1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 *	Izik Eidus
11 *	Andrea Arcangeli
12 *	Chris Wright
13 *	Hugh Dickins
14 */
15
16#include <linux/errno.h>
17#include <linux/mm.h>
18#include <linux/mm_inline.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/sched/mm.h>
23#include <linux/sched/coredump.h>
24#include <linux/sched/cputime.h>
25#include <linux/rwsem.h>
26#include <linux/pagemap.h>
27#include <linux/rmap.h>
28#include <linux/spinlock.h>
29#include <linux/xxhash.h>
30#include <linux/delay.h>
31#include <linux/kthread.h>
32#include <linux/wait.h>
33#include <linux/slab.h>
34#include <linux/rbtree.h>
35#include <linux/memory.h>
36#include <linux/mmu_notifier.h>
37#include <linux/swap.h>
38#include <linux/ksm.h>
39#include <linux/hashtable.h>
40#include <linux/freezer.h>
41#include <linux/oom.h>
42#include <linux/numa.h>
43#include <linux/pagewalk.h>
44
45#include <asm/tlbflush.h>
46#include "internal.h"
47#include "mm_slot.h"
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/ksm.h>
51
52#ifdef CONFIG_NUMA
53#define NUMA(x)		(x)
54#define DO_NUMA(x)	do { (x); } while (0)
55#else
56#define NUMA(x)		(0)
57#define DO_NUMA(x)	do { } while (0)
58#endif
59
60typedef u8 rmap_age_t;
61
62/**
63 * DOC: Overview
64 *
65 * A few notes about the KSM scanning process,
66 * to make it easier to understand the data structures below:
67 *
68 * In order to reduce excessive scanning, KSM sorts the memory pages by their
69 * contents into a data structure that holds pointers to the pages' locations.
70 *
71 * Since the contents of the pages may change at any moment, KSM cannot just
72 * insert the pages into a normal sorted tree and expect it to find anything.
73 * Therefore KSM uses two data structures - the stable and the unstable tree.
74 *
75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76 * by their contents.  Because each such page is write-protected, searching on
77 * this tree is fully assured to be working (except when pages are unmapped),
78 * and therefore this tree is called the stable tree.
79 *
80 * The stable tree node includes information required for reverse
81 * mapping from a KSM page to virtual addresses that map this page.
82 *
83 * In order to avoid large latencies of the rmap walks on KSM pages,
84 * KSM maintains two types of nodes in the stable tree:
85 *
86 * * the regular nodes that keep the reverse mapping structures in a
87 *   linked list
88 * * the "chains" that link nodes ("dups") that represent the same
89 *   write protected memory content, but each "dup" corresponds to a
90 *   different KSM page copy of that content
91 *
92 * Internally, the regular nodes, "dups" and "chains" are represented
93 * using the same struct ksm_stable_node structure.
94 *
95 * In addition to the stable tree, KSM uses a second data structure called the
96 * unstable tree: this tree holds pointers to pages which have been found to
97 * be "unchanged for a period of time".  The unstable tree sorts these pages
98 * by their contents, but since they are not write-protected, KSM cannot rely
99 * upon the unstable tree to work correctly - the unstable tree is liable to
100 * be corrupted as its contents are modified, and so it is called unstable.
101 *
102 * KSM solves this problem by several techniques:
103 *
104 * 1) The unstable tree is flushed every time KSM completes scanning all
105 *    memory areas, and then the tree is rebuilt again from the beginning.
106 * 2) KSM will only insert into the unstable tree, pages whose hash value
107 *    has not changed since the previous scan of all memory areas.
108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109 *    colors of the nodes and not on their contents, assuring that even when
110 *    the tree gets "corrupted" it won't get out of balance, so scanning time
111 *    remains the same (also, searching and inserting nodes in an rbtree uses
112 *    the same algorithm, so we have no overhead when we flush and rebuild).
113 * 4) KSM never flushes the stable tree, which means that even if it were to
114 *    take 10 attempts to find a page in the unstable tree, once it is found,
115 *    it is secured in the stable tree.  (When we scan a new page, we first
116 *    compare it against the stable tree, and then against the unstable tree.)
117 *
118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119 * stable trees and multiple unstable trees: one of each for each NUMA node.
120 */
121
122/**
123 * struct ksm_mm_slot - ksm information per mm that is being scanned
124 * @slot: hash lookup from mm to mm_slot
125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126 */
127struct ksm_mm_slot {
128	struct mm_slot slot;
129	struct ksm_rmap_item *rmap_list;
130};
131
132/**
133 * struct ksm_scan - cursor for scanning
134 * @mm_slot: the current mm_slot we are scanning
135 * @address: the next address inside that to be scanned
136 * @rmap_list: link to the next rmap to be scanned in the rmap_list
137 * @seqnr: count of completed full scans (needed when removing unstable node)
138 *
139 * There is only the one ksm_scan instance of this cursor structure.
140 */
141struct ksm_scan {
142	struct ksm_mm_slot *mm_slot;
143	unsigned long address;
144	struct ksm_rmap_item **rmap_list;
145	unsigned long seqnr;
146};
147
148/**
149 * struct ksm_stable_node - node of the stable rbtree
150 * @node: rb node of this ksm page in the stable tree
151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153 * @list: linked into migrate_nodes, pending placement in the proper node tree
154 * @hlist: hlist head of rmap_items using this ksm page
155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156 * @chain_prune_time: time of the last full garbage collection
157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159 */
160struct ksm_stable_node {
161	union {
162		struct rb_node node;	/* when node of stable tree */
163		struct {		/* when listed for migration */
164			struct list_head *head;
165			struct {
166				struct hlist_node hlist_dup;
167				struct list_head list;
168			};
169		};
170	};
171	struct hlist_head hlist;
172	union {
173		unsigned long kpfn;
174		unsigned long chain_prune_time;
175	};
176	/*
177	 * STABLE_NODE_CHAIN can be any negative number in
178	 * rmap_hlist_len negative range, but better not -1 to be able
179	 * to reliably detect underflows.
180	 */
181#define STABLE_NODE_CHAIN -1024
182	int rmap_hlist_len;
183#ifdef CONFIG_NUMA
184	int nid;
185#endif
186};
187
188/**
189 * struct ksm_rmap_item - reverse mapping item for virtual addresses
190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192 * @nid: NUMA node id of unstable tree in which linked (may not match page)
193 * @mm: the memory structure this rmap_item is pointing into
194 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195 * @oldchecksum: previous checksum of the page at that virtual address
196 * @node: rb node of this rmap_item in the unstable tree
197 * @head: pointer to stable_node heading this list in the stable tree
198 * @hlist: link into hlist of rmap_items hanging off that stable_node
199 * @age: number of scan iterations since creation
200 * @remaining_skips: how many scans to skip
201 */
202struct ksm_rmap_item {
203	struct ksm_rmap_item *rmap_list;
204	union {
205		struct anon_vma *anon_vma;	/* when stable */
206#ifdef CONFIG_NUMA
207		int nid;		/* when node of unstable tree */
208#endif
209	};
210	struct mm_struct *mm;
211	unsigned long address;		/* + low bits used for flags below */
212	unsigned int oldchecksum;	/* when unstable */
213	rmap_age_t age;
214	rmap_age_t remaining_skips;
215	union {
216		struct rb_node node;	/* when node of unstable tree */
217		struct {		/* when listed from stable tree */
218			struct ksm_stable_node *head;
219			struct hlist_node hlist;
220		};
221	};
222};
223
224#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
225#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
226#define STABLE_FLAG	0x200	/* is listed from the stable tree */
227
228/* The stable and unstable tree heads */
229static struct rb_root one_stable_tree[1] = { RB_ROOT };
230static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231static struct rb_root *root_stable_tree = one_stable_tree;
232static struct rb_root *root_unstable_tree = one_unstable_tree;
233
234/* Recently migrated nodes of stable tree, pending proper placement */
235static LIST_HEAD(migrate_nodes);
236#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237
238#define MM_SLOTS_HASH_BITS 10
239static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240
241static struct ksm_mm_slot ksm_mm_head = {
242	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243};
244static struct ksm_scan ksm_scan = {
245	.mm_slot = &ksm_mm_head,
246};
247
248static struct kmem_cache *rmap_item_cache;
249static struct kmem_cache *stable_node_cache;
250static struct kmem_cache *mm_slot_cache;
251
252/* Default number of pages to scan per batch */
253#define DEFAULT_PAGES_TO_SCAN 100
254
255/* The number of pages scanned */
256static unsigned long ksm_pages_scanned;
257
258/* The number of nodes in the stable tree */
259static unsigned long ksm_pages_shared;
260
261/* The number of page slots additionally sharing those nodes */
262static unsigned long ksm_pages_sharing;
263
264/* The number of nodes in the unstable tree */
265static unsigned long ksm_pages_unshared;
266
267/* The number of rmap_items in use: to calculate pages_volatile */
268static unsigned long ksm_rmap_items;
269
270/* The number of stable_node chains */
271static unsigned long ksm_stable_node_chains;
272
273/* The number of stable_node dups linked to the stable_node chains */
274static unsigned long ksm_stable_node_dups;
275
276/* Delay in pruning stale stable_node_dups in the stable_node_chains */
277static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278
279/* Maximum number of page slots sharing a stable node */
280static int ksm_max_page_sharing = 256;
281
282/* Number of pages ksmd should scan in one batch */
283static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284
285/* Milliseconds ksmd should sleep between batches */
286static unsigned int ksm_thread_sleep_millisecs = 20;
287
288/* Checksum of an empty (zeroed) page */
289static unsigned int zero_checksum __read_mostly;
290
291/* Whether to merge empty (zeroed) pages with actual zero pages */
292static bool ksm_use_zero_pages __read_mostly;
293
294/* Skip pages that couldn't be de-duplicated previously */
295/* Default to true at least temporarily, for testing */
296static bool ksm_smart_scan = true;
297
298/* The number of zero pages which is placed by KSM */
299unsigned long ksm_zero_pages;
300
301/* The number of pages that have been skipped due to "smart scanning" */
302static unsigned long ksm_pages_skipped;
303
304/* Don't scan more than max pages per batch. */
305static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307/* Min CPU for scanning pages per scan */
308#define KSM_ADVISOR_MIN_CPU 10
309
310/* Max CPU for scanning pages per scan */
311static unsigned int ksm_advisor_max_cpu =  70;
312
313/* Target scan time in seconds to analyze all KSM candidate pages. */
314static unsigned long ksm_advisor_target_scan_time = 200;
315
316/* Exponentially weighted moving average. */
317#define EWMA_WEIGHT 30
318
319/**
320 * struct advisor_ctx - metadata for KSM advisor
321 * @start_scan: start time of the current scan
322 * @scan_time: scan time of previous scan
323 * @change: change in percent to pages_to_scan parameter
324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325 */
326struct advisor_ctx {
327	ktime_t start_scan;
328	unsigned long scan_time;
329	unsigned long change;
330	unsigned long long cpu_time;
331};
332static struct advisor_ctx advisor_ctx;
333
334/* Define different advisor's */
335enum ksm_advisor_type {
336	KSM_ADVISOR_NONE,
337	KSM_ADVISOR_SCAN_TIME,
338};
339static enum ksm_advisor_type ksm_advisor;
340
341#ifdef CONFIG_SYSFS
342/*
343 * Only called through the sysfs control interface:
344 */
345
346/* At least scan this many pages per batch. */
347static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349static void set_advisor_defaults(void)
350{
351	if (ksm_advisor == KSM_ADVISOR_NONE) {
352		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354		advisor_ctx = (const struct advisor_ctx){ 0 };
355		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356	}
357}
358#endif /* CONFIG_SYSFS */
359
360static inline void advisor_start_scan(void)
361{
362	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363		advisor_ctx.start_scan = ktime_get();
364}
365
366/*
367 * Use previous scan time if available, otherwise use current scan time as an
368 * approximation for the previous scan time.
369 */
370static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371					   unsigned long scan_time)
372{
373	return ctx->scan_time ? ctx->scan_time : scan_time;
374}
375
376/* Calculate exponential weighted moving average */
377static unsigned long ewma(unsigned long prev, unsigned long curr)
378{
379	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380}
381
382/*
383 * The scan time advisor is based on the current scan rate and the target
384 * scan rate.
385 *
386 *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387 *
388 * To avoid perturbations it calculates a change factor of previous changes.
389 * A new change factor is calculated for each iteration and it uses an
390 * exponentially weighted moving average. The new pages_to_scan value is
391 * multiplied with that change factor:
392 *
393 *      new_pages_to_scan *= change facor
394 *
395 * The new_pages_to_scan value is limited by the cpu min and max values. It
396 * calculates the cpu percent for the last scan and calculates the new
397 * estimated cpu percent cost for the next scan. That value is capped by the
398 * cpu min and max setting.
399 *
400 * In addition the new pages_to_scan value is capped by the max and min
401 * limits.
