3793		 * mem cgroups to try or we seem to be looping without
3794		 * reclaiming anything.
3795		 */
3796		if (!nr_reclaimed &&
3797			(next_mz == NULL ||
3798			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3799			break;
3800	} while (!nr_reclaimed);
3801	if (next_mz)
3802		css_put(&next_mz->memcg->css);
3803	return nr_reclaimed;
3804}
3805
3806/*
3807 * Reclaims as many pages from the given memcg as possible.
3808 *
3809 * Caller is responsible for holding css reference for memcg.
3810 */
3811static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3812{
3813	int nr_retries = MAX_RECLAIM_RETRIES;
3814
3815	/* we call try-to-free pages for make this cgroup empty */
3816	lru_add_drain_all();
3817
3818	drain_all_stock(memcg);
3819
3820	/* try to free all pages in this cgroup */
3821	while (nr_retries && page_counter_read(&memcg->memory)) {
3822		if (signal_pending(current))
3823			return -EINTR;
3824
3825		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3826						  MEMCG_RECLAIM_MAY_SWAP))
3827			nr_retries--;
3828	}
3829
3830	return 0;
3831}
3832
3833static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3834					    char *buf, size_t nbytes,
3835					    loff_t off)
3836{
3837	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3838
3839	if (mem_cgroup_is_root(memcg))
3840		return -EINVAL;
3841	return mem_cgroup_force_empty(memcg) ?: nbytes;
3842}
3843
3844static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3845				     struct cftype *cft)
3846{
3847	return 1;
3848}
3849
3850static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3851				      struct cftype *cft, u64 val)
3852{
3853	if (val == 1)
3854		return 0;
3855
3856	pr_warn_once("Non-hierarchical mode is deprecated. "
3857		     "Please report your usecase to linux-mm@kvack.org if you "
3858		     "depend on this functionality.\n");
3859
3860	return -EINVAL;
3861}
3862
3863static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3864{
3865	unsigned long val;
3866
3867	if (mem_cgroup_is_root(memcg)) {
3868		/*
3869		 * Approximate root's usage from global state. This isn't
3870		 * perfect, but the root usage was always an approximation.
3871		 */
3872		val = global_node_page_state(NR_FILE_PAGES) +
3873			global_node_page_state(NR_ANON_MAPPED);
3874		if (swap)
3875			val += total_swap_pages - get_nr_swap_pages();
3876	} else {
3877		if (!swap)
3878			val = page_counter_read(&memcg->memory);
3879		else
3880			val = page_counter_read(&memcg->memsw);
3881	}
3882	return val;
3883}
3884
3885enum {
3886	RES_USAGE,
3887	RES_LIMIT,
3888	RES_MAX_USAGE,
3889	RES_FAILCNT,
3890	RES_SOFT_LIMIT,
3891};
3892
3893static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3894			       struct cftype *cft)
3895{
3896	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897	struct page_counter *counter;
3898
3899	switch (MEMFILE_TYPE(cft->private)) {
3900	case _MEM:
3901		counter = &memcg->memory;
3902		break;
3903	case _MEMSWAP:
3904		counter = &memcg->memsw;
3905		break;
3906	case _KMEM:
3907		counter = &memcg->kmem;
3908		break;
3909	case _TCP:
3910		counter = &memcg->tcpmem;
3911		break;
3912	default:
3913		BUG();
3914	}
3915
3916	switch (MEMFILE_ATTR(cft->private)) {
3917	case RES_USAGE:
3918		if (counter == &memcg->memory)
3919			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3920		if (counter == &memcg->memsw)
3921			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3922		return (u64)page_counter_read(counter) * PAGE_SIZE;
3923	case RES_LIMIT:
3924		return (u64)counter->max * PAGE_SIZE;
3925	case RES_MAX_USAGE:
3926		return (u64)counter->watermark * PAGE_SIZE;
3927	case RES_FAILCNT:
3928		return counter->failcnt;
3929	case RES_SOFT_LIMIT:
3930		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3931	default:
3932		BUG();
3933	}
3934}
3935
3936/*
3937 * This function doesn't do anything useful. Its only job is to provide a read
3938 * handler for a file so that cgroup_file_mode() will add read permissions.
3939 */
3940static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3941				     __always_unused void *v)
3942{
3943	return -EINVAL;
3944}
3945
3946#ifdef CONFIG_MEMCG_KMEM
3947static int memcg_online_kmem(struct mem_cgroup *memcg)
3948{
3949	struct obj_cgroup *objcg;
3950
3951	if (mem_cgroup_kmem_disabled())
3952		return 0;
3953
3954	if (unlikely(mem_cgroup_is_root(memcg)))
3955		return 0;
3956
3957	objcg = obj_cgroup_alloc();
3958	if (!objcg)
3959		return -ENOMEM;
3960
3961	objcg->memcg = memcg;
3962	rcu_assign_pointer(memcg->objcg, objcg);
3963	obj_cgroup_get(objcg);
3964	memcg->orig_objcg = objcg;
3965
3966	static_branch_enable(&memcg_kmem_online_key);
3967
3968	memcg->kmemcg_id = memcg->id.id;
3969
3970	return 0;
3971}
3972
3973static void memcg_offline_kmem(struct mem_cgroup *memcg)
3974{
3975	struct mem_cgroup *parent;
3976
3977	if (mem_cgroup_kmem_disabled())
3978		return;
3979
3980	if (unlikely(mem_cgroup_is_root(memcg)))
3981		return;
3982
3983	parent = parent_mem_cgroup(memcg);
3984	if (!parent)
3985		parent = root_mem_cgroup;
3986
3987	memcg_reparent_objcgs(memcg, parent);
3988
3989	/*
3990	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3991	 * corresponding to this cgroup are guaranteed to remain empty.
3992	 * The ordering is imposed by list_lru_node->lock taken by
3993	 * memcg_reparent_list_lrus().
3994	 */
3995	memcg_reparent_list_lrus(memcg, parent);
3996}
3997#else
3998static int memcg_online_kmem(struct mem_cgroup *memcg)
3999{
4000	return 0;
4001}
4002static void memcg_offline_kmem(struct mem_cgroup *memcg)
4003{
4004}
4005#endif /* CONFIG_MEMCG_KMEM */
4006
4007static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
4008{
4009	int ret;
4010
4011	mutex_lock(&memcg_max_mutex);
4012
4013	ret = page_counter_set_max(&memcg->tcpmem, max);
4014	if (ret)
4015		goto out;
4016
4017	if (!memcg->tcpmem_active) {
4018		/*
4019		 * The active flag needs to be written after the static_key
4020		 * update. This is what guarantees that the socket activation
4021		 * function is the last one to run. See mem_cgroup_sk_alloc()
4022		 * for details, and note that we don't mark any socket as
4023		 * belonging to this memcg until that flag is up.
4024		 *
4025		 * We need to do this, because static_keys will span multiple
4026		 * sites, but we can't control their order. If we mark a socket
4027		 * as accounted, but the accounting functions are not patched in
4028		 * yet, we'll lose accounting.
4029		 *
4030		 * We never race with the readers in mem_cgroup_sk_alloc(),
4031		 * because when this value change, the code to process it is not
4032		 * patched in yet.
4033		 */
4034		static_branch_inc(&memcg_sockets_enabled_key);
4035		memcg->tcpmem_active = true;
4036	}
4037out:
4038	mutex_unlock(&memcg_max_mutex);
4039	return ret;
4040}
4041
4042/*
4043 * The user of this function is...
4044 * RES_LIMIT.
4045 */
4046static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4047				char *buf, size_t nbytes, loff_t off)
4048{
4049	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4050	unsigned long nr_pages;
4051	int ret;
4052
4053	buf = strstrip(buf);
4054	ret = page_counter_memparse(buf, "-1", &nr_pages);
4055	if (ret)
4056		return ret;
4057
4058	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4059	case RES_LIMIT:
4060		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4061			ret = -EINVAL;
4062			break;
4063		}
4064		switch (MEMFILE_TYPE(of_cft(of)->private)) {
4065		case _MEM:
4066			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
4067			break;
4068		case _MEMSWAP:
4069			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
4070			break;
4071		case _KMEM:
4072			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4073				     "Writing any value to this file has no effect. "
4074				     "Please report your usecase to linux-mm@kvack.org if you "
4075				     "depend on this functionality.\n");
4076			ret = 0;
4077			break;
4078		case _TCP:
4079			ret = memcg_update_tcp_max(memcg, nr_pages);
4080			break;
4081		}
4082		break;
4083	case RES_SOFT_LIMIT:
4084		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4085			ret = -EOPNOTSUPP;
4086		} else {
4087			WRITE_ONCE(memcg->soft_limit, nr_pages);
4088			ret = 0;
4089		}
4090		break;
4091	}
4092	return ret ?: nbytes;
4093}
4094
4095static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4096				size_t nbytes, loff_t off)
4097{
4098	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4099	struct page_counter *counter;
4100
4101	switch (MEMFILE_TYPE(of_cft(of)->private)) {
4102	case _MEM:
4103		counter = &memcg->memory;
4104		break;
4105	case _MEMSWAP:
4106		counter = &memcg->memsw;
4107		break;
4108	case _KMEM:
4109		counter = &memcg->kmem;
4110		break;
4111	case _TCP:
4112		counter = &memcg->tcpmem;
4113		break;
4114	default:
4115		BUG();
4116	}
4117
4118	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4119	case RES_MAX_USAGE:
4120		page_counter_reset_watermark(counter);
4121		break;
4122	case RES_FAILCNT:
4123		counter->failcnt = 0;
4124		break;
4125	default:
4126		BUG();
4127	}
4128
4129	return nbytes;
4130}
4131
4132static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4133					struct cftype *cft)
4134{
4135	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4136}
4137
4138#ifdef CONFIG_MMU
4139static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4140					struct cftype *cft, u64 val)
4141{
4142	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4143
4144	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4145		     "Please report your usecase to linux-mm@kvack.org if you "
4146		     "depend on this functionality.\n");
4147
4148	if (val & ~MOVE_MASK)
4149		return -EINVAL;
4150
4151	/*
4152	 * No kind of locking is needed in here, because ->can_attach() will
4153	 * check this value once in the beginning of the process, and then carry
4154	 * on with stale data. This means that changes to this value will only
4155	 * affect task migrations starting after the change.
4156	 */
4157	memcg->move_charge_at_immigrate = val;
4158	return 0;
4159}
4160#else
4161static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4162					struct cftype *cft, u64 val)
4163{
4164	return -ENOSYS;
4165}
4166#endif
4167
4168#ifdef CONFIG_NUMA
4169
4170#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4171#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4172#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
4173
4174static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4175				int nid, unsigned int lru_mask, bool tree)
4176{
4177	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4178	unsigned long nr = 0;
4179	enum lru_list lru;
4180
4181	VM_BUG_ON((unsigned)nid >= nr_node_ids);
4182
4183	for_each_lru(lru) {
4184		if (!(BIT(lru) & lru_mask))
4185			continue;
4186		if (tree)
4187			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4188		else
4189			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4190	}
4191	return nr;
4192}
4193
4194static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4195					     unsigned int lru_mask,
4196					     bool tree)
4197{
4198	unsigned long nr = 0;
4199	enum lru_list lru;
4200
4201	for_each_lru(lru) {
4202		if (!(BIT(lru) & lru_mask))
4203			continue;
4204		if (tree)
4205			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4206		else
4207			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4208	}
4209	return nr;
4210}
4211
4212static int memcg_numa_stat_show(struct seq_file *m, void *v)
4213{
4214	struct numa_stat {
4215		const char *name;
4216		unsigned int lru_mask;
4217	};
4218
4219	static const struct numa_stat stats[] = {
4220		{ "total", LRU_ALL },
4221		{ "file", LRU_ALL_FILE },
4222		{ "anon", LRU_ALL_ANON },
4223		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4224	};
4225	const struct numa_stat *stat;
4226	int nid;
4227	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4228
4229	mem_cgroup_flush_stats(memcg);
4230
4231	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4232		seq_printf(m, "%s=%lu", stat->name,
4233			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4234						   false));
4235		for_each_node_state(nid, N_MEMORY)
4236			seq_printf(m, " N%d=%lu", nid,
4237				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4238							stat->lru_mask, false));
4239		seq_putc(m, '\n');
4240	}
4241
4242	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4243
4244		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4245			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4246						   true));
4247		for_each_node_state(nid, N_MEMORY)
4248			seq_printf(m, " N%d=%lu", nid,
4249				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4250							stat->lru_mask, true));
4251		seq_putc(m, '\n');
4252	}
4253
4254	return 0;
4255}
4256#endif /* CONFIG_NUMA */
4257
4258static const unsigned int memcg1_stats[] = {
4259	NR_FILE_PAGES,
4260	NR_ANON_MAPPED,
4261#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4262	NR_ANON_THPS,
4263#endif
4264	NR_SHMEM,
4265	NR_FILE_MAPPED,
4266	NR_FILE_DIRTY,
4267	NR_WRITEBACK,
4268	WORKINGSET_REFAULT_ANON,
4269	WORKINGSET_REFAULT_FILE,
4270#ifdef CONFIG_SWAP
4271	MEMCG_SWAP,
4272	NR_SWAPCACHE,
4273#endif
4274};
4275
4276static const char *const memcg1_stat_names[] = {
4277	"cache",
4278	"rss",
4279#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4280	"rss_huge",
4281#endif
4282	"shmem",
4283	"mapped_file",
4284	"dirty",
4285	"writeback",
4286	"workingset_refault_anon",
4287	"workingset_refault_file",
4288#ifdef CONFIG_SWAP
4289	"swap",
4290	"swapcached",
4291#endif
4292};
4293
4294/* Universal VM events cgroup1 shows, original sort order */
4295static const unsigned int memcg1_events[] = {
4296	PGPGIN,
4297	PGPGOUT,
4298	PGFAULT,
4299	PGMAJFAULT,
4300};
4301
4302static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4303{
4304	unsigned long memory, memsw;
4305	struct mem_cgroup *mi;
4306	unsigned int i;
4307
4308	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4309
4310	mem_cgroup_flush_stats(memcg);
4311
4312	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4313		unsigned long nr;
4314
4315		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4316		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
4317	}
4318
4319	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4320		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4321			       memcg_events_local(memcg, memcg1_events[i]));
4322
4323	for (i = 0; i < NR_LRU_LISTS; i++)
4324		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4325			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4326			       PAGE_SIZE);
4327
4328	/* Hierarchical information */
4329	memory = memsw = PAGE_COUNTER_MAX;
4330	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4331		memory = min(memory, READ_ONCE(mi->memory.max));
4332		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4333	}
4334	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4335		       (u64)memory * PAGE_SIZE);
4336	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4337		       (u64)memsw * PAGE_SIZE);
4338
4339	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4340		unsigned long nr;
4341
4342		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
4343		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4344			       (u64)nr);
4345	}
4346
4347	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4348		seq_buf_printf(s, "total_%s %llu\n",
4349			       vm_event_name(memcg1_events[i]),
4350			       (u64)memcg_events(memcg, memcg1_events[i]));
4351
4352	for (i = 0; i < NR_LRU_LISTS; i++)
4353		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4354			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4355			       PAGE_SIZE);
4356
4357#ifdef CONFIG_DEBUG_VM
4358	{
4359		pg_data_t *pgdat;
4360		struct mem_cgroup_per_node *mz;
4361		unsigned long anon_cost = 0;
4362		unsigned long file_cost = 0;
4363
4364		for_each_online_pgdat(pgdat) {
4365			mz = memcg->nodeinfo[pgdat->node_id];
4366
4367			anon_cost += mz->lruvec.anon_cost;
4368			file_cost += mz->lruvec.file_cost;
4369		}
4370		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4371		seq_buf_printf(s, "file_cost %lu\n", file_cost);
4372	}
4373#endif
4374}
4375
4376static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4377				      struct cftype *cft)
4378{
4379	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4380
4381	return mem_cgroup_swappiness(memcg);
4382}
4383
4384static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4385				       struct cftype *cft, u64 val)
4386{
4387	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388
4389	if (val > 200)
4390		return -EINVAL;
4391
4392	if (!mem_cgroup_is_root(memcg))
4393		WRITE_ONCE(memcg->swappiness, val);
4394	else
4395		WRITE_ONCE(vm_swappiness, val);
4396
4397	return 0;
4398}
4399
4400static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4401{
4402	struct mem_cgroup_threshold_ary *t;
4403	unsigned long usage;
4404	int i;
4405
4406	rcu_read_lock();
4407	if (!swap)
4408		t = rcu_dereference(memcg->thresholds.primary);
4409	else
4410		t = rcu_dereference(memcg->memsw_thresholds.primary);
4411
4412	if (!t)
4413		goto unlock;
4414
4415	usage = mem_cgroup_usage(memcg, swap);
4416
4417	/*
4418	 * current_threshold points to threshold just below or equal to usage.
