1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 *   del_state modifications and accesses to the object trees
18 *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19 *   object_list is the main list holding the metadata (struct
20 *   kmemleak_object) for the allocated memory blocks. The object trees are
21 *   red black trees used to look-up metadata based on a pointer to the
22 *   corresponding memory block. The kmemleak_object structures are added to
23 *   the object_list and the object tree root in the create_object() function
24 *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25 *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27 *   Accesses to the metadata (e.g. count) are protected by this lock. Note
28 *   that some members of this structure may be protected by other means
29 *   (atomic or kmemleak_lock). This lock is also held when scanning the
30 *   corresponding memory block to avoid the kernel freeing it via the
31 *   kmemleak_free() callback. This is less heavyweight than holding a global
32 *   lock like kmemleak_lock during scanning.
33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34 *   unreferenced objects at a time. The gray_list contains the objects which
35 *   are already referenced or marked as false positives and need to be
36 *   scanned. This list is only modified during a scanning episode when the
37 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
38 *   Note that the kmemleak_object.use_count is incremented when an object is
39 *   added to the gray_list and therefore cannot be freed. This mutex also
40 *   prevents multiple users of the "kmemleak" debugfs file together with
41 *   modifications to the memory scanning parameters including the scan_thread
42 *   pointer
43 *
44 * Locks and mutexes are acquired/nested in the following order:
45 *
46 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47 *
48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49 * regions.
50 *
51 * The kmemleak_object structures have a use_count incremented or decremented
52 * using the get_object()/put_object() functions. When the use_count becomes
53 * 0, this count can no longer be incremented and put_object() schedules the
54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55 * function must be protected by rcu_read_lock() to avoid accessing a freed
56 * structure.
57 */
58
59#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/list.h>
64#include <linux/sched/signal.h>
65#include <linux/sched/task.h>
66#include <linux/sched/task_stack.h>
67#include <linux/jiffies.h>
68#include <linux/delay.h>
69#include <linux/export.h>
70#include <linux/kthread.h>
71#include <linux/rbtree.h>
72#include <linux/fs.h>
73#include <linux/debugfs.h>
74#include <linux/seq_file.h>
75#include <linux/cpumask.h>
76#include <linux/spinlock.h>
77#include <linux/module.h>
78#include <linux/mutex.h>
79#include <linux/rcupdate.h>
80#include <linux/stacktrace.h>
81#include <linux/stackdepot.h>
82#include <linux/cache.h>
83#include <linux/percpu.h>
84#include <linux/memblock.h>
85#include <linux/pfn.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <linux/atomic.h>
100
101#include <linux/kasan.h>
102#include <linux/kfence.h>
103#include <linux/kmemleak.h>
104#include <linux/memory_hotplug.h>
105
106/*
107 * Kmemleak configuration and common defines.
108 */
109#define MAX_TRACE		16	/* stack trace length */
110#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
111#define SECS_FIRST_SCAN		60	/* delay before the first scan */
112#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
113#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
114
115#define BYTES_PER_POINTER	sizeof(void *)
116
117/* GFP bitmask for kmemleak internal allocations */
118#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119					   __GFP_NOLOCKDEP)) | \
120				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
121				 __GFP_NOWARN)
122
123/* scanning area inside a memory block */
124struct kmemleak_scan_area {
125	struct hlist_node node;
126	unsigned long start;
127	size_t size;
128};
129
130#define KMEMLEAK_GREY	0
131#define KMEMLEAK_BLACK	-1
132
133/*
134 * Structure holding the metadata for each allocated memory block.
135 * Modifications to such objects should be made while holding the
136 * object->lock. Insertions or deletions from object_list, gray_list or
137 * rb_node are already protected by the corresponding locks or mutex (see
138 * the notes on locking above). These objects are reference-counted
139 * (use_count) and freed using the RCU mechanism.