402 */
403static void scan_time_advisor(void)
404{
405	unsigned int cpu_percent;
406	unsigned long cpu_time;
407	unsigned long cpu_time_diff;
408	unsigned long cpu_time_diff_ms;
409	unsigned long pages;
410	unsigned long per_page_cost;
411	unsigned long factor;
412	unsigned long change;
413	unsigned long last_scan_time;
414	unsigned long scan_time;
415
416	/* Convert scan time to seconds */
417	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418			    MSEC_PER_SEC);
419	scan_time = scan_time ? scan_time : 1;
420
421	/* Calculate CPU consumption of ksmd background thread */
422	cpu_time = task_sched_runtime(current);
423	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427	cpu_percent = cpu_percent ? cpu_percent : 1;
428	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430	/* Calculate scan time as percentage of target scan time */
431	factor = ksm_advisor_target_scan_time * 100 / scan_time;
432	factor = factor ? factor : 1;
433
434	/*
435	 * Calculate scan time as percentage of last scan time and use
436	 * exponentially weighted average to smooth it
437	 */
438	change = scan_time * 100 / last_scan_time;
439	change = change ? change : 1;
440	change = ewma(advisor_ctx.change, change);
441
442	/* Calculate new scan rate based on target scan rate. */
443	pages = ksm_thread_pages_to_scan * 100 / factor;
444	/* Update pages_to_scan by weighted change percentage. */
445	pages = pages * change / 100;
446
447	/* Cap new pages_to_scan value */
448	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449	per_page_cost = per_page_cost ? per_page_cost : 1;
450
451	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453	pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455	/* Update advisor context */
456	advisor_ctx.change = change;
457	advisor_ctx.scan_time = scan_time;
458	advisor_ctx.cpu_time = cpu_time;
459
460	ksm_thread_pages_to_scan = pages;
461	trace_ksm_advisor(scan_time, pages, cpu_percent);
462}
463
464static void advisor_stop_scan(void)
465{
466	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467		scan_time_advisor();
468}
469
470#ifdef CONFIG_NUMA
471/* Zeroed when merging across nodes is not allowed */
472static unsigned int ksm_merge_across_nodes = 1;
473static int ksm_nr_node_ids = 1;
474#else
475#define ksm_merge_across_nodes	1U
476#define ksm_nr_node_ids		1
477#endif
478
479#define KSM_RUN_STOP	0
480#define KSM_RUN_MERGE	1
481#define KSM_RUN_UNMERGE	2
482#define KSM_RUN_OFFLINE	4
483static unsigned long ksm_run = KSM_RUN_STOP;
484static void wait_while_offlining(void);
485
486static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488static DEFINE_MUTEX(ksm_thread_mutex);
489static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
491#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
492		sizeof(struct __struct), __alignof__(struct __struct),\
493		(__flags), NULL)
494
495static int __init ksm_slab_init(void)
496{
497	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
498	if (!rmap_item_cache)
499		goto out;
500
501	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
502	if (!stable_node_cache)
503		goto out_free1;
504
505	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
506	if (!mm_slot_cache)
507		goto out_free2;
508
509	return 0;
510
511out_free2:
512	kmem_cache_destroy(stable_node_cache);
513out_free1:
514	kmem_cache_destroy(rmap_item_cache);
515out:
516	return -ENOMEM;
517}
518
519static void __init ksm_slab_free(void)
520{
521	kmem_cache_destroy(mm_slot_cache);
522	kmem_cache_destroy(stable_node_cache);
523	kmem_cache_destroy(rmap_item_cache);
524	mm_slot_cache = NULL;
525}
526
527static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
528{
529	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
530}
531
532static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
533{
534	return dup->head == STABLE_NODE_DUP_HEAD;
535}
536
537static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
538					     struct ksm_stable_node *chain)
539{
540	VM_BUG_ON(is_stable_node_dup(dup));
541	dup->head = STABLE_NODE_DUP_HEAD;
542	VM_BUG_ON(!is_stable_node_chain(chain));
543	hlist_add_head(&dup->hlist_dup, &chain->hlist);
544	ksm_stable_node_dups++;
545}
546
547static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
548{
549	VM_BUG_ON(!is_stable_node_dup(dup));
550	hlist_del(&dup->hlist_dup);
551	ksm_stable_node_dups--;
552}
553
554static inline void stable_node_dup_del(struct ksm_stable_node *dup)
555{
556	VM_BUG_ON(is_stable_node_chain(dup));
557	if (is_stable_node_dup(dup))
558		__stable_node_dup_del(dup);
559	else
560		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
561#ifdef CONFIG_DEBUG_VM
562	dup->head = NULL;
563#endif
564}
565
566static inline struct ksm_rmap_item *alloc_rmap_item(void)
567{
568	struct ksm_rmap_item *rmap_item;
569
570	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
571						__GFP_NORETRY | __GFP_NOWARN);
572	if (rmap_item)
573		ksm_rmap_items++;
574	return rmap_item;
575}
576
577static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
578{
579	ksm_rmap_items--;
580	rmap_item->mm->ksm_rmap_items--;
581	rmap_item->mm = NULL;	/* debug safety */
582	kmem_cache_free(rmap_item_cache, rmap_item);
583}
584
585static inline struct ksm_stable_node *alloc_stable_node(void)
586{
587	/*
588	 * The allocation can take too long with GFP_KERNEL when memory is under
589	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
590	 * grants access to memory reserves, helping to avoid this problem.
591	 */
592	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
593}
594
595static inline void free_stable_node(struct ksm_stable_node *stable_node)
596{
597	VM_BUG_ON(stable_node->rmap_hlist_len &&
598		  !is_stable_node_chain(stable_node));
599	kmem_cache_free(stable_node_cache, stable_node);
600}
601
602/*
603 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
604 * page tables after it has passed through ksm_exit() - which, if necessary,
605 * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
606 * a special flag: they can just back out as soon as mm_users goes to zero.
607 * ksm_test_exit() is used throughout to make this test for exit: in some
608 * places for correctness, in some places just to avoid unnecessary work.
609 */
610static inline bool ksm_test_exit(struct mm_struct *mm)
611{
612	return atomic_read(&mm->mm_users) == 0;
613}
614
615static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
616			struct mm_walk *walk)
617{
618	struct page *page = NULL;
619	spinlock_t *ptl;
620	pte_t *pte;
621	pte_t ptent;
622	int ret;
623
624	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
625	if (!pte)
626		return 0;
627	ptent = ptep_get(pte);
628	if (pte_present(ptent)) {
629		page = vm_normal_page(walk->vma, addr, ptent);
630	} else if (!pte_none(ptent)) {
631		swp_entry_t entry = pte_to_swp_entry(ptent);
632
633		/*
634		 * As KSM pages remain KSM pages until freed, no need to wait
635		 * here for migration to end.
636		 */
637		if (is_migration_entry(entry))
638			page = pfn_swap_entry_to_page(entry);
639	}
640	/* return 1 if the page is an normal ksm page or KSM-placed zero page */
641	ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
642	pte_unmap_unlock(pte, ptl);
643	return ret;
644}
645
646static const struct mm_walk_ops break_ksm_ops = {
647	.pmd_entry = break_ksm_pmd_entry,
648	.walk_lock = PGWALK_RDLOCK,
649};
650
651static const struct mm_walk_ops break_ksm_lock_vma_ops = {
652	.pmd_entry = break_ksm_pmd_entry,
653	.walk_lock = PGWALK_WRLOCK,
654};
655
656/*
657 * We use break_ksm to break COW on a ksm page by triggering unsharing,
658 * such that the ksm page will get replaced by an exclusive anonymous page.
659 *
660 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
661 * in case the application has unmapped and remapped mm,addr meanwhile.
662 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
663 * mmap of /dev/mem, where we would not want to touch it.
664 *
665 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
666 * of the process that owns 'vma'.  We also do not want to enforce
667 * protection keys here anyway.
668 */
669static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
670{
671	vm_fault_t ret = 0;
672	const struct mm_walk_ops *ops = lock_vma ?
673				&break_ksm_lock_vma_ops : &break_ksm_ops;
674
675	do {
676		int ksm_page;
677
678		cond_resched();
679		ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
680		if (WARN_ON_ONCE(ksm_page < 0))
681			return ksm_page;
682		if (!ksm_page)
683			return 0;
684		ret = handle_mm_fault(vma, addr,
685				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
686				      NULL);
687	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
688	/*
689	 * We must loop until we no longer find a KSM page because
690	 * handle_mm_fault() may back out if there's any difficulty e.g. if
691	 * pte accessed bit gets updated concurrently.
692	 *
693	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
694	 * backing file, which also invalidates anonymous pages: that's
695	 * okay, that truncation will have unmapped the PageKsm for us.
696	 *
697	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
698	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
699	 * current task has TIF_MEMDIE set, and will be OOM killed on return
700	 * to user; and ksmd, having no mm, would never be chosen for that.
701	 *
702	 * But if the mm is in a limited mem_cgroup, then the fault may fail
703	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
704	 * even ksmd can fail in this way - though it's usually breaking ksm
705	 * just to undo a merge it made a moment before, so unlikely to oom.
706	 *
707	 * That's a pity: we might therefore have more kernel pages allocated
708	 * than we're counting as nodes in the stable tree; but ksm_do_scan
709	 * will retry to break_cow on each pass, so should recover the page
710	 * in due course.  The important thing is to not let VM_MERGEABLE
711	 * be cleared while any such pages might remain in the area.
712	 */
713	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
714}
715
716static bool vma_ksm_compatible(struct vm_area_struct *vma)
717{
718	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
719			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
720			     VM_MIXEDMAP))
721		return false;		/* just ignore the advice */
722
723	if (vma_is_dax(vma))
724		return false;
725
726#ifdef VM_SAO
727	if (vma->vm_flags & VM_SAO)
728		return false;
729#endif
730#ifdef VM_SPARC_ADI
731	if (vma->vm_flags & VM_SPARC_ADI)
732		return false;
733#endif
734
735	return true;
736}
737
738static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
739		unsigned long addr)
740{
741	struct vm_area_struct *vma;
742	if (ksm_test_exit(mm))
743		return NULL;
744	vma = vma_lookup(mm, addr);
745	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
746		return NULL;
747	return vma;
748}
749
750static void break_cow(struct ksm_rmap_item *rmap_item)
751{
752	struct mm_struct *mm = rmap_item->mm;
753	unsigned long addr = rmap_item->address;
754	struct vm_area_struct *vma;
755
756	/*
757	 * It is not an accident that whenever we want to break COW
758	 * to undo, we also need to drop a reference to the anon_vma.
759	 */
760	put_anon_vma(rmap_item->anon_vma);
761
762	mmap_read_lock(mm);
763	vma = find_mergeable_vma(mm, addr);
764	if (vma)
765		break_ksm(vma, addr, false);
766	mmap_read_unlock(mm);
767}
768
769static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
770{
771	struct mm_struct *mm = rmap_item->mm;
772	unsigned long addr = rmap_item->address;
773	struct vm_area_struct *vma;
774	struct page *page;
775
776	mmap_read_lock(mm);
777	vma = find_mergeable_vma(mm, addr);
778	if (!vma)
779		goto out;
780
781	page = follow_page(vma, addr, FOLL_GET);
782	if (IS_ERR_OR_NULL(page))
783		goto out;
784	if (is_zone_device_page(page))
785		goto out_putpage;
786	if (PageAnon(page)) {
787		flush_anon_page(vma, page, addr);
788		flush_dcache_page(page);
789	} else {
790out_putpage:
791		put_page(page);
792out:
793		page = NULL;
794	}
795	mmap_read_unlock(mm);
796	return page;
797}
798
799/*
800 * This helper is used for getting right index into array of tree roots.
801 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
802 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
803 * every node has its own stable and unstable tree.
804 */
805static inline int get_kpfn_nid(unsigned long kpfn)
806{
807	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
808}
809
810static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
811						   struct rb_root *root)
812{
813	struct ksm_stable_node *chain = alloc_stable_node();
814	VM_BUG_ON(is_stable_node_chain(dup));
815	if (likely(chain)) {
816		INIT_HLIST_HEAD(&chain->hlist);
817		chain->chain_prune_time = jiffies;
818		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
819#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
820		chain->nid = NUMA_NO_NODE; /* debug */
821#endif
822		ksm_stable_node_chains++;
823
824		/*
825		 * Put the stable node chain in the first dimension of
826		 * the stable tree and at the same time remove the old
827		 * stable node.
828		 */
829		rb_replace_node(&dup->node, &chain->node, root);
830
831		/*
832		 * Move the old stable node to the second dimension
833		 * queued in the hlist_dup. The invariant is that all
834		 * dup stable_nodes in the chain->hlist point to pages
835		 * that are write protected and have the exact same
836		 * content.
837		 */
838		stable_node_chain_add_dup(dup, chain);
839	}
840	return chain;
841}
842
843static inline void free_stable_node_chain(struct ksm_stable_node *chain,
844					  struct rb_root *root)
845{
846	rb_erase(&chain->node, root);
847	free_stable_node(chain);
848	ksm_stable_node_chains--;
849}
850
851static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
852{
853	struct ksm_rmap_item *rmap_item;
854
855	/* check it's not STABLE_NODE_CHAIN or negative */
856	BUG_ON(stable_node->rmap_hlist_len < 0);
857
858	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
859		if (rmap_item->hlist.next) {
860			ksm_pages_sharing--;
861			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
862		} else {
863			ksm_pages_shared--;
864		}
865
866		rmap_item->mm->ksm_merging_pages--;
867
868		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
869		stable_node->rmap_hlist_len--;
870		put_anon_vma(rmap_item->anon_vma);
871		rmap_item->address &= PAGE_MASK;
872		cond_resched();
873	}
874
875	/*
876	 * We need the second aligned pointer of the migrate_nodes
877	 * list_head to stay clear from the rb_parent_color union
878	 * (aligned and different than any node) and also different
879	 * from &migrate_nodes. This will verify that future list.h changes
880	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
881	 */
882	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
883	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
884
885	trace_ksm_remove_ksm_page(stable_node->kpfn);
886	if (stable_node->head == &migrate_nodes)
887		list_del(&stable_node->list);
888	else
889		stable_node_dup_del(stable_node);
890	free_stable_node(stable_node);
891}
892
893enum get_ksm_page_flags {
894	GET_KSM_PAGE_NOLOCK,
895	GET_KSM_PAGE_LOCK,
896	GET_KSM_PAGE_TRYLOCK
897};
898
899/*
900 * get_ksm_page: checks if the page indicated by the stable node
901 * is still its ksm page, despite having held no reference to it.
902 * In which case we can trust the content of the page, and it
903 * returns the gotten page; but if the page has now been zapped,
904 * remove the stale node from the stable tree and return NULL.
905 * But beware, the stable node's page might be being migrated.
906 *
907 * You would expect the stable_node to hold a reference to the ksm page.
908 * But if it increments the page's count, swapping out has to wait for
909 * ksmd to come around again before it can free the page, which may take
910 * seconds or even minutes: much too unresponsive.  So instead we use a
911 * "keyhole reference": access to the ksm page from the stable node peeps
912 * out through its keyhole to see if that page still holds the right key,
913 * pointing back to this stable node.  This relies on freeing a PageAnon
914 * page to reset its page->mapping to NULL, and relies on no other use of
915 * a page to put something that might look like our key in page->mapping.
916 * is on its way to being freed; but it is an anomaly to bear in mind.
917 */
918static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
919				 enum get_ksm_page_flags flags)
920{
921	struct page *page;
922	void *expected_mapping;
923	unsigned long kpfn;
924
925	expected_mapping = (void *)((unsigned long)stable_node |
926					PAGE_MAPPING_KSM);
927again:
928	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
929	page = pfn_to_page(kpfn);
930	if (READ_ONCE(page->mapping) != expected_mapping)
931		goto stale;
932
933	/*
934	 * We cannot do anything with the page while its refcount is 0.
935	 * Usually 0 means free, or tail of a higher-order page: in which
936	 * case this node is no longer referenced, and should be freed;
937	 * however, it might mean that the page is under page_ref_freeze().
938	 * The __remove_mapping() case is easy, again the node is now stale;
939	 * the same is in reuse_ksm_page() case; but if page is swapcache
940	 * in folio_migrate_mapping(), it might still be our page,
941	 * in which case it's essential to keep the node.
942	 */
943	while (!get_page_unless_zero(page)) {
944		/*
945		 * Another check for page->mapping != expected_mapping would
946		 * work here too.  We have chosen the !PageSwapCache test to
947		 * optimize the common case, when the page is or is about to
948		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
949		 * in the ref_freeze section of __remove_mapping(); but Anon
950		 * page->mapping reset to NULL later, in free_pages_prepare().
951		 */
952		if (!PageSwapCache(page))
953			goto stale;
954		cpu_relax();
955	}
956
957	if (READ_ONCE(page->mapping) != expected_mapping) {
958		put_page(page);
959		goto stale;
960	}
961
962	if (flags == GET_KSM_PAGE_TRYLOCK) {
963		if (!trylock_page(page)) {
964			put_page(page);
965			return ERR_PTR(-EBUSY);
966		}
967	} else if (flags == GET_KSM_PAGE_LOCK)
968		lock_page(page);
969
970	if (flags != GET_KSM_PAGE_NOLOCK) {
971		if (READ_ONCE(page->mapping) != expected_mapping) {
972			unlock_page(page);
973			put_page(page);
974			goto stale;
975		}
976	}
977	return page;
978
979stale:
980	/*
981	 * We come here from above when page->mapping or !PageSwapCache
982	 * suggests that the node is stale; but it might be under migration.
983	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
984	 * before checking whether node->kpfn has been changed.
985	 */
986	smp_rmb();
987	if (READ_ONCE(stable_node->kpfn) != kpfn)
988		goto again;
989	remove_node_from_stable_tree(stable_node);
990	return NULL;
991}
992
993/*
994 * Removing rmap_item from stable or unstable tree.
995 * This function will clean the information from the stable/unstable tree.
