1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp.	June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS			128
26#define INIT_PHYSMEM_REGIONS			4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30#endif
31
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
34#endif
35
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 *   kernel; this may differ from the actual physical memory installed
48 *   in the system, for instance when the memory is restricted with
49 *   ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 *   boot regardless of the possible restrictions and memory hot(un)plug;
53 *   the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 *   address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 *   of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99#ifndef CONFIG_NUMA
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113#endif
114
115struct memblock memblock __initdata_memblock = {
116	.memory.regions		= memblock_memory_init_regions,
117	.memory.cnt		= 1,	/* empty dummy entry */
118	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
119	.memory.name		= "memory",
120
121	.reserved.regions	= memblock_reserved_init_regions,
122	.reserved.cnt		= 1,	/* empty dummy entry */
123	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
124	.reserved.name		= "reserved",
125
126	.bottom_up		= false,
127	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
128};
129
130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131struct memblock_type physmem = {
132	.regions		= memblock_physmem_init_regions,
133	.cnt			= 1,	/* empty dummy entry */
134	.max			= INIT_PHYSMEM_REGIONS,
135	.name			= "physmem",
136};
137#endif
138
139/*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 *  For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
147#define for_each_memblock_type(i, memblock_type, rgn)			\
148	for (i = 0, rgn = &memblock_type->regions[0];			\
149	     i < memblock_type->cnt;					\
150	     i++, rgn = &memblock_type->regions[i])
151
152#define memblock_dbg(fmt, ...)						\
153	do {								\
154		if (memblock_debug)					\
155			pr_info(fmt, ##__VA_ARGS__);			\
156	} while (0)
157
158static int memblock_debug __initdata_memblock;
159static bool system_has_some_mirror __initdata_memblock;
160static int memblock_can_resize __initdata_memblock;
161static int memblock_memory_in_slab __initdata_memblock;
162static int memblock_reserved_in_slab __initdata_memblock;
163
164bool __init_memblock memblock_has_mirror(void)
165{
166	return system_has_some_mirror;
167}
168
169static enum memblock_flags __init_memblock choose_memblock_flags(void)
170{
171	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172}
173
174/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
175static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176{
177	return *size = min(*size, PHYS_ADDR_MAX - base);
178}
179
180/*
181 * Address comparison utilities
182 */
183unsigned long __init_memblock
184memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
185		       phys_addr_t size2)
186{
187	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
188}
189
190bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
191					phys_addr_t base, phys_addr_t size)
192{
193	unsigned long i;
194
195	memblock_cap_size(base, &size);
196
197	for (i = 0; i < type->cnt; i++)
198		if (memblock_addrs_overlap(base, size, type->regions[i].base,
199					   type->regions[i].size))
200			break;
201	return i < type->cnt;
202}
203
204/**
205 * __memblock_find_range_bottom_up - find free area utility in bottom-up
206 * @start: start of candidate range
207 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
208 *       %MEMBLOCK_ALLOC_ACCESSIBLE
209 * @size: size of free area to find
210 * @align: alignment of free area to find
211 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
212 * @flags: pick from blocks based on memory attributes
213 *
214 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
215 *
216 * Return:
217 * Found address on success, 0 on failure.
218 */
219static phys_addr_t __init_memblock
220__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
221				phys_addr_t size, phys_addr_t align, int nid,
222				enum memblock_flags flags)
223{
224	phys_addr_t this_start, this_end, cand;
225	u64 i;
226
227	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
228		this_start = clamp(this_start, start, end);
229		this_end = clamp(this_end, start, end);
230
231		cand = round_up(this_start, align);
232		if (cand < this_end && this_end - cand >= size)
233			return cand;
234	}
235
236	return 0;
237}
238
239/**
240 * __memblock_find_range_top_down - find free area utility, in top-down
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
243 *       %MEMBLOCK_ALLOC_ACCESSIBLE
244 * @size: size of free area to find
245 * @align: alignment of free area to find
246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
247 * @flags: pick from blocks based on memory attributes
248 *
249 * Utility called from memblock_find_in_range_node(), find free area top-down.
250 *
251 * Return:
252 * Found address on success, 0 on failure.
253 */
254static phys_addr_t __init_memblock
255__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
256			       phys_addr_t size, phys_addr_t align, int nid,
257			       enum memblock_flags flags)
258{
259	phys_addr_t this_start, this_end, cand;
260	u64 i;
261
262	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
263					NULL) {
264		this_start = clamp(this_start, start, end);
265		this_end = clamp(this_end, start, end);
266
267		if (this_end < size)
268			continue;
269
270		cand = round_down(this_end - size, align);
271		if (cand >= this_start)
272			return cand;
273	}
274
275	return 0;
276}
277
278/**
279 * memblock_find_in_range_node - find free area in given range and node
280 * @size: size of free area to find
281 * @align: alignment of free area to find
282 * @start: start of candidate range
283 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
284 *       %MEMBLOCK_ALLOC_ACCESSIBLE
285 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
286 * @flags: pick from blocks based on memory attributes
287 *
288 * Find @size free area aligned to @align in the specified range and node.
289 *
290 * Return:
291 * Found address on success, 0 on failure.
292 */
293static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
294					phys_addr_t align, phys_addr_t start,
295					phys_addr_t end, int nid,
296					enum memblock_flags flags)
297{
298	/* pump up @end */
299	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
300	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
301		end = memblock.current_limit;
302
303	/* avoid allocating the first page */
304	start = max_t(phys_addr_t, start, PAGE_SIZE);
305	end = max(start, end);
306
307	if (memblock_bottom_up())
308		return __memblock_find_range_bottom_up(start, end, size, align,
309						       nid, flags);
310	else
311		return __memblock_find_range_top_down(start, end, size, align,
312						      nid, flags);
313}
314
315/**
316 * memblock_find_in_range - find free area in given range
317 * @start: start of candidate range
318 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319 *       %MEMBLOCK_ALLOC_ACCESSIBLE
320 * @size: size of free area to find
321 * @align: alignment of free area to find
322 *
323 * Find @size free area aligned to @align in the specified range.
324 *
325 * Return:
326 * Found address on success, 0 on failure.
327 */
328static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329					phys_addr_t end, phys_addr_t size,
330					phys_addr_t align)
331{
332	phys_addr_t ret;
333	enum memblock_flags flags = choose_memblock_flags();
334
335again:
336	ret = memblock_find_in_range_node(size, align, start, end,
337					    NUMA_NO_NODE, flags);
338
339	if (!ret && (flags & MEMBLOCK_MIRROR)) {
340		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
341			&size);
342		flags &= ~MEMBLOCK_MIRROR;
343		goto again;
344	}
345
346	return ret;
347}
348
349static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350{
351	type->total_size -= type->regions[r].size;
352	memmove(&type->regions[r], &type->regions[r + 1],
353		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
354	type->cnt--;
355
356	/* Special case for empty arrays */
357	if (type->cnt == 0) {
358		WARN_ON(type->total_size != 0);
359		type->cnt = 1;
360		type->regions[0].base = 0;
361		type->regions[0].size = 0;
362		type->regions[0].flags = 0;
363		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364	}
365}
366
367#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
368/**
369 * memblock_discard - discard memory and reserved arrays if they were allocated
370 */
371void __init memblock_discard(void)
372{
373	phys_addr_t addr, size;
374
375	if (memblock.reserved.regions != memblock_reserved_init_regions) {
376		addr = __pa(memblock.reserved.regions);
377		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378				  memblock.reserved.max);
379		if (memblock_reserved_in_slab)
380			kfree(memblock.reserved.regions);
381		else
382			memblock_free_late(addr, size);
383	}
384
385	if (memblock.memory.regions != memblock_memory_init_regions) {
386		addr = __pa(memblock.memory.regions);
387		size = PAGE_ALIGN(sizeof(struct memblock_region) *
388				  memblock.memory.max);
389		if (memblock_memory_in_slab)
390			kfree(memblock.memory.regions);
391		else
392			memblock_free_late(addr, size);
393	}
394
395	memblock_memory = NULL;
396}
397#endif
398
399/**
400 * memblock_double_array - double the size of the memblock regions array
401 * @type: memblock type of the regions array being doubled
402 * @new_area_start: starting address of memory range to avoid overlap with
403 * @new_area_size: size of memory range to avoid overlap with
404 *
405 * Double the size of the @type regions array. If memblock is being used to
406 * allocate memory for a new reserved regions array and there is a previously
407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408 * waiting to be reserved, ensure the memory used by the new array does
409 * not overlap.