4419	 * If it's not true, a threshold was crossed after last
4420	 * call of __mem_cgroup_threshold().
4421	 */
4422	i = t->current_threshold;
4423
4424	/*
4425	 * Iterate backward over array of thresholds starting from
4426	 * current_threshold and check if a threshold is crossed.
4427	 * If none of thresholds below usage is crossed, we read
4428	 * only one element of the array here.
4429	 */
4430	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4431		eventfd_signal(t->entries[i].eventfd);
4432
4433	/* i = current_threshold + 1 */
4434	i++;
4435
4436	/*
4437	 * Iterate forward over array of thresholds starting from
4438	 * current_threshold+1 and check if a threshold is crossed.
4439	 * If none of thresholds above usage is crossed, we read
4440	 * only one element of the array here.
4441	 */
4442	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4443		eventfd_signal(t->entries[i].eventfd);
4444
4445	/* Update current_threshold */
4446	t->current_threshold = i - 1;
4447unlock:
4448	rcu_read_unlock();
4449}
4450
4451static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4452{
4453	while (memcg) {
4454		__mem_cgroup_threshold(memcg, false);
4455		if (do_memsw_account())
4456			__mem_cgroup_threshold(memcg, true);
4457
4458		memcg = parent_mem_cgroup(memcg);
4459	}
4460}
4461
4462static int compare_thresholds(const void *a, const void *b)
4463{
4464	const struct mem_cgroup_threshold *_a = a;
4465	const struct mem_cgroup_threshold *_b = b;
4466
4467	if (_a->threshold > _b->threshold)
4468		return 1;
4469
4470	if (_a->threshold < _b->threshold)
4471		return -1;
4472
4473	return 0;
4474}
4475
4476static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4477{
4478	struct mem_cgroup_eventfd_list *ev;
4479
4480	spin_lock(&memcg_oom_lock);
4481
4482	list_for_each_entry(ev, &memcg->oom_notify, list)
4483		eventfd_signal(ev->eventfd);
4484
4485	spin_unlock(&memcg_oom_lock);
4486	return 0;
4487}
4488
4489static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4490{
4491	struct mem_cgroup *iter;
4492
4493	for_each_mem_cgroup_tree(iter, memcg)
4494		mem_cgroup_oom_notify_cb(iter);
4495}
4496
4497static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4498	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4499{
4500	struct mem_cgroup_thresholds *thresholds;
4501	struct mem_cgroup_threshold_ary *new;
4502	unsigned long threshold;
4503	unsigned long usage;
4504	int i, size, ret;
4505
4506	ret = page_counter_memparse(args, "-1", &threshold);
4507	if (ret)
4508		return ret;
4509
4510	mutex_lock(&memcg->thresholds_lock);
4511
4512	if (type == _MEM) {
4513		thresholds = &memcg->thresholds;
4514		usage = mem_cgroup_usage(memcg, false);
4515	} else if (type == _MEMSWAP) {
4516		thresholds = &memcg->memsw_thresholds;
4517		usage = mem_cgroup_usage(memcg, true);
4518	} else
4519		BUG();
4520
4521	/* Check if a threshold crossed before adding a new one */
4522	if (thresholds->primary)
4523		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4524
4525	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4526
4527	/* Allocate memory for new array of thresholds */
4528	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4529	if (!new) {
4530		ret = -ENOMEM;
4531		goto unlock;
4532	}
4533	new->size = size;
4534
4535	/* Copy thresholds (if any) to new array */
4536	if (thresholds->primary)
4537		memcpy(new->entries, thresholds->primary->entries,
4538		       flex_array_size(new, entries, size - 1));
4539
4540	/* Add new threshold */
4541	new->entries[size - 1].eventfd = eventfd;
4542	new->entries[size - 1].threshold = threshold;
4543
4544	/* Sort thresholds. Registering of new threshold isn't time-critical */
4545	sort(new->entries, size, sizeof(*new->entries),
4546			compare_thresholds, NULL);
4547
4548	/* Find current threshold */
4549	new->current_threshold = -1;
4550	for (i = 0; i < size; i++) {
4551		if (new->entries[i].threshold <= usage) {
4552			/*
4553			 * new->current_threshold will not be used until
4554			 * rcu_assign_pointer(), so it's safe to increment
4555			 * it here.
4556			 */
4557			++new->current_threshold;
4558		} else
4559			break;
4560	}
4561
4562	/* Free old spare buffer and save old primary buffer as spare */
4563	kfree(thresholds->spare);
4564	thresholds->spare = thresholds->primary;
4565
4566	rcu_assign_pointer(thresholds->primary, new);
4567
4568	/* To be sure that nobody uses thresholds */
4569	synchronize_rcu();
4570
4571unlock:
4572	mutex_unlock(&memcg->thresholds_lock);
4573
4574	return ret;
4575}
4576
4577static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4578	struct eventfd_ctx *eventfd, const char *args)
4579{
4580	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4581}
4582
4583static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4584	struct eventfd_ctx *eventfd, const char *args)
4585{
4586	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4587}
4588
4589static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4590	struct eventfd_ctx *eventfd, enum res_type type)
4591{
4592	struct mem_cgroup_thresholds *thresholds;
4593	struct mem_cgroup_threshold_ary *new;
4594	unsigned long usage;
4595	int i, j, size, entries;
4596
4597	mutex_lock(&memcg->thresholds_lock);
4598
4599	if (type == _MEM) {
4600		thresholds = &memcg->thresholds;
4601		usage = mem_cgroup_usage(memcg, false);
4602	} else if (type == _MEMSWAP) {
4603		thresholds = &memcg->memsw_thresholds;
4604		usage = mem_cgroup_usage(memcg, true);
4605	} else
4606		BUG();
4607
4608	if (!thresholds->primary)
4609		goto unlock;
4610
4611	/* Check if a threshold crossed before removing */
4612	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4613
4614	/* Calculate new number of threshold */
4615	size = entries = 0;
4616	for (i = 0; i < thresholds->primary->size; i++) {
4617		if (thresholds->primary->entries[i].eventfd != eventfd)
4618			size++;
4619		else
4620			entries++;
4621	}
4622
4623	new = thresholds->spare;
4624
4625	/* If no items related to eventfd have been cleared, nothing to do */
4626	if (!entries)
4627		goto unlock;
4628
4629	/* Set thresholds array to NULL if we don't have thresholds */
4630	if (!size) {
4631		kfree(new);
4632		new = NULL;
4633		goto swap_buffers;
4634	}
4635
4636	new->size = size;
4637
4638	/* Copy thresholds and find current threshold */
4639	new->current_threshold = -1;
4640	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4641		if (thresholds->primary->entries[i].eventfd == eventfd)
4642			continue;
4643
4644		new->entries[j] = thresholds->primary->entries[i];
4645		if (new->entries[j].threshold <= usage) {
4646			/*
4647			 * new->current_threshold will not be used
4648			 * until rcu_assign_pointer(), so it's safe to increment
4649			 * it here.
4650			 */
4651			++new->current_threshold;
4652		}
4653		j++;
4654	}
4655
4656swap_buffers:
4657	/* Swap primary and spare array */
4658	thresholds->spare = thresholds->primary;
4659
4660	rcu_assign_pointer(thresholds->primary, new);
4661
4662	/* To be sure that nobody uses thresholds */
4663	synchronize_rcu();
4664
4665	/* If all events are unregistered, free the spare array */
4666	if (!new) {
4667		kfree(thresholds->spare);
4668		thresholds->spare = NULL;
4669	}
4670unlock:
4671	mutex_unlock(&memcg->thresholds_lock);
4672}
4673
4674static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4675	struct eventfd_ctx *eventfd)
4676{
4677	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4678}
4679
4680static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4681	struct eventfd_ctx *eventfd)
4682{
4683	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4684}
4685
4686static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4687	struct eventfd_ctx *eventfd, const char *args)
4688{
4689	struct mem_cgroup_eventfd_list *event;
4690
4691	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4692	if (!event)
4693		return -ENOMEM;
4694
4695	spin_lock(&memcg_oom_lock);
4696
4697	event->eventfd = eventfd;
4698	list_add(&event->list, &memcg->oom_notify);
4699
4700	/* already in OOM ? */
4701	if (memcg->under_oom)
4702		eventfd_signal(eventfd);
4703	spin_unlock(&memcg_oom_lock);
4704
4705	return 0;
4706}
4707
4708static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4709	struct eventfd_ctx *eventfd)
4710{
4711	struct mem_cgroup_eventfd_list *ev, *tmp;
4712
4713	spin_lock(&memcg_oom_lock);
4714
4715	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4716		if (ev->eventfd == eventfd) {
4717			list_del(&ev->list);
4718			kfree(ev);
4719		}
4720	}
4721
4722	spin_unlock(&memcg_oom_lock);
4723}
4724
4725static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4726{
4727	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4728
4729	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4730	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4731	seq_printf(sf, "oom_kill %lu\n",
4732		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4733	return 0;
4734}
4735
4736static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4737	struct cftype *cft, u64 val)
4738{
4739	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4740
4741	/* cannot set to root cgroup and only 0 and 1 are allowed */
4742	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4743		return -EINVAL;
4744
4745	WRITE_ONCE(memcg->oom_kill_disable, val);
4746	if (!val)
4747		memcg_oom_recover(memcg);
4748
4749	return 0;
4750}
4751
4752#ifdef CONFIG_CGROUP_WRITEBACK
4753
4754#include <trace/events/writeback.h>
4755
4756static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4757{
4758	return wb_domain_init(&memcg->cgwb_domain, gfp);
4759}
4760
4761static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4762{
4763	wb_domain_exit(&memcg->cgwb_domain);
4764}
4765
4766static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4767{
4768	wb_domain_size_changed(&memcg->cgwb_domain);
4769}
4770
4771struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4772{
4773	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4774
4775	if (!memcg->css.parent)
4776		return NULL;
4777
4778	return &memcg->cgwb_domain;
4779}
4780
4781/**
4782 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4783 * @wb: bdi_writeback in question
4784 * @pfilepages: out parameter for number of file pages
4785 * @pheadroom: out parameter for number of allocatable pages according to memcg
4786 * @pdirty: out parameter for number of dirty pages
4787 * @pwriteback: out parameter for number of pages under writeback
4788 *
4789 * Determine the numbers of file, headroom, dirty, and writeback pages in
4790 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4791 * is a bit more involved.
4792 *
4793 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4794 * headroom is calculated as the lowest headroom of itself and the
4795 * ancestors.  Note that this doesn't consider the actual amount of
4796 * available memory in the system.  The caller should further cap
4797 * *@pheadroom accordingly.
4798 */
4799void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4800			 unsigned long *pheadroom, unsigned long *pdirty,
4801			 unsigned long *pwriteback)
4802{
4803	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4804	struct mem_cgroup *parent;
4805
4806	mem_cgroup_flush_stats_ratelimited(memcg);
4807
4808	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4809	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4810	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4811			memcg_page_state(memcg, NR_ACTIVE_FILE);
4812
4813	*pheadroom = PAGE_COUNTER_MAX;
4814	while ((parent = parent_mem_cgroup(memcg))) {
4815		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4816					    READ_ONCE(memcg->memory.high));
4817		unsigned long used = page_counter_read(&memcg->memory);
4818
4819		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4820		memcg = parent;
4821	}
4822}
4823
4824/*
4825 * Foreign dirty flushing
4826 *
4827 * There's an inherent mismatch between memcg and writeback.  The former
4828 * tracks ownership per-page while the latter per-inode.  This was a
4829 * deliberate design decision because honoring per-page ownership in the
4830 * writeback path is complicated, may lead to higher CPU and IO overheads
4831 * and deemed unnecessary given that write-sharing an inode across
4832 * different cgroups isn't a common use-case.
4833 *
4834 * Combined with inode majority-writer ownership switching, this works well
4835 * enough in most cases but there are some pathological cases.  For
4836 * example, let's say there are two cgroups A and B which keep writing to
4837 * different but confined parts of the same inode.  B owns the inode and
4838 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4839 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4840 * triggering background writeback.  A will be slowed down without a way to
4841 * make writeback of the dirty pages happen.
4842 *
4843 * Conditions like the above can lead to a cgroup getting repeatedly and
4844 * severely throttled after making some progress after each
4845 * dirty_expire_interval while the underlying IO device is almost
4846 * completely idle.
4847 *
4848 * Solving this problem completely requires matching the ownership tracking
4849 * granularities between memcg and writeback in either direction.  However,
4850 * the more egregious behaviors can be avoided by simply remembering the
4851 * most recent foreign dirtying events and initiating remote flushes on
4852 * them when local writeback isn't enough to keep the memory clean enough.
4853 *
4854 * The following two functions implement such mechanism.  When a foreign
4855 * page - a page whose memcg and writeback ownerships don't match - is
4856 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4857 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4858 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4859 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4860 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4861 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4862 * limited to MEMCG_CGWB_FRN_CNT.
4863 *
4864 * The mechanism only remembers IDs and doesn't hold any object references.
4865 * As being wrong occasionally doesn't matter, updates and accesses to the
4866 * records are lockless and racy.
4867 */
4868void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4869					     struct bdi_writeback *wb)
4870{
4871	struct mem_cgroup *memcg = folio_memcg(folio);
4872	struct memcg_cgwb_frn *frn;
4873	u64 now = get_jiffies_64();
4874	u64 oldest_at = now;
4875	int oldest = -1;
4876	int i;
4877
4878	trace_track_foreign_dirty(folio, wb);
4879
4880	/*
4881	 * Pick the slot to use.  If there is already a slot for @wb, keep
4882	 * using it.  If not replace the oldest one which isn't being
4883	 * written out.
4884	 */
4885	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4886		frn = &memcg->cgwb_frn[i];
4887		if (frn->bdi_id == wb->bdi->id &&
4888		    frn->memcg_id == wb->memcg_css->id)
4889			break;
4890		if (time_before64(frn->at, oldest_at) &&
4891		    atomic_read(&frn->done.cnt) == 1) {
4892			oldest = i;
4893			oldest_at = frn->at;
4894		}
4895	}
4896
4897	if (i < MEMCG_CGWB_FRN_CNT) {
4898		/*
4899		 * Re-using an existing one.  Update timestamp lazily to
4900		 * avoid making the cacheline hot.  We want them to be
4901		 * reasonably up-to-date and significantly shorter than
4902		 * dirty_expire_interval as that's what expires the record.
4903		 * Use the shorter of 1s and dirty_expire_interval / 8.
4904		 */
4905		unsigned long update_intv =
4906			min_t(unsigned long, HZ,
4907			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4908
4909		if (time_before64(frn->at, now - update_intv))
4910			frn->at = now;
4911	} else if (oldest >= 0) {
4912		/* replace the oldest free one */
4913		frn = &memcg->cgwb_frn[oldest];
4914		frn->bdi_id = wb->bdi->id;
4915		frn->memcg_id = wb->memcg_css->id;
4916		frn->at = now;
4917	}
4918}
4919
4920/* issue foreign writeback flushes for recorded foreign dirtying events */
4921void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4922{
4923	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4924	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4925	u64 now = jiffies_64;
4926	int i;
4927
4928	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4929		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4930
4931		/*
4932		 * If the record is older than dirty_expire_interval,
4933		 * writeback on it has already started.  No need to kick it
4934		 * off again.  Also, don't start a new one if there's
4935		 * already one in flight.
4936		 */
4937		if (time_after64(frn->at, now - intv) &&
4938		    atomic_read(&frn->done.cnt) == 1) {
4939			frn->at = 0;
4940			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4941			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4942					       WB_REASON_FOREIGN_FLUSH,
4943					       &frn->done);
4944		}
4945	}
4946}
4947
4948#else	/* CONFIG_CGROUP_WRITEBACK */
4949
4950static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4951{
4952	return 0;
4953}
4954
4955static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4956{
4957}
4958
4959static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4960{
4961}
4962
4963#endif	/* CONFIG_CGROUP_WRITEBACK */
4964
4965/*
4966 * DO NOT USE IN NEW FILES.
4967 *
4968 * "cgroup.event_control" implementation.