996 */
997static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
998{
999	if (rmap_item->address & STABLE_FLAG) {
1000		struct ksm_stable_node *stable_node;
1001		struct page *page;
1002
1003		stable_node = rmap_item->head;
1004		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
1005		if (!page)
1006			goto out;
1007
1008		hlist_del(&rmap_item->hlist);
1009		unlock_page(page);
1010		put_page(page);
1011
1012		if (!hlist_empty(&stable_node->hlist))
1013			ksm_pages_sharing--;
1014		else
1015			ksm_pages_shared--;
1016
1017		rmap_item->mm->ksm_merging_pages--;
1018
1019		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1020		stable_node->rmap_hlist_len--;
1021
1022		put_anon_vma(rmap_item->anon_vma);
1023		rmap_item->head = NULL;
1024		rmap_item->address &= PAGE_MASK;
1025
1026	} else if (rmap_item->address & UNSTABLE_FLAG) {
1027		unsigned char age;
1028		/*
1029		 * Usually ksmd can and must skip the rb_erase, because
1030		 * root_unstable_tree was already reset to RB_ROOT.
1031		 * But be careful when an mm is exiting: do the rb_erase
1032		 * if this rmap_item was inserted by this scan, rather
1033		 * than left over from before.
1034		 */
1035		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1036		BUG_ON(age > 1);
1037		if (!age)
1038			rb_erase(&rmap_item->node,
1039				 root_unstable_tree + NUMA(rmap_item->nid));
1040		ksm_pages_unshared--;
1041		rmap_item->address &= PAGE_MASK;
1042	}
1043out:
1044	cond_resched();		/* we're called from many long loops */
1045}
1046
1047static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1048{
1049	while (*rmap_list) {
1050		struct ksm_rmap_item *rmap_item = *rmap_list;
1051		*rmap_list = rmap_item->rmap_list;
1052		remove_rmap_item_from_tree(rmap_item);
1053		free_rmap_item(rmap_item);
1054	}
1055}
1056
1057/*
1058 * Though it's very tempting to unmerge rmap_items from stable tree rather
1059 * than check every pte of a given vma, the locking doesn't quite work for
1060 * that - an rmap_item is assigned to the stable tree after inserting ksm
1061 * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1062 * rmap_items from parent to child at fork time (so as not to waste time
1063 * if exit comes before the next scan reaches it).
1064 *
1065 * Similarly, although we'd like to remove rmap_items (so updating counts
1066 * and freeing memory) when unmerging an area, it's easier to leave that
1067 * to the next pass of ksmd - consider, for example, how ksmd might be
1068 * in cmp_and_merge_page on one of the rmap_items we would be removing.
1069 */
1070static int unmerge_ksm_pages(struct vm_area_struct *vma,
1071			     unsigned long start, unsigned long end, bool lock_vma)
1072{
1073	unsigned long addr;
1074	int err = 0;
1075
1076	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1077		if (ksm_test_exit(vma->vm_mm))
1078			break;
1079		if (signal_pending(current))
1080			err = -ERESTARTSYS;
1081		else
1082			err = break_ksm(vma, addr, lock_vma);
1083	}
1084	return err;
1085}
1086
1087static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1088{
1089	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090}
1091
1092static inline struct ksm_stable_node *page_stable_node(struct page *page)
1093{
1094	return folio_stable_node(page_folio(page));
1095}
1096
1097static inline void set_page_stable_node(struct page *page,
1098					struct ksm_stable_node *stable_node)
1099{
1100	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
1101	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1102}
1103
1104#ifdef CONFIG_SYSFS
1105/*
1106 * Only called through the sysfs control interface:
1107 */
1108static int remove_stable_node(struct ksm_stable_node *stable_node)
1109{
1110	struct page *page;
1111	int err;
1112
1113	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
1114	if (!page) {
1115		/*
1116		 * get_ksm_page did remove_node_from_stable_tree itself.
1117		 */
1118		return 0;
1119	}
1120
1121	/*
1122	 * Page could be still mapped if this races with __mmput() running in
1123	 * between ksm_exit() and exit_mmap(). Just refuse to let
1124	 * merge_across_nodes/max_page_sharing be switched.
1125	 */
1126	err = -EBUSY;
1127	if (!page_mapped(page)) {
1128		/*
1129		 * The stable node did not yet appear stale to get_ksm_page(),
1130		 * since that allows for an unmapped ksm page to be recognized
1131		 * right up until it is freed; but the node is safe to remove.
1132		 * This page might be in an LRU cache waiting to be freed,
1133		 * or it might be PageSwapCache (perhaps under writeback),
1134		 * or it might have been removed from swapcache a moment ago.
1135		 */
1136		set_page_stable_node(page, NULL);
1137		remove_node_from_stable_tree(stable_node);
1138		err = 0;
1139	}
1140
1141	unlock_page(page);
1142	put_page(page);
1143	return err;
1144}
1145
1146static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1147				    struct rb_root *root)
1148{
1149	struct ksm_stable_node *dup;
1150	struct hlist_node *hlist_safe;
1151
1152	if (!is_stable_node_chain(stable_node)) {
1153		VM_BUG_ON(is_stable_node_dup(stable_node));
1154		if (remove_stable_node(stable_node))
1155			return true;
1156		else
1157			return false;
1158	}
1159
1160	hlist_for_each_entry_safe(dup, hlist_safe,
1161				  &stable_node->hlist, hlist_dup) {
1162		VM_BUG_ON(!is_stable_node_dup(dup));
1163		if (remove_stable_node(dup))
1164			return true;
1165	}
1166	BUG_ON(!hlist_empty(&stable_node->hlist));
1167	free_stable_node_chain(stable_node, root);
1168	return false;
1169}
1170
1171static int remove_all_stable_nodes(void)
1172{
1173	struct ksm_stable_node *stable_node, *next;
1174	int nid;
1175	int err = 0;
1176
1177	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1178		while (root_stable_tree[nid].rb_node) {
1179			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1180						struct ksm_stable_node, node);
1181			if (remove_stable_node_chain(stable_node,
1182						     root_stable_tree + nid)) {
1183				err = -EBUSY;
1184				break;	/* proceed to next nid */
1185			}
1186			cond_resched();
1187		}
1188	}
1189	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1190		if (remove_stable_node(stable_node))
1191			err = -EBUSY;
1192		cond_resched();
1193	}
1194	return err;
1195}
1196
1197static int unmerge_and_remove_all_rmap_items(void)
1198{
1199	struct ksm_mm_slot *mm_slot;
1200	struct mm_slot *slot;
1201	struct mm_struct *mm;
1202	struct vm_area_struct *vma;
1203	int err = 0;
1204
1205	spin_lock(&ksm_mmlist_lock);
1206	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1207			  struct mm_slot, mm_node);
1208	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209	spin_unlock(&ksm_mmlist_lock);
1210
1211	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1212	     mm_slot = ksm_scan.mm_slot) {
1213		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1214
1215		mm = mm_slot->slot.mm;
1216		mmap_read_lock(mm);
1217
1218		/*
1219		 * Exit right away if mm is exiting to avoid lockdep issue in
1220		 * the maple tree
1221		 */
1222		if (ksm_test_exit(mm))
1223			goto mm_exiting;
1224
1225		for_each_vma(vmi, vma) {
1226			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1227				continue;
1228			err = unmerge_ksm_pages(vma,
1229						vma->vm_start, vma->vm_end, false);
1230			if (err)
1231				goto error;
1232		}
1233
1234mm_exiting:
1235		remove_trailing_rmap_items(&mm_slot->rmap_list);
1236		mmap_read_unlock(mm);
1237
1238		spin_lock(&ksm_mmlist_lock);
1239		slot = list_entry(mm_slot->slot.mm_node.next,
1240				  struct mm_slot, mm_node);
1241		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1242		if (ksm_test_exit(mm)) {
1243			hash_del(&mm_slot->slot.hash);
1244			list_del(&mm_slot->slot.mm_node);
1245			spin_unlock(&ksm_mmlist_lock);
1246
1247			mm_slot_free(mm_slot_cache, mm_slot);
1248			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1249			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1250			mmdrop(mm);
1251		} else
1252			spin_unlock(&ksm_mmlist_lock);
1253	}
1254
1255	/* Clean up stable nodes, but don't worry if some are still busy */
1256	remove_all_stable_nodes();
1257	ksm_scan.seqnr = 0;
1258	return 0;
1259
1260error:
1261	mmap_read_unlock(mm);
1262	spin_lock(&ksm_mmlist_lock);
1263	ksm_scan.mm_slot = &ksm_mm_head;
1264	spin_unlock(&ksm_mmlist_lock);
1265	return err;
1266}
1267#endif /* CONFIG_SYSFS */
1268
1269static u32 calc_checksum(struct page *page)
1270{
1271	u32 checksum;
1272	void *addr = kmap_local_page(page);
1273	checksum = xxhash(addr, PAGE_SIZE, 0);
1274	kunmap_local(addr);
1275	return checksum;
1276}
1277
1278static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1279			      pte_t *orig_pte)
1280{
1281	struct mm_struct *mm = vma->vm_mm;
1282	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1283	int swapped;
1284	int err = -EFAULT;
1285	struct mmu_notifier_range range;
1286	bool anon_exclusive;
1287	pte_t entry;
1288
1289	pvmw.address = page_address_in_vma(page, vma);
1290	if (pvmw.address == -EFAULT)
1291		goto out;
1292
1293	BUG_ON(PageTransCompound(page));
1294
1295	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1296				pvmw.address + PAGE_SIZE);
1297	mmu_notifier_invalidate_range_start(&range);
1298
1299	if (!page_vma_mapped_walk(&pvmw))
1300		goto out_mn;
1301	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1302		goto out_unlock;
1303
1304	anon_exclusive = PageAnonExclusive(page);
1305	entry = ptep_get(pvmw.pte);
1306	if (pte_write(entry) || pte_dirty(entry) ||
1307	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1308		swapped = PageSwapCache(page);
1309		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1310		/*
1311		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1312		 * take any lock, therefore the check that we are going to make
1313		 * with the pagecount against the mapcount is racy and
1314		 * O_DIRECT can happen right after the check.
1315		 * So we clear the pte and flush the tlb before the check
1316		 * this assure us that no O_DIRECT can happen after the check
1317		 * or in the middle of the check.
1318		 *
1319		 * No need to notify as we are downgrading page table to read
1320		 * only not changing it to point to a new page.
1321		 *
1322		 * See Documentation/mm/mmu_notifier.rst
1323		 */
1324		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1325		/*
1326		 * Check that no O_DIRECT or similar I/O is in progress on the
1327		 * page
1328		 */
1329		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1330			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1331			goto out_unlock;
1332		}
1333
1334		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1335		if (anon_exclusive &&
1336		    folio_try_share_anon_rmap_pte(page_folio(page), page)) {
1337			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1338			goto out_unlock;
1339		}
1340
1341		if (pte_dirty(entry))
1342			set_page_dirty(page);
1343		entry = pte_mkclean(entry);
1344
1345		if (pte_write(entry))
1346			entry = pte_wrprotect(entry);
1347
1348		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1349	}
1350	*orig_pte = entry;
1351	err = 0;
1352
1353out_unlock:
1354	page_vma_mapped_walk_done(&pvmw);
1355out_mn:
1356	mmu_notifier_invalidate_range_end(&range);
1357out:
1358	return err;
1359}
1360
1361/**
1362 * replace_page - replace page in vma by new ksm page
1363 * @vma:      vma that holds the pte pointing to page
1364 * @page:     the page we are replacing by kpage
1365 * @kpage:    the ksm page we replace page by
1366 * @orig_pte: the original value of the pte
1367 *
1368 * Returns 0 on success, -EFAULT on failure.
1369 */
1370static int replace_page(struct vm_area_struct *vma, struct page *page,
1371			struct page *kpage, pte_t orig_pte)
1372{
1373	struct folio *kfolio = page_folio(kpage);
1374	struct mm_struct *mm = vma->vm_mm;
1375	struct folio *folio;
1376	pmd_t *pmd;
1377	pmd_t pmde;
1378	pte_t *ptep;
1379	pte_t newpte;
1380	spinlock_t *ptl;
1381	unsigned long addr;
1382	int err = -EFAULT;
1383	struct mmu_notifier_range range;
1384
1385	addr = page_address_in_vma(page, vma);
1386	if (addr == -EFAULT)
1387		goto out;
1388
1389	pmd = mm_find_pmd(mm, addr);
1390	if (!pmd)
1391		goto out;
1392	/*
1393	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1394	 * without holding anon_vma lock for write.  So when looking for a
1395	 * genuine pmde (in which to find pte), test present and !THP together.
1396	 */
1397	pmde = pmdp_get_lockless(pmd);
1398	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1399		goto out;
1400
1401	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1402				addr + PAGE_SIZE);
1403	mmu_notifier_invalidate_range_start(&range);
1404
1405	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1406	if (!ptep)
1407		goto out_mn;
1408	if (!pte_same(ptep_get(ptep), orig_pte)) {
1409		pte_unmap_unlock(ptep, ptl);
1410		goto out_mn;
1411	}
1412	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1413	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1414			kfolio);
1415
1416	/*
1417	 * No need to check ksm_use_zero_pages here: we can only have a
1418	 * zero_page here if ksm_use_zero_pages was enabled already.
1419	 */
1420	if (!is_zero_pfn(page_to_pfn(kpage))) {
1421		folio_get(kfolio);
1422		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1423		newpte = mk_pte(kpage, vma->vm_page_prot);
1424	} else {
1425		/*
1426		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1427		 * we can easily track all KSM-placed zero pages by checking if
1428		 * the dirty bit in zero page's PTE is set.
1429		 */
1430		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1431		ksm_zero_pages++;
1432		mm->ksm_zero_pages++;
1433		/*
1434		 * We're replacing an anonymous page with a zero page, which is
1435		 * not anonymous. We need to do proper accounting otherwise we
1436		 * will get wrong values in /proc, and a BUG message in dmesg
1437		 * when tearing down the mm.
1438		 */
1439		dec_mm_counter(mm, MM_ANONPAGES);
1440	}
1441
1442	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1443	/*
1444	 * No need to notify as we are replacing a read only page with another
1445	 * read only page with the same content.
1446	 *
1447	 * See Documentation/mm/mmu_notifier.rst
1448	 */
1449	ptep_clear_flush(vma, addr, ptep);
1450	set_pte_at_notify(mm, addr, ptep, newpte);
1451
1452	folio = page_folio(page);
1453	folio_remove_rmap_pte(folio, page, vma);
1454	if (!folio_mapped(folio))
1455		folio_free_swap(folio);
1456	folio_put(folio);
1457
1458	pte_unmap_unlock(ptep, ptl);
1459	err = 0;
1460out_mn:
1461	mmu_notifier_invalidate_range_end(&range);
1462out:
1463	return err;
1464}
1465
1466/*
1467 * try_to_merge_one_page - take two pages and merge them into one
1468 * @vma: the vma that holds the pte pointing to page
1469 * @page: the PageAnon page that we want to replace with kpage
1470 * @kpage: the PageKsm page that we want to map instead of page,
1471 *         or NULL the first time when we want to use page as kpage.
1472 *
1473 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1474 */
1475static int try_to_merge_one_page(struct vm_area_struct *vma,
1476				 struct page *page, struct page *kpage)
1477{
1478	pte_t orig_pte = __pte(0);
1479	int err = -EFAULT;
1480
1481	if (page == kpage)			/* ksm page forked */
1482		return 0;
1483
1484	if (!PageAnon(page))
1485		goto out;
1486
1487	/*
1488	 * We need the page lock to read a stable PageSwapCache in
1489	 * write_protect_page().  We use trylock_page() instead of
1490	 * lock_page() because we don't want to wait here - we
1491	 * prefer to continue scanning and merging different pages,
1492	 * then come back to this page when it is unlocked.