410 *
411 * Return:
412 * 0 on success, -1 on failure.
413 */
414static int __init_memblock memblock_double_array(struct memblock_type *type,
415						phys_addr_t new_area_start,
416						phys_addr_t new_area_size)
417{
418	struct memblock_region *new_array, *old_array;
419	phys_addr_t old_alloc_size, new_alloc_size;
420	phys_addr_t old_size, new_size, addr, new_end;
421	int use_slab = slab_is_available();
422	int *in_slab;
423
424	/* We don't allow resizing until we know about the reserved regions
425	 * of memory that aren't suitable for allocation
426	 */
427	if (!memblock_can_resize)
428		panic("memblock: cannot resize %s array\n", type->name);
429
430	/* Calculate new doubled size */
431	old_size = type->max * sizeof(struct memblock_region);
432	new_size = old_size << 1;
433	/*
434	 * We need to allocated new one align to PAGE_SIZE,
435	 *   so we can free them completely later.
436	 */
437	old_alloc_size = PAGE_ALIGN(old_size);
438	new_alloc_size = PAGE_ALIGN(new_size);
439
440	/* Retrieve the slab flag */
441	if (type == &memblock.memory)
442		in_slab = &memblock_memory_in_slab;
443	else
444		in_slab = &memblock_reserved_in_slab;
445
446	/* Try to find some space for it */
447	if (use_slab) {
448		new_array = kmalloc(new_size, GFP_KERNEL);
449		addr = new_array ? __pa(new_array) : 0;
450	} else {
451		/* only exclude range when trying to double reserved.regions */
452		if (type != &memblock.reserved)
453			new_area_start = new_area_size = 0;
454
455		addr = memblock_find_in_range(new_area_start + new_area_size,
456						memblock.current_limit,
457						new_alloc_size, PAGE_SIZE);
458		if (!addr && new_area_size)
459			addr = memblock_find_in_range(0,
460				min(new_area_start, memblock.current_limit),
461				new_alloc_size, PAGE_SIZE);
462
463		new_array = addr ? __va(addr) : NULL;
464	}
465	if (!addr) {
466		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
467		       type->name, type->max, type->max * 2);
468		return -1;
469	}
470
471	new_end = addr + new_size - 1;
472	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
473			type->name, type->max * 2, &addr, &new_end);
474
475	/*
476	 * Found space, we now need to move the array over before we add the
477	 * reserved region since it may be our reserved array itself that is
478	 * full.
479	 */
480	memcpy(new_array, type->regions, old_size);
481	memset(new_array + type->max, 0, old_size);
482	old_array = type->regions;
483	type->regions = new_array;
484	type->max <<= 1;
485
486	/* Free old array. We needn't free it if the array is the static one */
487	if (*in_slab)
488		kfree(old_array);
489	else if (old_array != memblock_memory_init_regions &&
490		 old_array != memblock_reserved_init_regions)
491		memblock_free(old_array, old_alloc_size);
492
493	/*
494	 * Reserve the new array if that comes from the memblock.  Otherwise, we
495	 * needn't do it
496	 */
497	if (!use_slab)
498		BUG_ON(memblock_reserve(addr, new_alloc_size));
499
500	/* Update slab flag */
501	*in_slab = use_slab;
502
503	return 0;
504}
505
506/**
507 * memblock_merge_regions - merge neighboring compatible regions
508 * @type: memblock type to scan
509 * @start_rgn: start scanning from (@start_rgn - 1)
510 * @end_rgn: end scanning at (@end_rgn - 1)
511 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
512 */
513static void __init_memblock memblock_merge_regions(struct memblock_type *type,
514						   unsigned long start_rgn,
515						   unsigned long end_rgn)
516{
517	int i = 0;
518	if (start_rgn)
519		i = start_rgn - 1;
520	end_rgn = min(end_rgn, type->cnt - 1);
521	while (i < end_rgn) {
522		struct memblock_region *this = &type->regions[i];
523		struct memblock_region *next = &type->regions[i + 1];
524
525		if (this->base + this->size != next->base ||
526		    memblock_get_region_node(this) !=
527		    memblock_get_region_node(next) ||
528		    this->flags != next->flags) {
529			BUG_ON(this->base + this->size > next->base);
530			i++;
531			continue;
532		}
533
534		this->size += next->size;
535		/* move forward from next + 1, index of which is i + 2 */
536		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
537		type->cnt--;
538		end_rgn--;
539	}
540}
541
542/**
543 * memblock_insert_region - insert new memblock region
544 * @type:	memblock type to insert into
545 * @idx:	index for the insertion point
546 * @base:	base address of the new region
547 * @size:	size of the new region
548 * @nid:	node id of the new region
549 * @flags:	flags of the new region
550 *
551 * Insert new memblock region [@base, @base + @size) into @type at @idx.
552 * @type must already have extra room to accommodate the new region.
553 */
554static void __init_memblock memblock_insert_region(struct memblock_type *type,
555						   int idx, phys_addr_t base,
556						   phys_addr_t size,
557						   int nid,
558						   enum memblock_flags flags)
559{
560	struct memblock_region *rgn = &type->regions[idx];
561
562	BUG_ON(type->cnt >= type->max);
563	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
564	rgn->base = base;
565	rgn->size = size;
566	rgn->flags = flags;
567	memblock_set_region_node(rgn, nid);
568	type->cnt++;
569	type->total_size += size;
570}
571
572/**
573 * memblock_add_range - add new memblock region
574 * @type: memblock type to add new region into
575 * @base: base address of the new region
576 * @size: size of the new region
577 * @nid: nid of the new region
578 * @flags: flags of the new region
579 *
580 * Add new memblock region [@base, @base + @size) into @type.  The new region
581 * is allowed to overlap with existing ones - overlaps don't affect already
582 * existing regions.  @type is guaranteed to be minimal (all neighbouring
583 * compatible regions are merged) after the addition.
584 *
585 * Return:
586 * 0 on success, -errno on failure.
587 */
588static int __init_memblock memblock_add_range(struct memblock_type *type,
589				phys_addr_t base, phys_addr_t size,
590				int nid, enum memblock_flags flags)
591{
592	bool insert = false;
593	phys_addr_t obase = base;
594	phys_addr_t end = base + memblock_cap_size(base, &size);
595	int idx, nr_new, start_rgn = -1, end_rgn;
596	struct memblock_region *rgn;
597
598	if (!size)
599		return 0;
600
601	/* special case for empty array */
602	if (type->regions[0].size == 0) {
603		WARN_ON(type->cnt != 1 || type->total_size);
604		type->regions[0].base = base;
605		type->regions[0].size = size;
606		type->regions[0].flags = flags;
607		memblock_set_region_node(&type->regions[0], nid);
608		type->total_size = size;
609		return 0;
610	}
611
612	/*
613	 * The worst case is when new range overlaps all existing regions,
614	 * then we'll need type->cnt + 1 empty regions in @type. So if
615	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
616	 * that there is enough empty regions in @type, and we can insert
617	 * regions directly.
618	 */
619	if (type->cnt * 2 + 1 <= type->max)
620		insert = true;
621
622repeat:
623	/*
624	 * The following is executed twice.  Once with %false @insert and
625	 * then with %true.  The first counts the number of regions needed
626	 * to accommodate the new area.  The second actually inserts them.
627	 */
628	base = obase;
629	nr_new = 0;
630
631	for_each_memblock_type(idx, type, rgn) {
632		phys_addr_t rbase = rgn->base;
633		phys_addr_t rend = rbase + rgn->size;
634
635		if (rbase >= end)
636			break;
637		if (rend <= base)
638			continue;
639		/*
640		 * @rgn overlaps.  If it separates the lower part of new
641		 * area, insert that portion.