4969 *
4970 * This is way over-engineered.  It tries to support fully configurable
4971 * events for each user.  Such level of flexibility is completely
4972 * unnecessary especially in the light of the planned unified hierarchy.
4973 *
4974 * Please deprecate this and replace with something simpler if at all
4975 * possible.
4976 */
4977
4978/*
4979 * Unregister event and free resources.
4980 *
4981 * Gets called from workqueue.
4982 */
4983static void memcg_event_remove(struct work_struct *work)
4984{
4985	struct mem_cgroup_event *event =
4986		container_of(work, struct mem_cgroup_event, remove);
4987	struct mem_cgroup *memcg = event->memcg;
4988
4989	remove_wait_queue(event->wqh, &event->wait);
4990
4991	event->unregister_event(memcg, event->eventfd);
4992
4993	/* Notify userspace the event is going away. */
4994	eventfd_signal(event->eventfd);
4995
4996	eventfd_ctx_put(event->eventfd);
4997	kfree(event);
4998	css_put(&memcg->css);
4999}
5000
5001/*
5002 * Gets called on EPOLLHUP on eventfd when user closes it.
5003 *
5004 * Called with wqh->lock held and interrupts disabled.
5005 */
5006static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
5007			    int sync, void *key)
5008{
5009	struct mem_cgroup_event *event =
5010		container_of(wait, struct mem_cgroup_event, wait);
5011	struct mem_cgroup *memcg = event->memcg;
5012	__poll_t flags = key_to_poll(key);
5013
5014	if (flags & EPOLLHUP) {
5015		/*
5016		 * If the event has been detached at cgroup removal, we
5017		 * can simply return knowing the other side will cleanup
5018		 * for us.
5019		 *
5020		 * We can't race against event freeing since the other
5021		 * side will require wqh->lock via remove_wait_queue(),
5022		 * which we hold.
5023		 */
5024		spin_lock(&memcg->event_list_lock);
5025		if (!list_empty(&event->list)) {
5026			list_del_init(&event->list);
5027			/*
5028			 * We are in atomic context, but cgroup_event_remove()
5029			 * may sleep, so we have to call it in workqueue.
5030			 */
5031			schedule_work(&event->remove);
5032		}
5033		spin_unlock(&memcg->event_list_lock);
5034	}
5035
5036	return 0;
5037}
5038
5039static void memcg_event_ptable_queue_proc(struct file *file,
5040		wait_queue_head_t *wqh, poll_table *pt)
5041{
5042	struct mem_cgroup_event *event =
5043		container_of(pt, struct mem_cgroup_event, pt);
5044
5045	event->wqh = wqh;
5046	add_wait_queue(wqh, &event->wait);
5047}
5048
5049/*
5050 * DO NOT USE IN NEW FILES.
5051 *
5052 * Parse input and register new cgroup event handler.
5053 *
5054 * Input must be in format '<event_fd> <control_fd> <args>'.
5055 * Interpretation of args is defined by control file implementation.
5056 */
5057static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5058					 char *buf, size_t nbytes, loff_t off)
5059{
5060	struct cgroup_subsys_state *css = of_css(of);
5061	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5062	struct mem_cgroup_event *event;
5063	struct cgroup_subsys_state *cfile_css;
5064	unsigned int efd, cfd;
5065	struct fd efile;
5066	struct fd cfile;
5067	struct dentry *cdentry;
5068	const char *name;
5069	char *endp;
5070	int ret;
5071
5072	if (IS_ENABLED(CONFIG_PREEMPT_RT))
5073		return -EOPNOTSUPP;
5074
5075	buf = strstrip(buf);
5076
5077	efd = simple_strtoul(buf, &endp, 10);
5078	if (*endp != ' ')
5079		return -EINVAL;
5080	buf = endp + 1;
5081
5082	cfd = simple_strtoul(buf, &endp, 10);
5083	if ((*endp != ' ') && (*endp != '\0'))
5084		return -EINVAL;
5085	buf = endp + 1;
5086
5087	event = kzalloc(sizeof(*event), GFP_KERNEL);
5088	if (!event)
5089		return -ENOMEM;
5090
5091	event->memcg = memcg;
5092	INIT_LIST_HEAD(&event->list);
5093	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5094	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5095	INIT_WORK(&event->remove, memcg_event_remove);
5096
5097	efile = fdget(efd);
5098	if (!efile.file) {
5099		ret = -EBADF;
5100		goto out_kfree;
5101	}
5102
5103	event->eventfd = eventfd_ctx_fileget(efile.file);
5104	if (IS_ERR(event->eventfd)) {
5105		ret = PTR_ERR(event->eventfd);
5106		goto out_put_efile;
5107	}
5108
5109	cfile = fdget(cfd);
5110	if (!cfile.file) {
5111		ret = -EBADF;
5112		goto out_put_eventfd;
5113	}
5114
5115	/* the process need read permission on control file */
5116	/* AV: shouldn't we check that it's been opened for read instead? */
5117	ret = file_permission(cfile.file, MAY_READ);
5118	if (ret < 0)
5119		goto out_put_cfile;
5120
5121	/*
5122	 * The control file must be a regular cgroup1 file. As a regular cgroup
5123	 * file can't be renamed, it's safe to access its name afterwards.
5124	 */
5125	cdentry = cfile.file->f_path.dentry;
5126	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5127		ret = -EINVAL;
5128		goto out_put_cfile;
5129	}
5130
5131	/*
5132	 * Determine the event callbacks and set them in @event.  This used
5133	 * to be done via struct cftype but cgroup core no longer knows
5134	 * about these events.  The following is crude but the whole thing
5135	 * is for compatibility anyway.
5136	 *
5137	 * DO NOT ADD NEW FILES.
5138	 */
5139	name = cdentry->d_name.name;
5140
5141	if (!strcmp(name, "memory.usage_in_bytes")) {
5142		event->register_event = mem_cgroup_usage_register_event;
5143		event->unregister_event = mem_cgroup_usage_unregister_event;
5144	} else if (!strcmp(name, "memory.oom_control")) {
5145		event->register_event = mem_cgroup_oom_register_event;
5146		event->unregister_event = mem_cgroup_oom_unregister_event;
5147	} else if (!strcmp(name, "memory.pressure_level")) {
5148		event->register_event = vmpressure_register_event;
5149		event->unregister_event = vmpressure_unregister_event;
5150	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5151		event->register_event = memsw_cgroup_usage_register_event;
5152		event->unregister_event = memsw_cgroup_usage_unregister_event;
5153	} else {
5154		ret = -EINVAL;
5155		goto out_put_cfile;
5156	}
5157
5158	/*
5159	 * Verify @cfile should belong to @css.  Also, remaining events are
5160	 * automatically removed on cgroup destruction but the removal is
5161	 * asynchronous, so take an extra ref on @css.
5162	 */
5163	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5164					       &memory_cgrp_subsys);
5165	ret = -EINVAL;
5166	if (IS_ERR(cfile_css))
5167		goto out_put_cfile;
5168	if (cfile_css != css) {
5169		css_put(cfile_css);
5170		goto out_put_cfile;
5171	}
5172
5173	ret = event->register_event(memcg, event->eventfd, buf);
5174	if (ret)
5175		goto out_put_css;
5176
5177	vfs_poll(efile.file, &event->pt);
5178
5179	spin_lock_irq(&memcg->event_list_lock);
5180	list_add(&event->list, &memcg->event_list);
5181	spin_unlock_irq(&memcg->event_list_lock);
5182
5183	fdput(cfile);
5184	fdput(efile);
5185
5186	return nbytes;
5187
5188out_put_css:
5189	css_put(css);
5190out_put_cfile:
5191	fdput(cfile);
5192out_put_eventfd:
5193	eventfd_ctx_put(event->eventfd);
5194out_put_efile:
5195	fdput(efile);
5196out_kfree:
5197	kfree(event);
5198
5199	return ret;
5200}
5201
5202#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5203static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5204{
5205	/*
5206	 * Deprecated.
5207	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5208	 */
5209	return 0;
5210}
5211#endif
5212
5213static int memory_stat_show(struct seq_file *m, void *v);
5214
5215static struct cftype mem_cgroup_legacy_files[] = {
5216	{
5217		.name = "usage_in_bytes",
5218		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5219		.read_u64 = mem_cgroup_read_u64,
5220	},
5221	{
5222		.name = "max_usage_in_bytes",
5223		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5224		.write = mem_cgroup_reset,
5225		.read_u64 = mem_cgroup_read_u64,
5226	},
5227	{
5228		.name = "limit_in_bytes",
5229		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5230		.write = mem_cgroup_write,
5231		.read_u64 = mem_cgroup_read_u64,
5232	},
5233	{
5234		.name = "soft_limit_in_bytes",
5235		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5236		.write = mem_cgroup_write,
5237		.read_u64 = mem_cgroup_read_u64,
5238	},
5239	{
5240		.name = "failcnt",
5241		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5242		.write = mem_cgroup_reset,
5243		.read_u64 = mem_cgroup_read_u64,
5244	},
5245	{
5246		.name = "stat",
5247		.seq_show = memory_stat_show,
5248	},
5249	{
5250		.name = "force_empty",
5251		.write = mem_cgroup_force_empty_write,
5252	},
5253	{
5254		.name = "use_hierarchy",
5255		.write_u64 = mem_cgroup_hierarchy_write,
5256		.read_u64 = mem_cgroup_hierarchy_read,
5257	},
5258	{
5259		.name = "cgroup.event_control",		/* XXX: for compat */
5260		.write = memcg_write_event_control,
5261		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5262	},
5263	{
5264		.name = "swappiness",
5265		.read_u64 = mem_cgroup_swappiness_read,
5266		.write_u64 = mem_cgroup_swappiness_write,
5267	},
5268	{
5269		.name = "move_charge_at_immigrate",
5270		.read_u64 = mem_cgroup_move_charge_read,
5271		.write_u64 = mem_cgroup_move_charge_write,
5272	},
5273	{
5274		.name = "oom_control",
5275		.seq_show = mem_cgroup_oom_control_read,
5276		.write_u64 = mem_cgroup_oom_control_write,
5277	},
5278	{
5279		.name = "pressure_level",
5280		.seq_show = mem_cgroup_dummy_seq_show,
5281	},
5282#ifdef CONFIG_NUMA
5283	{
5284		.name = "numa_stat",
5285		.seq_show = memcg_numa_stat_show,
5286	},
5287#endif
5288	{
5289		.name = "kmem.limit_in_bytes",
5290		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5291		.write = mem_cgroup_write,
5292		.read_u64 = mem_cgroup_read_u64,
5293	},
5294	{
5295		.name = "kmem.usage_in_bytes",
5296		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5297		.read_u64 = mem_cgroup_read_u64,
5298	},
5299	{
5300		.name = "kmem.failcnt",
5301		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5302		.write = mem_cgroup_reset,
5303		.read_u64 = mem_cgroup_read_u64,
5304	},
5305	{
5306		.name = "kmem.max_usage_in_bytes",
5307		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5308		.write = mem_cgroup_reset,
5309		.read_u64 = mem_cgroup_read_u64,
5310	},
5311#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5312	{
5313		.name = "kmem.slabinfo",
5314		.seq_show = mem_cgroup_slab_show,
5315	},
5316#endif
5317	{
5318		.name = "kmem.tcp.limit_in_bytes",
5319		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5320		.write = mem_cgroup_write,
5321		.read_u64 = mem_cgroup_read_u64,
5322	},
5323	{
5324		.name = "kmem.tcp.usage_in_bytes",
5325		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5326		.read_u64 = mem_cgroup_read_u64,
5327	},
5328	{
5329		.name = "kmem.tcp.failcnt",
5330		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5331		.write = mem_cgroup_reset,
5332		.read_u64 = mem_cgroup_read_u64,
5333	},
5334	{
5335		.name = "kmem.tcp.max_usage_in_bytes",
5336		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5337		.write = mem_cgroup_reset,
5338		.read_u64 = mem_cgroup_read_u64,
5339	},
5340	{ },	/* terminate */
5341};
5342
5343/*
5344 * Private memory cgroup IDR
5345 *
5346 * Swap-out records and page cache shadow entries need to store memcg
5347 * references in constrained space, so we maintain an ID space that is
5348 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5349 * memory-controlled cgroups to 64k.
5350 *
5351 * However, there usually are many references to the offline CSS after
5352 * the cgroup has been destroyed, such as page cache or reclaimable
5353 * slab objects, that don't need to hang on to the ID. We want to keep
5354 * those dead CSS from occupying IDs, or we might quickly exhaust the
5355 * relatively small ID space and prevent the creation of new cgroups
5356 * even when there are much fewer than 64k cgroups - possibly none.
5357 *
5358 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5359 * be freed and recycled when it's no longer needed, which is usually
5360 * when the CSS is offlined.
5361 *
5362 * The only exception to that are records of swapped out tmpfs/shmem
5363 * pages that need to be attributed to live ancestors on swapin. But
5364 * those references are manageable from userspace.
5365 */
5366
5367#define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5368static DEFINE_IDR(mem_cgroup_idr);
5369
5370static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5371{
5372	if (memcg->id.id > 0) {
5373		idr_remove(&mem_cgroup_idr, memcg->id.id);
5374		memcg->id.id = 0;
5375	}
5376}
5377
5378static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5379						  unsigned int n)
5380{
5381	refcount_add(n, &memcg->id.ref);
5382}
5383
5384static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5385{
5386	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5387		mem_cgroup_id_remove(memcg);
5388
5389		/* Memcg ID pins CSS */
5390		css_put(&memcg->css);
5391	}
5392}
5393
5394static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5395{
5396	mem_cgroup_id_put_many(memcg, 1);
5397}
5398
5399/**
5400 * mem_cgroup_from_id - look up a memcg from a memcg id
5401 * @id: the memcg id to look up
5402 *
5403 * Caller must hold rcu_read_lock().