1493	 */
1494	if (!trylock_page(page))
1495		goto out;
1496
1497	if (PageTransCompound(page)) {
1498		if (split_huge_page(page))
1499			goto out_unlock;
1500	}
1501
1502	/*
1503	 * If this anonymous page is mapped only here, its pte may need
1504	 * to be write-protected.  If it's mapped elsewhere, all of its
1505	 * ptes are necessarily already write-protected.  But in either
1506	 * case, we need to lock and check page_count is not raised.
1507	 */
1508	if (write_protect_page(vma, page, &orig_pte) == 0) {
1509		if (!kpage) {
1510			/*
1511			 * While we hold page lock, upgrade page from
1512			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1513			 * stable_tree_insert() will update stable_node.
1514			 */
1515			set_page_stable_node(page, NULL);
1516			mark_page_accessed(page);
1517			/*
1518			 * Page reclaim just frees a clean page with no dirty
1519			 * ptes: make sure that the ksm page would be swapped.
1520			 */
1521			if (!PageDirty(page))
1522				SetPageDirty(page);
1523			err = 0;
1524		} else if (pages_identical(page, kpage))
1525			err = replace_page(vma, page, kpage, orig_pte);
1526	}
1527
1528out_unlock:
1529	unlock_page(page);
1530out:
1531	return err;
1532}
1533
1534/*
1535 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1536 * but no new kernel page is allocated: kpage must already be a ksm page.
1537 *
1538 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1539 */
1540static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1541				      struct page *page, struct page *kpage)
1542{
1543	struct mm_struct *mm = rmap_item->mm;
1544	struct vm_area_struct *vma;
1545	int err = -EFAULT;
1546
1547	mmap_read_lock(mm);
1548	vma = find_mergeable_vma(mm, rmap_item->address);
1549	if (!vma)
1550		goto out;
1551
1552	err = try_to_merge_one_page(vma, page, kpage);
1553	if (err)
1554		goto out;
1555
1556	/* Unstable nid is in union with stable anon_vma: remove first */
1557	remove_rmap_item_from_tree(rmap_item);
1558
1559	/* Must get reference to anon_vma while still holding mmap_lock */
1560	rmap_item->anon_vma = vma->anon_vma;
1561	get_anon_vma(vma->anon_vma);
1562out:
1563	mmap_read_unlock(mm);
1564	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1565				rmap_item, mm, err);
1566	return err;
1567}
1568
1569/*
1570 * try_to_merge_two_pages - take two identical pages and prepare them
1571 * to be merged into one page.
1572 *
1573 * This function returns the kpage if we successfully merged two identical
1574 * pages into one ksm page, NULL otherwise.
1575 *
1576 * Note that this function upgrades page to ksm page: if one of the pages
1577 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1578 */
1579static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1580					   struct page *page,
1581					   struct ksm_rmap_item *tree_rmap_item,
1582					   struct page *tree_page)
1583{
1584	int err;
1585
1586	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1587	if (!err) {
1588		err = try_to_merge_with_ksm_page(tree_rmap_item,
1589							tree_page, page);
1590		/*
1591		 * If that fails, we have a ksm page with only one pte
1592		 * pointing to it: so break it.
1593		 */
1594		if (err)
1595			break_cow(rmap_item);
1596	}
1597	return err ? NULL : page;
1598}
1599
1600static __always_inline
1601bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1602{
1603	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1604	/*
1605	 * Check that at least one mapping still exists, otherwise
1606	 * there's no much point to merge and share with this
1607	 * stable_node, as the underlying tree_page of the other
1608	 * sharer is going to be freed soon.
1609	 */
1610	return stable_node->rmap_hlist_len &&
1611		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1612}
1613
1614static __always_inline
1615bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1616{
1617	return __is_page_sharing_candidate(stable_node, 0);
1618}
1619
1620static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1621				    struct ksm_stable_node **_stable_node,
1622				    struct rb_root *root,
1623				    bool prune_stale_stable_nodes)
1624{
1625	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1626	struct hlist_node *hlist_safe;
1627	struct page *_tree_page, *tree_page = NULL;
1628	int nr = 0;
1629	int found_rmap_hlist_len;
1630
1631	if (!prune_stale_stable_nodes ||
1632	    time_before(jiffies, stable_node->chain_prune_time +
1633			msecs_to_jiffies(
1634				ksm_stable_node_chains_prune_millisecs)))
1635		prune_stale_stable_nodes = false;
1636	else
1637		stable_node->chain_prune_time = jiffies;
1638
1639	hlist_for_each_entry_safe(dup, hlist_safe,
1640				  &stable_node->hlist, hlist_dup) {
1641		cond_resched();
1642		/*
1643		 * We must walk all stable_node_dup to prune the stale
1644		 * stable nodes during lookup.
1645		 *
1646		 * get_ksm_page can drop the nodes from the
1647		 * stable_node->hlist if they point to freed pages
1648		 * (that's why we do a _safe walk). The "dup"
1649		 * stable_node parameter itself will be freed from
1650		 * under us if it returns NULL.
1651		 */
1652		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1653		if (!_tree_page)
1654			continue;
1655		nr += 1;
1656		if (is_page_sharing_candidate(dup)) {
1657			if (!found ||
1658			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1659				if (found)
1660					put_page(tree_page);
1661				found = dup;
1662				found_rmap_hlist_len = found->rmap_hlist_len;
1663				tree_page = _tree_page;
1664
1665				/* skip put_page for found dup */
1666				if (!prune_stale_stable_nodes)
1667					break;
1668				continue;
1669			}
1670		}
1671		put_page(_tree_page);
1672	}
1673
1674	if (found) {
1675		/*
1676		 * nr is counting all dups in the chain only if
1677		 * prune_stale_stable_nodes is true, otherwise we may
1678		 * break the loop at nr == 1 even if there are
1679		 * multiple entries.
1680		 */
1681		if (prune_stale_stable_nodes && nr == 1) {
1682			/*
1683			 * If there's not just one entry it would
1684			 * corrupt memory, better BUG_ON. In KSM
1685			 * context with no lock held it's not even
1686			 * fatal.
1687			 */
1688			BUG_ON(stable_node->hlist.first->next);
1689
1690			/*
1691			 * There's just one entry and it is below the
1692			 * deduplication limit so drop the chain.
1693			 */
1694			rb_replace_node(&stable_node->node, &found->node,
1695					root);
1696			free_stable_node(stable_node);
1697			ksm_stable_node_chains--;
1698			ksm_stable_node_dups--;
1699			/*
1700			 * NOTE: the caller depends on the stable_node
1701			 * to be equal to stable_node_dup if the chain
1702			 * was collapsed.
1703			 */
1704			*_stable_node = found;
1705			/*
1706			 * Just for robustness, as stable_node is
1707			 * otherwise left as a stable pointer, the
1708			 * compiler shall optimize it away at build
1709			 * time.
1710			 */
1711			stable_node = NULL;
1712		} else if (stable_node->hlist.first != &found->hlist_dup &&
1713			   __is_page_sharing_candidate(found, 1)) {
1714			/*
1715			 * If the found stable_node dup can accept one
1716			 * more future merge (in addition to the one
1717			 * that is underway) and is not at the head of
1718			 * the chain, put it there so next search will
1719			 * be quicker in the !prune_stale_stable_nodes
1720			 * case.
1721			 *
1722			 * NOTE: it would be inaccurate to use nr > 1
1723			 * instead of checking the hlist.first pointer
1724			 * directly, because in the
1725			 * prune_stale_stable_nodes case "nr" isn't
1726			 * the position of the found dup in the chain,
1727			 * but the total number of dups in the chain.
1728			 */
1729			hlist_del(&found->hlist_dup);
1730			hlist_add_head(&found->hlist_dup,
1731				       &stable_node->hlist);
1732		}
1733	}
1734
1735	*_stable_node_dup = found;
1736	return tree_page;
1737}
1738
1739static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1740					       struct rb_root *root)
1741{
1742	if (!is_stable_node_chain(stable_node))
1743		return stable_node;
1744	if (hlist_empty(&stable_node->hlist)) {
1745		free_stable_node_chain(stable_node, root);
1746		return NULL;
1747	}
1748	return hlist_entry(stable_node->hlist.first,
1749			   typeof(*stable_node), hlist_dup);
1750}
1751
1752/*
1753 * Like for get_ksm_page, this function can free the *_stable_node and
1754 * *_stable_node_dup if the returned tree_page is NULL.
1755 *
1756 * It can also free and overwrite *_stable_node with the found
1757 * stable_node_dup if the chain is collapsed (in which case
1758 * *_stable_node will be equal to *_stable_node_dup like if the chain
1759 * never existed). It's up to the caller to verify tree_page is not
1760 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1761 *
1762 * *_stable_node_dup is really a second output parameter of this
1763 * function and will be overwritten in all cases, the caller doesn't
1764 * need to initialize it.
1765 */
1766static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1767					struct ksm_stable_node **_stable_node,
1768					struct rb_root *root,
1769					bool prune_stale_stable_nodes)
1770{
1771	struct ksm_stable_node *stable_node = *_stable_node;
1772	if (!is_stable_node_chain(stable_node)) {
1773		if (is_page_sharing_candidate(stable_node)) {
1774			*_stable_node_dup = stable_node;
1775			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1776		}
1777		/*
1778		 * _stable_node_dup set to NULL means the stable_node
1779		 * reached the ksm_max_page_sharing limit.
1780		 */
1781		*_stable_node_dup = NULL;
1782		return NULL;
1783	}
1784	return stable_node_dup(_stable_node_dup, _stable_node, root,
1785			       prune_stale_stable_nodes);
1786}
1787
1788static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1789						struct ksm_stable_node **s_n,
1790						struct rb_root *root)
1791{
1792	return __stable_node_chain(s_n_d, s_n, root, true);
1793}
1794
1795static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1796					  struct ksm_stable_node *s_n,
1797					  struct rb_root *root)
1798{
1799	struct ksm_stable_node *old_stable_node = s_n;
1800	struct page *tree_page;
1801
1802	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1803	/* not pruning dups so s_n cannot have changed */
1804	VM_BUG_ON(s_n != old_stable_node);
1805	return tree_page;
1806}
1807
1808/*
1809 * stable_tree_search - search for page inside the stable tree
1810 *
1811 * This function checks if there is a page inside the stable tree
1812 * with identical content to the page that we are scanning right now.
1813 *
1814 * This function returns the stable tree node of identical content if found,
1815 * NULL otherwise.
1816 */
1817static struct page *stable_tree_search(struct page *page)
1818{
1819	int nid;
1820	struct rb_root *root;
1821	struct rb_node **new;
1822	struct rb_node *parent;
1823	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1824	struct ksm_stable_node *page_node;
1825
1826	page_node = page_stable_node(page);
1827	if (page_node && page_node->head != &migrate_nodes) {
1828		/* ksm page forked */
1829		get_page(page);
1830		return page;
1831	}
1832
1833	nid = get_kpfn_nid(page_to_pfn(page));
1834	root = root_stable_tree + nid;
1835again:
1836	new = &root->rb_node;
1837	parent = NULL;
1838
1839	while (*new) {
1840		struct page *tree_page;
1841		int ret;
1842
1843		cond_resched();
1844		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1845		stable_node_any = NULL;
1846		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1847		/*
1848		 * NOTE: stable_node may have been freed by
1849		 * chain_prune() if the returned stable_node_dup is
1850		 * not NULL. stable_node_dup may have been inserted in
1851		 * the rbtree instead as a regular stable_node (in
1852		 * order to collapse the stable_node chain if a single
1853		 * stable_node dup was found in it). In such case the
1854		 * stable_node is overwritten by the callee to point
1855		 * to the stable_node_dup that was collapsed in the
1856		 * stable rbtree and stable_node will be equal to
1857		 * stable_node_dup like if the chain never existed.
1858		 */
1859		if (!stable_node_dup) {
1860			/*
1861			 * Either all stable_node dups were full in
1862			 * this stable_node chain, or this chain was
1863			 * empty and should be rb_erased.
1864			 */
1865			stable_node_any = stable_node_dup_any(stable_node,
1866							      root);
1867			if (!stable_node_any) {
1868				/* rb_erase just run */
1869				goto again;
1870			}
1871			/*
1872			 * Take any of the stable_node dups page of
1873			 * this stable_node chain to let the tree walk
1874			 * continue. All KSM pages belonging to the
1875			 * stable_node dups in a stable_node chain
1876			 * have the same content and they're
1877			 * write protected at all times. Any will work
1878			 * fine to continue the walk.
1879			 */
1880			tree_page = get_ksm_page(stable_node_any,
1881						 GET_KSM_PAGE_NOLOCK);
1882		}
1883		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1884		if (!tree_page) {
1885			/*
1886			 * If we walked over a stale stable_node,
1887			 * get_ksm_page() will call rb_erase() and it
1888			 * may rebalance the tree from under us. So
1889			 * restart the search from scratch. Returning
1890			 * NULL would be safe too, but we'd generate
1891			 * false negative insertions just because some
1892			 * stable_node was stale.
1893			 */
1894			goto again;
1895		}
1896
1897		ret = memcmp_pages(page, tree_page);
1898		put_page(tree_page);
1899
1900		parent = *new;
1901		if (ret < 0)
1902			new = &parent->rb_left;
1903		else if (ret > 0)
1904			new = &parent->rb_right;
1905		else {
1906			if (page_node) {
1907				VM_BUG_ON(page_node->head != &migrate_nodes);
1908				/*
1909				 * Test if the migrated page should be merged
1910				 * into a stable node dup. If the mapcount is
1911				 * 1 we can migrate it with another KSM page
1912				 * without adding it to the chain.
1913				 */
1914				if (page_mapcount(page) > 1)
1915					goto chain_append;
1916			}
1917
1918			if (!stable_node_dup) {
1919				/*
1920				 * If the stable_node is a chain and
1921				 * we got a payload match in memcmp
1922				 * but we cannot merge the scanned
1923				 * page in any of the existing
1924				 * stable_node dups because they're
1925				 * all full, we need to wait the
1926				 * scanned page to find itself a match
1927				 * in the unstable tree to create a
1928				 * brand new KSM page to add later to
1929				 * the dups of this stable_node.
1930				 */
1931				return NULL;
1932			}
1933
1934			/*
1935			 * Lock and unlock the stable_node's page (which
1936			 * might already have been migrated) so that page
1937			 * migration is sure to notice its raised count.
1938			 * It would be more elegant to return stable_node
1939			 * than kpage, but that involves more changes.
1940			 */
1941			tree_page = get_ksm_page(stable_node_dup,
1942						 GET_KSM_PAGE_TRYLOCK);
1943
1944			if (PTR_ERR(tree_page) == -EBUSY)
1945				return ERR_PTR(-EBUSY);
1946
1947			if (unlikely(!tree_page))
1948				/*
1949				 * The tree may have been rebalanced,
1950				 * so re-evaluate parent and new.