642		 */
643		if (rbase > base) {
644#ifdef CONFIG_NUMA
645			WARN_ON(nid != memblock_get_region_node(rgn));
646#endif
647			WARN_ON(flags != rgn->flags);
648			nr_new++;
649			if (insert) {
650				if (start_rgn == -1)
651					start_rgn = idx;
652				end_rgn = idx + 1;
653				memblock_insert_region(type, idx++, base,
654						       rbase - base, nid,
655						       flags);
656			}
657		}
658		/* area below @rend is dealt with, forget about it */
659		base = min(rend, end);
660	}
661
662	/* insert the remaining portion */
663	if (base < end) {
664		nr_new++;
665		if (insert) {
666			if (start_rgn == -1)
667				start_rgn = idx;
668			end_rgn = idx + 1;
669			memblock_insert_region(type, idx, base, end - base,
670					       nid, flags);
671		}
672	}
673
674	if (!nr_new)
675		return 0;
676
677	/*
678	 * If this was the first round, resize array and repeat for actual
679	 * insertions; otherwise, merge and return.
680	 */
681	if (!insert) {
682		while (type->cnt + nr_new > type->max)
683			if (memblock_double_array(type, obase, size) < 0)
684				return -ENOMEM;
685		insert = true;
686		goto repeat;
687	} else {
688		memblock_merge_regions(type, start_rgn, end_rgn);
689		return 0;
690	}
691}
692
693/**
694 * memblock_add_node - add new memblock region within a NUMA node
695 * @base: base address of the new region
696 * @size: size of the new region
697 * @nid: nid of the new region
698 * @flags: flags of the new region
699 *
700 * Add new memblock region [@base, @base + @size) to the "memory"
701 * type. See memblock_add_range() description for mode details
702 *
703 * Return:
704 * 0 on success, -errno on failure.
705 */
706int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
707				      int nid, enum memblock_flags flags)
708{
709	phys_addr_t end = base + size - 1;
710
711	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
712		     &base, &end, nid, flags, (void *)_RET_IP_);
713
714	return memblock_add_range(&memblock.memory, base, size, nid, flags);
715}
716
717/**
718 * memblock_add - add new memblock region
719 * @base: base address of the new region
720 * @size: size of the new region
721 *
722 * Add new memblock region [@base, @base + @size) to the "memory"
723 * type. See memblock_add_range() description for mode details
724 *
725 * Return:
726 * 0 on success, -errno on failure.
727 */
728int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
729{
730	phys_addr_t end = base + size - 1;
731
732	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
733		     &base, &end, (void *)_RET_IP_);
734
735	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
736}
737
738/**
739 * memblock_validate_numa_coverage - check if amount of memory with
740 * no node ID assigned is less than a threshold
741 * @threshold_bytes: maximal number of pages that can have unassigned node
742 * ID (in bytes).
743 *
744 * A buggy firmware may report memory that does not belong to any node.
745 * Check if amount of such memory is below @threshold_bytes.
746 *
747 * Return: true on success, false on failure.
748 */
749bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
750{
751	unsigned long nr_pages = 0;
752	unsigned long start_pfn, end_pfn, mem_size_mb;
753	int nid, i;
754
755	/* calculate lose page */
756	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
757		if (nid == NUMA_NO_NODE)
758			nr_pages += end_pfn - start_pfn;
759	}
760
761	if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
762		mem_size_mb = memblock_phys_mem_size() >> 20;
763		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
764		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
765		return false;
766	}
767
768	return true;
769}
770
771
772/**
773 * memblock_isolate_range - isolate given range into disjoint memblocks
774 * @type: memblock type to isolate range for
775 * @base: base of range to isolate
776 * @size: size of range to isolate
777 * @start_rgn: out parameter for the start of isolated region
778 * @end_rgn: out parameter for the end of isolated region
779 *
780 * Walk @type and ensure that regions don't cross the boundaries defined by
781 * [@base, @base + @size).  Crossing regions are split at the boundaries,
782 * which may create at most two more regions.  The index of the first
783 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
784 *
785 * Return:
786 * 0 on success, -errno on failure.
787 */
788static int __init_memblock memblock_isolate_range(struct memblock_type *type,
789					phys_addr_t base, phys_addr_t size,
790					int *start_rgn, int *end_rgn)
791{
792	phys_addr_t end = base + memblock_cap_size(base, &size);
793	int idx;
794	struct memblock_region *rgn;
795
796	*start_rgn = *end_rgn = 0;
797
798	if (!size)
799		return 0;
800
801	/* we'll create at most two more regions */
802	while (type->cnt + 2 > type->max)
803		if (memblock_double_array(type, base, size) < 0)
804			return -ENOMEM;
805
806	for_each_memblock_type(idx, type, rgn) {
807		phys_addr_t rbase = rgn->base;
808		phys_addr_t rend = rbase + rgn->size;
809
810		if (rbase >= end)
811			break;
812		if (rend <= base)
813			continue;
814
815		if (rbase < base) {
816			/*
817			 * @rgn intersects from below.  Split and continue
818			 * to process the next region - the new top half.
819			 */
820			rgn->base = base;
821			rgn->size -= base - rbase;
822			type->total_size -= base - rbase;
823			memblock_insert_region(type, idx, rbase, base - rbase,
824					       memblock_get_region_node(rgn),
825					       rgn->flags);
826		} else if (rend > end) {
827			/*
828			 * @rgn intersects from above.  Split and redo the
829			 * current region - the new bottom half.
830			 */
831			rgn->base = end;
832			rgn->size -= end - rbase;
833			type->total_size -= end - rbase;
834			memblock_insert_region(type, idx--, rbase, end - rbase,
835					       memblock_get_region_node(rgn),
836					       rgn->flags);
837		} else {
838			/* @rgn is fully contained, record it */
839			if (!*end_rgn)
840				*start_rgn = idx;
841			*end_rgn = idx + 1;
842		}
843	}
844
845	return 0;
846}
847
848static int __init_memblock memblock_remove_range(struct memblock_type *type,
849					  phys_addr_t base, phys_addr_t size)
850{
851	int start_rgn, end_rgn;
852	int i, ret;
853
854	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
855	if (ret)
856		return ret;
857
858	for (i = end_rgn - 1; i >= start_rgn; i--)
859		memblock_remove_region(type, i);
860	return 0;
861}
862
863int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
864{
865	phys_addr_t end = base + size - 1;
866
867	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
868		     &base, &end, (void *)_RET_IP_);
869
870	return memblock_remove_range(&memblock.memory, base, size);
871}
872
873/**
874 * memblock_free - free boot memory allocation
875 * @ptr: starting address of the  boot memory allocation
876 * @size: size of the boot memory block in bytes
877 *
878 * Free boot memory block previously allocated by memblock_alloc_xx() API.
879 * The freeing memory will not be released to the buddy allocator.
880 */
881void __init_memblock memblock_free(void *ptr, size_t size)
882{
883	if (ptr)
884		memblock_phys_free(__pa(ptr), size);
885}
886
887/**
888 * memblock_phys_free - free boot memory block
889 * @base: phys starting address of the  boot memory block
890 * @size: size of the boot memory block in bytes
891 *
892 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
893 * The freeing memory will not be released to the buddy allocator.
894 */
895int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
896{
897	phys_addr_t end = base + size - 1;
898
899	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
900		     &base, &end, (void *)_RET_IP_);
901
902	kmemleak_free_part_phys(base, size);
903	return memblock_remove_range(&memblock.reserved, base, size);
904}
905
906int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
907{
908	phys_addr_t end = base + size - 1;
909
910	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
911		     &base, &end, (void *)_RET_IP_);
912
913	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
914}
915
916#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
917int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
918{
919	phys_addr_t end = base + size - 1;
920
921	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922		     &base, &end, (void *)_RET_IP_);
923
924	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
925}
926#endif
927
928/**
929 * memblock_setclr_flag - set or clear flag for a memory region
930 * @type: memblock type to set/clear flag for
931 * @base: base address of the region
932 * @size: size of the region
933 * @set: set or clear the flag
934 * @flag: the flag to update
935 *
936 * This function isolates region [@base, @base + @size), and sets/clears flag
937 *
938 * Return: 0 on success, -errno on failure.