140 */
141struct kmemleak_object {
142	raw_spinlock_t lock;
143	unsigned int flags;		/* object status flags */
144	struct list_head object_list;
145	struct list_head gray_list;
146	struct rb_node rb_node;
147	struct rcu_head rcu;		/* object_list lockless traversal */
148	/* object usage count; object freed when use_count == 0 */
149	atomic_t use_count;
150	unsigned int del_state;		/* deletion state */
151	unsigned long pointer;
152	size_t size;
153	/* pass surplus references to this pointer */
154	unsigned long excess_ref;
155	/* minimum number of a pointers found before it is considered leak */
156	int min_count;
157	/* the total number of pointers found pointing to this object */
158	int count;
159	/* checksum for detecting modified objects */
160	u32 checksum;
161	/* memory ranges to be scanned inside an object (empty for all) */
162	struct hlist_head area_list;
163	depot_stack_handle_t trace_handle;
164	unsigned long jiffies;		/* creation timestamp */
165	pid_t pid;			/* pid of the current task */
166	char comm[TASK_COMM_LEN];	/* executable name */
167};
168
169/* flag representing the memory block allocation status */
170#define OBJECT_ALLOCATED	(1 << 0)
171/* flag set after the first reporting of an unreference object */
172#define OBJECT_REPORTED		(1 << 1)
173/* flag set to not scan the object */
174#define OBJECT_NO_SCAN		(1 << 2)
175/* flag set to fully scan the object when scan_area allocation failed */
176#define OBJECT_FULL_SCAN	(1 << 3)
177/* flag set for object allocated with physical address */
178#define OBJECT_PHYS		(1 << 4)
179/* flag set for per-CPU pointers */
180#define OBJECT_PERCPU		(1 << 5)
181
182/* set when __remove_object() called */
183#define DELSTATE_REMOVED	(1 << 0)
184/* set to temporarily prevent deletion from object_list */
185#define DELSTATE_NO_DELETE	(1 << 1)
186
187#define HEX_PREFIX		"    "
188/* number of bytes to print per line; must be 16 or 32 */
189#define HEX_ROW_SIZE		16
190/* number of bytes to print at a time (1, 2, 4, 8) */
191#define HEX_GROUP_SIZE		1
192/* include ASCII after the hex output */
193#define HEX_ASCII		1
194/* max number of lines to be printed */
195#define HEX_MAX_LINES		2
196
197/* the list of all allocated objects */
198static LIST_HEAD(object_list);
199/* the list of gray-colored objects (see color_gray comment below) */
200static LIST_HEAD(gray_list);
201/* memory pool allocation */
202static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204static LIST_HEAD(mem_pool_free_list);
205/* search tree for object boundaries */
206static struct rb_root object_tree_root = RB_ROOT;
207/* search tree for object (with OBJECT_PHYS flag) boundaries */
208static struct rb_root object_phys_tree_root = RB_ROOT;
209/* search tree for object (with OBJECT_PERCPU flag) boundaries */
210static struct rb_root object_percpu_tree_root = RB_ROOT;
211/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
212static DEFINE_RAW_SPINLOCK(kmemleak_lock);
213
214/* allocation caches for kmemleak internal data */
215static struct kmem_cache *object_cache;
216static struct kmem_cache *scan_area_cache;
217
218/* set if tracing memory operations is enabled */
219static int kmemleak_enabled = 1;
220/* same as above but only for the kmemleak_free() callback */
221static int kmemleak_free_enabled = 1;
222/* set in the late_initcall if there were no errors */
223static int kmemleak_late_initialized;
224/* set if a kmemleak warning was issued */
225static int kmemleak_warning;
226/* set if a fatal kmemleak error has occurred */
227static int kmemleak_error;
228
229/* minimum and maximum address that may be valid pointers */
230static unsigned long min_addr = ULONG_MAX;
231static unsigned long max_addr;
232
233static struct task_struct *scan_thread;
234/* used to avoid reporting of recently allocated objects */
235static unsigned long jiffies_min_age;
236static unsigned long jiffies_last_scan;
237/* delay between automatic memory scannings */
238static unsigned long jiffies_scan_wait;
239/* enables or disables the task stacks scanning */
240static int kmemleak_stack_scan = 1;
241/* protects the memory scanning, parameters and debug/kmemleak file access */
242static DEFINE_MUTEX(scan_mutex);
243/* setting kmemleak=on, will set this var, skipping the disable */
244static int kmemleak_skip_disable;
245/* If there are leaks that can be reported */
246static bool kmemleak_found_leaks;
247
248static bool kmemleak_verbose;
249module_param_named(verbose, kmemleak_verbose, bool, 0600);
250
251static void kmemleak_disable(void);
252
253/*
254 * Print a warning and dump the stack trace.
255 */
256#define kmemleak_warn(x...)	do {		\
257	pr_warn(x);				\
258	dump_stack();				\
259	kmemleak_warning = 1;			\
260} while (0)
261
262/*
263 * Macro invoked when a serious kmemleak condition occurred and cannot be
264 * recovered from. Kmemleak will be disabled and further allocation/freeing
265 * tracing no longer available.
266 */
267#define kmemleak_stop(x...)	do {	\
268	kmemleak_warn(x);		\
269	kmemleak_disable();		\
270} while (0)
271
272#define warn_or_seq_printf(seq, fmt, ...)	do {	\
273	if (seq)					\
274		seq_printf(seq, fmt, ##__VA_ARGS__);	\
275	else						\
276		pr_warn(fmt, ##__VA_ARGS__);		\
277} while (0)
278
279static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
280				 int rowsize, int groupsize, const void *buf,
281				 size_t len, bool ascii)
282{
283	if (seq)
284		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
285			     buf, len, ascii);
286	else
287		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
288			       rowsize, groupsize, buf, len, ascii);
289}
290
291/*
292 * Printing of the objects hex dump to the seq file. The number of lines to be
293 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
294 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
295 * with the object->lock held.
296 */
297static void hex_dump_object(struct seq_file *seq,
298			    struct kmemleak_object *object)
299{
300	const u8 *ptr = (const u8 *)object->pointer;
301	size_t len;
302
303	if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
304		return;
305
306	/* limit the number of lines to HEX_MAX_LINES */
307	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
308
309	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
310	kasan_disable_current();
311	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
312			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
313	kasan_enable_current();
314}
315
316/*
317 * Object colors, encoded with count and min_count:
318 * - white - orphan object, not enough references to it (count < min_count)
319 * - gray  - not orphan, not marked as false positive (min_count == 0) or
320 *		sufficient references to it (count >= min_count)
321 * - black - ignore, it doesn't contain references (e.g. text section)
322 *		(min_count == -1). No function defined for this color.
323 * Newly created objects don't have any color assigned (object->count == -1)
324 * before the next memory scan when they become white.