1951				 */
1952				goto again;
1953			unlock_page(tree_page);
1954
1955			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1956			    NUMA(stable_node_dup->nid)) {
1957				put_page(tree_page);
1958				goto replace;
1959			}
1960			return tree_page;
1961		}
1962	}
1963
1964	if (!page_node)
1965		return NULL;
1966
1967	list_del(&page_node->list);
1968	DO_NUMA(page_node->nid = nid);
1969	rb_link_node(&page_node->node, parent, new);
1970	rb_insert_color(&page_node->node, root);
1971out:
1972	if (is_page_sharing_candidate(page_node)) {
1973		get_page(page);
1974		return page;
1975	} else
1976		return NULL;
1977
1978replace:
1979	/*
1980	 * If stable_node was a chain and chain_prune collapsed it,
1981	 * stable_node has been updated to be the new regular
1982	 * stable_node. A collapse of the chain is indistinguishable
1983	 * from the case there was no chain in the stable
1984	 * rbtree. Otherwise stable_node is the chain and
1985	 * stable_node_dup is the dup to replace.
1986	 */
1987	if (stable_node_dup == stable_node) {
1988		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1989		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1990		/* there is no chain */
1991		if (page_node) {
1992			VM_BUG_ON(page_node->head != &migrate_nodes);
1993			list_del(&page_node->list);
1994			DO_NUMA(page_node->nid = nid);
1995			rb_replace_node(&stable_node_dup->node,
1996					&page_node->node,
1997					root);
1998			if (is_page_sharing_candidate(page_node))
1999				get_page(page);
2000			else
2001				page = NULL;
2002		} else {
2003			rb_erase(&stable_node_dup->node, root);
2004			page = NULL;
2005		}
2006	} else {
2007		VM_BUG_ON(!is_stable_node_chain(stable_node));
2008		__stable_node_dup_del(stable_node_dup);
2009		if (page_node) {
2010			VM_BUG_ON(page_node->head != &migrate_nodes);
2011			list_del(&page_node->list);
2012			DO_NUMA(page_node->nid = nid);
2013			stable_node_chain_add_dup(page_node, stable_node);
2014			if (is_page_sharing_candidate(page_node))
2015				get_page(page);
2016			else
2017				page = NULL;
2018		} else {
2019			page = NULL;
2020		}
2021	}
2022	stable_node_dup->head = &migrate_nodes;
2023	list_add(&stable_node_dup->list, stable_node_dup->head);
2024	return page;
2025
2026chain_append:
2027	/* stable_node_dup could be null if it reached the limit */
2028	if (!stable_node_dup)
2029		stable_node_dup = stable_node_any;
2030	/*
2031	 * If stable_node was a chain and chain_prune collapsed it,
2032	 * stable_node has been updated to be the new regular
2033	 * stable_node. A collapse of the chain is indistinguishable
2034	 * from the case there was no chain in the stable
2035	 * rbtree. Otherwise stable_node is the chain and
2036	 * stable_node_dup is the dup to replace.
2037	 */
2038	if (stable_node_dup == stable_node) {
2039		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2040		/* chain is missing so create it */
2041		stable_node = alloc_stable_node_chain(stable_node_dup,
2042						      root);
2043		if (!stable_node)
2044			return NULL;
2045	}
2046	/*
2047	 * Add this stable_node dup that was
2048	 * migrated to the stable_node chain
2049	 * of the current nid for this page
2050	 * content.
2051	 */
2052	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2053	VM_BUG_ON(page_node->head != &migrate_nodes);
2054	list_del(&page_node->list);
2055	DO_NUMA(page_node->nid = nid);
2056	stable_node_chain_add_dup(page_node, stable_node);
2057	goto out;
2058}
2059
2060/*
2061 * stable_tree_insert - insert stable tree node pointing to new ksm page
2062 * into the stable tree.
2063 *
2064 * This function returns the stable tree node just allocated on success,
2065 * NULL otherwise.
2066 */
2067static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
2068{
2069	int nid;
2070	unsigned long kpfn;
2071	struct rb_root *root;
2072	struct rb_node **new;
2073	struct rb_node *parent;
2074	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2075	bool need_chain = false;
2076
2077	kpfn = page_to_pfn(kpage);
2078	nid = get_kpfn_nid(kpfn);
2079	root = root_stable_tree + nid;
2080again:
2081	parent = NULL;
2082	new = &root->rb_node;
2083
2084	while (*new) {
2085		struct page *tree_page;
2086		int ret;
2087
2088		cond_resched();
2089		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2090		stable_node_any = NULL;
2091		tree_page = chain(&stable_node_dup, stable_node, root);
2092		if (!stable_node_dup) {
2093			/*
2094			 * Either all stable_node dups were full in
2095			 * this stable_node chain, or this chain was
2096			 * empty and should be rb_erased.
2097			 */
2098			stable_node_any = stable_node_dup_any(stable_node,
2099							      root);
2100			if (!stable_node_any) {
2101				/* rb_erase just run */
2102				goto again;
2103			}
2104			/*
2105			 * Take any of the stable_node dups page of
2106			 * this stable_node chain to let the tree walk
2107			 * continue. All KSM pages belonging to the
2108			 * stable_node dups in a stable_node chain
2109			 * have the same content and they're
2110			 * write protected at all times. Any will work
2111			 * fine to continue the walk.
2112			 */
2113			tree_page = get_ksm_page(stable_node_any,
2114						 GET_KSM_PAGE_NOLOCK);
2115		}
2116		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
2117		if (!tree_page) {
2118			/*
2119			 * If we walked over a stale stable_node,
2120			 * get_ksm_page() will call rb_erase() and it
2121			 * may rebalance the tree from under us. So
2122			 * restart the search from scratch. Returning
2123			 * NULL would be safe too, but we'd generate
2124			 * false negative insertions just because some
2125			 * stable_node was stale.
2126			 */
2127			goto again;
2128		}
2129
2130		ret = memcmp_pages(kpage, tree_page);
2131		put_page(tree_page);
2132
2133		parent = *new;
2134		if (ret < 0)
2135			new = &parent->rb_left;
2136		else if (ret > 0)
2137			new = &parent->rb_right;
2138		else {
2139			need_chain = true;
2140			break;
2141		}
2142	}
2143
2144	stable_node_dup = alloc_stable_node();
2145	if (!stable_node_dup)
2146		return NULL;
2147
2148	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2149	stable_node_dup->kpfn = kpfn;
2150	set_page_stable_node(kpage, stable_node_dup);
2151	stable_node_dup->rmap_hlist_len = 0;
2152	DO_NUMA(stable_node_dup->nid = nid);
2153	if (!need_chain) {
2154		rb_link_node(&stable_node_dup->node, parent, new);
2155		rb_insert_color(&stable_node_dup->node, root);
2156	} else {
2157		if (!is_stable_node_chain(stable_node)) {
2158			struct ksm_stable_node *orig = stable_node;
2159			/* chain is missing so create it */
2160			stable_node = alloc_stable_node_chain(orig, root);
2161			if (!stable_node) {
2162				free_stable_node(stable_node_dup);
2163				return NULL;
2164			}
2165		}
2166		stable_node_chain_add_dup(stable_node_dup, stable_node);
2167	}
2168
2169	return stable_node_dup;
2170}
2171
2172/*
2173 * unstable_tree_search_insert - search for identical page,
2174 * else insert rmap_item into the unstable tree.
2175 *
2176 * This function searches for a page in the unstable tree identical to the
2177 * page currently being scanned; and if no identical page is found in the
2178 * tree, we insert rmap_item as a new object into the unstable tree.
2179 *
2180 * This function returns pointer to rmap_item found to be identical
2181 * to the currently scanned page, NULL otherwise.
2182 *
2183 * This function does both searching and inserting, because they share
2184 * the same walking algorithm in an rbtree.
2185 */
2186static
2187struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2188					      struct page *page,
2189					      struct page **tree_pagep)
2190{
2191	struct rb_node **new;
2192	struct rb_root *root;
2193	struct rb_node *parent = NULL;
2194	int nid;
2195
2196	nid = get_kpfn_nid(page_to_pfn(page));
2197	root = root_unstable_tree + nid;
2198	new = &root->rb_node;
2199
2200	while (*new) {
2201		struct ksm_rmap_item *tree_rmap_item;
2202		struct page *tree_page;
2203		int ret;
2204
2205		cond_resched();
2206		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2207		tree_page = get_mergeable_page(tree_rmap_item);
2208		if (!tree_page)
2209			return NULL;
2210
2211		/*
2212		 * Don't substitute a ksm page for a forked page.
2213		 */
2214		if (page == tree_page) {
2215			put_page(tree_page);
2216			return NULL;
2217		}
2218
2219		ret = memcmp_pages(page, tree_page);
2220
2221		parent = *new;
2222		if (ret < 0) {
2223			put_page(tree_page);
2224			new = &parent->rb_left;
2225		} else if (ret > 0) {
2226			put_page(tree_page);
2227			new = &parent->rb_right;
2228		} else if (!ksm_merge_across_nodes &&
2229			   page_to_nid(tree_page) != nid) {
2230			/*
2231			 * If tree_page has been migrated to another NUMA node,
2232			 * it will be flushed out and put in the right unstable
2233			 * tree next time: only merge with it when across_nodes.
2234			 */
2235			put_page(tree_page);
2236			return NULL;
2237		} else {
2238			*tree_pagep = tree_page;
2239			return tree_rmap_item;
2240		}
2241	}
2242
2243	rmap_item->address |= UNSTABLE_FLAG;
2244	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2245	DO_NUMA(rmap_item->nid = nid);
2246	rb_link_node(&rmap_item->node, parent, new);
2247	rb_insert_color(&rmap_item->node, root);
2248
2249	ksm_pages_unshared++;
2250	return NULL;
2251}
2252
2253/*
2254 * stable_tree_append - add another rmap_item to the linked list of
2255 * rmap_items hanging off a given node of the stable tree, all sharing
2256 * the same ksm page.
2257 */
2258static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2259			       struct ksm_stable_node *stable_node,
2260			       bool max_page_sharing_bypass)
2261{
2262	/*
2263	 * rmap won't find this mapping if we don't insert the
2264	 * rmap_item in the right stable_node
2265	 * duplicate. page_migration could break later if rmap breaks,
2266	 * so we can as well crash here. We really need to check for
2267	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2268	 * for other negative values as an underflow if detected here
2269	 * for the first time (and not when decreasing rmap_hlist_len)
2270	 * would be sign of memory corruption in the stable_node.
2271	 */
2272	BUG_ON(stable_node->rmap_hlist_len < 0);
2273
2274	stable_node->rmap_hlist_len++;
2275	if (!max_page_sharing_bypass)
2276		/* possibly non fatal but unexpected overflow, only warn */
2277		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2278			     ksm_max_page_sharing);
2279
2280	rmap_item->head = stable_node;
2281	rmap_item->address |= STABLE_FLAG;
2282	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2283
2284	if (rmap_item->hlist.next)
2285		ksm_pages_sharing++;
2286	else
2287		ksm_pages_shared++;
2288
2289	rmap_item->mm->ksm_merging_pages++;
2290}
2291
2292/*
2293 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2294 * if not, compare checksum to previous and if it's the same, see if page can
2295 * be inserted into the unstable tree, or merged with a page already there and
2296 * both transferred to the stable tree.
2297 *
2298 * @page: the page that we are searching identical page to.
2299 * @rmap_item: the reverse mapping into the virtual address of this page
2300 */
2301static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2302{
2303	struct mm_struct *mm = rmap_item->mm;
2304	struct ksm_rmap_item *tree_rmap_item;
2305	struct page *tree_page = NULL;
2306	struct ksm_stable_node *stable_node;
2307	struct page *kpage;
2308	unsigned int checksum;
2309	int err;
2310	bool max_page_sharing_bypass = false;
2311
2312	stable_node = page_stable_node(page);
2313	if (stable_node) {
2314		if (stable_node->head != &migrate_nodes &&
2315		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2316		    NUMA(stable_node->nid)) {
2317			stable_node_dup_del(stable_node);
2318			stable_node->head = &migrate_nodes;
2319			list_add(&stable_node->list, stable_node->head);
2320		}
2321		if (stable_node->head != &migrate_nodes &&
2322		    rmap_item->head == stable_node)
2323			return;
2324		/*
2325		 * If it's a KSM fork, allow it to go over the sharing limit
2326		 * without warnings.
2327		 */
2328		if (!is_page_sharing_candidate(stable_node))
2329			max_page_sharing_bypass = true;
2330	}
2331
2332	/* We first start with searching the page inside the stable tree */
2333	kpage = stable_tree_search(page);
2334	if (kpage == page && rmap_item->head == stable_node) {
2335		put_page(kpage);
2336		return;
2337	}
2338
2339	remove_rmap_item_from_tree(rmap_item);
2340
2341	if (kpage) {
2342		if (PTR_ERR(kpage) == -EBUSY)
2343			return;
2344
2345		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2346		if (!err) {
2347			/*
2348			 * The page was successfully merged:
2349			 * add its rmap_item to the stable tree.
2350			 */
2351			lock_page(kpage);
2352			stable_tree_append(rmap_item, page_stable_node(kpage),
2353					   max_page_sharing_bypass);
2354			unlock_page(kpage);
2355		}
2356		put_page(kpage);
2357		return;
2358	}
2359
2360	/*
2361	 * If the hash value of the page has changed from the last time
2362	 * we calculated it, this page is changing frequently: therefore we
2363	 * don't want to insert it in the unstable tree, and we don't want
2364	 * to waste our time searching for something identical to it there.
2365	 */
2366	checksum = calc_checksum(page);
2367	if (rmap_item->oldchecksum != checksum) {
2368		rmap_item->oldchecksum = checksum;
2369		return;
2370	}
2371
2372	/*
2373	 * Same checksum as an empty page. We attempt to merge it with the
2374	 * appropriate zero page if the user enabled this via sysfs.
2375	 */
2376	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2377		struct vm_area_struct *vma;
2378
2379		mmap_read_lock(mm);
2380		vma = find_mergeable_vma(mm, rmap_item->address);
2381		if (vma) {
2382			err = try_to_merge_one_page(vma, page,
2383					ZERO_PAGE(rmap_item->address));
2384			trace_ksm_merge_one_page(
2385				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2386				rmap_item, mm, err);
2387		} else {
2388			/*
2389			 * If the vma is out of date, we do not need to
2390			 * continue.
2391			 */
2392			err = 0;
2393		}
2394		mmap_read_unlock(mm);
2395		/*
2396		 * In case of failure, the page was not really empty, so we
2397		 * need to continue. Otherwise we're done.
2398		 */
2399		if (!err)
2400			return;
2401	}
2402	tree_rmap_item =
2403		unstable_tree_search_insert(rmap_item, page, &tree_page);
2404	if (tree_rmap_item) {
2405		bool split;
2406
2407		kpage = try_to_merge_two_pages(rmap_item, page,
2408						tree_rmap_item, tree_page);
2409		/*
2410		 * If both pages we tried to merge belong to the same compound
2411		 * page, then we actually ended up increasing the reference
2412		 * count of the same compound page twice, and split_huge_page
2413		 * failed.
2414		 * Here we set a flag if that happened, and we use it later to
2415		 * try split_huge_page again. Since we call put_page right
2416		 * afterwards, the reference count will be correct and
2417		 * split_huge_page should succeed.
2418		 */
2419		split = PageTransCompound(page)
2420			&& compound_head(page) == compound_head(tree_page);
2421		put_page(tree_page);
2422		if (kpage) {
2423			/*
2424			 * The pages were successfully merged: insert new
2425			 * node in the stable tree and add both rmap_items.
2426			 */
2427			lock_page(kpage);
2428			stable_node = stable_tree_insert(kpage);
2429			if (stable_node) {
2430				stable_tree_append(tree_rmap_item, stable_node,
2431						   false);
2432				stable_tree_append(rmap_item, stable_node,
2433						   false);
2434			}
2435			unlock_page(kpage);
2436
2437			/*
2438			 * If we fail to insert the page into the stable tree,
2439			 * we will have 2 virtual addresses that are pointing
2440			 * to a ksm page left outside the stable tree,
2441			 * in which case we need to break_cow on both.