939 */
940static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
941				phys_addr_t base, phys_addr_t size, int set, int flag)
942{
943	int i, ret, start_rgn, end_rgn;
944
945	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
946	if (ret)
947		return ret;
948
949	for (i = start_rgn; i < end_rgn; i++) {
950		struct memblock_region *r = &type->regions[i];
951
952		if (set)
953			r->flags |= flag;
954		else
955			r->flags &= ~flag;
956	}
957
958	memblock_merge_regions(type, start_rgn, end_rgn);
959	return 0;
960}
961
962/**
963 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
964 * @base: the base phys addr of the region
965 * @size: the size of the region
966 *
967 * Return: 0 on success, -errno on failure.
968 */
969int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
970{
971	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
972}
973
974/**
975 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
976 * @base: the base phys addr of the region
977 * @size: the size of the region
978 *
979 * Return: 0 on success, -errno on failure.
980 */
981int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
982{
983	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
984}
985
986/**
987 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
988 * @base: the base phys addr of the region
989 * @size: the size of the region
990 *
991 * Return: 0 on success, -errno on failure.
992 */
993int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
994{
995	if (!mirrored_kernelcore)
996		return 0;
997
998	system_has_some_mirror = true;
999
1000	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1001}
1002
1003/**
1004 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1005 * @base: the base phys addr of the region
1006 * @size: the size of the region
1007 *
1008 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1009 * direct mapping of the physical memory. These regions will still be
1010 * covered by the memory map. The struct page representing NOMAP memory
1011 * frames in the memory map will be PageReserved()
1012 *
1013 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1014 * memblock, the caller must inform kmemleak to ignore that memory
1015 *
1016 * Return: 0 on success, -errno on failure.
1017 */
1018int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1019{
1020	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1021}
1022
1023/**
1024 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1025 * @base: the base phys addr of the region
1026 * @size: the size of the region
1027 *
1028 * Return: 0 on success, -errno on failure.
1029 */
1030int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1031{
1032	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1033}
1034
1035/**
1036 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1037 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1038 * for this region.
1039 * @base: the base phys addr of the region
1040 * @size: the size of the region
1041 *
1042 * struct pages will not be initialized for reserved memory regions marked with
1043 * %MEMBLOCK_RSRV_NOINIT.
1044 *
1045 * Return: 0 on success, -errno on failure.
1046 */
1047int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1048{
1049	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1050				    MEMBLOCK_RSRV_NOINIT);
1051}
1052
1053static bool should_skip_region(struct memblock_type *type,
1054			       struct memblock_region *m,
1055			       int nid, int flags)
1056{
1057	int m_nid = memblock_get_region_node(m);
1058
1059	/* we never skip regions when iterating memblock.reserved or physmem */
1060	if (type != memblock_memory)
1061		return false;
1062
1063	/* only memory regions are associated with nodes, check it */
1064	if (nid != NUMA_NO_NODE && nid != m_nid)
1065		return true;
1066
1067	/* skip hotpluggable memory regions if needed */
1068	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1069	    !(flags & MEMBLOCK_HOTPLUG))
1070		return true;
1071
1072	/* if we want mirror memory skip non-mirror memory regions */
1073	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1074		return true;
1075
1076	/* skip nomap memory unless we were asked for it explicitly */
1077	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1078		return true;
1079
1080	/* skip driver-managed memory unless we were asked for it explicitly */
1081	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1082		return true;
1083
1084	return false;
1085}
1086
1087/**
1088 * __next_mem_range - next function for for_each_free_mem_range() etc.
1089 * @idx: pointer to u64 loop variable
1090 * @nid: node selector, %NUMA_NO_NODE for all nodes
1091 * @flags: pick from blocks based on memory attributes
1092 * @type_a: pointer to memblock_type from where the range is taken
1093 * @type_b: pointer to memblock_type which excludes memory from being taken
1094 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1095 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1096 * @out_nid: ptr to int for nid of the range, can be %NULL
1097 *
1098 * Find the first area from *@idx which matches @nid, fill the out
1099 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1100 * *@idx contains index into type_a and the upper 32bit indexes the
1101 * areas before each region in type_b.	For example, if type_b regions
1102 * look like the following,
1103 *
1104 *	0:[0-16), 1:[32-48), 2:[128-130)
1105 *
1106 * The upper 32bit indexes the following regions.
1107 *
1108 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1109 *
1110 * As both region arrays are sorted, the function advances the two indices
1111 * in lockstep and returns each intersection.
1112 */
1113void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1114		      struct memblock_type *type_a,
1115		      struct memblock_type *type_b, phys_addr_t *out_start,
1116		      phys_addr_t *out_end, int *out_nid)
1117{
1118	int idx_a = *idx & 0xffffffff;
1119	int idx_b = *idx >> 32;
1120
1121	if (WARN_ONCE(nid == MAX_NUMNODES,
1122	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1123		nid = NUMA_NO_NODE;
1124
1125	for (; idx_a < type_a->cnt; idx_a++) {
1126		struct memblock_region *m = &type_a->regions[idx_a];
1127
1128		phys_addr_t m_start = m->base;
1129		phys_addr_t m_end = m->base + m->size;
1130		int	    m_nid = memblock_get_region_node(m);
1131
1132		if (should_skip_region(type_a, m, nid, flags))
1133			continue;
1134
1135		if (!type_b) {
1136			if (out_start)
1137				*out_start = m_start;
1138			if (out_end)
1139				*out_end = m_end;
1140			if (out_nid)
1141				*out_nid = m_nid;
1142			idx_a++;
1143			*idx = (u32)idx_a | (u64)idx_b << 32;
1144			return;
1145		}
1146
1147		/* scan areas before each reservation */
1148		for (; idx_b < type_b->cnt + 1; idx_b++) {
1149			struct memblock_region *r;
1150			phys_addr_t r_start;
1151			phys_addr_t r_end;
1152
1153			r = &type_b->regions[idx_b];
1154			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1155			r_end = idx_b < type_b->cnt ?
1156				r->base : PHYS_ADDR_MAX;
1157
1158			/*
1159			 * if idx_b advanced past idx_a,
1160			 * break out to advance idx_a
1161			 */
1162			if (r_start >= m_end)
1163				break;
1164			/* if the two regions intersect, we're done */
1165			if (m_start < r_end) {
1166				if (out_start)
1167					*out_start =
1168						max(m_start, r_start);
1169				if (out_end)
1170					*out_end = min(m_end, r_end);
1171				if (out_nid)
1172					*out_nid = m_nid;
1173				/*
1174				 * The region which ends first is
1175				 * advanced for the next iteration.
1176				 */
1177				if (m_end <= r_end)
1178					idx_a++;
1179				else
1180					idx_b++;
1181				*idx = (u32)idx_a | (u64)idx_b << 32;
1182				return;
1183			}
1184		}
1185	}
1186
1187	/* signal end of iteration */
1188	*idx = ULLONG_MAX;
1189}
1190
1191/**
1192 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1193 *
1194 * @idx: pointer to u64 loop variable
1195 * @nid: node selector, %NUMA_NO_NODE for all nodes
1196 * @flags: pick from blocks based on memory attributes
1197 * @type_a: pointer to memblock_type from where the range is taken
1198 * @type_b: pointer to memblock_type which excludes memory from being taken
1199 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1200 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1201 * @out_nid: ptr to int for nid of the range, can be %NULL
1202 *
1203 * Finds the next range from type_a which is not marked as unsuitable
1204 * in type_b.
1205 *
1206 * Reverse of __next_mem_range().