325 */
326static bool color_white(const struct kmemleak_object *object)
327{
328	return object->count != KMEMLEAK_BLACK &&
329		object->count < object->min_count;
330}
331
332static bool color_gray(const struct kmemleak_object *object)
333{
334	return object->min_count != KMEMLEAK_BLACK &&
335		object->count >= object->min_count;
336}
337
338/*
339 * Objects are considered unreferenced only if their color is white, they have
340 * not be deleted and have a minimum age to avoid false positives caused by
341 * pointers temporarily stored in CPU registers.
342 */
343static bool unreferenced_object(struct kmemleak_object *object)
344{
345	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
346		time_before_eq(object->jiffies + jiffies_min_age,
347			       jiffies_last_scan);
348}
349
350/*
351 * Printing of the unreferenced objects information to the seq file. The
352 * print_unreferenced function must be called with the object->lock held.
353 */
354static void print_unreferenced(struct seq_file *seq,
355			       struct kmemleak_object *object)
356{
357	int i;
358	unsigned long *entries;
359	unsigned int nr_entries;
360
361	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
362	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
363			  object->pointer, object->size);
364	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
365			   object->comm, object->pid, object->jiffies);
366	hex_dump_object(seq, object);
367	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
368
369	for (i = 0; i < nr_entries; i++) {
370		void *ptr = (void *)entries[i];
371		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372	}
373}
374
375/*
376 * Print the kmemleak_object information. This function is used mainly for
377 * debugging special cases when kmemleak operations. It must be called with
378 * the object->lock held.
379 */
380static void dump_object_info(struct kmemleak_object *object)
381{
382	pr_notice("Object 0x%08lx (size %zu):\n",
383			object->pointer, object->size);
384	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385			object->comm, object->pid, object->jiffies);
386	pr_notice("  min_count = %d\n", object->min_count);
387	pr_notice("  count = %d\n", object->count);
388	pr_notice("  flags = 0x%x\n", object->flags);
389	pr_notice("  checksum = %u\n", object->checksum);
390	pr_notice("  backtrace:\n");
391	if (object->trace_handle)
392		stack_depot_print(object->trace_handle);
393}
394
395static struct rb_root *object_tree(unsigned long objflags)
396{
397	if (objflags & OBJECT_PHYS)
398		return &object_phys_tree_root;
399	if (objflags & OBJECT_PERCPU)
400		return &object_percpu_tree_root;
401	return &object_tree_root;
402}
403
404/*
405 * Look-up a memory block metadata (kmemleak_object) in the object search
406 * tree based on a pointer value. If alias is 0, only values pointing to the
407 * beginning of the memory block are allowed. The kmemleak_lock must be held
408 * when calling this function.
409 */
410static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
411					       unsigned int objflags)
412{
413	struct rb_node *rb = object_tree(objflags)->rb_node;
414	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
415
416	while (rb) {
417		struct kmemleak_object *object;
418		unsigned long untagged_objp;
419
420		object = rb_entry(rb, struct kmemleak_object, rb_node);
421		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
422
423		if (untagged_ptr < untagged_objp)
424			rb = object->rb_node.rb_left;
425		else if (untagged_objp + object->size <= untagged_ptr)
426			rb = object->rb_node.rb_right;
427		else if (untagged_objp == untagged_ptr || alias)
428			return object;
429		else {
430			kmemleak_warn("Found object by alias at 0x%08lx\n",
431				      ptr);
432			dump_object_info(object);
433			break;
434		}
435	}
436	return NULL;
437}
438
439/* Look-up a kmemleak object which allocated with virtual address. */
440static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
441{
442	return __lookup_object(ptr, alias, 0);
443}
444
445/*
446 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
447 * that once an object's use_count reached 0, the RCU freeing was already
448 * registered and the object should no longer be used. This function must be
449 * called under the protection of rcu_read_lock().
450 */
451static int get_object(struct kmemleak_object *object)
452{
453	return atomic_inc_not_zero(&object->use_count);
454}
455
456/*
457 * Memory pool allocation and freeing. kmemleak_lock must not be held.
458 */
459static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
460{
461	unsigned long flags;
462	struct kmemleak_object *object;
463
464	/* try the slab allocator first */
465	if (object_cache) {
466		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
467		if (object)
468			return object;
469	}
470
471	/* slab allocation failed, try the memory pool */
472	raw_spin_lock_irqsave(&kmemleak_lock, flags);
473	object = list_first_entry_or_null(&mem_pool_free_list,
474					  typeof(*object), object_list);
475	if (object)
476		list_del(&object->object_list);
477	else if (mem_pool_free_count)
478		object = &mem_pool[--mem_pool_free_count];
479	else
480		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
481	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
482
483	return object;
484}
485
486/*
487 * Return the object to either the slab allocator or the memory pool.
488 */
489static void mem_pool_free(struct kmemleak_object *object)
490{
491	unsigned long flags;
492
493	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
494		kmem_cache_free(object_cache, object);
495		return;
496	}
497
498	/* add the object to the memory pool free list */
499	raw_spin_lock_irqsave(&kmemleak_lock, flags);
500	list_add(&object->object_list, &mem_pool_free_list);
501	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
502}
503
504/*
505 * RCU callback to free a kmemleak_object.
506 */
507static void free_object_rcu(struct rcu_head *rcu)
508{
509	struct hlist_node *tmp;
510	struct kmemleak_scan_area *area;
511	struct kmemleak_object *object =
512		container_of(rcu, struct kmemleak_object, rcu);
513
514	/*
515	 * Once use_count is 0 (guaranteed by put_object), there is no other
516	 * code accessing this object, hence no need for locking.