5404 */
5405struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5406{
5407	WARN_ON_ONCE(!rcu_read_lock_held());
5408	return idr_find(&mem_cgroup_idr, id);
5409}
5410
5411#ifdef CONFIG_SHRINKER_DEBUG
5412struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5413{
5414	struct cgroup *cgrp;
5415	struct cgroup_subsys_state *css;
5416	struct mem_cgroup *memcg;
5417
5418	cgrp = cgroup_get_from_id(ino);
5419	if (IS_ERR(cgrp))
5420		return ERR_CAST(cgrp);
5421
5422	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5423	if (css)
5424		memcg = container_of(css, struct mem_cgroup, css);
5425	else
5426		memcg = ERR_PTR(-ENOENT);
5427
5428	cgroup_put(cgrp);
5429
5430	return memcg;
5431}
5432#endif
5433
5434static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5435{
5436	struct mem_cgroup_per_node *pn;
5437
5438	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5439	if (!pn)
5440		return 1;
5441
5442	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5443						   GFP_KERNEL_ACCOUNT);
5444	if (!pn->lruvec_stats_percpu) {
5445		kfree(pn);
5446		return 1;
5447	}
5448
5449	lruvec_init(&pn->lruvec);
5450	pn->memcg = memcg;
5451
5452	memcg->nodeinfo[node] = pn;
5453	return 0;
5454}
5455
5456static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5457{
5458	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5459
5460	if (!pn)
5461		return;
5462
5463	free_percpu(pn->lruvec_stats_percpu);
5464	kfree(pn);
5465}
5466
5467static void __mem_cgroup_free(struct mem_cgroup *memcg)
5468{
5469	int node;
5470
5471	if (memcg->orig_objcg)
5472		obj_cgroup_put(memcg->orig_objcg);
5473
5474	for_each_node(node)
5475		free_mem_cgroup_per_node_info(memcg, node);
5476	kfree(memcg->vmstats);
5477	free_percpu(memcg->vmstats_percpu);
5478	kfree(memcg);
5479}
5480
5481static void mem_cgroup_free(struct mem_cgroup *memcg)
5482{
5483	lru_gen_exit_memcg(memcg);
5484	memcg_wb_domain_exit(memcg);
5485	__mem_cgroup_free(memcg);
5486}
5487
5488static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
5489{
5490	struct memcg_vmstats_percpu *statc, *pstatc;
5491	struct mem_cgroup *memcg;
5492	int node, cpu;
5493	int __maybe_unused i;
5494	long error = -ENOMEM;
5495
5496	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5497	if (!memcg)
5498		return ERR_PTR(error);
5499
5500	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5501				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5502	if (memcg->id.id < 0) {
5503		error = memcg->id.id;
5504		goto fail;
5505	}
5506
5507	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5508	if (!memcg->vmstats)
5509		goto fail;
5510
5511	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5512						 GFP_KERNEL_ACCOUNT);
5513	if (!memcg->vmstats_percpu)
5514		goto fail;
5515
5516	for_each_possible_cpu(cpu) {
5517		if (parent)
5518			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
5519		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5520		statc->parent = parent ? pstatc : NULL;
5521		statc->vmstats = memcg->vmstats;
5522	}
5523
5524	for_each_node(node)
5525		if (alloc_mem_cgroup_per_node_info(memcg, node))
5526			goto fail;
5527
5528	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5529		goto fail;
5530
5531	INIT_WORK(&memcg->high_work, high_work_func);
5532	INIT_LIST_HEAD(&memcg->oom_notify);
5533	mutex_init(&memcg->thresholds_lock);
5534	spin_lock_init(&memcg->move_lock);
5535	vmpressure_init(&memcg->vmpressure);
5536	INIT_LIST_HEAD(&memcg->event_list);
5537	spin_lock_init(&memcg->event_list_lock);
5538	memcg->socket_pressure = jiffies;
5539#ifdef CONFIG_MEMCG_KMEM
5540	memcg->kmemcg_id = -1;
5541	INIT_LIST_HEAD(&memcg->objcg_list);
5542#endif
5543#ifdef CONFIG_CGROUP_WRITEBACK
5544	INIT_LIST_HEAD(&memcg->cgwb_list);
5545	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5546		memcg->cgwb_frn[i].done =
5547			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5548#endif
5549#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5550	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5551	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5552	memcg->deferred_split_queue.split_queue_len = 0;
5553#endif
5554	lru_gen_init_memcg(memcg);
5555	return memcg;
5556fail:
5557	mem_cgroup_id_remove(memcg);
5558	__mem_cgroup_free(memcg);
5559	return ERR_PTR(error);
5560}
5561
5562static struct cgroup_subsys_state * __ref
5563mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5564{
5565	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5566	struct mem_cgroup *memcg, *old_memcg;
5567
5568	old_memcg = set_active_memcg(parent);
5569	memcg = mem_cgroup_alloc(parent);
5570	set_active_memcg(old_memcg);
5571	if (IS_ERR(memcg))
5572		return ERR_CAST(memcg);
5573
5574	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5575	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5576#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5577	memcg->zswap_max = PAGE_COUNTER_MAX;
5578	WRITE_ONCE(memcg->zswap_writeback,
5579		!parent || READ_ONCE(parent->zswap_writeback));
5580#endif
5581	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5582	if (parent) {
5583		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5584		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5585
5586		page_counter_init(&memcg->memory, &parent->memory);
5587		page_counter_init(&memcg->swap, &parent->swap);
5588		page_counter_init(&memcg->kmem, &parent->kmem);
5589		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5590	} else {
5591		init_memcg_events();
5592		page_counter_init(&memcg->memory, NULL);
5593		page_counter_init(&memcg->swap, NULL);
5594		page_counter_init(&memcg->kmem, NULL);
5595		page_counter_init(&memcg->tcpmem, NULL);
5596
5597		root_mem_cgroup = memcg;
5598		return &memcg->css;
5599	}
5600
5601	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5602		static_branch_inc(&memcg_sockets_enabled_key);
5603
5604#if defined(CONFIG_MEMCG_KMEM)
5605	if (!cgroup_memory_nobpf)
5606		static_branch_inc(&memcg_bpf_enabled_key);
5607#endif
5608
5609	return &memcg->css;
5610}
5611
5612static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5613{
5614	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5615
5616	if (memcg_online_kmem(memcg))
5617		goto remove_id;
5618
5619	/*
5620	 * A memcg must be visible for expand_shrinker_info()
5621	 * by the time the maps are allocated. So, we allocate maps
5622	 * here, when for_each_mem_cgroup() can't skip it.
5623	 */
5624	if (alloc_shrinker_info(memcg))
5625		goto offline_kmem;
5626
5627	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
5628		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5629				   FLUSH_TIME);
5630	lru_gen_online_memcg(memcg);
5631
5632	/* Online state pins memcg ID, memcg ID pins CSS */
5633	refcount_set(&memcg->id.ref, 1);
5634	css_get(css);
5635
5636	/*
5637	 * Ensure mem_cgroup_from_id() works once we're fully online.
5638	 *
5639	 * We could do this earlier and require callers to filter with
5640	 * css_tryget_online(). But right now there are no users that
5641	 * need earlier access, and the workingset code relies on the
5642	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5643	 * publish it here at the end of onlining. This matches the
5644	 * regular ID destruction during offlining.
5645	 */
5646	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5647
5648	return 0;
5649offline_kmem:
5650	memcg_offline_kmem(memcg);
5651remove_id:
5652	mem_cgroup_id_remove(memcg);
5653	return -ENOMEM;
5654}
5655
5656static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5657{
5658	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5659	struct mem_cgroup_event *event, *tmp;
5660
5661	/*
5662	 * Unregister events and notify userspace.
5663	 * Notify userspace about cgroup removing only after rmdir of cgroup
5664	 * directory to avoid race between userspace and kernelspace.
5665	 */
5666	spin_lock_irq(&memcg->event_list_lock);
5667	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5668		list_del_init(&event->list);
5669		schedule_work(&event->remove);
5670	}
5671	spin_unlock_irq(&memcg->event_list_lock);
5672
5673	page_counter_set_min(&memcg->memory, 0);
5674	page_counter_set_low(&memcg->memory, 0);
5675
5676	zswap_memcg_offline_cleanup(memcg);
5677
5678	memcg_offline_kmem(memcg);
5679	reparent_shrinker_deferred(memcg);
5680	wb_memcg_offline(memcg);
5681	lru_gen_offline_memcg(memcg);
5682
5683	drain_all_stock(memcg);
5684
5685	mem_cgroup_id_put(memcg);
5686}
5687
5688static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5689{
5690	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5691
5692	invalidate_reclaim_iterators(memcg);
5693	lru_gen_release_memcg(memcg);
5694}
5695
5696static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5697{
5698	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5699	int __maybe_unused i;
5700
5701#ifdef CONFIG_CGROUP_WRITEBACK
5702	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5703		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5704#endif
5705	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5706		static_branch_dec(&memcg_sockets_enabled_key);
5707
5708	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5709		static_branch_dec(&memcg_sockets_enabled_key);
5710
5711#if defined(CONFIG_MEMCG_KMEM)
5712	if (!cgroup_memory_nobpf)
5713		static_branch_dec(&memcg_bpf_enabled_key);
5714#endif
5715
5716	vmpressure_cleanup(&memcg->vmpressure);
5717	cancel_work_sync(&memcg->high_work);
5718	mem_cgroup_remove_from_trees(memcg);
5719	free_shrinker_info(memcg);
5720	mem_cgroup_free(memcg);
5721}
5722
5723/**
5724 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5725 * @css: the target css
5726 *
5727 * Reset the states of the mem_cgroup associated with @css.  This is
5728 * invoked when the userland requests disabling on the default hierarchy
5729 * but the memcg is pinned through dependency.  The memcg should stop
5730 * applying policies and should revert to the vanilla state as it may be
5731 * made visible again.
5732 *
5733 * The current implementation only resets the essential configurations.
5734 * This needs to be expanded to cover all the visible parts.
5735 */
5736static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5737{
5738	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5739
5740	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5741	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5742	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5743	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5744	page_counter_set_min(&memcg->memory, 0);
5745	page_counter_set_low(&memcg->memory, 0);
5746	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5747	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5748	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5749	memcg_wb_domain_size_changed(memcg);
5750}
5751
5752static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5753{
5754	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5755	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5756	struct memcg_vmstats_percpu *statc;
5757	long delta, delta_cpu, v;
5758	int i, nid;
5759
5760	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5761
5762	for (i = 0; i < MEMCG_NR_STAT; i++) {
5763		/*
5764		 * Collect the aggregated propagation counts of groups
5765		 * below us. We're in a per-cpu loop here and this is
5766		 * a global counter, so the first cycle will get them.
5767		 */
5768		delta = memcg->vmstats->state_pending[i];
5769		if (delta)
5770			memcg->vmstats->state_pending[i] = 0;
5771
5772		/* Add CPU changes on this level since the last flush */
5773		delta_cpu = 0;
5774		v = READ_ONCE(statc->state[i]);
5775		if (v != statc->state_prev[i]) {
5776			delta_cpu = v - statc->state_prev[i];
5777			delta += delta_cpu;
5778			statc->state_prev[i] = v;
5779		}
5780
5781		/* Aggregate counts on this level and propagate upwards */
5782		if (delta_cpu)
5783			memcg->vmstats->state_local[i] += delta_cpu;
5784
5785		if (delta) {
5786			memcg->vmstats->state[i] += delta;
5787			if (parent)
5788				parent->vmstats->state_pending[i] += delta;
5789		}
5790	}
5791
5792	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5793		delta = memcg->vmstats->events_pending[i];
5794		if (delta)
5795			memcg->vmstats->events_pending[i] = 0;
5796
5797		delta_cpu = 0;
5798		v = READ_ONCE(statc->events[i]);
5799		if (v != statc->events_prev[i]) {
5800			delta_cpu = v - statc->events_prev[i];
5801			delta += delta_cpu;
5802			statc->events_prev[i] = v;
5803		}
5804
5805		if (delta_cpu)
5806			memcg->vmstats->events_local[i] += delta_cpu;
5807
5808		if (delta) {
5809			memcg->vmstats->events[i] += delta;
5810			if (parent)
5811				parent->vmstats->events_pending[i] += delta;
5812		}
5813	}
5814
5815	for_each_node_state(nid, N_MEMORY) {
5816		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5817		struct mem_cgroup_per_node *ppn = NULL;
5818		struct lruvec_stats_percpu *lstatc;
5819
5820		if (parent)
5821			ppn = parent->nodeinfo[nid];
5822
5823		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5824
5825		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5826			delta = pn->lruvec_stats.state_pending[i];
5827			if (delta)
5828				pn->lruvec_stats.state_pending[i] = 0;
5829
5830			delta_cpu = 0;
5831			v = READ_ONCE(lstatc->state[i]);
5832			if (v != lstatc->state_prev[i]) {
5833				delta_cpu = v - lstatc->state_prev[i];
5834				delta += delta_cpu;
5835				lstatc->state_prev[i] = v;
5836			}
5837
5838			if (delta_cpu)
5839				pn->lruvec_stats.state_local[i] += delta_cpu;
5840
5841			if (delta) {
5842				pn->lruvec_stats.state[i] += delta;
5843				if (ppn)
5844					ppn->lruvec_stats.state_pending[i] += delta;
5845			}
5846		}
5847	}
5848	statc->stats_updates = 0;
5849	/* We are in a per-cpu loop here, only do the atomic write once */
5850	if (atomic64_read(&memcg->vmstats->stats_updates))
5851		atomic64_set(&memcg->vmstats->stats_updates, 0);
5852}
5853
5854#ifdef CONFIG_MMU
5855/* Handlers for move charge at task migration. */
5856static int mem_cgroup_do_precharge(unsigned long count)
5857{
5858	int ret;
5859
5860	/* Try a single bulk charge without reclaim first, kswapd may wake */
5861	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5862	if (!ret) {
5863		mc.precharge += count;
5864		return ret;
5865	}
5866
5867	/* Try charges one by one with reclaim, but do not retry */
5868	while (count--) {
5869		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5870		if (ret)
5871			return ret;
5872		mc.precharge++;
5873		cond_resched();
5874	}
5875	return 0;
5876}
5877
5878union mc_target {
5879	struct folio	*folio;
5880	swp_entry_t	ent;
5881};
5882
5883enum mc_target_type {
5884	MC_TARGET_NONE = 0,
5885	MC_TARGET_PAGE,
5886	MC_TARGET_SWAP,
5887	MC_TARGET_DEVICE,
5888};
5889
5890static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5891						unsigned long addr, pte_t ptent)
5892{
5893	struct page *page = vm_normal_page(vma, addr, ptent);
5894
5895	if (!page)
5896		return NULL;
5897	if (PageAnon(page)) {
5898		if (!(mc.flags & MOVE_ANON))
5899			return NULL;
5900	} else {
5901		if (!(mc.flags & MOVE_FILE))
5902			return NULL;
5903	}
5904	get_page(page);
5905
5906	return page;
5907}
5908
5909#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5910static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5911			pte_t ptent, swp_entry_t *entry)
5912{
5913	struct page *page = NULL;
5914	swp_entry_t ent = pte_to_swp_entry(ptent);
5915
5916	if (!(mc.flags & MOVE_ANON))
5917		return NULL;
5918
5919	/*
5920	 * Handle device private pages that are not accessible by the CPU, but
5921	 * stored as special swap entries in the page table.
5922	 */
5923	if (is_device_private_entry(ent)) {
5924		page = pfn_swap_entry_to_page(ent);
5925		if (!get_page_unless_zero(page))
5926			return NULL;
5927		return page;
5928	}
5929
5930	if (non_swap_entry(ent))
5931		return NULL;
5932
5933	/*
5934	 * Because swap_cache_get_folio() updates some statistics counter,
5935	 * we call find_get_page() with swapper_space directly.
5936	 */
5937	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5938	entry->val = ent.val;
5939
5940	return page;
5941}
5942#else
5943static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5944			pte_t ptent, swp_entry_t *entry)
5945{
5946	return NULL;
5947}
5948#endif
5949
5950static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5951			unsigned long addr, pte_t ptent)
5952{
5953	unsigned long index;
5954	struct folio *folio;
5955
5956	if (!vma->vm_file) /* anonymous vma */
5957		return NULL;
5958	if (!(mc.flags & MOVE_FILE))
5959		return NULL;
5960
5961	/* folio is moved even if it's not RSS of this task(page-faulted). */
5962	/* shmem/tmpfs may report page out on swap: account for that too. */
5963	index = linear_page_index(vma, addr);
5964	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5965	if (IS_ERR(folio))
5966		return NULL;
5967	return folio_file_page(folio, index);
5968}
5969
5970/**
5971 * mem_cgroup_move_account - move account of the folio
5972 * @folio: The folio.
5973 * @compound: charge the page as compound or small page
5974 * @from: mem_cgroup which the folio is moved from.
5975 * @to:	mem_cgroup which the folio is moved to. @from != @to.
5976 *
5977 * The folio must be locked and not on the LRU.
5978 *
5979 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5980 * from old cgroup.
5981 */
5982static int mem_cgroup_move_account(struct folio *folio,
5983				   bool compound,
5984				   struct mem_cgroup *from,
5985				   struct mem_cgroup *to)
5986{
5987	struct lruvec *from_vec, *to_vec;
5988	struct pglist_data *pgdat;
5989	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5990	int nid, ret;
5991
5992	VM_BUG_ON(from == to);
5993	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5994	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5995	VM_BUG_ON(compound && !folio_test_large(folio));
5996
5997	ret = -EINVAL;
5998	if (folio_memcg(folio) != from)
5999		goto out;
6000
6001	pgdat = folio_pgdat(folio);
6002	from_vec = mem_cgroup_lruvec(from, pgdat);
6003	to_vec = mem_cgroup_lruvec(to, pgdat);
6004
6005	folio_memcg_lock(folio);
6006
6007	if (folio_test_anon(folio)) {
6008		if (folio_mapped(folio)) {
6009			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
6010			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6011			if (folio_test_pmd_mappable(folio)) {
6012				__mod_lruvec_state(from_vec, NR_ANON_THPS,
6013						   -nr_pages);
6014				__mod_lruvec_state(to_vec, NR_ANON_THPS,
6015						   nr_pages);
6016			}
6017		}
6018	} else {
6019		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
6020		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
6021
6022		if (folio_test_swapbacked(folio)) {
6023			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
6024			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
6025		}
6026
6027		if (folio_mapped(folio)) {
6028			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
6029			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
6030		}
6031
6032		if (folio_test_dirty(folio)) {
6033			struct address_space *mapping = folio_mapping(folio);
6034
6035			if (mapping_can_writeback(mapping)) {
6036				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6037						   -nr_pages);
6038				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6039						   nr_pages);
6040			}
6041		}
6042	}
6043
6044#ifdef CONFIG_SWAP
6045	if (folio_test_swapcache(folio)) {
6046		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6047		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6048	}
6049#endif
6050	if (folio_test_writeback(folio)) {
6051		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6052		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
6053	}
6054
6055	/*
6056	 * All state has been migrated, let's switch to the new memcg.