1207 */
1208void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1209					  enum memblock_flags flags,
1210					  struct memblock_type *type_a,
1211					  struct memblock_type *type_b,
1212					  phys_addr_t *out_start,
1213					  phys_addr_t *out_end, int *out_nid)
1214{
1215	int idx_a = *idx & 0xffffffff;
1216	int idx_b = *idx >> 32;
1217
1218	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1219		nid = NUMA_NO_NODE;
1220
1221	if (*idx == (u64)ULLONG_MAX) {
1222		idx_a = type_a->cnt - 1;
1223		if (type_b != NULL)
1224			idx_b = type_b->cnt;
1225		else
1226			idx_b = 0;
1227	}
1228
1229	for (; idx_a >= 0; idx_a--) {
1230		struct memblock_region *m = &type_a->regions[idx_a];
1231
1232		phys_addr_t m_start = m->base;
1233		phys_addr_t m_end = m->base + m->size;
1234		int m_nid = memblock_get_region_node(m);
1235
1236		if (should_skip_region(type_a, m, nid, flags))
1237			continue;
1238
1239		if (!type_b) {
1240			if (out_start)
1241				*out_start = m_start;
1242			if (out_end)
1243				*out_end = m_end;
1244			if (out_nid)
1245				*out_nid = m_nid;
1246			idx_a--;
1247			*idx = (u32)idx_a | (u64)idx_b << 32;
1248			return;
1249		}
1250
1251		/* scan areas before each reservation */
1252		for (; idx_b >= 0; idx_b--) {
1253			struct memblock_region *r;
1254			phys_addr_t r_start;
1255			phys_addr_t r_end;
1256
1257			r = &type_b->regions[idx_b];
1258			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1259			r_end = idx_b < type_b->cnt ?
1260				r->base : PHYS_ADDR_MAX;
1261			/*
1262			 * if idx_b advanced past idx_a,
1263			 * break out to advance idx_a
1264			 */
1265
1266			if (r_end <= m_start)
1267				break;
1268			/* if the two regions intersect, we're done */
1269			if (m_end > r_start) {
1270				if (out_start)
1271					*out_start = max(m_start, r_start);
1272				if (out_end)
1273					*out_end = min(m_end, r_end);
1274				if (out_nid)
1275					*out_nid = m_nid;
1276				if (m_start >= r_start)
1277					idx_a--;
1278				else
1279					idx_b--;
1280				*idx = (u32)idx_a | (u64)idx_b << 32;
1281				return;
1282			}
1283		}
1284	}
1285	/* signal end of iteration */
1286	*idx = ULLONG_MAX;
1287}
1288
1289/*
1290 * Common iterator interface used to define for_each_mem_pfn_range().
1291 */
1292void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1293				unsigned long *out_start_pfn,
1294				unsigned long *out_end_pfn, int *out_nid)
1295{
1296	struct memblock_type *type = &memblock.memory;
1297	struct memblock_region *r;
1298	int r_nid;
1299
1300	while (++*idx < type->cnt) {
1301		r = &type->regions[*idx];
1302		r_nid = memblock_get_region_node(r);
1303
1304		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1305			continue;
1306		if (nid == MAX_NUMNODES || nid == r_nid)
1307			break;
1308	}
1309	if (*idx >= type->cnt) {
1310		*idx = -1;
1311		return;
1312	}
1313
1314	if (out_start_pfn)
1315		*out_start_pfn = PFN_UP(r->base);
1316	if (out_end_pfn)
1317		*out_end_pfn = PFN_DOWN(r->base + r->size);
1318	if (out_nid)
1319		*out_nid = r_nid;
1320}
1321
1322/**
1323 * memblock_set_node - set node ID on memblock regions
1324 * @base: base of area to set node ID for
1325 * @size: size of area to set node ID for
1326 * @type: memblock type to set node ID for
1327 * @nid: node ID to set
1328 *
1329 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1330 * Regions which cross the area boundaries are split as necessary.
1331 *
1332 * Return:
1333 * 0 on success, -errno on failure.
1334 */
1335int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1336				      struct memblock_type *type, int nid)
1337{
1338#ifdef CONFIG_NUMA
1339	int start_rgn, end_rgn;
1340	int i, ret;
1341
1342	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1343	if (ret)
1344		return ret;
1345
1346	for (i = start_rgn; i < end_rgn; i++)
1347		memblock_set_region_node(&type->regions[i], nid);
1348
1349	memblock_merge_regions(type, start_rgn, end_rgn);
1350#endif
1351	return 0;
1352}
1353
1354#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1355/**
1356 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1357 *
1358 * @idx: pointer to u64 loop variable
1359 * @zone: zone in which all of the memory blocks reside
1360 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1361 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1362 *
1363 * This function is meant to be a zone/pfn specific wrapper for the
1364 * for_each_mem_range type iterators. Specifically they are used in the
1365 * deferred memory init routines and as such we were duplicating much of
1366 * this logic throughout the code. So instead of having it in multiple
1367 * locations it seemed like it would make more sense to centralize this to
1368 * one new iterator that does everything they need.
1369 */
1370void __init_memblock
1371__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1372			     unsigned long *out_spfn, unsigned long *out_epfn)
1373{
1374	int zone_nid = zone_to_nid(zone);
1375	phys_addr_t spa, epa;
1376
1377	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1378			 &memblock.memory, &memblock.reserved,
1379			 &spa, &epa, NULL);
1380
1381	while (*idx != U64_MAX) {
1382		unsigned long epfn = PFN_DOWN(epa);
1383		unsigned long spfn = PFN_UP(spa);
1384
1385		/*
1386		 * Verify the end is at least past the start of the zone and
1387		 * that we have at least one PFN to initialize.
1388		 */
1389		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1390			/* if we went too far just stop searching */
1391			if (zone_end_pfn(zone) <= spfn) {
1392				*idx = U64_MAX;
1393				break;
1394			}
1395
1396			if (out_spfn)
1397				*out_spfn = max(zone->zone_start_pfn, spfn);
1398			if (out_epfn)
1399				*out_epfn = min(zone_end_pfn(zone), epfn);
1400
1401			return;
1402		}
1403
1404		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1405				 &memblock.memory, &memblock.reserved,
1406				 &spa, &epa, NULL);
1407	}
1408
1409	/* signal end of iteration */
1410	if (out_spfn)
1411		*out_spfn = ULONG_MAX;
1412	if (out_epfn)
1413		*out_epfn = 0;
1414}
1415
1416#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1417
1418/**
1419 * memblock_alloc_range_nid - allocate boot memory block
1420 * @size: size of memory block to be allocated in bytes
1421 * @align: alignment of the region and block's size
1422 * @start: the lower bound of the memory region to allocate (phys address)
1423 * @end: the upper bound of the memory region to allocate (phys address)
1424 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1425 * @exact_nid: control the allocation fall back to other nodes
1426 *
1427 * The allocation is performed from memory region limited by
1428 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1429 *
1430 * If the specified node can not hold the requested memory and @exact_nid
1431 * is false, the allocation falls back to any node in the system.
1432 *
1433 * For systems with memory mirroring, the allocation is attempted first
1434 * from the regions with mirroring enabled and then retried from any
1435 * memory region.
1436 *
1437 * In addition, function using kmemleak_alloc_phys for allocated boot
1438 * memory block, it is never reported as leaks.
1439 *
1440 * Return:
1441 * Physical address of allocated memory block on success, %0 on failure.
1442 */
1443phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1444					phys_addr_t align, phys_addr_t start,
1445					phys_addr_t end, int nid,
1446					bool exact_nid)
1447{
1448	enum memblock_flags flags = choose_memblock_flags();
1449	phys_addr_t found;
1450
1451	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1452		nid = NUMA_NO_NODE;
1453
1454	if (!align) {
1455		/* Can't use WARNs this early in boot on powerpc */
1456		dump_stack();
1457		align = SMP_CACHE_BYTES;
1458	}
1459
1460again:
1461	found = memblock_find_in_range_node(size, align, start, end, nid,
1462					    flags);
1463	if (found && !memblock_reserve(found, size))
1464		goto done;
1465
1466	if (nid != NUMA_NO_NODE && !exact_nid) {
1467		found = memblock_find_in_range_node(size, align, start,
1468						    end, NUMA_NO_NODE,
1469						    flags);
1470		if (found && !memblock_reserve(found, size))
1471			goto done;
1472	}
1473
1474	if (flags & MEMBLOCK_MIRROR) {
1475		flags &= ~MEMBLOCK_MIRROR;
1476		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1477			&size);
1478		goto again;
1479	}
1480
1481	return 0;
1482
1483done:
1484	/*
1485	 * Skip kmemleak for those places like kasan_init() and
1486	 * early_pgtable_alloc() due to high volume.