517	 */
518	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
519		hlist_del(&area->node);
520		kmem_cache_free(scan_area_cache, area);
521	}
522	mem_pool_free(object);
523}
524
525/*
526 * Decrement the object use_count. Once the count is 0, free the object using
527 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
528 * delete_object() path, the delayed RCU freeing ensures that there is no
529 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
530 * is also possible.
531 */
532static void put_object(struct kmemleak_object *object)
533{
534	if (!atomic_dec_and_test(&object->use_count))
535		return;
536
537	/* should only get here after delete_object was called */
538	WARN_ON(object->flags & OBJECT_ALLOCATED);
539
540	/*
541	 * It may be too early for the RCU callbacks, however, there is no
542	 * concurrent object_list traversal when !object_cache and all objects
543	 * came from the memory pool. Free the object directly.
544	 */
545	if (object_cache)
546		call_rcu(&object->rcu, free_object_rcu);
547	else
548		free_object_rcu(&object->rcu);
549}
550
551/*
552 * Look up an object in the object search tree and increase its use_count.
553 */
554static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
555						     unsigned int objflags)
556{
557	unsigned long flags;
558	struct kmemleak_object *object;
559
560	rcu_read_lock();
561	raw_spin_lock_irqsave(&kmemleak_lock, flags);
562	object = __lookup_object(ptr, alias, objflags);
563	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
564
565	/* check whether the object is still available */
566	if (object && !get_object(object))
567		object = NULL;
568	rcu_read_unlock();
569
570	return object;
571}
572
573/* Look up and get an object which allocated with virtual address. */
574static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
575{
576	return __find_and_get_object(ptr, alias, 0);
577}
578
579/*
580 * Remove an object from its object tree and object_list. Must be called with
581 * the kmemleak_lock held _if_ kmemleak is still enabled.
582 */
583static void __remove_object(struct kmemleak_object *object)
584{
585	rb_erase(&object->rb_node, object_tree(object->flags));
586	if (!(object->del_state & DELSTATE_NO_DELETE))
587		list_del_rcu(&object->object_list);
588	object->del_state |= DELSTATE_REMOVED;
589}
590
591static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
592							int alias,
593							unsigned int objflags)
594{
595	struct kmemleak_object *object;
596
597	object = __lookup_object(ptr, alias, objflags);
598	if (object)
599		__remove_object(object);
600
601	return object;
602}
603
604/*
605 * Look up an object in the object search tree and remove it from both object
606 * tree root and object_list. The returned object's use_count should be at
607 * least 1, as initially set by create_object().
608 */
609static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
610						      unsigned int objflags)
611{
612	unsigned long flags;
613	struct kmemleak_object *object;
614
615	raw_spin_lock_irqsave(&kmemleak_lock, flags);
616	object = __find_and_remove_object(ptr, alias, objflags);
617	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
618
619	return object;
620}
621
622static noinline depot_stack_handle_t set_track_prepare(void)
623{
624	depot_stack_handle_t trace_handle;
625	unsigned long entries[MAX_TRACE];
626	unsigned int nr_entries;
627
628	/*
629	 * Use object_cache to determine whether kmemleak_init() has
630	 * been invoked. stack_depot_early_init() is called before
631	 * kmemleak_init() in mm_core_init().
632	 */
633	if (!object_cache)
634		return 0;
635	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
636	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
637
638	return trace_handle;
639}
640
641static struct kmemleak_object *__alloc_object(gfp_t gfp)
642{
643	struct kmemleak_object *object;
644
645	object = mem_pool_alloc(gfp);
646	if (!object) {
647		pr_warn("Cannot allocate a kmemleak_object structure\n");
648		kmemleak_disable();
649		return NULL;
650	}
651
652	INIT_LIST_HEAD(&object->object_list);
653	INIT_LIST_HEAD(&object->gray_list);
654	INIT_HLIST_HEAD(&object->area_list);
655	raw_spin_lock_init(&object->lock);
656	atomic_set(&object->use_count, 1);
657	object->excess_ref = 0;
658	object->count = 0;			/* white color initially */
659	object->checksum = 0;
660	object->del_state = 0;
661
662	/* task information */
663	if (in_hardirq()) {
664		object->pid = 0;
665		strncpy(object->comm, "hardirq", sizeof(object->comm));
666	} else if (in_serving_softirq()) {
667		object->pid = 0;
668		strncpy(object->comm, "softirq", sizeof(object->comm));
669	} else {
670		object->pid = current->pid;
671		/*
672		 * There is a small chance of a race with set_task_comm(),
673		 * however using get_task_comm() here may cause locking
674		 * dependency issues with current->alloc_lock. In the worst
675		 * case, the command line is not correct.
676		 */
677		strncpy(object->comm, current->comm, sizeof(object->comm));
678	}
679
680	/* kernel backtrace */
681	object->trace_handle = set_track_prepare();
682
683	return object;
684}
685
686static int __link_object(struct kmemleak_object *object, unsigned long ptr,
687			 size_t size, int min_count, unsigned int objflags)
688{
689
690	struct kmemleak_object *parent;
691	struct rb_node **link, *rb_parent;
692	unsigned long untagged_ptr;
693	unsigned long untagged_objp;
694
695	object->flags = OBJECT_ALLOCATED | objflags;
696	object->pointer = ptr;
697	object->size = kfence_ksize((void *)ptr) ?: size;
698	object->min_count = min_count;
699	object->jiffies = jiffies;
700
701	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
702	/*
703	 * Only update min_addr and max_addr with object
704	 * storing virtual address.