6057	 *
6058	 * It is safe to change page's memcg here because the page
6059	 * is referenced, charged, isolated, and locked: we can't race
6060	 * with (un)charging, migration, LRU putback, or anything else
6061	 * that would rely on a stable page's memory cgroup.
6062	 *
6063	 * Note that folio_memcg_lock is a memcg lock, not a page lock,
6064	 * to save space. As soon as we switch page's memory cgroup to a
6065	 * new memcg that isn't locked, the above state can change
6066	 * concurrently again. Make sure we're truly done with it.
6067	 */
6068	smp_mb();
6069
6070	css_get(&to->css);
6071	css_put(&from->css);
6072
6073	folio->memcg_data = (unsigned long)to;
6074
6075	__folio_memcg_unlock(from);
6076
6077	ret = 0;
6078	nid = folio_nid(folio);
6079
6080	local_irq_disable();
6081	mem_cgroup_charge_statistics(to, nr_pages);
6082	memcg_check_events(to, nid);
6083	mem_cgroup_charge_statistics(from, -nr_pages);
6084	memcg_check_events(from, nid);
6085	local_irq_enable();
6086out:
6087	return ret;
6088}
6089
6090/**
6091 * get_mctgt_type - get target type of moving charge
6092 * @vma: the vma the pte to be checked belongs
6093 * @addr: the address corresponding to the pte to be checked
6094 * @ptent: the pte to be checked
6095 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6096 *
6097 * Context: Called with pte lock held.
6098 * Return:
6099 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6100 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6101 *   move charge. If @target is not NULL, the folio is stored in target->folio
6102 *   with extra refcnt taken (Caller should release it).
6103 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6104 *   target for charge migration.  If @target is not NULL, the entry is
6105 *   stored in target->ent.
6106 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6107 *   thus not on the lru.  For now such page is charged like a regular page
6108 *   would be as it is just special memory taking the place of a regular page.
6109 *   See Documentations/vm/hmm.txt and include/linux/hmm.h
6110 */
6111static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6112		unsigned long addr, pte_t ptent, union mc_target *target)
6113{
6114	struct page *page = NULL;
6115	struct folio *folio;
6116	enum mc_target_type ret = MC_TARGET_NONE;
6117	swp_entry_t ent = { .val = 0 };
6118
6119	if (pte_present(ptent))
6120		page = mc_handle_present_pte(vma, addr, ptent);
6121	else if (pte_none_mostly(ptent))
6122		/*
6123		 * PTE markers should be treated as a none pte here, separated
6124		 * from other swap handling below.
6125		 */
6126		page = mc_handle_file_pte(vma, addr, ptent);
6127	else if (is_swap_pte(ptent))
6128		page = mc_handle_swap_pte(vma, ptent, &ent);
6129
6130	if (page)
6131		folio = page_folio(page);
6132	if (target && page) {
6133		if (!folio_trylock(folio)) {
6134			folio_put(folio);
6135			return ret;
6136		}
6137		/*
6138		 * page_mapped() must be stable during the move. This
6139		 * pte is locked, so if it's present, the page cannot
6140		 * become unmapped. If it isn't, we have only partial
6141		 * control over the mapped state: the page lock will
6142		 * prevent new faults against pagecache and swapcache,
6143		 * so an unmapped page cannot become mapped. However,
6144		 * if the page is already mapped elsewhere, it can
6145		 * unmap, and there is nothing we can do about it.
6146		 * Alas, skip moving the page in this case.
6147		 */
6148		if (!pte_present(ptent) && page_mapped(page)) {
6149			folio_unlock(folio);
6150			folio_put(folio);
6151			return ret;
6152		}
6153	}
6154
6155	if (!page && !ent.val)
6156		return ret;
6157	if (page) {
6158		/*
6159		 * Do only loose check w/o serialization.
6160		 * mem_cgroup_move_account() checks the page is valid or
6161		 * not under LRU exclusion.
6162		 */
6163		if (folio_memcg(folio) == mc.from) {
6164			ret = MC_TARGET_PAGE;
6165			if (folio_is_device_private(folio) ||
6166			    folio_is_device_coherent(folio))
6167				ret = MC_TARGET_DEVICE;
6168			if (target)
6169				target->folio = folio;
6170		}
6171		if (!ret || !target) {
6172			if (target)
6173				folio_unlock(folio);
6174			folio_put(folio);
6175		}
6176	}
6177	/*
6178	 * There is a swap entry and a page doesn't exist or isn't charged.
6179	 * But we cannot move a tail-page in a THP.
6180	 */
6181	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6182	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6183		ret = MC_TARGET_SWAP;
6184		if (target)
6185			target->ent = ent;
6186	}
6187	return ret;
6188}
6189
6190#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6191/*
6192 * We don't consider PMD mapped swapping or file mapped pages because THP does
6193 * not support them for now.
6194 * Caller should make sure that pmd_trans_huge(pmd) is true.
6195 */
6196static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6197		unsigned long addr, pmd_t pmd, union mc_target *target)
6198{
6199	struct page *page = NULL;
6200	struct folio *folio;
6201	enum mc_target_type ret = MC_TARGET_NONE;
6202
6203	if (unlikely(is_swap_pmd(pmd))) {
6204		VM_BUG_ON(thp_migration_supported() &&
6205				  !is_pmd_migration_entry(pmd));
6206		return ret;
6207	}
6208	page = pmd_page(pmd);
6209	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6210	folio = page_folio(page);
6211	if (!(mc.flags & MOVE_ANON))
6212		return ret;
6213	if (folio_memcg(folio) == mc.from) {
6214		ret = MC_TARGET_PAGE;
6215		if (target) {
6216			folio_get(folio);
6217			if (!folio_trylock(folio)) {
6218				folio_put(folio);
6219				return MC_TARGET_NONE;
6220			}
6221			target->folio = folio;
6222		}
6223	}
6224	return ret;
6225}
6226#else
6227static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6228		unsigned long addr, pmd_t pmd, union mc_target *target)
6229{
6230	return MC_TARGET_NONE;
6231}
6232#endif
6233
6234static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6235					unsigned long addr, unsigned long end,
6236					struct mm_walk *walk)
6237{
6238	struct vm_area_struct *vma = walk->vma;
6239	pte_t *pte;
6240	spinlock_t *ptl;
6241
6242	ptl = pmd_trans_huge_lock(pmd, vma);
6243	if (ptl) {
6244		/*
6245		 * Note their can not be MC_TARGET_DEVICE for now as we do not
6246		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6247		 * this might change.
6248		 */
6249		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6250			mc.precharge += HPAGE_PMD_NR;
6251		spin_unlock(ptl);
6252		return 0;
6253	}
6254
6255	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6256	if (!pte)
6257		return 0;
6258	for (; addr != end; pte++, addr += PAGE_SIZE)
6259		if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6260			mc.precharge++;	/* increment precharge temporarily */
6261	pte_unmap_unlock(pte - 1, ptl);
6262	cond_resched();
6263
6264	return 0;
6265}
6266
6267static const struct mm_walk_ops precharge_walk_ops = {
6268	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6269	.walk_lock	= PGWALK_RDLOCK,
6270};
6271
6272static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6273{
6274	unsigned long precharge;
6275
6276	mmap_read_lock(mm);
6277	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6278	mmap_read_unlock(mm);
6279
6280	precharge = mc.precharge;
6281	mc.precharge = 0;
6282
6283	return precharge;
6284}
6285
6286static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6287{
6288	unsigned long precharge = mem_cgroup_count_precharge(mm);
6289
6290	VM_BUG_ON(mc.moving_task);
6291	mc.moving_task = current;
6292	return mem_cgroup_do_precharge(precharge);
6293}
6294
6295/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6296static void __mem_cgroup_clear_mc(void)
6297{
6298	struct mem_cgroup *from = mc.from;
6299	struct mem_cgroup *to = mc.to;
6300
6301	/* we must uncharge all the leftover precharges from mc.to */
6302	if (mc.precharge) {
6303		mem_cgroup_cancel_charge(mc.to, mc.precharge);
6304		mc.precharge = 0;
6305	}
6306	/*
6307	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6308	 * we must uncharge here.
6309	 */
6310	if (mc.moved_charge) {
6311		mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6312		mc.moved_charge = 0;
6313	}
6314	/* we must fixup refcnts and charges */
6315	if (mc.moved_swap) {
6316		/* uncharge swap account from the old cgroup */
6317		if (!mem_cgroup_is_root(mc.from))
6318			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6319
6320		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6321
6322		/*
6323		 * we charged both to->memory and to->memsw, so we
6324		 * should uncharge to->memory.
6325		 */
6326		if (!mem_cgroup_is_root(mc.to))
6327			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6328
6329		mc.moved_swap = 0;
6330	}
6331	memcg_oom_recover(from);
6332	memcg_oom_recover(to);
6333	wake_up_all(&mc.waitq);
6334}
6335
6336static void mem_cgroup_clear_mc(void)
6337{
6338	struct mm_struct *mm = mc.mm;
6339
6340	/*
6341	 * we must clear moving_task before waking up waiters at the end of
6342	 * task migration.
6343	 */
6344	mc.moving_task = NULL;
6345	__mem_cgroup_clear_mc();
6346	spin_lock(&mc.lock);
6347	mc.from = NULL;
6348	mc.to = NULL;
6349	mc.mm = NULL;
6350	spin_unlock(&mc.lock);
6351
6352	mmput(mm);
6353}
6354
6355static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6356{
6357	struct cgroup_subsys_state *css;
6358	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6359	struct mem_cgroup *from;
6360	struct task_struct *leader, *p;
6361	struct mm_struct *mm;
6362	unsigned long move_flags;
6363	int ret = 0;
6364
6365	/* charge immigration isn't supported on the default hierarchy */
6366	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6367		return 0;
6368
6369	/*
6370	 * Multi-process migrations only happen on the default hierarchy
6371	 * where charge immigration is not used.  Perform charge
6372	 * immigration if @tset contains a leader and whine if there are
6373	 * multiple.
6374	 */
6375	p = NULL;
6376	cgroup_taskset_for_each_leader(leader, css, tset) {
6377		WARN_ON_ONCE(p);
6378		p = leader;
6379		memcg = mem_cgroup_from_css(css);
6380	}
6381	if (!p)
6382		return 0;
6383
6384	/*
6385	 * We are now committed to this value whatever it is. Changes in this
6386	 * tunable will only affect upcoming migrations, not the current one.
6387	 * So we need to save it, and keep it going.
6388	 */
6389	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6390	if (!move_flags)
6391		return 0;
6392
6393	from = mem_cgroup_from_task(p);
6394
6395	VM_BUG_ON(from == memcg);
6396
6397	mm = get_task_mm(p);
6398	if (!mm)
6399		return 0;
6400	/* We move charges only when we move a owner of the mm */
6401	if (mm->owner == p) {
6402		VM_BUG_ON(mc.from);
6403		VM_BUG_ON(mc.to);
6404		VM_BUG_ON(mc.precharge);
6405		VM_BUG_ON(mc.moved_charge);
6406		VM_BUG_ON(mc.moved_swap);
6407
6408		spin_lock(&mc.lock);
6409		mc.mm = mm;
6410		mc.from = from;
6411		mc.to = memcg;
6412		mc.flags = move_flags;
6413		spin_unlock(&mc.lock);
6414		/* We set mc.moving_task later */
6415
6416		ret = mem_cgroup_precharge_mc(mm);
6417		if (ret)
6418			mem_cgroup_clear_mc();
6419	} else {
6420		mmput(mm);
6421	}
6422	return ret;
6423}
6424
6425static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6426{
6427	if (mc.to)
6428		mem_cgroup_clear_mc();
6429}
6430
6431static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6432				unsigned long addr, unsigned long end,
6433				struct mm_walk *walk)
6434{
6435	int ret = 0;
6436	struct vm_area_struct *vma = walk->vma;
6437	pte_t *pte;
6438	spinlock_t *ptl;
6439	enum mc_target_type target_type;
6440	union mc_target target;
6441	struct folio *folio;
6442
6443	ptl = pmd_trans_huge_lock(pmd, vma);
6444	if (ptl) {
6445		if (mc.precharge < HPAGE_PMD_NR) {
6446			spin_unlock(ptl);
6447			return 0;
6448		}
6449		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6450		if (target_type == MC_TARGET_PAGE) {
6451			folio = target.folio;
6452			if (folio_isolate_lru(folio)) {
6453				if (!mem_cgroup_move_account(folio, true,
6454							     mc.from, mc.to)) {
6455					mc.precharge -= HPAGE_PMD_NR;
6456					mc.moved_charge += HPAGE_PMD_NR;
6457				}
6458				folio_putback_lru(folio);
6459			}
6460			folio_unlock(folio);
6461			folio_put(folio);
6462		} else if (target_type == MC_TARGET_DEVICE) {
6463			folio = target.folio;
6464			if (!mem_cgroup_move_account(folio, true,
6465						     mc.from, mc.to)) {
6466				mc.precharge -= HPAGE_PMD_NR;
6467				mc.moved_charge += HPAGE_PMD_NR;
6468			}
6469			folio_unlock(folio);
6470			folio_put(folio);
6471		}
6472		spin_unlock(ptl);
6473		return 0;
6474	}
6475
6476retry:
6477	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6478	if (!pte)
6479		return 0;
6480	for (; addr != end; addr += PAGE_SIZE) {
6481		pte_t ptent = ptep_get(pte++);
6482		bool device = false;
6483		swp_entry_t ent;
6484
6485		if (!mc.precharge)
6486			break;
6487
6488		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6489		case MC_TARGET_DEVICE:
6490			device = true;
6491			fallthrough;
6492		case MC_TARGET_PAGE:
6493			folio = target.folio;
6494			/*
6495			 * We can have a part of the split pmd here. Moving it
6496			 * can be done but it would be too convoluted so simply
6497			 * ignore such a partial THP and keep it in original
6498			 * memcg. There should be somebody mapping the head.
6499			 */
6500			if (folio_test_large(folio))
6501				goto put;
6502			if (!device && !folio_isolate_lru(folio))
6503				goto put;
6504			if (!mem_cgroup_move_account(folio, false,
6505						mc.from, mc.to)) {
6506				mc.precharge--;
6507				/* we uncharge from mc.from later. */
6508				mc.moved_charge++;
6509			}
6510			if (!device)
6511				folio_putback_lru(folio);
6512put:			/* get_mctgt_type() gets & locks the page */
6513			folio_unlock(folio);
6514			folio_put(folio);
6515			break;
6516		case MC_TARGET_SWAP:
6517			ent = target.ent;
6518			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6519				mc.precharge--;
6520				mem_cgroup_id_get_many(mc.to, 1);
6521				/* we fixup other refcnts and charges later. */
6522				mc.moved_swap++;
6523			}
6524			break;
6525		default:
6526			break;
6527		}
6528	}
6529	pte_unmap_unlock(pte - 1, ptl);
6530	cond_resched();
6531
6532	if (addr != end) {
6533		/*
6534		 * We have consumed all precharges we got in can_attach().
6535		 * We try charge one by one, but don't do any additional
6536		 * charges to mc.to if we have failed in charge once in attach()
6537		 * phase.
6538		 */
6539		ret = mem_cgroup_do_precharge(1);
6540		if (!ret)
6541			goto retry;
6542	}
6543
6544	return ret;
6545}
6546
6547static const struct mm_walk_ops charge_walk_ops = {
6548	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6549	.walk_lock	= PGWALK_RDLOCK,
6550};
6551
6552static void mem_cgroup_move_charge(void)
6553{
6554	lru_add_drain_all();
6555	/*
6556	 * Signal folio_memcg_lock() to take the memcg's move_lock
6557	 * while we're moving its pages to another memcg. Then wait
6558	 * for already started RCU-only updates to finish.
6559	 */
6560	atomic_inc(&mc.from->moving_account);
6561	synchronize_rcu();
6562retry:
6563	if (unlikely(!mmap_read_trylock(mc.mm))) {
6564		/*
6565		 * Someone who are holding the mmap_lock might be waiting in
6566		 * waitq. So we cancel all extra charges, wake up all waiters,
6567		 * and retry. Because we cancel precharges, we might not be able
6568		 * to move enough charges, but moving charge is a best-effort
6569		 * feature anyway, so it wouldn't be a big problem.
6570		 */
6571		__mem_cgroup_clear_mc();
6572		cond_resched();
6573		goto retry;
6574	}
6575	/*
6576	 * When we have consumed all precharges and failed in doing
6577	 * additional charge, the page walk just aborts.