1487	 */
1488	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1489		/*
1490		 * Memblock allocated blocks are never reported as
1491		 * leaks. This is because many of these blocks are
1492		 * only referred via the physical address which is
1493		 * not looked up by kmemleak.
1494		 */
1495		kmemleak_alloc_phys(found, size, 0);
1496
1497	/*
1498	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1499	 * require memory to be accepted before it can be used by the
1500	 * guest.
1501	 *
1502	 * Accept the memory of the allocated buffer.
1503	 */
1504	accept_memory(found, found + size);
1505
1506	return found;
1507}
1508
1509/**
1510 * memblock_phys_alloc_range - allocate a memory block inside specified range
1511 * @size: size of memory block to be allocated in bytes
1512 * @align: alignment of the region and block's size
1513 * @start: the lower bound of the memory region to allocate (physical address)
1514 * @end: the upper bound of the memory region to allocate (physical address)
1515 *
1516 * Allocate @size bytes in the between @start and @end.
1517 *
1518 * Return: physical address of the allocated memory block on success,
1519 * %0 on failure.
1520 */
1521phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1522					     phys_addr_t align,
1523					     phys_addr_t start,
1524					     phys_addr_t end)
1525{
1526	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1527		     __func__, (u64)size, (u64)align, &start, &end,
1528		     (void *)_RET_IP_);
1529	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1530					false);
1531}
1532
1533/**
1534 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1535 * @size: size of memory block to be allocated in bytes
1536 * @align: alignment of the region and block's size
1537 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1538 *
1539 * Allocates memory block from the specified NUMA node. If the node
1540 * has no available memory, attempts to allocated from any node in the
1541 * system.
1542 *
1543 * Return: physical address of the allocated memory block on success,
1544 * %0 on failure.
1545 */
1546phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1547{
1548	return memblock_alloc_range_nid(size, align, 0,
1549					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1550}
1551
1552/**
1553 * memblock_alloc_internal - allocate boot memory block
1554 * @size: size of memory block to be allocated in bytes
1555 * @align: alignment of the region and block's size
1556 * @min_addr: the lower bound of the memory region to allocate (phys address)
1557 * @max_addr: the upper bound of the memory region to allocate (phys address)
1558 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1559 * @exact_nid: control the allocation fall back to other nodes
1560 *
1561 * Allocates memory block using memblock_alloc_range_nid() and
1562 * converts the returned physical address to virtual.
1563 *
1564 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1565 * will fall back to memory below @min_addr. Other constraints, such
1566 * as node and mirrored memory will be handled again in
1567 * memblock_alloc_range_nid().
1568 *
1569 * Return:
1570 * Virtual address of allocated memory block on success, NULL on failure.
1571 */
1572static void * __init memblock_alloc_internal(
1573				phys_addr_t size, phys_addr_t align,
1574				phys_addr_t min_addr, phys_addr_t max_addr,
1575				int nid, bool exact_nid)
1576{
1577	phys_addr_t alloc;
1578
1579	/*
1580	 * Detect any accidental use of these APIs after slab is ready, as at
1581	 * this moment memblock may be deinitialized already and its
1582	 * internal data may be destroyed (after execution of memblock_free_all)
1583	 */
1584	if (WARN_ON_ONCE(slab_is_available()))
1585		return kzalloc_node(size, GFP_NOWAIT, nid);
1586
1587	if (max_addr > memblock.current_limit)
1588		max_addr = memblock.current_limit;
1589
1590	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1591					exact_nid);
1592
1593	/* retry allocation without lower limit */
1594	if (!alloc && min_addr)
1595		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1596						exact_nid);
1597
1598	if (!alloc)
1599		return NULL;
1600
1601	return phys_to_virt(alloc);
1602}
1603
1604/**
1605 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1606 * without zeroing memory
1607 * @size: size of memory block to be allocated in bytes
1608 * @align: alignment of the region and block's size
1609 * @min_addr: the lower bound of the memory region from where the allocation
1610 *	  is preferred (phys address)
1611 * @max_addr: the upper bound of the memory region from where the allocation
1612 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1613 *	      allocate only from memory limited by memblock.current_limit value
1614 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1615 *
1616 * Public function, provides additional debug information (including caller
1617 * info), if enabled. Does not zero allocated memory.
1618 *
1619 * Return:
1620 * Virtual address of allocated memory block on success, NULL on failure.
1621 */
1622void * __init memblock_alloc_exact_nid_raw(
1623			phys_addr_t size, phys_addr_t align,
1624			phys_addr_t min_addr, phys_addr_t max_addr,
1625			int nid)
1626{
1627	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1628		     __func__, (u64)size, (u64)align, nid, &min_addr,
1629		     &max_addr, (void *)_RET_IP_);
1630
1631	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1632				       true);
1633}
1634
1635/**
1636 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1637 * memory and without panicking
1638 * @size: size of memory block to be allocated in bytes
1639 * @align: alignment of the region and block's size
1640 * @min_addr: the lower bound of the memory region from where the allocation
1641 *	  is preferred (phys address)
1642 * @max_addr: the upper bound of the memory region from where the allocation
1643 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1644 *	      allocate only from memory limited by memblock.current_limit value
1645 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1646 *
1647 * Public function, provides additional debug information (including caller
1648 * info), if enabled. Does not zero allocated memory, does not panic if request
1649 * cannot be satisfied.
1650 *
1651 * Return:
1652 * Virtual address of allocated memory block on success, NULL on failure.
1653 */
1654void * __init memblock_alloc_try_nid_raw(
1655			phys_addr_t size, phys_addr_t align,
1656			phys_addr_t min_addr, phys_addr_t max_addr,
1657			int nid)
1658{
1659	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1660		     __func__, (u64)size, (u64)align, nid, &min_addr,
1661		     &max_addr, (void *)_RET_IP_);
1662
1663	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1664				       false);
1665}
1666
1667/**
1668 * memblock_alloc_try_nid - allocate boot memory block
1669 * @size: size of memory block to be allocated in bytes
1670 * @align: alignment of the region and block's size
1671 * @min_addr: the lower bound of the memory region from where the allocation
1672 *	  is preferred (phys address)
1673 * @max_addr: the upper bound of the memory region from where the allocation
1674 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1675 *	      allocate only from memory limited by memblock.current_limit value
1676 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1677 *
1678 * Public function, provides additional debug information (including caller
1679 * info), if enabled. This function zeroes the allocated memory.
1680 *
1681 * Return:
1682 * Virtual address of allocated memory block on success, NULL on failure.
1683 */
1684void * __init memblock_alloc_try_nid(
1685			phys_addr_t size, phys_addr_t align,
1686			phys_addr_t min_addr, phys_addr_t max_addr,
1687			int nid)
1688{
1689	void *ptr;
1690
1691	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1692		     __func__, (u64)size, (u64)align, nid, &min_addr,
1693		     &max_addr, (void *)_RET_IP_);
1694	ptr = memblock_alloc_internal(size, align,
1695					   min_addr, max_addr, nid, false);
1696	if (ptr)
1697		memset(ptr, 0, size);
1698
1699	return ptr;
1700}
1701
1702/**
1703 * memblock_free_late - free pages directly to buddy allocator
1704 * @base: phys starting address of the  boot memory block
1705 * @size: size of the boot memory block in bytes
1706 *
1707 * This is only useful when the memblock allocator has already been torn
1708 * down, but we are still initializing the system.  Pages are released directly
1709 * to the buddy allocator.