705	 */
706	if (!(objflags & (OBJECT_PHYS | OBJECT_PERCPU))) {
707		min_addr = min(min_addr, untagged_ptr);
708		max_addr = max(max_addr, untagged_ptr + size);
709	}
710	link = &object_tree(objflags)->rb_node;
711	rb_parent = NULL;
712	while (*link) {
713		rb_parent = *link;
714		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
715		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
716		if (untagged_ptr + size <= untagged_objp)
717			link = &parent->rb_node.rb_left;
718		else if (untagged_objp + parent->size <= untagged_ptr)
719			link = &parent->rb_node.rb_right;
720		else {
721			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
722				      ptr);
723			/*
724			 * No need for parent->lock here since "parent" cannot
725			 * be freed while the kmemleak_lock is held.
726			 */
727			dump_object_info(parent);
728			return -EEXIST;
729		}
730	}
731	rb_link_node(&object->rb_node, rb_parent, link);
732	rb_insert_color(&object->rb_node, object_tree(objflags));
733	list_add_tail_rcu(&object->object_list, &object_list);
734
735	return 0;
736}
737
738/*
739 * Create the metadata (struct kmemleak_object) corresponding to an allocated
740 * memory block and add it to the object_list and object tree.
741 */
742static void __create_object(unsigned long ptr, size_t size,
743				int min_count, gfp_t gfp, unsigned int objflags)
744{
745	struct kmemleak_object *object;
746	unsigned long flags;
747	int ret;
748
749	object = __alloc_object(gfp);
750	if (!object)
751		return;
752
753	raw_spin_lock_irqsave(&kmemleak_lock, flags);
754	ret = __link_object(object, ptr, size, min_count, objflags);
755	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
756	if (ret)
757		mem_pool_free(object);
758}
759
760/* Create kmemleak object which allocated with virtual address. */
761static void create_object(unsigned long ptr, size_t size,
762			  int min_count, gfp_t gfp)
763{
764	__create_object(ptr, size, min_count, gfp, 0);
765}
766
767/* Create kmemleak object which allocated with physical address. */
768static void create_object_phys(unsigned long ptr, size_t size,
769			       int min_count, gfp_t gfp)
770{
771	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
772}
773
774/* Create kmemleak object corresponding to a per-CPU allocation. */
775static void create_object_percpu(unsigned long ptr, size_t size,
776				 int min_count, gfp_t gfp)
777{
778	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
779}
780
781/*
782 * Mark the object as not allocated and schedule RCU freeing via put_object().
783 */
784static void __delete_object(struct kmemleak_object *object)
785{
786	unsigned long flags;
787
788	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
789	WARN_ON(atomic_read(&object->use_count) < 1);
790
791	/*
792	 * Locking here also ensures that the corresponding memory block
793	 * cannot be freed when it is being scanned.
794	 */
795	raw_spin_lock_irqsave(&object->lock, flags);
796	object->flags &= ~OBJECT_ALLOCATED;
797	raw_spin_unlock_irqrestore(&object->lock, flags);
798	put_object(object);
799}
800
801/*
802 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
803 * delete it.
804 */
805static void delete_object_full(unsigned long ptr, unsigned int objflags)
806{
807	struct kmemleak_object *object;
808
809	object = find_and_remove_object(ptr, 0, objflags);
810	if (!object) {
811#ifdef DEBUG
812		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
813			      ptr);
814#endif
815		return;
816	}
817	__delete_object(object);
818}
819
820/*
821 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
822 * delete it. If the memory block is partially freed, the function may create
823 * additional metadata for the remaining parts of the block.
824 */
825static void delete_object_part(unsigned long ptr, size_t size,
826			       unsigned int objflags)
827{
828	struct kmemleak_object *object, *object_l, *object_r;
829	unsigned long start, end, flags;
830
831	object_l = __alloc_object(GFP_KERNEL);
832	if (!object_l)
833		return;
834
835	object_r = __alloc_object(GFP_KERNEL);
836	if (!object_r)
837		goto out;
838
839	raw_spin_lock_irqsave(&kmemleak_lock, flags);
840	object = __find_and_remove_object(ptr, 1, objflags);
841	if (!object) {
842#ifdef DEBUG
843		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
844			      ptr, size);
845#endif
846		goto unlock;
847	}
848
849	/*
850	 * Create one or two objects that may result from the memory block
851	 * split. Note that partial freeing is only done by free_bootmem() and
852	 * this happens before kmemleak_init() is called.