6578	 */
6579	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6580	mmap_read_unlock(mc.mm);
6581	atomic_dec(&mc.from->moving_account);
6582}
6583
6584static void mem_cgroup_move_task(void)
6585{
6586	if (mc.to) {
6587		mem_cgroup_move_charge();
6588		mem_cgroup_clear_mc();
6589	}
6590}
6591
6592#else	/* !CONFIG_MMU */
6593static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6594{
6595	return 0;
6596}
6597static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6598{
6599}
6600static void mem_cgroup_move_task(void)
6601{
6602}
6603#endif
6604
6605#ifdef CONFIG_MEMCG_KMEM
6606static void mem_cgroup_fork(struct task_struct *task)
6607{
6608	/*
6609	 * Set the update flag to cause task->objcg to be initialized lazily
6610	 * on the first allocation. It can be done without any synchronization
6611	 * because it's always performed on the current task, so does
6612	 * current_objcg_update().
6613	 */
6614	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6615}
6616
6617static void mem_cgroup_exit(struct task_struct *task)
6618{
6619	struct obj_cgroup *objcg = task->objcg;
6620
6621	objcg = (struct obj_cgroup *)
6622		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6623	if (objcg)
6624		obj_cgroup_put(objcg);
6625
6626	/*
6627	 * Some kernel allocations can happen after this point,
6628	 * but let's ignore them. It can be done without any synchronization
6629	 * because it's always performed on the current task, so does
6630	 * current_objcg_update().
6631	 */
6632	task->objcg = NULL;
6633}
6634#endif
6635
6636#ifdef CONFIG_LRU_GEN
6637static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6638{
6639	struct task_struct *task;
6640	struct cgroup_subsys_state *css;
6641
6642	/* find the first leader if there is any */
6643	cgroup_taskset_for_each_leader(task, css, tset)
6644		break;
6645
6646	if (!task)
6647		return;
6648
6649	task_lock(task);
6650	if (task->mm && READ_ONCE(task->mm->owner) == task)
6651		lru_gen_migrate_mm(task->mm);
6652	task_unlock(task);
6653}
6654#else
6655static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6656#endif /* CONFIG_LRU_GEN */
6657
6658#ifdef CONFIG_MEMCG_KMEM
6659static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6660{
6661	struct task_struct *task;
6662	struct cgroup_subsys_state *css;
6663
6664	cgroup_taskset_for_each(task, css, tset) {
6665		/* atomically set the update bit */
6666		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6667	}
6668}
6669#else
6670static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6671#endif /* CONFIG_MEMCG_KMEM */
6672
6673#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6674static void mem_cgroup_attach(struct cgroup_taskset *tset)
6675{
6676	mem_cgroup_lru_gen_attach(tset);
6677	mem_cgroup_kmem_attach(tset);
6678}
6679#endif
6680
6681static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6682{
6683	if (value == PAGE_COUNTER_MAX)
6684		seq_puts(m, "max\n");
6685	else
6686		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6687
6688	return 0;
6689}
6690
6691static u64 memory_current_read(struct cgroup_subsys_state *css,
6692			       struct cftype *cft)
6693{
6694	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6695
6696	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6697}
6698
6699static u64 memory_peak_read(struct cgroup_subsys_state *css,
6700			    struct cftype *cft)
6701{
6702	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6703
6704	return (u64)memcg->memory.watermark * PAGE_SIZE;
6705}
6706
6707static int memory_min_show(struct seq_file *m, void *v)
6708{
6709	return seq_puts_memcg_tunable(m,
6710		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6711}
6712
6713static ssize_t memory_min_write(struct kernfs_open_file *of,
6714				char *buf, size_t nbytes, loff_t off)
6715{
6716	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6717	unsigned long min;
6718	int err;
6719
6720	buf = strstrip(buf);
6721	err = page_counter_memparse(buf, "max", &min);
6722	if (err)
6723		return err;
6724
6725	page_counter_set_min(&memcg->memory, min);
6726
6727	return nbytes;
6728}
6729
6730static int memory_low_show(struct seq_file *m, void *v)
6731{
6732	return seq_puts_memcg_tunable(m,
6733		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6734}
6735
6736static ssize_t memory_low_write(struct kernfs_open_file *of,
6737				char *buf, size_t nbytes, loff_t off)
6738{
6739	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6740	unsigned long low;
6741	int err;
6742
6743	buf = strstrip(buf);
6744	err = page_counter_memparse(buf, "max", &low);
6745	if (err)
6746		return err;
6747
6748	page_counter_set_low(&memcg->memory, low);
6749
6750	return nbytes;
6751}
6752
6753static int memory_high_show(struct seq_file *m, void *v)
6754{
6755	return seq_puts_memcg_tunable(m,
6756		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6757}
6758
6759static ssize_t memory_high_write(struct kernfs_open_file *of,
6760				 char *buf, size_t nbytes, loff_t off)
6761{
6762	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6763	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6764	bool drained = false;
6765	unsigned long high;
6766	int err;
6767
6768	buf = strstrip(buf);
6769	err = page_counter_memparse(buf, "max", &high);
6770	if (err)
6771		return err;
6772
6773	page_counter_set_high(&memcg->memory, high);
6774
6775	for (;;) {
6776		unsigned long nr_pages = page_counter_read(&memcg->memory);
6777		unsigned long reclaimed;
6778
6779		if (nr_pages <= high)
6780			break;
6781
6782		if (signal_pending(current))
6783			break;
6784
6785		if (!drained) {
6786			drain_all_stock(memcg);
6787			drained = true;
6788			continue;
6789		}
6790
6791		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6792					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6793
6794		if (!reclaimed && !nr_retries--)
6795			break;
6796	}
6797
6798	memcg_wb_domain_size_changed(memcg);
6799	return nbytes;
6800}
6801
6802static int memory_max_show(struct seq_file *m, void *v)
6803{
6804	return seq_puts_memcg_tunable(m,
6805		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6806}
6807
6808static ssize_t memory_max_write(struct kernfs_open_file *of,
6809				char *buf, size_t nbytes, loff_t off)
6810{
6811	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6812	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6813	bool drained = false;
6814	unsigned long max;
6815	int err;
6816
6817	buf = strstrip(buf);
6818	err = page_counter_memparse(buf, "max", &max);
6819	if (err)
6820		return err;
6821
6822	xchg(&memcg->memory.max, max);
6823
6824	for (;;) {
6825		unsigned long nr_pages = page_counter_read(&memcg->memory);
6826
6827		if (nr_pages <= max)
6828			break;
6829
6830		if (signal_pending(current))
6831			break;
6832
6833		if (!drained) {
6834			drain_all_stock(memcg);
6835			drained = true;
6836			continue;
6837		}
6838
6839		if (nr_reclaims) {
6840			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6841					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6842				nr_reclaims--;
6843			continue;
6844		}
6845
6846		memcg_memory_event(memcg, MEMCG_OOM);
6847		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6848			break;
6849	}
6850
6851	memcg_wb_domain_size_changed(memcg);
6852	return nbytes;
6853}
6854
6855/*
6856 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
6857 * if any new events become available.
6858 */
6859static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6860{
6861	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6862	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6863	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6864	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6865	seq_printf(m, "oom_kill %lu\n",
6866		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6867	seq_printf(m, "oom_group_kill %lu\n",
6868		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6869}
6870
6871static int memory_events_show(struct seq_file *m, void *v)
6872{
6873	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6874
6875	__memory_events_show(m, memcg->memory_events);
6876	return 0;
6877}
6878
6879static int memory_events_local_show(struct seq_file *m, void *v)
6880{
6881	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6882
6883	__memory_events_show(m, memcg->memory_events_local);
6884	return 0;
6885}
6886
6887static int memory_stat_show(struct seq_file *m, void *v)
6888{
6889	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6890	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6891	struct seq_buf s;
6892
6893	if (!buf)
6894		return -ENOMEM;
6895	seq_buf_init(&s, buf, PAGE_SIZE);
6896	memory_stat_format(memcg, &s);
6897	seq_puts(m, buf);
6898	kfree(buf);
6899	return 0;
6900}
6901
6902#ifdef CONFIG_NUMA
6903static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6904						     int item)
6905{
6906	return lruvec_page_state(lruvec, item) *
6907		memcg_page_state_output_unit(item);
6908}
6909
6910static int memory_numa_stat_show(struct seq_file *m, void *v)
6911{
6912	int i;
6913	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6914
6915	mem_cgroup_flush_stats(memcg);
6916
6917	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6918		int nid;
6919
6920		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6921			continue;
6922
6923		seq_printf(m, "%s", memory_stats[i].name);
6924		for_each_node_state(nid, N_MEMORY) {
6925			u64 size;
6926			struct lruvec *lruvec;
6927
6928			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6929			size = lruvec_page_state_output(lruvec,
6930							memory_stats[i].idx);
6931			seq_printf(m, " N%d=%llu", nid, size);
6932		}
6933		seq_putc(m, '\n');
6934	}
6935
6936	return 0;
6937}
6938#endif
6939
6940static int memory_oom_group_show(struct seq_file *m, void *v)
6941{
6942	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6943
6944	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6945
6946	return 0;
6947}
6948
6949static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6950				      char *buf, size_t nbytes, loff_t off)
6951{
6952	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6953	int ret, oom_group;
6954
6955	buf = strstrip(buf);
6956	if (!buf)
6957		return -EINVAL;
6958
6959	ret = kstrtoint(buf, 0, &oom_group);
6960	if (ret)
6961		return ret;
6962
6963	if (oom_group != 0 && oom_group != 1)
6964		return -EINVAL;
6965
6966	WRITE_ONCE(memcg->oom_group, oom_group);
6967
6968	return nbytes;
6969}
6970
6971static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6972			      size_t nbytes, loff_t off)
6973{
6974	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6975	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6976	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6977	unsigned int reclaim_options;
6978	int err;
6979
6980	buf = strstrip(buf);
6981	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6982	if (err)
6983		return err;
6984
6985	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6986	while (nr_reclaimed < nr_to_reclaim) {
6987		/* Will converge on zero, but reclaim enforces a minimum */
6988		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
6989		unsigned long reclaimed;
6990
6991		if (signal_pending(current))
6992			return -EINTR;
6993
6994		/*
6995		 * This is the final attempt, drain percpu lru caches in the
6996		 * hope of introducing more evictable pages for
6997		 * try_to_free_mem_cgroup_pages().
6998		 */
6999		if (!nr_retries)
7000			lru_add_drain_all();
7001
7002		reclaimed = try_to_free_mem_cgroup_pages(memcg,
7003					batch_size, GFP_KERNEL, reclaim_options);
7004
7005		if (!reclaimed && !nr_retries--)
7006			return -EAGAIN;
7007
7008		nr_reclaimed += reclaimed;
7009	}
7010
7011	return nbytes;
7012}
7013
7014static struct cftype memory_files[] = {
7015	{
7016		.name = "current",
7017		.flags = CFTYPE_NOT_ON_ROOT,
7018		.read_u64 = memory_current_read,
7019	},
7020	{
7021		.name = "peak",
7022		.flags = CFTYPE_NOT_ON_ROOT,
7023		.read_u64 = memory_peak_read,
7024	},
7025	{
7026		.name = "min",
7027		.flags = CFTYPE_NOT_ON_ROOT,
7028		.seq_show = memory_min_show,
7029		.write = memory_min_write,
7030	},
7031	{
7032		.name = "low",
7033		.flags = CFTYPE_NOT_ON_ROOT,
7034		.seq_show = memory_low_show,
7035		.write = memory_low_write,
7036	},
7037	{
7038		.name = "high",
7039		.flags = CFTYPE_NOT_ON_ROOT,
7040		.seq_show = memory_high_show,
7041		.write = memory_high_write,
7042	},
7043	{
7044		.name = "max",
7045		.flags = CFTYPE_NOT_ON_ROOT,
7046		.seq_show = memory_max_show,
7047		.write = memory_max_write,
7048	},
7049	{
7050		.name = "events",
7051		.flags = CFTYPE_NOT_ON_ROOT,
7052		.file_offset = offsetof(struct mem_cgroup, events_file),
7053		.seq_show = memory_events_show,
7054	},
7055	{
7056		.name = "events.local",
7057		.flags = CFTYPE_NOT_ON_ROOT,
7058		.file_offset = offsetof(struct mem_cgroup, events_local_file),
7059		.seq_show = memory_events_local_show,
7060	},
7061	{
7062		.name = "stat",
7063		.seq_show = memory_stat_show,
7064	},
7065#ifdef CONFIG_NUMA
7066	{
7067		.name = "numa_stat",
7068		.seq_show = memory_numa_stat_show,
7069	},
7070#endif
7071	{
7072		.name = "oom.group",
7073		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7074		.seq_show = memory_oom_group_show,
7075		.write = memory_oom_group_write,
7076	},
7077	{
7078		.name = "reclaim",
7079		.flags = CFTYPE_NS_DELEGATABLE,
7080		.write = memory_reclaim,
7081	},
7082	{ }	/* terminate */
7083};
7084
7085struct cgroup_subsys memory_cgrp_subsys = {
7086	.css_alloc = mem_cgroup_css_alloc,
7087	.css_online = mem_cgroup_css_online,
7088	.css_offline = mem_cgroup_css_offline,
7089	.css_released = mem_cgroup_css_released,
7090	.css_free = mem_cgroup_css_free,
7091	.css_reset = mem_cgroup_css_reset,
7092	.css_rstat_flush = mem_cgroup_css_rstat_flush,
7093	.can_attach = mem_cgroup_can_attach,
7094#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7095	.attach = mem_cgroup_attach,
7096#endif
7097	.cancel_attach = mem_cgroup_cancel_attach,
7098	.post_attach = mem_cgroup_move_task,
7099#ifdef CONFIG_MEMCG_KMEM
7100	.fork = mem_cgroup_fork,
7101	.exit = mem_cgroup_exit,
7102#endif
7103	.dfl_cftypes = memory_files,
7104	.legacy_cftypes = mem_cgroup_legacy_files,
7105	.early_init = 0,
7106};
7107
7108/*
7109 * This function calculates an individual cgroup's effective
7110 * protection which is derived from its own memory.min/low, its
7111 * parent's and siblings' settings, as well as the actual memory
7112 * distribution in the tree.
7113 *
7114 * The following rules apply to the effective protection values:
7115 *
7116 * 1. At the first level of reclaim, effective protection is equal to
7117 *    the declared protection in memory.min and memory.low.
7118 *
7119 * 2. To enable safe delegation of the protection configuration, at
7120 *    subsequent levels the effective protection is capped to the
7121 *    parent's effective protection.
7122 *
7123 * 3. To make complex and dynamic subtrees easier to configure, the
7124 *    user is allowed to overcommit the declared protection at a given
7125 *    level. If that is the case, the parent's effective protection is
7126 *    distributed to the children in proportion to how much protection
7127 *    they have declared and how much of it they are utilizing.
7128 *
7129 *    This makes distribution proportional, but also work-conserving:
7130 *    if one cgroup claims much more protection than it uses memory,
7131 *    the unused remainder is available to its siblings.
7132 *
7133 * 4. Conversely, when the declared protection is undercommitted at a
7134 *    given level, the distribution of the larger parental protection
7135 *    budget is NOT proportional. A cgroup's protection from a sibling
7136 *    is capped to its own memory.min/low setting.
7137 *
7138 * 5. However, to allow protecting recursive subtrees from each other
7139 *    without having to declare each individual cgroup's fixed share
7140 *    of the ancestor's claim to protection, any unutilized -
7141 *    "floating" - protection from up the tree is distributed in
7142 *    proportion to each cgroup's *usage*. This makes the protection
7143 *    neutral wrt sibling cgroups and lets them compete freely over
7144 *    the shared parental protection budget, but it protects the
7145 *    subtree as a whole from neighboring subtrees.
7146 *
7147 * Note that 4. and 5. are not in conflict: 4. is about protecting
7148 * against immediate siblings whereas 5. is about protecting against
7149 * neighboring subtrees.
7150 */
7151static unsigned long effective_protection(unsigned long usage,
7152					  unsigned long parent_usage,
7153					  unsigned long setting,
7154					  unsigned long parent_effective,
7155					  unsigned long siblings_protected)
7156{
7157	unsigned long protected;
7158	unsigned long ep;
7159
7160	protected = min(usage, setting);
7161	/*
7162	 * If all cgroups at this level combined claim and use more
7163	 * protection than what the parent affords them, distribute
7164	 * shares in proportion to utilization.