1710 */
1711void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1712{
1713	phys_addr_t cursor, end;
1714
1715	end = base + size - 1;
1716	memblock_dbg("%s: [%pa-%pa] %pS\n",
1717		     __func__, &base, &end, (void *)_RET_IP_);
1718	kmemleak_free_part_phys(base, size);
1719	cursor = PFN_UP(base);
1720	end = PFN_DOWN(base + size);
1721
1722	for (; cursor < end; cursor++) {
1723		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1724		totalram_pages_inc();
1725	}
1726}
1727
1728/*
1729 * Remaining API functions
1730 */
1731
1732phys_addr_t __init_memblock memblock_phys_mem_size(void)
1733{
1734	return memblock.memory.total_size;
1735}
1736
1737phys_addr_t __init_memblock memblock_reserved_size(void)
1738{
1739	return memblock.reserved.total_size;
1740}
1741
1742/* lowest address */
1743phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1744{
1745	return memblock.memory.regions[0].base;
1746}
1747
1748phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1749{
1750	int idx = memblock.memory.cnt - 1;
1751
1752	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1753}
1754
1755static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1756{
1757	phys_addr_t max_addr = PHYS_ADDR_MAX;
1758	struct memblock_region *r;
1759
1760	/*
1761	 * translate the memory @limit size into the max address within one of
1762	 * the memory memblock regions, if the @limit exceeds the total size
1763	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1764	 */
1765	for_each_mem_region(r) {
1766		if (limit <= r->size) {
1767			max_addr = r->base + limit;
1768			break;
1769		}
1770		limit -= r->size;
1771	}
1772
1773	return max_addr;
1774}
1775
1776void __init memblock_enforce_memory_limit(phys_addr_t limit)
1777{
1778	phys_addr_t max_addr;
1779
1780	if (!limit)
1781		return;
1782
1783	max_addr = __find_max_addr(limit);
1784
1785	/* @limit exceeds the total size of the memory, do nothing */
1786	if (max_addr == PHYS_ADDR_MAX)
1787		return;
1788
1789	/* truncate both memory and reserved regions */
1790	memblock_remove_range(&memblock.memory, max_addr,
1791			      PHYS_ADDR_MAX);
1792	memblock_remove_range(&memblock.reserved, max_addr,
1793			      PHYS_ADDR_MAX);
1794}
1795
1796void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1797{
1798	int start_rgn, end_rgn;
1799	int i, ret;
1800
1801	if (!size)
1802		return;
1803
1804	if (!memblock_memory->total_size) {
1805		pr_warn("%s: No memory registered yet\n", __func__);
1806		return;
1807	}
1808
1809	ret = memblock_isolate_range(&memblock.memory, base, size,
1810						&start_rgn, &end_rgn);
1811	if (ret)
1812		return;
1813
1814	/* remove all the MAP regions */
1815	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1816		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1817			memblock_remove_region(&memblock.memory, i);
1818
1819	for (i = start_rgn - 1; i >= 0; i--)
1820		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1821			memblock_remove_region(&memblock.memory, i);
1822
1823	/* truncate the reserved regions */
1824	memblock_remove_range(&memblock.reserved, 0, base);
1825	memblock_remove_range(&memblock.reserved,
1826			base + size, PHYS_ADDR_MAX);
1827}
1828
1829void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1830{
1831	phys_addr_t max_addr;
1832
1833	if (!limit)
1834		return;
1835
1836	max_addr = __find_max_addr(limit);
1837
1838	/* @limit exceeds the total size of the memory, do nothing */
1839	if (max_addr == PHYS_ADDR_MAX)
1840		return;
1841
1842	memblock_cap_memory_range(0, max_addr);
1843}
1844
1845static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1846{
1847	unsigned int left = 0, right = type->cnt;
1848
1849	do {
1850		unsigned int mid = (right + left) / 2;
1851
1852		if (addr < type->regions[mid].base)
1853			right = mid;
1854		else if (addr >= (type->regions[mid].base +
1855				  type->regions[mid].size))
1856			left = mid + 1;
1857		else
1858			return mid;
1859	} while (left < right);
1860	return -1;
1861}
1862
1863bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1864{
1865	return memblock_search(&memblock.reserved, addr) != -1;
1866}
1867
1868bool __init_memblock memblock_is_memory(phys_addr_t addr)
1869{
1870	return memblock_search(&memblock.memory, addr) != -1;
1871}
1872
1873bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1874{
1875	int i = memblock_search(&memblock.memory, addr);
1876
1877	if (i == -1)
1878		return false;
1879	return !memblock_is_nomap(&memblock.memory.regions[i]);
1880}
1881
1882int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1883			 unsigned long *start_pfn, unsigned long *end_pfn)
1884{
1885	struct memblock_type *type = &memblock.memory;
1886	int mid = memblock_search(type, PFN_PHYS(pfn));
1887
1888	if (mid == -1)
1889		return NUMA_NO_NODE;
1890
1891	*start_pfn = PFN_DOWN(type->regions[mid].base);
1892	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1893
1894	return memblock_get_region_node(&type->regions[mid]);
1895}
1896
1897/**
1898 * memblock_is_region_memory - check if a region is a subset of memory
1899 * @base: base of region to check
1900 * @size: size of region to check
1901 *
1902 * Check if the region [@base, @base + @size) is a subset of a memory block.
1903 *
1904 * Return:
1905 * 0 if false, non-zero if true
1906 */
1907bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1908{
1909	int idx = memblock_search(&memblock.memory, base);
1910	phys_addr_t end = base + memblock_cap_size(base, &size);
1911
1912	if (idx == -1)
1913		return false;
1914	return (memblock.memory.regions[idx].base +
1915		 memblock.memory.regions[idx].size) >= end;
1916}
1917
1918/**
1919 * memblock_is_region_reserved - check if a region intersects reserved memory
1920 * @base: base of region to check
1921 * @size: size of region to check
1922 *
1923 * Check if the region [@base, @base + @size) intersects a reserved
1924 * memory block.
1925 *
1926 * Return:
1927 * True if they intersect, false if not.
1928 */
1929bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1930{
1931	return memblock_overlaps_region(&memblock.reserved, base, size);
1932}
1933
1934void __init_memblock memblock_trim_memory(phys_addr_t align)
1935{
1936	phys_addr_t start, end, orig_start, orig_end;
1937	struct memblock_region *r;
1938
1939	for_each_mem_region(r) {
1940		orig_start = r->base;
1941		orig_end = r->base + r->size;
1942		start = round_up(orig_start, align);
1943		end = round_down(orig_end, align);
1944
1945		if (start == orig_start && end == orig_end)
1946			continue;
1947
1948		if (start < end) {
1949			r->base = start;
1950			r->size = end - start;
1951		} else {
1952			memblock_remove_region(&memblock.memory,
1953					       r - memblock.memory.regions);
1954			r--;
1955		}
1956	}
1957}
1958
1959void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1960{
1961	memblock.current_limit = limit;
1962}
1963
1964phys_addr_t __init_memblock memblock_get_current_limit(void)
1965{
1966	return memblock.current_limit;
1967}
1968
1969static void __init_memblock memblock_dump(struct memblock_type *type)
1970{
1971	phys_addr_t base, end, size;
1972	enum memblock_flags flags;
1973	int idx;
1974	struct memblock_region *rgn;
1975
1976	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1977
1978	for_each_memblock_type(idx, type, rgn) {
1979		char nid_buf[32] = "";
1980
1981		base = rgn->base;
1982		size = rgn->size;
1983		end = base + size - 1;
1984		flags = rgn->flags;
1985#ifdef CONFIG_NUMA
1986		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1987			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1988				 memblock_get_region_node(rgn));
1989#endif
1990		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1991			type->name, idx, &base, &end, &size, nid_buf, flags);
1992	}
1993}
1994
1995static void __init_memblock __memblock_dump_all(void)
1996{
1997	pr_info("MEMBLOCK configuration:\n");
1998	pr_info(" memory size = %pa reserved size = %pa\n",
1999		&memblock.memory.total_size,
2000		&memblock.reserved.total_size);
2001
2002	memblock_dump(&memblock.memory);
2003	memblock_dump(&memblock.reserved);
2004#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2005	memblock_dump(&physmem);
2006#endif
2007}
2008
2009void __init_memblock memblock_dump_all(void)
2010{
2011	if (memblock_debug)
2012		__memblock_dump_all();
2013}
2014
2015void __init memblock_allow_resize(void)
2016{
2017	memblock_can_resize = 1;
2018}
2019
2020static int __init early_memblock(char *p)
2021{
2022	if (p && strstr(p, "debug"))
2023		memblock_debug = 1;
2024	return 0;
2025}
2026early_param("memblock", early_memblock);
2027
2028static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2029{
2030	struct page *start_pg, *end_pg;
2031	phys_addr_t pg, pgend;
2032
2033	/*
2034	 * Convert start_pfn/end_pfn to a struct page pointer.