853	 */
854	start = object->pointer;
855	end = object->pointer + object->size;
856	if ((ptr > start) &&
857	    !__link_object(object_l, start, ptr - start,
858			   object->min_count, objflags))
859		object_l = NULL;
860	if ((ptr + size < end) &&
861	    !__link_object(object_r, ptr + size, end - ptr - size,
862			   object->min_count, objflags))
863		object_r = NULL;
864
865unlock:
866	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
867	if (object)
868		__delete_object(object);
869
870out:
871	if (object_l)
872		mem_pool_free(object_l);
873	if (object_r)
874		mem_pool_free(object_r);
875}
876
877static void __paint_it(struct kmemleak_object *object, int color)
878{
879	object->min_count = color;
880	if (color == KMEMLEAK_BLACK)
881		object->flags |= OBJECT_NO_SCAN;
882}
883
884static void paint_it(struct kmemleak_object *object, int color)
885{
886	unsigned long flags;
887
888	raw_spin_lock_irqsave(&object->lock, flags);
889	__paint_it(object, color);
890	raw_spin_unlock_irqrestore(&object->lock, flags);
891}
892
893static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
894{
895	struct kmemleak_object *object;
896
897	object = __find_and_get_object(ptr, 0, objflags);
898	if (!object) {
899		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
900			      ptr,
901			      (color == KMEMLEAK_GREY) ? "Grey" :
902			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
903		return;
904	}
905	paint_it(object, color);
906	put_object(object);
907}
908
909/*
910 * Mark an object permanently as gray-colored so that it can no longer be
911 * reported as a leak. This is used in general to mark a false positive.
912 */
913static void make_gray_object(unsigned long ptr)
914{
915	paint_ptr(ptr, KMEMLEAK_GREY, 0);
916}
917
918/*
919 * Mark the object as black-colored so that it is ignored from scans and
920 * reporting.
921 */
922static void make_black_object(unsigned long ptr, unsigned int objflags)
923{
924	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
925}
926
927/*
928 * Add a scanning area to the object. If at least one such area is added,
929 * kmemleak will only scan these ranges rather than the whole memory block.
930 */
931static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
932{
933	unsigned long flags;
934	struct kmemleak_object *object;
935	struct kmemleak_scan_area *area = NULL;
936	unsigned long untagged_ptr;
937	unsigned long untagged_objp;
938
939	object = find_and_get_object(ptr, 1);
940	if (!object) {
941		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
942			      ptr);
943		return;
944	}
945
946	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
947	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
948
949	if (scan_area_cache)
950		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
951
952	raw_spin_lock_irqsave(&object->lock, flags);
953	if (!area) {
954		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
955		/* mark the object for full scan to avoid false positives */
956		object->flags |= OBJECT_FULL_SCAN;
957		goto out_unlock;
958	}
959	if (size == SIZE_MAX) {
960		size = untagged_objp + object->size - untagged_ptr;
961	} else if (untagged_ptr + size > untagged_objp + object->size) {
962		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
963		dump_object_info(object);
964		kmem_cache_free(scan_area_cache, area);
965		goto out_unlock;
966	}
967
968	INIT_HLIST_NODE(&area->node);
969	area->start = ptr;
970	area->size = size;
971
972	hlist_add_head(&area->node, &object->area_list);
973out_unlock:
974	raw_spin_unlock_irqrestore(&object->lock, flags);
975	put_object(object);
976}
977
978/*
979 * Any surplus references (object already gray) to 'ptr' are passed to
980 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
981 * vm_struct may be used as an alternative reference to the vmalloc'ed object
982 * (see free_thread_stack()).
983 */
984static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
985{
986	unsigned long flags;
987	struct kmemleak_object *object;
988
989	object = find_and_get_object(ptr, 0);
990	if (!object) {
991		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
992			      ptr);
993		return;
994	}
995
996	raw_spin_lock_irqsave(&object->lock, flags);
997	object->excess_ref = excess_ref;
998	raw_spin_unlock_irqrestore(&object->lock, flags);
999	put_object(object);
1000}
1001
1002/*
1003 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
1004 * pointer. Such object will not be scanned by kmemleak but references to it
1005 * are searched.
1006 */
1007static void object_no_scan(unsigned long ptr)
1008{
1009	unsigned long flags;
1010	struct kmemleak_object *object;
1011
1012	object = find_and_get_object(ptr, 0);
1013	if (!object) {
1014		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1015		return;
1016	}
1017
1018	raw_spin_lock_irqsave(&object->lock, flags);
1019	object->flags |= OBJECT_NO_SCAN;
1020	raw_spin_unlock_irqrestore(&object->lock, flags);
1021	put_object(object);
1022}
1023
1024/**
1025 * kmemleak_alloc - register a newly allocated object
1026 * @ptr:	pointer to beginning of the object
1027 * @size:	size of the object
1028 * @min_count:	minimum number of references to this object. If during memory
1029 *		scanning a number of references less than @min_count is found,
1030 *		the object is reported as a memory leak. If @min_count is 0,
1031 *		the object is never reported as a leak. If @min_count is -1,
1032 *		the object is ignored (not scanned and not reported as a leak)
1033 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1034 *
1035 * This function is called from the kernel allocators when a new object
1036 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1037 */
1038void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1039			  gfp_t gfp)
1040{
1041	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1042
1043	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1044		create_object((unsigned long)ptr, size, min_count, gfp);
1045}
1046EXPORT_SYMBOL_GPL(kmemleak_alloc);
1047
1048/**
1049 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1050 * @ptr:	__percpu pointer to beginning of the object
1051 * @size:	size of the object
1052 * @gfp:	flags used for kmemleak internal memory allocations
1053 *
1054 * This function is called from the kernel percpu allocator when a new object
1055 * (memory block) is allocated (alloc_percpu).