2442			 */
2443			if (!stable_node) {
2444				break_cow(tree_rmap_item);
2445				break_cow(rmap_item);
2446			}
2447		} else if (split) {
2448			/*
2449			 * We are here if we tried to merge two pages and
2450			 * failed because they both belonged to the same
2451			 * compound page. We will split the page now, but no
2452			 * merging will take place.
2453			 * We do not want to add the cost of a full lock; if
2454			 * the page is locked, it is better to skip it and
2455			 * perhaps try again later.
2456			 */
2457			if (!trylock_page(page))
2458				return;
2459			split_huge_page(page);
2460			unlock_page(page);
2461		}
2462	}
2463}
2464
2465static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2466					    struct ksm_rmap_item **rmap_list,
2467					    unsigned long addr)
2468{
2469	struct ksm_rmap_item *rmap_item;
2470
2471	while (*rmap_list) {
2472		rmap_item = *rmap_list;
2473		if ((rmap_item->address & PAGE_MASK) == addr)
2474			return rmap_item;
2475		if (rmap_item->address > addr)
2476			break;
2477		*rmap_list = rmap_item->rmap_list;
2478		remove_rmap_item_from_tree(rmap_item);
2479		free_rmap_item(rmap_item);
2480	}
2481
2482	rmap_item = alloc_rmap_item();
2483	if (rmap_item) {
2484		/* It has already been zeroed */
2485		rmap_item->mm = mm_slot->slot.mm;
2486		rmap_item->mm->ksm_rmap_items++;
2487		rmap_item->address = addr;
2488		rmap_item->rmap_list = *rmap_list;
2489		*rmap_list = rmap_item;
2490	}
2491	return rmap_item;
2492}
2493
2494/*
2495 * Calculate skip age for the ksm page age. The age determines how often
2496 * de-duplicating has already been tried unsuccessfully. If the age is
2497 * smaller, the scanning of this page is skipped for less scans.
2498 *
2499 * @age: rmap_item age of page
2500 */
2501static unsigned int skip_age(rmap_age_t age)
2502{
2503	if (age <= 3)
2504		return 1;
2505	if (age <= 5)
2506		return 2;
2507	if (age <= 8)
2508		return 4;
2509
2510	return 8;
2511}
2512
2513/*
2514 * Determines if a page should be skipped for the current scan.
2515 *
2516 * @page: page to check
2517 * @rmap_item: associated rmap_item of page
2518 */
2519static bool should_skip_rmap_item(struct page *page,
2520				  struct ksm_rmap_item *rmap_item)
2521{
2522	rmap_age_t age;
2523
2524	if (!ksm_smart_scan)
2525		return false;
2526
2527	/*
2528	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2529	 * will essentially ignore them, but we still have to process them
2530	 * properly.
2531	 */
2532	if (PageKsm(page))
2533		return false;
2534
2535	age = rmap_item->age;
2536	if (age != U8_MAX)
2537		rmap_item->age++;
2538
2539	/*
2540	 * Smaller ages are not skipped, they need to get a chance to go
2541	 * through the different phases of the KSM merging.
2542	 */
2543	if (age < 3)
2544		return false;
2545
2546	/*
2547	 * Are we still allowed to skip? If not, then don't skip it
2548	 * and determine how much more often we are allowed to skip next.
2549	 */
2550	if (!rmap_item->remaining_skips) {
2551		rmap_item->remaining_skips = skip_age(age);
2552		return false;
2553	}
2554
2555	/* Skip this page */
2556	ksm_pages_skipped++;
2557	rmap_item->remaining_skips--;
2558	remove_rmap_item_from_tree(rmap_item);
2559	return true;
2560}
2561
2562static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2563{
2564	struct mm_struct *mm;
2565	struct ksm_mm_slot *mm_slot;
2566	struct mm_slot *slot;
2567	struct vm_area_struct *vma;
2568	struct ksm_rmap_item *rmap_item;
2569	struct vma_iterator vmi;
2570	int nid;
2571
2572	if (list_empty(&ksm_mm_head.slot.mm_node))
2573		return NULL;
2574
2575	mm_slot = ksm_scan.mm_slot;
2576	if (mm_slot == &ksm_mm_head) {
2577		advisor_start_scan();
2578		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2579
2580		/*
2581		 * A number of pages can hang around indefinitely in per-cpu
2582		 * LRU cache, raised page count preventing write_protect_page
2583		 * from merging them.  Though it doesn't really matter much,
2584		 * it is puzzling to see some stuck in pages_volatile until
2585		 * other activity jostles them out, and they also prevented
2586		 * LTP's KSM test from succeeding deterministically; so drain
2587		 * them here (here rather than on entry to ksm_do_scan(),
2588		 * so we don't IPI too often when pages_to_scan is set low).
2589		 */
2590		lru_add_drain_all();
2591
2592		/*
2593		 * Whereas stale stable_nodes on the stable_tree itself
2594		 * get pruned in the regular course of stable_tree_search(),
2595		 * those moved out to the migrate_nodes list can accumulate:
2596		 * so prune them once before each full scan.
2597		 */
2598		if (!ksm_merge_across_nodes) {
2599			struct ksm_stable_node *stable_node, *next;
2600			struct page *page;
2601
2602			list_for_each_entry_safe(stable_node, next,
2603						 &migrate_nodes, list) {
2604				page = get_ksm_page(stable_node,
2605						    GET_KSM_PAGE_NOLOCK);
2606				if (page)
2607					put_page(page);
2608				cond_resched();
2609			}
2610		}
2611
2612		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2613			root_unstable_tree[nid] = RB_ROOT;
2614
2615		spin_lock(&ksm_mmlist_lock);
2616		slot = list_entry(mm_slot->slot.mm_node.next,
2617				  struct mm_slot, mm_node);
2618		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2619		ksm_scan.mm_slot = mm_slot;
2620		spin_unlock(&ksm_mmlist_lock);
2621		/*
2622		 * Although we tested list_empty() above, a racing __ksm_exit
2623		 * of the last mm on the list may have removed it since then.
2624		 */
2625		if (mm_slot == &ksm_mm_head)
2626			return NULL;
2627next_mm:
2628		ksm_scan.address = 0;
2629		ksm_scan.rmap_list = &mm_slot->rmap_list;
2630	}
2631
2632	slot = &mm_slot->slot;
2633	mm = slot->mm;
2634	vma_iter_init(&vmi, mm, ksm_scan.address);
2635
2636	mmap_read_lock(mm);
2637	if (ksm_test_exit(mm))
2638		goto no_vmas;
2639
2640	for_each_vma(vmi, vma) {
2641		if (!(vma->vm_flags & VM_MERGEABLE))
2642			continue;
2643		if (ksm_scan.address < vma->vm_start)
2644			ksm_scan.address = vma->vm_start;
2645		if (!vma->anon_vma)
2646			ksm_scan.address = vma->vm_end;
2647
2648		while (ksm_scan.address < vma->vm_end) {
2649			if (ksm_test_exit(mm))
2650				break;
2651			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2652			if (IS_ERR_OR_NULL(*page)) {
2653				ksm_scan.address += PAGE_SIZE;
2654				cond_resched();
2655				continue;
2656			}
2657			if (is_zone_device_page(*page))
2658				goto next_page;
2659			if (PageAnon(*page)) {
2660				flush_anon_page(vma, *page, ksm_scan.address);
2661				flush_dcache_page(*page);
2662				rmap_item = get_next_rmap_item(mm_slot,
2663					ksm_scan.rmap_list, ksm_scan.address);
2664				if (rmap_item) {
2665					ksm_scan.rmap_list =
2666							&rmap_item->rmap_list;
2667
2668					if (should_skip_rmap_item(*page, rmap_item))
2669						goto next_page;
2670
2671					ksm_scan.address += PAGE_SIZE;
2672				} else
2673					put_page(*page);
2674				mmap_read_unlock(mm);
2675				return rmap_item;
2676			}
2677next_page:
2678			put_page(*page);
2679			ksm_scan.address += PAGE_SIZE;
2680			cond_resched();
2681		}
2682	}
2683
2684	if (ksm_test_exit(mm)) {
2685no_vmas:
2686		ksm_scan.address = 0;
2687		ksm_scan.rmap_list = &mm_slot->rmap_list;
2688	}
2689	/*
2690	 * Nuke all the rmap_items that are above this current rmap:
2691	 * because there were no VM_MERGEABLE vmas with such addresses.
2692	 */
2693	remove_trailing_rmap_items(ksm_scan.rmap_list);
2694
2695	spin_lock(&ksm_mmlist_lock);
2696	slot = list_entry(mm_slot->slot.mm_node.next,
2697			  struct mm_slot, mm_node);
2698	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2699	if (ksm_scan.address == 0) {
2700		/*
2701		 * We've completed a full scan of all vmas, holding mmap_lock
2702		 * throughout, and found no VM_MERGEABLE: so do the same as
2703		 * __ksm_exit does to remove this mm from all our lists now.
2704		 * This applies either when cleaning up after __ksm_exit
2705		 * (but beware: we can reach here even before __ksm_exit),
2706		 * or when all VM_MERGEABLE areas have been unmapped (and
2707		 * mmap_lock then protects against race with MADV_MERGEABLE).
2708		 */
2709		hash_del(&mm_slot->slot.hash);
2710		list_del(&mm_slot->slot.mm_node);
2711		spin_unlock(&ksm_mmlist_lock);
2712
2713		mm_slot_free(mm_slot_cache, mm_slot);
2714		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2715		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2716		mmap_read_unlock(mm);
2717		mmdrop(mm);
2718	} else {
2719		mmap_read_unlock(mm);
2720		/*
2721		 * mmap_read_unlock(mm) first because after
2722		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2723		 * already have been freed under us by __ksm_exit()
2724		 * because the "mm_slot" is still hashed and
2725		 * ksm_scan.mm_slot doesn't point to it anymore.
2726		 */
2727		spin_unlock(&ksm_mmlist_lock);
2728	}
2729
2730	/* Repeat until we've completed scanning the whole list */
2731	mm_slot = ksm_scan.mm_slot;
2732	if (mm_slot != &ksm_mm_head)
2733		goto next_mm;
2734
2735	advisor_stop_scan();
2736
2737	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2738	ksm_scan.seqnr++;
2739	return NULL;
2740}
2741
2742/**
2743 * ksm_do_scan  - the ksm scanner main worker function.
2744 * @scan_npages:  number of pages we want to scan before we return.
2745 */
2746static void ksm_do_scan(unsigned int scan_npages)
2747{
2748	struct ksm_rmap_item *rmap_item;
2749	struct page *page;
2750	unsigned int npages = scan_npages;
2751
2752	while (npages-- && likely(!freezing(current))) {
2753		cond_resched();
2754		rmap_item = scan_get_next_rmap_item(&page);
2755		if (!rmap_item)
2756			return;
2757		cmp_and_merge_page(page, rmap_item);
2758		put_page(page);
2759	}
2760
2761	ksm_pages_scanned += scan_npages - npages;
2762}
2763
2764static int ksmd_should_run(void)
2765{
2766	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2767}
2768
2769static int ksm_scan_thread(void *nothing)
2770{
2771	unsigned int sleep_ms;
2772
2773	set_freezable();
2774	set_user_nice(current, 5);
2775
2776	while (!kthread_should_stop()) {
2777		mutex_lock(&ksm_thread_mutex);
2778		wait_while_offlining();
2779		if (ksmd_should_run())
2780			ksm_do_scan(ksm_thread_pages_to_scan);
2781		mutex_unlock(&ksm_thread_mutex);
2782
2783		if (ksmd_should_run()) {
2784			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2785			wait_event_freezable_timeout(ksm_iter_wait,
2786				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2787				msecs_to_jiffies(sleep_ms));
2788		} else {
2789			wait_event_freezable(ksm_thread_wait,
2790				ksmd_should_run() || kthread_should_stop());
2791		}
2792	}
2793	return 0;
2794}
2795
2796static void __ksm_add_vma(struct vm_area_struct *vma)
2797{
2798	unsigned long vm_flags = vma->vm_flags;
2799
2800	if (vm_flags & VM_MERGEABLE)
2801		return;
2802
2803	if (vma_ksm_compatible(vma))
2804		vm_flags_set(vma, VM_MERGEABLE);
2805}
2806
2807static int __ksm_del_vma(struct vm_area_struct *vma)
2808{
2809	int err;
2810
2811	if (!(vma->vm_flags & VM_MERGEABLE))
2812		return 0;
2813
2814	if (vma->anon_vma) {
2815		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2816		if (err)
2817			return err;
2818	}
2819
2820	vm_flags_clear(vma, VM_MERGEABLE);
2821	return 0;
2822}
2823/**
2824 * ksm_add_vma - Mark vma as mergeable if compatible
2825 *
2826 * @vma:  Pointer to vma
2827 */
2828void ksm_add_vma(struct vm_area_struct *vma)
2829{
2830	struct mm_struct *mm = vma->vm_mm;
2831
2832	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2833		__ksm_add_vma(vma);
2834}
2835
2836static void ksm_add_vmas(struct mm_struct *mm)
2837{
2838	struct vm_area_struct *vma;
2839
2840	VMA_ITERATOR(vmi, mm, 0);
2841	for_each_vma(vmi, vma)
2842		__ksm_add_vma(vma);
2843}
2844
2845static int ksm_del_vmas(struct mm_struct *mm)
2846{
2847	struct vm_area_struct *vma;
2848	int err;
2849
2850	VMA_ITERATOR(vmi, mm, 0);
2851	for_each_vma(vmi, vma) {
2852		err = __ksm_del_vma(vma);
2853		if (err)
2854			return err;
2855	}
2856	return 0;
2857}
2858
2859/**
2860 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2861 *                        compatible VMA's
2862 *
2863 * @mm:  Pointer to mm
2864 *
2865 * Returns 0 on success, otherwise error code
2866 */
2867int ksm_enable_merge_any(struct mm_struct *mm)
2868{
2869	int err;
2870
2871	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2872		return 0;
2873
2874	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2875		err = __ksm_enter(mm);
2876		if (err)
2877			return err;
2878	}
2879
2880	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2881	ksm_add_vmas(mm);
2882
2883	return 0;
2884}
2885
2886/**
2887 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2888 *			   previously enabled via ksm_enable_merge_any().
2889 *
2890 * Disabling merging implies unmerging any merged pages, like setting
2891 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2892 * merging on all compatible VMA's remains enabled.