2035	 */
2036	start_pg = pfn_to_page(start_pfn - 1) + 1;
2037	end_pg = pfn_to_page(end_pfn - 1) + 1;
2038
2039	/*
2040	 * Convert to physical addresses, and round start upwards and end
2041	 * downwards.
2042	 */
2043	pg = PAGE_ALIGN(__pa(start_pg));
2044	pgend = __pa(end_pg) & PAGE_MASK;
2045
2046	/*
2047	 * If there are free pages between these, free the section of the
2048	 * memmap array.
2049	 */
2050	if (pg < pgend)
2051		memblock_phys_free(pg, pgend - pg);
2052}
2053
2054/*
2055 * The mem_map array can get very big.  Free the unused area of the memory map.
2056 */
2057static void __init free_unused_memmap(void)
2058{
2059	unsigned long start, end, prev_end = 0;
2060	int i;
2061
2062	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2063	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2064		return;
2065
2066	/*
2067	 * This relies on each bank being in address order.
2068	 * The banks are sorted previously in bootmem_init().
2069	 */
2070	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2071#ifdef CONFIG_SPARSEMEM
2072		/*
2073		 * Take care not to free memmap entries that don't exist
2074		 * due to SPARSEMEM sections which aren't present.
2075		 */
2076		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2077#endif
2078		/*
2079		 * Align down here since many operations in VM subsystem
2080		 * presume that there are no holes in the memory map inside
2081		 * a pageblock
2082		 */
2083		start = pageblock_start_pfn(start);
2084
2085		/*
2086		 * If we had a previous bank, and there is a space
2087		 * between the current bank and the previous, free it.
2088		 */
2089		if (prev_end && prev_end < start)
2090			free_memmap(prev_end, start);
2091
2092		/*
2093		 * Align up here since many operations in VM subsystem
2094		 * presume that there are no holes in the memory map inside
2095		 * a pageblock
2096		 */
2097		prev_end = pageblock_align(end);
2098	}
2099
2100#ifdef CONFIG_SPARSEMEM
2101	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2102		prev_end = pageblock_align(end);
2103		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2104	}
2105#endif
2106}
2107
2108static void __init __free_pages_memory(unsigned long start, unsigned long end)
2109{
2110	int order;
2111
2112	while (start < end) {
2113		/*
2114		 * Free the pages in the largest chunks alignment allows.
2115		 *
2116		 * __ffs() behaviour is undefined for 0. start == 0 is
2117		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2118		 * the case.
2119		 */
2120		if (start)
2121			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2122		else
2123			order = MAX_PAGE_ORDER;
2124
2125		while (start + (1UL << order) > end)
2126			order--;
2127
2128		memblock_free_pages(pfn_to_page(start), start, order);
2129
2130		start += (1UL << order);
2131	}
2132}
2133
2134static unsigned long __init __free_memory_core(phys_addr_t start,
2135				 phys_addr_t end)
2136{
2137	unsigned long start_pfn = PFN_UP(start);
2138	unsigned long end_pfn = min_t(unsigned long,
2139				      PFN_DOWN(end), max_low_pfn);
2140
2141	if (start_pfn >= end_pfn)
2142		return 0;
2143
2144	__free_pages_memory(start_pfn, end_pfn);
2145
2146	return end_pfn - start_pfn;
2147}
2148
2149static void __init memmap_init_reserved_pages(void)
2150{
2151	struct memblock_region *region;
2152	phys_addr_t start, end;
2153	int nid;
2154
2155	/*
2156	 * set nid on all reserved pages and also treat struct
2157	 * pages for the NOMAP regions as PageReserved
2158	 */
2159	for_each_mem_region(region) {
2160		nid = memblock_get_region_node(region);
2161		start = region->base;
2162		end = start + region->size;
2163
2164		if (memblock_is_nomap(region))
2165			reserve_bootmem_region(start, end, nid);
2166
2167		memblock_set_node(start, end, &memblock.reserved, nid);
2168	}
2169
2170	/*
2171	 * initialize struct pages for reserved regions that don't have
2172	 * the MEMBLOCK_RSRV_NOINIT flag set
2173	 */
2174	for_each_reserved_mem_region(region) {
2175		if (!memblock_is_reserved_noinit(region)) {
2176			nid = memblock_get_region_node(region);
2177			start = region->base;
2178			end = start + region->size;
2179
2180			if (nid == NUMA_NO_NODE || nid >= MAX_NUMNODES)
2181				nid = early_pfn_to_nid(PFN_DOWN(start));
2182
2183			reserve_bootmem_region(start, end, nid);
2184		}
2185	}
2186}
2187
2188static unsigned long __init free_low_memory_core_early(void)
2189{
2190	unsigned long count = 0;
2191	phys_addr_t start, end;
2192	u64 i;
2193
2194	memblock_clear_hotplug(0, -1);
2195
2196	memmap_init_reserved_pages();
2197
2198	/*
2199	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2200	 *  because in some case like Node0 doesn't have RAM installed
2201	 *  low ram will be on Node1
2202	 */
2203	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2204				NULL)
2205		count += __free_memory_core(start, end);
2206
2207	return count;
2208}
2209
2210static int reset_managed_pages_done __initdata;
2211
2212static void __init reset_node_managed_pages(pg_data_t *pgdat)
2213{
2214	struct zone *z;
2215
2216	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2217		atomic_long_set(&z->managed_pages, 0);
2218}
2219
2220void __init reset_all_zones_managed_pages(void)
2221{
2222	struct pglist_data *pgdat;
2223
2224	if (reset_managed_pages_done)
2225		return;
2226
2227	for_each_online_pgdat(pgdat)
2228		reset_node_managed_pages(pgdat);
2229
2230	reset_managed_pages_done = 1;
2231}
2232
2233/**
2234 * memblock_free_all - release free pages to the buddy allocator
2235 */
2236void __init memblock_free_all(void)
2237{
2238	unsigned long pages;
2239
2240	free_unused_memmap();
2241	reset_all_zones_managed_pages();
2242
2243	pages = free_low_memory_core_early();
2244	totalram_pages_add(pages);
2245}
2246
2247#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2248static const char * const flagname[] = {
2249	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2250	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2251	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2252	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2253	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2254};
2255
2256static int memblock_debug_show(struct seq_file *m, void *private)
2257{
2258	struct memblock_type *type = m->private;
2259	struct memblock_region *reg;
2260	int i, j, nid;
2261	unsigned int count = ARRAY_SIZE(flagname);
2262	phys_addr_t end;
2263
2264	for (i = 0; i < type->cnt; i++) {
2265		reg = &type->regions[i];
2266		end = reg->base + reg->size - 1;
2267		nid = memblock_get_region_node(reg);
2268
2269		seq_printf(m, "%4d: ", i);
2270		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2271		if (nid != MAX_NUMNODES)
2272			seq_printf(m, "%4d ", nid);
2273		else
2274			seq_printf(m, "%4c ", 'x');
2275		if (reg->flags) {
2276			for (j = 0; j < count; j++) {
2277				if (reg->flags & (1U << j)) {
2278					seq_printf(m, "%s\n", flagname[j]);
2279					break;
2280				}
2281			}
2282			if (j == count)
2283				seq_printf(m, "%s\n", "UNKNOWN");
2284		} else {
2285			seq_printf(m, "%s\n", "NONE");
2286		}
2287	}
2288	return 0;
2289}
2290DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2291
2292static int __init memblock_init_debugfs(void)
2293{
2294	struct dentry *root = debugfs_create_dir("memblock", NULL);
2295
2296	debugfs_create_file("memory", 0444, root,
2297			    &memblock.memory, &memblock_debug_fops);
2298	debugfs_create_file("reserved", 0444, root,
2299			    &memblock.reserved, &memblock_debug_fops);
2300#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2301	debugfs_create_file("physmem", 0444, root, &physmem,
2302			    &memblock_debug_fops);
2303#endif
2304
2305	return 0;
2306}
2307__initcall(memblock_init_debugfs);
2308
2309#endif /* CONFIG_DEBUG_FS */
2310