1056 */
1057void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1058				 gfp_t gfp)
1059{
1060	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1061
1062	/*
1063	 * Percpu allocations are only scanned and not reported as leaks
1064	 * (min_count is set to 0).
1065	 */
1066	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067		create_object_percpu((unsigned long)ptr, size, 0, gfp);
1068}
1069EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1070
1071/**
1072 * kmemleak_vmalloc - register a newly vmalloc'ed object
1073 * @area:	pointer to vm_struct
1074 * @size:	size of the object
1075 * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1076 *
1077 * This function is called from the vmalloc() kernel allocator when a new
1078 * object (memory block) is allocated.
1079 */
1080void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1081{
1082	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1083
1084	/*
1085	 * A min_count = 2 is needed because vm_struct contains a reference to
1086	 * the virtual address of the vmalloc'ed block.
1087	 */
1088	if (kmemleak_enabled) {
1089		create_object((unsigned long)area->addr, size, 2, gfp);
1090		object_set_excess_ref((unsigned long)area,
1091				      (unsigned long)area->addr);
1092	}
1093}
1094EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1095
1096/**
1097 * kmemleak_free - unregister a previously registered object
1098 * @ptr:	pointer to beginning of the object
1099 *
1100 * This function is called from the kernel allocators when an object (memory
1101 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1102 */
1103void __ref kmemleak_free(const void *ptr)
1104{
1105	pr_debug("%s(0x%px)\n", __func__, ptr);
1106
1107	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1108		delete_object_full((unsigned long)ptr, 0);
1109}
1110EXPORT_SYMBOL_GPL(kmemleak_free);
1111
1112/**
1113 * kmemleak_free_part - partially unregister a previously registered object
1114 * @ptr:	pointer to the beginning or inside the object. This also
1115 *		represents the start of the range to be freed
1116 * @size:	size to be unregistered
1117 *
1118 * This function is called when only a part of a memory block is freed
1119 * (usually from the bootmem allocator).
1120 */
1121void __ref kmemleak_free_part(const void *ptr, size_t size)
1122{
1123	pr_debug("%s(0x%px)\n", __func__, ptr);
1124
1125	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1126		delete_object_part((unsigned long)ptr, size, 0);
1127}
1128EXPORT_SYMBOL_GPL(kmemleak_free_part);
1129
1130/**
1131 * kmemleak_free_percpu - unregister a previously registered __percpu object
1132 * @ptr:	__percpu pointer to beginning of the object
1133 *
1134 * This function is called from the kernel percpu allocator when an object
1135 * (memory block) is freed (free_percpu).
1136 */
1137void __ref kmemleak_free_percpu(const void __percpu *ptr)
1138{
1139	pr_debug("%s(0x%px)\n", __func__, ptr);
1140
1141	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1142		delete_object_full((unsigned long)ptr, OBJECT_PERCPU);
1143}
1144EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1145
1146/**
1147 * kmemleak_update_trace - update object allocation stack trace
1148 * @ptr:	pointer to beginning of the object
1149 *
1150 * Override the object allocation stack trace for cases where the actual
1151 * allocation place is not always useful.
1152 */
1153void __ref kmemleak_update_trace(const void *ptr)
1154{
1155	struct kmemleak_object *object;
1156	depot_stack_handle_t trace_handle;
1157	unsigned long flags;
1158
1159	pr_debug("%s(0x%px)\n", __func__, ptr);
1160
1161	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1162		return;
1163
1164	object = find_and_get_object((unsigned long)ptr, 1);
1165	if (!object) {
1166#ifdef DEBUG
1167		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1168			      ptr);
1169#endif
1170		return;
1171	}
1172
1173	trace_handle = set_track_prepare();
1174	raw_spin_lock_irqsave(&object->lock, flags);
1175	object->trace_handle = trace_handle;
1176	raw_spin_unlock_irqrestore(&object->lock, flags);
1177
1178	put_object(object);
1179}
1180EXPORT_SYMBOL(kmemleak_update_trace);
1181
1182/**
1183 * kmemleak_not_leak - mark an allocated object as false positive
1184 * @ptr:	pointer to beginning of the object
1185 *
1186 * Calling this function on an object will cause the memory block to no longer
1187 * be reported as leak and always be scanned.
1188 */
1189void __ref kmemleak_not_leak(const void *ptr)
1190{
1191	pr_debug("%s(0x%px)\n", __func__, ptr);
1192
1193	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1194		make_gray_object((unsigned long)ptr);
1195}
1196EXPORT_SYMBOL(kmemleak_not_leak);
1197
1198/**
1199 * kmemleak_ignore - ignore an allocated object
1200 * @ptr:	pointer to beginning of the object
1201 *
1202 * Calling this function on an object will cause the memory block to be
1203 * ignored (not scanned and not reported as a leak). This is usually done when
1204 * it is known that the corresponding block is not a leak and does not contain
1205 * any references to other allocated memory blocks.
1206 */
1207void __ref kmemleak_ignore(const void *ptr)
1208{
1209	pr_debug("%s(0x%px)\n", __func__, ptr);
1210
1211	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1212		make_black_object((unsigned long)ptr, 0);
1213}
1214EXPORT_SYMBOL(kmemleak_ignore);
1215
1216/**
1217 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1218 * @ptr:	pointer to beginning or inside the object. This also
1219 *		represents the start of the scan area
1220 * @size:	size of the scan area
1221 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1222 *
1223 * This function is used when it is known that only certain parts of an object
1224 * contain references to other objects. Kmemleak will only scan these areas
1225 * reducing the number false negatives.