2893 *
2894 * @mm: Pointer to mm
2895 *
2896 * Returns 0 on success, otherwise error code
2897 */
2898int ksm_disable_merge_any(struct mm_struct *mm)
2899{
2900	int err;
2901
2902	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2903		return 0;
2904
2905	err = ksm_del_vmas(mm);
2906	if (err) {
2907		ksm_add_vmas(mm);
2908		return err;
2909	}
2910
2911	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2912	return 0;
2913}
2914
2915int ksm_disable(struct mm_struct *mm)
2916{
2917	mmap_assert_write_locked(mm);
2918
2919	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2920		return 0;
2921	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2922		return ksm_disable_merge_any(mm);
2923	return ksm_del_vmas(mm);
2924}
2925
2926int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2927		unsigned long end, int advice, unsigned long *vm_flags)
2928{
2929	struct mm_struct *mm = vma->vm_mm;
2930	int err;
2931
2932	switch (advice) {
2933	case MADV_MERGEABLE:
2934		if (vma->vm_flags & VM_MERGEABLE)
2935			return 0;
2936		if (!vma_ksm_compatible(vma))
2937			return 0;
2938
2939		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2940			err = __ksm_enter(mm);
2941			if (err)
2942				return err;
2943		}
2944
2945		*vm_flags |= VM_MERGEABLE;
2946		break;
2947
2948	case MADV_UNMERGEABLE:
2949		if (!(*vm_flags & VM_MERGEABLE))
2950			return 0;		/* just ignore the advice */
2951
2952		if (vma->anon_vma) {
2953			err = unmerge_ksm_pages(vma, start, end, true);
2954			if (err)
2955				return err;
2956		}
2957
2958		*vm_flags &= ~VM_MERGEABLE;
2959		break;
2960	}
2961
2962	return 0;
2963}
2964EXPORT_SYMBOL_GPL(ksm_madvise);
2965
2966int __ksm_enter(struct mm_struct *mm)
2967{
2968	struct ksm_mm_slot *mm_slot;
2969	struct mm_slot *slot;
2970	int needs_wakeup;
2971
2972	mm_slot = mm_slot_alloc(mm_slot_cache);
2973	if (!mm_slot)
2974		return -ENOMEM;
2975
2976	slot = &mm_slot->slot;
2977
2978	/* Check ksm_run too?  Would need tighter locking */
2979	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2980
2981	spin_lock(&ksm_mmlist_lock);
2982	mm_slot_insert(mm_slots_hash, mm, slot);
2983	/*
2984	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2985	 * insert just behind the scanning cursor, to let the area settle
2986	 * down a little; when fork is followed by immediate exec, we don't
2987	 * want ksmd to waste time setting up and tearing down an rmap_list.
2988	 *
2989	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2990	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2991	 * missed: then we might as well insert at the end of the list.
2992	 */
2993	if (ksm_run & KSM_RUN_UNMERGE)
2994		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2995	else
2996		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2997	spin_unlock(&ksm_mmlist_lock);
2998
2999	set_bit(MMF_VM_MERGEABLE, &mm->flags);
3000	mmgrab(mm);
3001
3002	if (needs_wakeup)
3003		wake_up_interruptible(&ksm_thread_wait);
3004
3005	trace_ksm_enter(mm);
3006	return 0;
3007}
3008
3009void __ksm_exit(struct mm_struct *mm)
3010{
3011	struct ksm_mm_slot *mm_slot;
3012	struct mm_slot *slot;
3013	int easy_to_free = 0;
3014
3015	/*
3016	 * This process is exiting: if it's straightforward (as is the
3017	 * case when ksmd was never running), free mm_slot immediately.
3018	 * But if it's at the cursor or has rmap_items linked to it, use
3019	 * mmap_lock to synchronize with any break_cows before pagetables
3020	 * are freed, and leave the mm_slot on the list for ksmd to free.
3021	 * Beware: ksm may already have noticed it exiting and freed the slot.
3022	 */
3023
3024	spin_lock(&ksm_mmlist_lock);
3025	slot = mm_slot_lookup(mm_slots_hash, mm);
3026	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
3027	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
3028		if (!mm_slot->rmap_list) {
3029			hash_del(&slot->hash);
3030			list_del(&slot->mm_node);
3031			easy_to_free = 1;
3032		} else {
3033			list_move(&slot->mm_node,
3034				  &ksm_scan.mm_slot->slot.mm_node);
3035		}
3036	}
3037	spin_unlock(&ksm_mmlist_lock);
3038
3039	if (easy_to_free) {
3040		mm_slot_free(mm_slot_cache, mm_slot);
3041		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
3042		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3043		mmdrop(mm);
3044	} else if (mm_slot) {
3045		mmap_write_lock(mm);
3046		mmap_write_unlock(mm);
3047	}
3048
3049	trace_ksm_exit(mm);
3050}
3051
3052struct folio *ksm_might_need_to_copy(struct folio *folio,
3053			struct vm_area_struct *vma, unsigned long addr)
3054{
3055	struct page *page = folio_page(folio, 0);
3056	struct anon_vma *anon_vma = folio_anon_vma(folio);
3057	struct folio *new_folio;
3058
3059	if (folio_test_large(folio))
3060		return folio;
3061
3062	if (folio_test_ksm(folio)) {
3063		if (folio_stable_node(folio) &&
3064		    !(ksm_run & KSM_RUN_UNMERGE))
3065			return folio;	/* no need to copy it */
3066	} else if (!anon_vma) {
3067		return folio;		/* no need to copy it */
3068	} else if (folio->index == linear_page_index(vma, addr) &&
3069			anon_vma->root == vma->anon_vma->root) {
3070		return folio;		/* still no need to copy it */
3071	}
3072	if (PageHWPoison(page))
3073		return ERR_PTR(-EHWPOISON);
3074	if (!folio_test_uptodate(folio))
3075		return folio;		/* let do_swap_page report the error */
3076
3077	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3078	if (new_folio &&
3079	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3080		folio_put(new_folio);
3081		new_folio = NULL;
3082	}
3083	if (new_folio) {
3084		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3085								addr, vma)) {
3086			folio_put(new_folio);
3087			memory_failure_queue(folio_pfn(folio), 0);
3088			return ERR_PTR(-EHWPOISON);
3089		}
3090		folio_set_dirty(new_folio);
3091		__folio_mark_uptodate(new_folio);
3092		__folio_set_locked(new_folio);
3093#ifdef CONFIG_SWAP
3094		count_vm_event(KSM_SWPIN_COPY);
3095#endif
3096	}
3097
3098	return new_folio;
3099}
3100
3101void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3102{
3103	struct ksm_stable_node *stable_node;
3104	struct ksm_rmap_item *rmap_item;
3105	int search_new_forks = 0;
3106
3107	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3108
3109	/*
3110	 * Rely on the page lock to protect against concurrent modifications
3111	 * to that page's node of the stable tree.
3112	 */
3113	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3114
3115	stable_node = folio_stable_node(folio);
3116	if (!stable_node)
3117		return;
3118again:
3119	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3120		struct anon_vma *anon_vma = rmap_item->anon_vma;
3121		struct anon_vma_chain *vmac;
3122		struct vm_area_struct *vma;
3123
3124		cond_resched();
3125		if (!anon_vma_trylock_read(anon_vma)) {
3126			if (rwc->try_lock) {
3127				rwc->contended = true;
3128				return;
3129			}
3130			anon_vma_lock_read(anon_vma);
3131		}
3132		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3133					       0, ULONG_MAX) {
3134			unsigned long addr;
3135
3136			cond_resched();
3137			vma = vmac->vma;
3138
3139			/* Ignore the stable/unstable/sqnr flags */
3140			addr = rmap_item->address & PAGE_MASK;
3141
3142			if (addr < vma->vm_start || addr >= vma->vm_end)
3143				continue;
3144			/*
3145			 * Initially we examine only the vma which covers this
3146			 * rmap_item; but later, if there is still work to do,
3147			 * we examine covering vmas in other mms: in case they
3148			 * were forked from the original since ksmd passed.
3149			 */
3150			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3151				continue;
3152
3153			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3154				continue;
3155
3156			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3157				anon_vma_unlock_read(anon_vma);
3158				return;
3159			}
3160			if (rwc->done && rwc->done(folio)) {
3161				anon_vma_unlock_read(anon_vma);
3162				return;
3163			}
3164		}
3165		anon_vma_unlock_read(anon_vma);
3166	}
3167	if (!search_new_forks++)
3168		goto again;
3169}
3170
3171#ifdef CONFIG_MEMORY_FAILURE
3172/*
3173 * Collect processes when the error hit an ksm page.
3174 */
3175void collect_procs_ksm(struct page *page, struct list_head *to_kill,
3176		       int force_early)
3177{
3178	struct ksm_stable_node *stable_node;
3179	struct ksm_rmap_item *rmap_item;
3180	struct folio *folio = page_folio(page);
3181	struct vm_area_struct *vma;
3182	struct task_struct *tsk;
3183
3184	stable_node = folio_stable_node(folio);
3185	if (!stable_node)
3186		return;
3187	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3188		struct anon_vma *av = rmap_item->anon_vma;
3189
3190		anon_vma_lock_read(av);
3191		rcu_read_lock();
3192		for_each_process(tsk) {
3193			struct anon_vma_chain *vmac;
3194			unsigned long addr;
3195			struct task_struct *t =
3196				task_early_kill(tsk, force_early);
3197			if (!t)
3198				continue;
3199			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3200						       ULONG_MAX)
3201			{
3202				vma = vmac->vma;
3203				if (vma->vm_mm == t->mm) {
3204					addr = rmap_item->address & PAGE_MASK;
3205					add_to_kill_ksm(t, page, vma, to_kill,
3206							addr);
3207				}
3208			}
3209		}
3210		rcu_read_unlock();
3211		anon_vma_unlock_read(av);
3212	}
3213}
3214#endif
3215
3216#ifdef CONFIG_MIGRATION
3217void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3218{
3219	struct ksm_stable_node *stable_node;
3220
3221	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3222	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3223	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3224
3225	stable_node = folio_stable_node(folio);
3226	if (stable_node) {
3227		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3228		stable_node->kpfn = folio_pfn(newfolio);
3229		/*
3230		 * newfolio->mapping was set in advance; now we need smp_wmb()
3231		 * to make sure that the new stable_node->kpfn is visible
3232		 * to get_ksm_page() before it can see that folio->mapping
3233		 * has gone stale (or that folio_test_swapcache has been cleared).
3234		 */
3235		smp_wmb();
3236		set_page_stable_node(&folio->page, NULL);
3237	}
3238}
3239#endif /* CONFIG_MIGRATION */
3240
3241#ifdef CONFIG_MEMORY_HOTREMOVE
3242static void wait_while_offlining(void)
3243{
3244	while (ksm_run & KSM_RUN_OFFLINE) {
3245		mutex_unlock(&ksm_thread_mutex);
3246		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3247			    TASK_UNINTERRUPTIBLE);
3248		mutex_lock(&ksm_thread_mutex);
3249	}
3250}
3251
3252static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3253					 unsigned long start_pfn,
3254					 unsigned long end_pfn)
3255{
3256	if (stable_node->kpfn >= start_pfn &&
3257	    stable_node->kpfn < end_pfn) {
3258		/*
3259		 * Don't get_ksm_page, page has already gone:
3260		 * which is why we keep kpfn instead of page*
3261		 */
3262		remove_node_from_stable_tree(stable_node);
3263		return true;
3264	}
3265	return false;
3266}
3267
3268static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3269					   unsigned long start_pfn,
3270					   unsigned long end_pfn,
3271					   struct rb_root *root)
3272{
3273	struct ksm_stable_node *dup;
3274	struct hlist_node *hlist_safe;
3275
3276	if (!is_stable_node_chain(stable_node)) {
3277		VM_BUG_ON(is_stable_node_dup(stable_node));
3278		return stable_node_dup_remove_range(stable_node, start_pfn,
3279						    end_pfn);
3280	}
3281
3282	hlist_for_each_entry_safe(dup, hlist_safe,
3283				  &stable_node->hlist, hlist_dup) {
3284		VM_BUG_ON(!is_stable_node_dup(dup));
3285		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3286	}
3287	if (hlist_empty(&stable_node->hlist)) {
3288		free_stable_node_chain(stable_node, root);
3289		return true; /* notify caller that tree was rebalanced */
3290	} else
3291		return false;
3292}
3293
3294static void ksm_check_stable_tree(unsigned long start_pfn,
3295				  unsigned long end_pfn)
3296{
3297	struct ksm_stable_node *stable_node, *next;
3298	struct rb_node *node;
3299	int nid;
3300
3301	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3302		node = rb_first(root_stable_tree + nid);
3303		while (node) {
3304			stable_node = rb_entry(node, struct ksm_stable_node, node);
3305			if (stable_node_chain_remove_range(stable_node,
3306							   start_pfn, end_pfn,
3307							   root_stable_tree +
3308							   nid))
3309				node = rb_first(root_stable_tree + nid);
3310			else
3311				node = rb_next(node);
3312			cond_resched();
3313		}
3314	}
3315	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3316		if (stable_node->kpfn >= start_pfn &&
3317		    stable_node->kpfn < end_pfn)
3318			remove_node_from_stable_tree(stable_node);
3319		cond_resched();
3320	}
3321}
3322
3323static int ksm_memory_callback(struct notifier_block *self,
3324			       unsigned long action, void *arg)
3325{
3326	struct memory_notify *mn = arg;
3327
3328	switch (action) {
3329	case MEM_GOING_OFFLINE:
3330		/*
3331		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3332		 * and remove_all_stable_nodes() while memory is going offline:
3333		 * it is unsafe for them to touch the stable tree at this time.
3334		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3335		 * which do not need the ksm_thread_mutex are all safe.
3336		 */
3337		mutex_lock(&ksm_thread_mutex);
3338		ksm_run |= KSM_RUN_OFFLINE;
3339		mutex_unlock(&ksm_thread_mutex);
3340		break;
3341
3342	case MEM_OFFLINE:
3343		/*
3344		 * Most of the work is done by page migration; but there might
3345		 * be a few stable_nodes left over, still pointing to struct
3346		 * pages which have been offlined: prune those from the tree,
3347		 * otherwise get_ksm_page() might later try to access a
3348		 * non-existent struct page.
3349		 */
3350		ksm_check_stable_tree(mn->start_pfn,
3351				      mn->start_pfn + mn->nr_pages);
3352		fallthrough;
3353	case MEM_CANCEL_OFFLINE:
3354		mutex_lock(&ksm_thread_mutex);
3355		ksm_run &= ~KSM_RUN_OFFLINE;
3356		mutex_unlock(&ksm_thread_mutex);
3357
3358		smp_mb();	/* wake_up_bit advises this */
3359		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3360		break;
3361	}
3362	return NOTIFY_OK;
3363}
3364#else
3365static void wait_while_offlining(void)
3366{
3367}
3368#endif /* CONFIG_MEMORY_HOTREMOVE */
3369
3370#ifdef CONFIG_PROC_FS
3371long ksm_process_profit(struct mm_struct *mm)
3372{
3373	return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3374		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3375}
3376#endif /* CONFIG_PROC_FS */
3377
3378#ifdef CONFIG_SYSFS
3379/*
3380 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3381 */
3382
3383#define KSM_ATTR_RO(_name) \
3384	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3385#define KSM_ATTR(_name) \
3386	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3387
3388static ssize_t sleep_millisecs_show(struct kobject *kobj,
3389				    struct kobj_attribute *attr, char *buf)
3390{
3391	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3392}
3393
3394static ssize_t sleep_millisecs_store(struct kobject *kobj,
3395				     struct kobj_attribute *attr,
3396				     const char *buf, size_t count)
3397{
3398	unsigned int msecs;
3399	int err;
3400
3401	err = kstrtouint(buf, 10, &msecs);
3402	if (err)
3403		return -EINVAL;
3404
3405	ksm_thread_sleep_millisecs = msecs;
3406	wake_up_interruptible(&ksm_iter_wait);
3407
3408	return count;
3409}
3410KSM_ATTR(sleep_millisecs);
3411
3412static ssize_t pages_to_scan_show(struct kobject *kobj,
3413				  struct kobj_attribute *attr, char *buf)
3414{
3415	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3416}
3417
3418static ssize_t pages_to_scan_store(struct kobject *kobj,
3419				   struct kobj_attribute *attr,
3420				   const char *buf, size_t count)
3421{
3422	unsigned int nr_pages;
3423	int err;
3424
3425	if (ksm_advisor != KSM_ADVISOR_NONE)
3426		return -EINVAL;
3427
3428	err = kstrtouint(buf, 10, &nr_pages);
3429	if (err)
3430		return -EINVAL;
3431
3432	ksm_thread_pages_to_scan = nr_pages;
3433
3434	return count;
3435}
3436KSM_ATTR(pages_to_scan);
3437
3438static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3439			char *buf)
3440{
3441	return sysfs_emit(buf, "%lu\n", ksm_run);
3442}
3443
3444static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3445			 const char *buf, size_t count)
3446{
3447	unsigned int flags;
3448	int err;
3449
3450	err = kstrtouint(buf, 10, &flags);
3451	if (err)
3452		return -EINVAL;
3453	if (flags > KSM_RUN_UNMERGE)
3454		return -EINVAL;
3455
3456	/*
3457	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3458	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3459	 * breaking COW to free the pages_shared (but leaves mm_slots
3460	 * on the list for when ksmd may be set running again).