7165	 *
7166	 * We are using actual utilization rather than the statically
7167	 * claimed protection in order to be work-conserving: claimed
7168	 * but unused protection is available to siblings that would
7169	 * otherwise get a smaller chunk than what they claimed.
7170	 */
7171	if (siblings_protected > parent_effective)
7172		return protected * parent_effective / siblings_protected;
7173
7174	/*
7175	 * Ok, utilized protection of all children is within what the
7176	 * parent affords them, so we know whatever this child claims
7177	 * and utilizes is effectively protected.
7178	 *
7179	 * If there is unprotected usage beyond this value, reclaim
7180	 * will apply pressure in proportion to that amount.
7181	 *
7182	 * If there is unutilized protection, the cgroup will be fully
7183	 * shielded from reclaim, but we do return a smaller value for
7184	 * protection than what the group could enjoy in theory. This
7185	 * is okay. With the overcommit distribution above, effective
7186	 * protection is always dependent on how memory is actually
7187	 * consumed among the siblings anyway.
7188	 */
7189	ep = protected;
7190
7191	/*
7192	 * If the children aren't claiming (all of) the protection
7193	 * afforded to them by the parent, distribute the remainder in
7194	 * proportion to the (unprotected) memory of each cgroup. That
7195	 * way, cgroups that aren't explicitly prioritized wrt each
7196	 * other compete freely over the allowance, but they are
7197	 * collectively protected from neighboring trees.
7198	 *
7199	 * We're using unprotected memory for the weight so that if
7200	 * some cgroups DO claim explicit protection, we don't protect
7201	 * the same bytes twice.
7202	 *
7203	 * Check both usage and parent_usage against the respective
7204	 * protected values. One should imply the other, but they
7205	 * aren't read atomically - make sure the division is sane.
7206	 */
7207	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7208		return ep;
7209	if (parent_effective > siblings_protected &&
7210	    parent_usage > siblings_protected &&
7211	    usage > protected) {
7212		unsigned long unclaimed;
7213
7214		unclaimed = parent_effective - siblings_protected;
7215		unclaimed *= usage - protected;
7216		unclaimed /= parent_usage - siblings_protected;
7217
7218		ep += unclaimed;
7219	}
7220
7221	return ep;
7222}
7223
7224/**
7225 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7226 * @root: the top ancestor of the sub-tree being checked
7227 * @memcg: the memory cgroup to check
7228 *
7229 * WARNING: This function is not stateless! It can only be used as part
7230 *          of a top-down tree iteration, not for isolated queries.
7231 */
7232void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7233				     struct mem_cgroup *memcg)
7234{
7235	unsigned long usage, parent_usage;
7236	struct mem_cgroup *parent;
7237
7238	if (mem_cgroup_disabled())
7239		return;
7240
7241	if (!root)
7242		root = root_mem_cgroup;
7243
7244	/*
7245	 * Effective values of the reclaim targets are ignored so they
7246	 * can be stale. Have a look at mem_cgroup_protection for more
7247	 * details.
7248	 * TODO: calculation should be more robust so that we do not need
7249	 * that special casing.
7250	 */
7251	if (memcg == root)
7252		return;
7253
7254	usage = page_counter_read(&memcg->memory);
7255	if (!usage)
7256		return;
7257
7258	parent = parent_mem_cgroup(memcg);
7259
7260	if (parent == root) {
7261		memcg->memory.emin = READ_ONCE(memcg->memory.min);
7262		memcg->memory.elow = READ_ONCE(memcg->memory.low);
7263		return;
7264	}
7265
7266	parent_usage = page_counter_read(&parent->memory);
7267
7268	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7269			READ_ONCE(memcg->memory.min),
7270			READ_ONCE(parent->memory.emin),
7271			atomic_long_read(&parent->memory.children_min_usage)));
7272
7273	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7274			READ_ONCE(memcg->memory.low),
7275			READ_ONCE(parent->memory.elow),
7276			atomic_long_read(&parent->memory.children_low_usage)));
7277}
7278
7279static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7280			gfp_t gfp)
7281{
7282	int ret;
7283
7284	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
7285	if (ret)
7286		goto out;
7287
7288	mem_cgroup_commit_charge(folio, memcg);
7289out:
7290	return ret;
7291}
7292
7293int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7294{
7295	struct mem_cgroup *memcg;
7296	int ret;
7297
7298	memcg = get_mem_cgroup_from_mm(mm);
7299	ret = charge_memcg(folio, memcg, gfp);
7300	css_put(&memcg->css);
7301
7302	return ret;
7303}
7304
7305/**
7306 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7307 * @memcg: memcg to charge.
7308 * @gfp: reclaim mode.
7309 * @nr_pages: number of pages to charge.
7310 *
7311 * This function is called when allocating a huge page folio to determine if
7312 * the memcg has the capacity for it. It does not commit the charge yet,
7313 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7314 *
7315 * Once we have obtained the hugetlb folio, we can call
7316 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7317 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7318 * of try_charge().
7319 *
7320 * Returns 0 on success. Otherwise, an error code is returned.
7321 */
7322int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7323			long nr_pages)
7324{
7325	/*
7326	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7327	 * but do not attempt to commit charge later (or cancel on error) either.
7328	 */
7329	if (mem_cgroup_disabled() || !memcg ||
7330		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7331		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7332		return -EOPNOTSUPP;
7333
7334	if (try_charge(memcg, gfp, nr_pages))
7335		return -ENOMEM;
7336
7337	return 0;
7338}
7339
7340/**
7341 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7342 * @folio: folio to charge.
7343 * @mm: mm context of the victim
7344 * @gfp: reclaim mode
7345 * @entry: swap entry for which the folio is allocated
7346 *
7347 * This function charges a folio allocated for swapin. Please call this before
7348 * adding the folio to the swapcache.
7349 *
7350 * Returns 0 on success. Otherwise, an error code is returned.
7351 */
7352int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7353				  gfp_t gfp, swp_entry_t entry)
7354{
7355	struct mem_cgroup *memcg;
7356	unsigned short id;
7357	int ret;
7358
7359	if (mem_cgroup_disabled())
7360		return 0;
7361
7362	id = lookup_swap_cgroup_id(entry);
7363	rcu_read_lock();
7364	memcg = mem_cgroup_from_id(id);
7365	if (!memcg || !css_tryget_online(&memcg->css))
7366		memcg = get_mem_cgroup_from_mm(mm);
7367	rcu_read_unlock();
7368
7369	ret = charge_memcg(folio, memcg, gfp);
7370
7371	css_put(&memcg->css);
7372	return ret;
7373}
7374
7375/*
7376 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7377 * @entry: swap entry for which the page is charged
7378 *
7379 * Call this function after successfully adding the charged page to swapcache.
7380 *
7381 * Note: This function assumes the page for which swap slot is being uncharged
7382 * is order 0 page.
7383 */
7384void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7385{
7386	/*
7387	 * Cgroup1's unified memory+swap counter has been charged with the
7388	 * new swapcache page, finish the transfer by uncharging the swap
7389	 * slot. The swap slot would also get uncharged when it dies, but
7390	 * it can stick around indefinitely and we'd count the page twice
7391	 * the entire time.
7392	 *
7393	 * Cgroup2 has separate resource counters for memory and swap,
7394	 * so this is a non-issue here. Memory and swap charge lifetimes
7395	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7396	 * page to memory here, and uncharge swap when the slot is freed.
7397	 */
7398	if (!mem_cgroup_disabled() && do_memsw_account()) {
7399		/*
7400		 * The swap entry might not get freed for a long time,
7401		 * let's not wait for it.  The page already received a
7402		 * memory+swap charge, drop the swap entry duplicate.
7403		 */
7404		mem_cgroup_uncharge_swap(entry, 1);
7405	}
7406}
7407
7408struct uncharge_gather {
7409	struct mem_cgroup *memcg;
7410	unsigned long nr_memory;
7411	unsigned long pgpgout;
7412	unsigned long nr_kmem;
7413	int nid;
7414};
7415
7416static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7417{
7418	memset(ug, 0, sizeof(*ug));
7419}
7420
7421static void uncharge_batch(const struct uncharge_gather *ug)
7422{
7423	unsigned long flags;
7424
7425	if (ug->nr_memory) {
7426		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7427		if (do_memsw_account())
7428			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7429		if (ug->nr_kmem)
7430			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7431		memcg_oom_recover(ug->memcg);
7432	}
7433
7434	local_irq_save(flags);
7435	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7436	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7437	memcg_check_events(ug->memcg, ug->nid);
7438	local_irq_restore(flags);
7439
7440	/* drop reference from uncharge_folio */
7441	css_put(&ug->memcg->css);
7442}
7443
7444static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7445{
7446	long nr_pages;
7447	struct mem_cgroup *memcg;
7448	struct obj_cgroup *objcg;
7449
7450	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7451
7452	/*
7453	 * Nobody should be changing or seriously looking at
7454	 * folio memcg or objcg at this point, we have fully
7455	 * exclusive access to the folio.
7456	 */
7457	if (folio_memcg_kmem(folio)) {
7458		objcg = __folio_objcg(folio);
7459		/*
7460		 * This get matches the put at the end of the function and
7461		 * kmem pages do not hold memcg references anymore.
7462		 */
7463		memcg = get_mem_cgroup_from_objcg(objcg);
7464	} else {
7465		memcg = __folio_memcg(folio);
7466	}
7467
7468	if (!memcg)
7469		return;
7470
7471	if (ug->memcg != memcg) {
7472		if (ug->memcg) {
7473			uncharge_batch(ug);
7474			uncharge_gather_clear(ug);
7475		}
7476		ug->memcg = memcg;
7477		ug->nid = folio_nid(folio);
7478
7479		/* pairs with css_put in uncharge_batch */
7480		css_get(&memcg->css);
7481	}
7482
7483	nr_pages = folio_nr_pages(folio);
7484
7485	if (folio_memcg_kmem(folio)) {
7486		ug->nr_memory += nr_pages;
7487		ug->nr_kmem += nr_pages;
7488
7489		folio->memcg_data = 0;
7490		obj_cgroup_put(objcg);
7491	} else {
7492		/* LRU pages aren't accounted at the root level */
7493		if (!mem_cgroup_is_root(memcg))
7494			ug->nr_memory += nr_pages;
7495		ug->pgpgout++;
7496
7497		folio->memcg_data = 0;
7498	}
7499
7500	css_put(&memcg->css);
7501}
7502
7503void __mem_cgroup_uncharge(struct folio *folio)
7504{
7505	struct uncharge_gather ug;
7506
7507	/* Don't touch folio->lru of any random page, pre-check: */
7508	if (!folio_memcg(folio))
7509		return;
7510
7511	uncharge_gather_clear(&ug);
7512	uncharge_folio(folio, &ug);
7513	uncharge_batch(&ug);
7514}
7515
7516void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
7517{
7518	struct uncharge_gather ug;
7519	unsigned int i;
7520
7521	uncharge_gather_clear(&ug);
7522	for (i = 0; i < folios->nr; i++)
7523		uncharge_folio(folios->folios[i], &ug);
7524	if (ug.memcg)
7525		uncharge_batch(&ug);
7526}
7527
7528/**
7529 * mem_cgroup_replace_folio - Charge a folio's replacement.
7530 * @old: Currently circulating folio.
7531 * @new: Replacement folio.
7532 *
7533 * Charge @new as a replacement folio for @old. @old will
7534 * be uncharged upon free. This is only used by the page cache
7535 * (in replace_page_cache_folio()).
7536 *
7537 * Both folios must be locked, @new->mapping must be set up.
7538 */
7539void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7540{
7541	struct mem_cgroup *memcg;
7542	long nr_pages = folio_nr_pages(new);
7543	unsigned long flags;
7544
7545	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7546	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7547	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7548	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7549
7550	if (mem_cgroup_disabled())
7551		return;
7552
7553	/* Page cache replacement: new folio already charged? */
7554	if (folio_memcg(new))
7555		return;
7556
7557	memcg = folio_memcg(old);
7558	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7559	if (!memcg)
7560		return;
7561
7562	/* Force-charge the new page. The old one will be freed soon */
7563	if (!mem_cgroup_is_root(memcg)) {
7564		page_counter_charge(&memcg->memory, nr_pages);
7565		if (do_memsw_account())
7566			page_counter_charge(&memcg->memsw, nr_pages);
7567	}
7568
7569	css_get(&memcg->css);
7570	commit_charge(new, memcg);
7571
7572	local_irq_save(flags);
7573	mem_cgroup_charge_statistics(memcg, nr_pages);
7574	memcg_check_events(memcg, folio_nid(new));
7575	local_irq_restore(flags);
7576}
7577
7578/**
7579 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7580 * @old: Currently circulating folio.
7581 * @new: Replacement folio.
7582 *
7583 * Transfer the memcg data from the old folio to the new folio for migration.
7584 * The old folio's data info will be cleared. Note that the memory counters
7585 * will remain unchanged throughout the process.
7586 *
7587 * Both folios must be locked, @new->mapping must be set up.
7588 */
7589void mem_cgroup_migrate(struct folio *old, struct folio *new)
7590{
7591	struct mem_cgroup *memcg;
7592
7593	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7594	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7595	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7596	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7597
7598	if (mem_cgroup_disabled())
7599		return;
7600
7601	memcg = folio_memcg(old);
7602	/*
7603	 * Note that it is normal to see !memcg for a hugetlb folio.
7604	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7605	 * was not selected.
7606	 */
7607	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7608	if (!memcg)
7609		return;
7610
7611	/* Transfer the charge and the css ref */
7612	commit_charge(new, memcg);
7613	/*
7614	 * If the old folio is a large folio and is in the split queue, it needs
7615	 * to be removed from the split queue now, in case getting an incorrect
7616	 * split queue in destroy_large_folio() after the memcg of the old folio
7617	 * is cleared.
7618	 *
7619	 * In addition, the old folio is about to be freed after migration, so
7620	 * removing from the split queue a bit earlier seems reasonable.
7621	 */
7622	if (folio_test_large(old) && folio_test_large_rmappable(old))
7623		folio_undo_large_rmappable(old);
7624	old->memcg_data = 0;
7625}
7626
7627DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7628EXPORT_SYMBOL(memcg_sockets_enabled_key);
7629
7630void mem_cgroup_sk_alloc(struct sock *sk)
7631{
7632	struct mem_cgroup *memcg;
7633
7634	if (!mem_cgroup_sockets_enabled)
7635		return;
7636
7637	/* Do not associate the sock with unrelated interrupted task's memcg. */
7638	if (!in_task())
7639		return;
7640
7641	rcu_read_lock();
7642	memcg = mem_cgroup_from_task(current);
7643	if (mem_cgroup_is_root(memcg))
7644		goto out;
7645	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7646		goto out;
7647	if (css_tryget(&memcg->css))
7648		sk->sk_memcg = memcg;
7649out:
7650	rcu_read_unlock();
7651}
7652
7653void mem_cgroup_sk_free(struct sock *sk)
7654{
7655	if (sk->sk_memcg)
7656		css_put(&sk->sk_memcg->css);
7657}
7658
7659/**
7660 * mem_cgroup_charge_skmem - charge socket memory
7661 * @memcg: memcg to charge
7662 * @nr_pages: number of pages to charge
7663 * @gfp_mask: reclaim mode
7664 *
7665 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7666 * @memcg's configured limit, %false if it doesn't.
7667 */
7668bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7669			     gfp_t gfp_mask)
7670{
7671	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7672		struct page_counter *fail;
7673
7674		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7675			memcg->tcpmem_pressure = 0;
7676			return true;
7677		}
7678		memcg->tcpmem_pressure = 1;
7679		if (gfp_mask & __GFP_NOFAIL) {
7680			page_counter_charge(&memcg->tcpmem, nr_pages);
7681			return true;
7682		}
7683		return false;
7684	}
7685
7686	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7687		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7688		return true;
7689	}
7690
7691	return false;
7692}
7693
7694/**
7695 * mem_cgroup_uncharge_skmem - uncharge socket memory
7696 * @memcg: memcg to uncharge
7697 * @nr_pages: number of pages to uncharge
7698 */
7699void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7700{
7701	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7702		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7703		return;
7704	}
7705
7706	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7707
7708	refill_stock(memcg, nr_pages);
7709}
7710
7711static int __init cgroup_memory(char *s)
7712{
7713	char *token;
7714
7715	while ((token = strsep(&s, ",")) != NULL) {
7716		if (!*token)
7717			continue;
7718		if (!strcmp(token, "nosocket"))
7719			cgroup_memory_nosocket = true;
7720		if (!strcmp(token, "nokmem"))
7721			cgroup_memory_nokmem = true;
7722		if (!strcmp(token, "nobpf"))
7723			cgroup_memory_nobpf = true;
7724	}
7725	return 1;
7726}
7727__setup("cgroup.memory=", cgroup_memory);
7728
7729/*
7730 * subsys_initcall() for memory controller.