3461	 */
3462
3463	mutex_lock(&ksm_thread_mutex);
3464	wait_while_offlining();
3465	if (ksm_run != flags) {
3466		ksm_run = flags;
3467		if (flags & KSM_RUN_UNMERGE) {
3468			set_current_oom_origin();
3469			err = unmerge_and_remove_all_rmap_items();
3470			clear_current_oom_origin();
3471			if (err) {
3472				ksm_run = KSM_RUN_STOP;
3473				count = err;
3474			}
3475		}
3476	}
3477	mutex_unlock(&ksm_thread_mutex);
3478
3479	if (flags & KSM_RUN_MERGE)
3480		wake_up_interruptible(&ksm_thread_wait);
3481
3482	return count;
3483}
3484KSM_ATTR(run);
3485
3486#ifdef CONFIG_NUMA
3487static ssize_t merge_across_nodes_show(struct kobject *kobj,
3488				       struct kobj_attribute *attr, char *buf)
3489{
3490	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3491}
3492
3493static ssize_t merge_across_nodes_store(struct kobject *kobj,
3494				   struct kobj_attribute *attr,
3495				   const char *buf, size_t count)
3496{
3497	int err;
3498	unsigned long knob;
3499
3500	err = kstrtoul(buf, 10, &knob);
3501	if (err)
3502		return err;
3503	if (knob > 1)
3504		return -EINVAL;
3505
3506	mutex_lock(&ksm_thread_mutex);
3507	wait_while_offlining();
3508	if (ksm_merge_across_nodes != knob) {
3509		if (ksm_pages_shared || remove_all_stable_nodes())
3510			err = -EBUSY;
3511		else if (root_stable_tree == one_stable_tree) {
3512			struct rb_root *buf;
3513			/*
3514			 * This is the first time that we switch away from the
3515			 * default of merging across nodes: must now allocate
3516			 * a buffer to hold as many roots as may be needed.
3517			 * Allocate stable and unstable together:
3518			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3519			 */
3520			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3521				      GFP_KERNEL);
3522			/* Let us assume that RB_ROOT is NULL is zero */
3523			if (!buf)
3524				err = -ENOMEM;
3525			else {
3526				root_stable_tree = buf;
3527				root_unstable_tree = buf + nr_node_ids;
3528				/* Stable tree is empty but not the unstable */
3529				root_unstable_tree[0] = one_unstable_tree[0];
3530			}
3531		}
3532		if (!err) {
3533			ksm_merge_across_nodes = knob;
3534			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3535		}
3536	}
3537	mutex_unlock(&ksm_thread_mutex);
3538
3539	return err ? err : count;
3540}
3541KSM_ATTR(merge_across_nodes);
3542#endif
3543
3544static ssize_t use_zero_pages_show(struct kobject *kobj,
3545				   struct kobj_attribute *attr, char *buf)
3546{
3547	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3548}
3549static ssize_t use_zero_pages_store(struct kobject *kobj,
3550				   struct kobj_attribute *attr,
3551				   const char *buf, size_t count)
3552{
3553	int err;
3554	bool value;
3555
3556	err = kstrtobool(buf, &value);
3557	if (err)
3558		return -EINVAL;
3559
3560	ksm_use_zero_pages = value;
3561
3562	return count;
3563}
3564KSM_ATTR(use_zero_pages);
3565
3566static ssize_t max_page_sharing_show(struct kobject *kobj,
3567				     struct kobj_attribute *attr, char *buf)
3568{
3569	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3570}
3571
3572static ssize_t max_page_sharing_store(struct kobject *kobj,
3573				      struct kobj_attribute *attr,
3574				      const char *buf, size_t count)
3575{
3576	int err;
3577	int knob;
3578
3579	err = kstrtoint(buf, 10, &knob);
3580	if (err)
3581		return err;
3582	/*
3583	 * When a KSM page is created it is shared by 2 mappings. This
3584	 * being a signed comparison, it implicitly verifies it's not
3585	 * negative.
3586	 */
3587	if (knob < 2)
3588		return -EINVAL;
3589
3590	if (READ_ONCE(ksm_max_page_sharing) == knob)
3591		return count;
3592
3593	mutex_lock(&ksm_thread_mutex);
3594	wait_while_offlining();
3595	if (ksm_max_page_sharing != knob) {
3596		if (ksm_pages_shared || remove_all_stable_nodes())
3597			err = -EBUSY;
3598		else
3599			ksm_max_page_sharing = knob;
3600	}
3601	mutex_unlock(&ksm_thread_mutex);
3602
3603	return err ? err : count;
3604}
3605KSM_ATTR(max_page_sharing);
3606
3607static ssize_t pages_scanned_show(struct kobject *kobj,
3608				  struct kobj_attribute *attr, char *buf)
3609{
3610	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3611}
3612KSM_ATTR_RO(pages_scanned);
3613
3614static ssize_t pages_shared_show(struct kobject *kobj,
3615				 struct kobj_attribute *attr, char *buf)
3616{
3617	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3618}
3619KSM_ATTR_RO(pages_shared);
3620
3621static ssize_t pages_sharing_show(struct kobject *kobj,
3622				  struct kobj_attribute *attr, char *buf)
3623{
3624	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3625}
3626KSM_ATTR_RO(pages_sharing);
3627
3628static ssize_t pages_unshared_show(struct kobject *kobj,
3629				   struct kobj_attribute *attr, char *buf)
3630{
3631	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3632}
3633KSM_ATTR_RO(pages_unshared);
3634
3635static ssize_t pages_volatile_show(struct kobject *kobj,
3636				   struct kobj_attribute *attr, char *buf)
3637{
3638	long ksm_pages_volatile;
3639
3640	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3641				- ksm_pages_sharing - ksm_pages_unshared;
3642	/*
3643	 * It was not worth any locking to calculate that statistic,
3644	 * but it might therefore sometimes be negative: conceal that.
3645	 */
3646	if (ksm_pages_volatile < 0)
3647		ksm_pages_volatile = 0;
3648	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3649}
3650KSM_ATTR_RO(pages_volatile);
3651
3652static ssize_t pages_skipped_show(struct kobject *kobj,
3653				  struct kobj_attribute *attr, char *buf)
3654{
3655	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3656}
3657KSM_ATTR_RO(pages_skipped);
3658
3659static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3660				struct kobj_attribute *attr, char *buf)
3661{
3662	return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3663}
3664KSM_ATTR_RO(ksm_zero_pages);
3665
3666static ssize_t general_profit_show(struct kobject *kobj,
3667				   struct kobj_attribute *attr, char *buf)
3668{
3669	long general_profit;
3670
3671	general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3672				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3673
3674	return sysfs_emit(buf, "%ld\n", general_profit);
3675}
3676KSM_ATTR_RO(general_profit);
3677
3678static ssize_t stable_node_dups_show(struct kobject *kobj,
3679				     struct kobj_attribute *attr, char *buf)
3680{
3681	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3682}
3683KSM_ATTR_RO(stable_node_dups);
3684
3685static ssize_t stable_node_chains_show(struct kobject *kobj,
3686				       struct kobj_attribute *attr, char *buf)
3687{
3688	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3689}
3690KSM_ATTR_RO(stable_node_chains);
3691
3692static ssize_t
3693stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3694					struct kobj_attribute *attr,
3695					char *buf)
3696{
3697	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3698}
3699
3700static ssize_t
3701stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3702					 struct kobj_attribute *attr,
3703					 const char *buf, size_t count)
3704{
3705	unsigned int msecs;
3706	int err;
3707
3708	err = kstrtouint(buf, 10, &msecs);
3709	if (err)
3710		return -EINVAL;
3711
3712	ksm_stable_node_chains_prune_millisecs = msecs;
3713
3714	return count;
3715}
3716KSM_ATTR(stable_node_chains_prune_millisecs);
3717
3718static ssize_t full_scans_show(struct kobject *kobj,
3719			       struct kobj_attribute *attr, char *buf)
3720{
3721	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3722}
3723KSM_ATTR_RO(full_scans);
3724
3725static ssize_t smart_scan_show(struct kobject *kobj,
3726			       struct kobj_attribute *attr, char *buf)
3727{
3728	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3729}
3730
3731static ssize_t smart_scan_store(struct kobject *kobj,
3732				struct kobj_attribute *attr,
3733				const char *buf, size_t count)
3734{
3735	int err;
3736	bool value;
3737
3738	err = kstrtobool(buf, &value);
3739	if (err)
3740		return -EINVAL;
3741
3742	ksm_smart_scan = value;
3743	return count;
3744}
3745KSM_ATTR(smart_scan);
3746
3747static ssize_t advisor_mode_show(struct kobject *kobj,
3748				 struct kobj_attribute *attr, char *buf)
3749{
3750	const char *output;
3751
3752	if (ksm_advisor == KSM_ADVISOR_NONE)
3753		output = "[none] scan-time";
3754	else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3755		output = "none [scan-time]";
3756
3757	return sysfs_emit(buf, "%s\n", output);
3758}
3759
3760static ssize_t advisor_mode_store(struct kobject *kobj,
3761				  struct kobj_attribute *attr, const char *buf,
3762				  size_t count)
3763{
3764	enum ksm_advisor_type curr_advisor = ksm_advisor;
3765
3766	if (sysfs_streq("scan-time", buf))
3767		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3768	else if (sysfs_streq("none", buf))
3769		ksm_advisor = KSM_ADVISOR_NONE;
3770	else
3771		return -EINVAL;
3772
3773	/* Set advisor default values */
3774	if (curr_advisor != ksm_advisor)
3775		set_advisor_defaults();
3776
3777	return count;
3778}
3779KSM_ATTR(advisor_mode);
3780
3781static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3782				    struct kobj_attribute *attr, char *buf)
3783{
3784	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3785}
3786
3787static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3788				     struct kobj_attribute *attr,
3789				     const char *buf, size_t count)
3790{
3791	int err;
3792	unsigned long value;
3793
3794	err = kstrtoul(buf, 10, &value);
3795	if (err)
3796		return -EINVAL;
3797
3798	ksm_advisor_max_cpu = value;
3799	return count;
3800}
3801KSM_ATTR(advisor_max_cpu);
3802
3803static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3804					struct kobj_attribute *attr, char *buf)
3805{
3806	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3807}
3808
3809static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3810					struct kobj_attribute *attr,
3811					const char *buf, size_t count)
3812{
3813	int err;
3814	unsigned long value;
3815
3816	err = kstrtoul(buf, 10, &value);
3817	if (err)
3818		return -EINVAL;
3819
3820	ksm_advisor_min_pages_to_scan = value;
3821	return count;
3822}
3823KSM_ATTR(advisor_min_pages_to_scan);
3824
3825static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3826					struct kobj_attribute *attr, char *buf)
3827{
3828	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3829}
3830
3831static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3832					struct kobj_attribute *attr,
3833					const char *buf, size_t count)
3834{
3835	int err;
3836	unsigned long value;
3837
3838	err = kstrtoul(buf, 10, &value);
3839	if (err)
3840		return -EINVAL;
3841
3842	ksm_advisor_max_pages_to_scan = value;
3843	return count;
3844}
3845KSM_ATTR(advisor_max_pages_to_scan);
3846
3847static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3848					     struct kobj_attribute *attr, char *buf)
3849{
3850	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3851}
3852
3853static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3854					      struct kobj_attribute *attr,
3855					      const char *buf, size_t count)
3856{
3857	int err;
3858	unsigned long value;
3859
3860	err = kstrtoul(buf, 10, &value);
3861	if (err)
3862		return -EINVAL;
3863	if (value < 1)
3864		return -EINVAL;
3865
3866	ksm_advisor_target_scan_time = value;
3867	return count;
3868}
3869KSM_ATTR(advisor_target_scan_time);
3870
3871static struct attribute *ksm_attrs[] = {
3872	&sleep_millisecs_attr.attr,
3873	&pages_to_scan_attr.attr,
3874	&run_attr.attr,
3875	&pages_scanned_attr.attr,
3876	&pages_shared_attr.attr,
3877	&pages_sharing_attr.attr,
3878	&pages_unshared_attr.attr,
3879	&pages_volatile_attr.attr,
3880	&pages_skipped_attr.attr,
3881	&ksm_zero_pages_attr.attr,
3882	&full_scans_attr.attr,
3883#ifdef CONFIG_NUMA
3884	&merge_across_nodes_attr.attr,
3885#endif
3886	&max_page_sharing_attr.attr,
3887	&stable_node_chains_attr.attr,
3888	&stable_node_dups_attr.attr,
3889	&stable_node_chains_prune_millisecs_attr.attr,
3890	&use_zero_pages_attr.attr,
3891	&general_profit_attr.attr,
3892	&smart_scan_attr.attr,
3893	&advisor_mode_attr.attr,
3894	&advisor_max_cpu_attr.attr,
3895	&advisor_min_pages_to_scan_attr.attr,
3896	&advisor_max_pages_to_scan_attr.attr,
3897	&advisor_target_scan_time_attr.attr,
3898	NULL,
3899};
3900
3901static const struct attribute_group ksm_attr_group = {
3902	.attrs = ksm_attrs,
3903	.name = "ksm",
3904};
3905#endif /* CONFIG_SYSFS */
3906
3907static int __init ksm_init(void)
3908{
3909	struct task_struct *ksm_thread;
3910	int err;
3911
3912	/* The correct value depends on page size and endianness */
3913	zero_checksum = calc_checksum(ZERO_PAGE(0));
3914	/* Default to false for backwards compatibility */
3915	ksm_use_zero_pages = false;
3916
3917	err = ksm_slab_init();
3918	if (err)
3919		goto out;
3920
3921	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3922	if (IS_ERR(ksm_thread)) {
3923		pr_err("ksm: creating kthread failed\n");
3924		err = PTR_ERR(ksm_thread);
3925		goto out_free;
3926	}
3927
3928#ifdef CONFIG_SYSFS
3929	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3930	if (err) {
3931		pr_err("ksm: register sysfs failed\n");
3932		kthread_stop(ksm_thread);
3933		goto out_free;
3934	}
3935#else
3936	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3937
3938#endif /* CONFIG_SYSFS */
3939
3940#ifdef CONFIG_MEMORY_HOTREMOVE
3941	/* There is no significance to this priority 100 */
3942	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3943#endif
3944	return 0;
3945
3946out_free:
3947	ksm_slab_free();
3948out:
3949	return err;
3950}
3951subsys_initcall(ksm_init);
3952