7731 *
7732 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7733 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7734 * basically everything that doesn't depend on a specific mem_cgroup structure
7735 * should be initialized from here.
7736 */
7737static int __init mem_cgroup_init(void)
7738{
7739	int cpu, node;
7740
7741	/*
7742	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7743	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7744	 * to work fine, we should make sure that the overfill threshold can't
7745	 * exceed S32_MAX / PAGE_SIZE.
7746	 */
7747	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7748
7749	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7750				  memcg_hotplug_cpu_dead);
7751
7752	for_each_possible_cpu(cpu)
7753		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7754			  drain_local_stock);
7755
7756	for_each_node(node) {
7757		struct mem_cgroup_tree_per_node *rtpn;
7758
7759		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7760
7761		rtpn->rb_root = RB_ROOT;
7762		rtpn->rb_rightmost = NULL;
7763		spin_lock_init(&rtpn->lock);
7764		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7765	}
7766
7767	return 0;
7768}
7769subsys_initcall(mem_cgroup_init);
7770
7771#ifdef CONFIG_SWAP
7772static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7773{
7774	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7775		/*
7776		 * The root cgroup cannot be destroyed, so it's refcount must
7777		 * always be >= 1.
7778		 */
7779		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7780			VM_BUG_ON(1);
7781			break;
7782		}
7783		memcg = parent_mem_cgroup(memcg);
7784		if (!memcg)
7785			memcg = root_mem_cgroup;
7786	}
7787	return memcg;
7788}
7789
7790/**
7791 * mem_cgroup_swapout - transfer a memsw charge to swap
7792 * @folio: folio whose memsw charge to transfer
7793 * @entry: swap entry to move the charge to
7794 *
7795 * Transfer the memsw charge of @folio to @entry.
7796 */
7797void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7798{
7799	struct mem_cgroup *memcg, *swap_memcg;
7800	unsigned int nr_entries;
7801	unsigned short oldid;
7802
7803	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7804	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7805
7806	if (mem_cgroup_disabled())
7807		return;
7808
7809	if (!do_memsw_account())
7810		return;
7811
7812	memcg = folio_memcg(folio);
7813
7814	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7815	if (!memcg)
7816		return;
7817
7818	/*
7819	 * In case the memcg owning these pages has been offlined and doesn't
7820	 * have an ID allocated to it anymore, charge the closest online
7821	 * ancestor for the swap instead and transfer the memory+swap charge.
7822	 */
7823	swap_memcg = mem_cgroup_id_get_online(memcg);
7824	nr_entries = folio_nr_pages(folio);
7825	/* Get references for the tail pages, too */
7826	if (nr_entries > 1)
7827		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7828	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7829				   nr_entries);
7830	VM_BUG_ON_FOLIO(oldid, folio);
7831	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7832
7833	folio->memcg_data = 0;
7834
7835	if (!mem_cgroup_is_root(memcg))
7836		page_counter_uncharge(&memcg->memory, nr_entries);
7837
7838	if (memcg != swap_memcg) {
7839		if (!mem_cgroup_is_root(swap_memcg))
7840			page_counter_charge(&swap_memcg->memsw, nr_entries);
7841		page_counter_uncharge(&memcg->memsw, nr_entries);
7842	}
7843
7844	/*
7845	 * Interrupts should be disabled here because the caller holds the
7846	 * i_pages lock which is taken with interrupts-off. It is
7847	 * important here to have the interrupts disabled because it is the
7848	 * only synchronisation we have for updating the per-CPU variables.
7849	 */
7850	memcg_stats_lock();
7851	mem_cgroup_charge_statistics(memcg, -nr_entries);
7852	memcg_stats_unlock();
7853	memcg_check_events(memcg, folio_nid(folio));
7854
7855	css_put(&memcg->css);
7856}
7857
7858/**
7859 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7860 * @folio: folio being added to swap
7861 * @entry: swap entry to charge
7862 *
7863 * Try to charge @folio's memcg for the swap space at @entry.
7864 *
7865 * Returns 0 on success, -ENOMEM on failure.
7866 */
7867int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7868{
7869	unsigned int nr_pages = folio_nr_pages(folio);
7870	struct page_counter *counter;
7871	struct mem_cgroup *memcg;
7872	unsigned short oldid;
7873
7874	if (do_memsw_account())
7875		return 0;
7876
7877	memcg = folio_memcg(folio);
7878
7879	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7880	if (!memcg)
7881		return 0;
7882
7883	if (!entry.val) {
7884		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7885		return 0;
7886	}
7887
7888	memcg = mem_cgroup_id_get_online(memcg);
7889
7890	if (!mem_cgroup_is_root(memcg) &&
7891	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7892		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7893		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7894		mem_cgroup_id_put(memcg);
7895		return -ENOMEM;
7896	}
7897
7898	/* Get references for the tail pages, too */
7899	if (nr_pages > 1)
7900		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7901	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7902	VM_BUG_ON_FOLIO(oldid, folio);
7903	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7904
7905	return 0;
7906}
7907
7908/**
7909 * __mem_cgroup_uncharge_swap - uncharge swap space
7910 * @entry: swap entry to uncharge
7911 * @nr_pages: the amount of swap space to uncharge
7912 */
7913void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7914{
7915	struct mem_cgroup *memcg;
7916	unsigned short id;
7917
7918	id = swap_cgroup_record(entry, 0, nr_pages);
7919	rcu_read_lock();
7920	memcg = mem_cgroup_from_id(id);
7921	if (memcg) {
7922		if (!mem_cgroup_is_root(memcg)) {
7923			if (do_memsw_account())
7924				page_counter_uncharge(&memcg->memsw, nr_pages);
7925			else
7926				page_counter_uncharge(&memcg->swap, nr_pages);
7927		}
7928		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7929		mem_cgroup_id_put_many(memcg, nr_pages);
7930	}
7931	rcu_read_unlock();
7932}
7933
7934long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7935{
7936	long nr_swap_pages = get_nr_swap_pages();
7937
7938	if (mem_cgroup_disabled() || do_memsw_account())
7939		return nr_swap_pages;
7940	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7941		nr_swap_pages = min_t(long, nr_swap_pages,
7942				      READ_ONCE(memcg->swap.max) -
7943				      page_counter_read(&memcg->swap));
7944	return nr_swap_pages;
7945}
7946
7947bool mem_cgroup_swap_full(struct folio *folio)
7948{
7949	struct mem_cgroup *memcg;
7950
7951	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7952
7953	if (vm_swap_full())
7954		return true;
7955	if (do_memsw_account())
7956		return false;
7957
7958	memcg = folio_memcg(folio);
7959	if (!memcg)
7960		return false;
7961
7962	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7963		unsigned long usage = page_counter_read(&memcg->swap);
7964
7965		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7966		    usage * 2 >= READ_ONCE(memcg->swap.max))
7967			return true;
7968	}
7969
7970	return false;
7971}
7972
7973static int __init setup_swap_account(char *s)
7974{
7975	bool res;
7976
7977	if (!kstrtobool(s, &res) && !res)
7978		pr_warn_once("The swapaccount=0 commandline option is deprecated "
7979			     "in favor of configuring swap control via cgroupfs. "
7980			     "Please report your usecase to linux-mm@kvack.org if you "
7981			     "depend on this functionality.\n");
7982	return 1;
7983}
7984__setup("swapaccount=", setup_swap_account);
7985
7986static u64 swap_current_read(struct cgroup_subsys_state *css,
7987			     struct cftype *cft)
7988{
7989	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7990
7991	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7992}
7993
7994static u64 swap_peak_read(struct cgroup_subsys_state *css,
7995			  struct cftype *cft)
7996{
7997	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7998
7999	return (u64)memcg->swap.watermark * PAGE_SIZE;
8000}
8001
8002static int swap_high_show(struct seq_file *m, void *v)
8003{
8004	return seq_puts_memcg_tunable(m,
8005		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
8006}
8007
8008static ssize_t swap_high_write(struct kernfs_open_file *of,
8009			       char *buf, size_t nbytes, loff_t off)
8010{
8011	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8012	unsigned long high;
8013	int err;
8014
8015	buf = strstrip(buf);
8016	err = page_counter_memparse(buf, "max", &high);
8017	if (err)
8018		return err;
8019
8020	page_counter_set_high(&memcg->swap, high);
8021
8022	return nbytes;
8023}
8024
8025static int swap_max_show(struct seq_file *m, void *v)
8026{
8027	return seq_puts_memcg_tunable(m,
8028		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
8029}
8030
8031static ssize_t swap_max_write(struct kernfs_open_file *of,
8032			      char *buf, size_t nbytes, loff_t off)
8033{
8034	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8035	unsigned long max;
8036	int err;
8037
8038	buf = strstrip(buf);
8039	err = page_counter_memparse(buf, "max", &max);
8040	if (err)
8041		return err;
8042
8043	xchg(&memcg->swap.max, max);
8044
8045	return nbytes;
8046}
8047
8048static int swap_events_show(struct seq_file *m, void *v)
8049{
8050	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8051
8052	seq_printf(m, "high %lu\n",
8053		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
8054	seq_printf(m, "max %lu\n",
8055		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8056	seq_printf(m, "fail %lu\n",
8057		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8058
8059	return 0;
8060}
8061
8062static struct cftype swap_files[] = {
8063	{
8064		.name = "swap.current",
8065		.flags = CFTYPE_NOT_ON_ROOT,
8066		.read_u64 = swap_current_read,
8067	},
8068	{
8069		.name = "swap.high",
8070		.flags = CFTYPE_NOT_ON_ROOT,
8071		.seq_show = swap_high_show,
8072		.write = swap_high_write,
8073	},
8074	{
8075		.name = "swap.max",
8076		.flags = CFTYPE_NOT_ON_ROOT,
8077		.seq_show = swap_max_show,
8078		.write = swap_max_write,
8079	},
8080	{
8081		.name = "swap.peak",
8082		.flags = CFTYPE_NOT_ON_ROOT,
8083		.read_u64 = swap_peak_read,
8084	},
8085	{
8086		.name = "swap.events",
8087		.flags = CFTYPE_NOT_ON_ROOT,
8088		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
8089		.seq_show = swap_events_show,
8090	},
8091	{ }	/* terminate */
8092};
8093
8094static struct cftype memsw_files[] = {
8095	{
8096		.name = "memsw.usage_in_bytes",
8097		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8098		.read_u64 = mem_cgroup_read_u64,
8099	},
8100	{
8101		.name = "memsw.max_usage_in_bytes",
8102		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8103		.write = mem_cgroup_reset,
8104		.read_u64 = mem_cgroup_read_u64,
8105	},
8106	{
8107		.name = "memsw.limit_in_bytes",
8108		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8109		.write = mem_cgroup_write,
8110		.read_u64 = mem_cgroup_read_u64,
8111	},
8112	{
8113		.name = "memsw.failcnt",
8114		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8115		.write = mem_cgroup_reset,
8116		.read_u64 = mem_cgroup_read_u64,
8117	},
8118	{ },	/* terminate */
8119};
8120
8121#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8122/**
8123 * obj_cgroup_may_zswap - check if this cgroup can zswap
8124 * @objcg: the object cgroup
8125 *
8126 * Check if the hierarchical zswap limit has been reached.
8127 *
8128 * This doesn't check for specific headroom, and it is not atomic
8129 * either. But with zswap, the size of the allocation is only known
8130 * once compression has occurred, and this optimistic pre-check avoids
8131 * spending cycles on compression when there is already no room left
8132 * or zswap is disabled altogether somewhere in the hierarchy.
8133 */
8134bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8135{
8136	struct mem_cgroup *memcg, *original_memcg;
8137	bool ret = true;
8138
8139	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8140		return true;
8141
8142	original_memcg = get_mem_cgroup_from_objcg(objcg);
8143	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8144	     memcg = parent_mem_cgroup(memcg)) {
8145		unsigned long max = READ_ONCE(memcg->zswap_max);
8146		unsigned long pages;
8147
8148		if (max == PAGE_COUNTER_MAX)
8149			continue;
8150		if (max == 0) {
8151			ret = false;
8152			break;
8153		}
8154
8155		/*
8156		 * mem_cgroup_flush_stats() ignores small changes. Use
8157		 * do_flush_stats() directly to get accurate stats for charging.
8158		 */
8159		do_flush_stats(memcg);
8160		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8161		if (pages < max)
8162			continue;
8163		ret = false;
8164		break;
8165	}
8166	mem_cgroup_put(original_memcg);
8167	return ret;
8168}
8169
8170/**
8171 * obj_cgroup_charge_zswap - charge compression backend memory
8172 * @objcg: the object cgroup
8173 * @size: size of compressed object
8174 *
8175 * This forces the charge after obj_cgroup_may_zswap() allowed
8176 * compression and storage in zwap for this cgroup to go ahead.
8177 */
8178void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8179{
8180	struct mem_cgroup *memcg;
8181
8182	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8183		return;
8184
8185	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8186
8187	/* PF_MEMALLOC context, charging must succeed */
8188	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8189		VM_WARN_ON_ONCE(1);
8190
8191	rcu_read_lock();
8192	memcg = obj_cgroup_memcg(objcg);
8193	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8194	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8195	rcu_read_unlock();
8196}
8197
8198/**
8199 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8200 * @objcg: the object cgroup
8201 * @size: size of compressed object
8202 *
8203 * Uncharges zswap memory on page in.
8204 */
8205void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8206{
8207	struct mem_cgroup *memcg;
8208
8209	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8210		return;
8211
8212	obj_cgroup_uncharge(objcg, size);
8213
8214	rcu_read_lock();
8215	memcg = obj_cgroup_memcg(objcg);
8216	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8217	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8218	rcu_read_unlock();
8219}
8220
8221bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8222{
8223	/* if zswap is disabled, do not block pages going to the swapping device */
8224	return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8225}
8226
8227static u64 zswap_current_read(struct cgroup_subsys_state *css,
8228			      struct cftype *cft)
8229{
8230	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8231
8232	mem_cgroup_flush_stats(memcg);
8233	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
8234}
8235
8236static int zswap_max_show(struct seq_file *m, void *v)
8237{
8238	return seq_puts_memcg_tunable(m,
8239		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8240}
8241
8242static ssize_t zswap_max_write(struct kernfs_open_file *of,
8243			       char *buf, size_t nbytes, loff_t off)
8244{
8245	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8246	unsigned long max;
8247	int err;
8248
8249	buf = strstrip(buf);
8250	err = page_counter_memparse(buf, "max", &max);
8251	if (err)
8252		return err;
8253
8254	xchg(&memcg->zswap_max, max);
8255
8256	return nbytes;
8257}
8258
8259static int zswap_writeback_show(struct seq_file *m, void *v)
8260{
8261	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8262
8263	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8264	return 0;
8265}
8266
8267static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8268				char *buf, size_t nbytes, loff_t off)
8269{
8270	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8271	int zswap_writeback;
8272	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8273
8274	if (parse_ret)
8275		return parse_ret;
8276
8277	if (zswap_writeback != 0 && zswap_writeback != 1)
8278		return -EINVAL;
8279
8280	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8281	return nbytes;
8282}
8283
8284static struct cftype zswap_files[] = {
8285	{
8286		.name = "zswap.current",
8287		.flags = CFTYPE_NOT_ON_ROOT,
8288		.read_u64 = zswap_current_read,
8289	},
8290	{
8291		.name = "zswap.max",
8292		.flags = CFTYPE_NOT_ON_ROOT,
8293		.seq_show = zswap_max_show,
8294		.write = zswap_max_write,
8295	},
8296	{
8297		.name = "zswap.writeback",
8298		.seq_show = zswap_writeback_show,
8299		.write = zswap_writeback_write,
8300	},
8301	{ }	/* terminate */
8302};
8303#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8304
8305static int __init mem_cgroup_swap_init(void)
8306{
8307	if (mem_cgroup_disabled())
8308		return 0;
8309
8310	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8311	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8312#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8313	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8314#endif
8315	return 0;
8316}
8317subsys_initcall(mem_cgroup_swap_init);
8318
8319#endif /* CONFIG_SWAP */
8320