1226 */
1227void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1228{
1229	pr_debug("%s(0x%px)\n", __func__, ptr);
1230
1231	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1232		add_scan_area((unsigned long)ptr, size, gfp);
1233}
1234EXPORT_SYMBOL(kmemleak_scan_area);
1235
1236/**
1237 * kmemleak_no_scan - do not scan an allocated object
1238 * @ptr:	pointer to beginning of the object
1239 *
1240 * This function notifies kmemleak not to scan the given memory block. Useful
1241 * in situations where it is known that the given object does not contain any
1242 * references to other objects. Kmemleak will not scan such objects reducing
1243 * the number of false negatives.
1244 */
1245void __ref kmemleak_no_scan(const void *ptr)
1246{
1247	pr_debug("%s(0x%px)\n", __func__, ptr);
1248
1249	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1250		object_no_scan((unsigned long)ptr);
1251}
1252EXPORT_SYMBOL(kmemleak_no_scan);
1253
1254/**
1255 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1256 *			 address argument
1257 * @phys:	physical address of the object
1258 * @size:	size of the object
1259 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1260 */
1261void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1262{
1263	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1264
1265	if (kmemleak_enabled)
1266		/*
1267		 * Create object with OBJECT_PHYS flag and
1268		 * assume min_count 0.
1269		 */
1270		create_object_phys((unsigned long)phys, size, 0, gfp);
1271}
1272EXPORT_SYMBOL(kmemleak_alloc_phys);
1273
1274/**
1275 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1276 *			     physical address argument
1277 * @phys:	physical address if the beginning or inside an object. This
1278 *		also represents the start of the range to be freed
1279 * @size:	size to be unregistered
1280 */
1281void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1282{
1283	pr_debug("%s(0x%px)\n", __func__, &phys);
1284
1285	if (kmemleak_enabled)
1286		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1287}
1288EXPORT_SYMBOL(kmemleak_free_part_phys);
1289
1290/**
1291 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1292 *			  address argument
1293 * @phys:	physical address of the object
1294 */
1295void __ref kmemleak_ignore_phys(phys_addr_t phys)
1296{
1297	pr_debug("%s(0x%px)\n", __func__, &phys);
1298
1299	if (kmemleak_enabled)
1300		make_black_object((unsigned long)phys, OBJECT_PHYS);
1301}
1302EXPORT_SYMBOL(kmemleak_ignore_phys);
1303
1304/*
1305 * Update an object's checksum and return true if it was modified.
1306 */
1307static bool update_checksum(struct kmemleak_object *object)
1308{
1309	u32 old_csum = object->checksum;
1310
1311	if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
1312		return false;
1313
1314	kasan_disable_current();
1315	kcsan_disable_current();
1316	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1317	kasan_enable_current();
1318	kcsan_enable_current();
1319
1320	return object->checksum != old_csum;
1321}
1322
1323/*
1324 * Update an object's references. object->lock must be held by the caller.
1325 */
1326static void update_refs(struct kmemleak_object *object)
1327{
1328	if (!color_white(object)) {
1329		/* non-orphan, ignored or new */
1330		return;
1331	}
1332
1333	/*
1334	 * Increase the object's reference count (number of pointers to the
1335	 * memory block). If this count reaches the required minimum, the
1336	 * object's color will become gray and it will be added to the
1337	 * gray_list.
1338	 */
1339	object->count++;
1340	if (color_gray(object)) {
1341		/* put_object() called when removing from gray_list */
1342		WARN_ON(!get_object(object));
1343		list_add_tail(&object->gray_list, &gray_list);
1344	}
1345}
1346
1347/*
1348 * Memory scanning is a long process and it needs to be interruptible. This
1349 * function checks whether such interrupt condition occurred.
1350 */
1351static int scan_should_stop(void)
1352{
1353	if (!kmemleak_enabled)
1354		return 1;
1355
1356	/*
1357	 * This function may be called from either process or kthread context,
1358	 * hence the need to check for both stop conditions.
1359	 */
1360	if (current->mm)
1361		return signal_pending(current);
1362	else
1363		return kthread_should_stop();
1364
1365	return 0;
1366}
1367
1368/*
1369 * Scan a memory block (exclusive range) for valid pointers and add those
1370 * found to the gray list.
1371 */
1372static void scan_block(void *_start, void *_end,
1373		       struct kmemleak_object *scanned)
1374{
1375	unsigned long *ptr;
1376	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1377	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1378	unsigned long flags;
1379	unsigned long untagged_ptr;
1380
1381	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1382	for (ptr = start; ptr < end; ptr++) {
1383		struct kmemleak_object *object;
1384		unsigned long pointer;
1385		unsigned long excess_ref;
1386
1387		if (scan_should_stop())
1388			break;
1389
1390		kasan_disable_current();
1391		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1392		kasan_enable_current();
1393
1394		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1395		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1396			continue;
1397
1398		/*
1399		 * No need for get_object() here since we hold kmemleak_lock.
1400		 * object->use_count cannot be dropped to 0 while the object
1401		 * is still present in object_tree_root and object_list
1402		 * (with updates protected by kmemleak_lock).
1403		 */
1404		object = lookup_object(pointer, 1);
1405		if (!object)
1406			continue;
1407		if (object == scanned)
1408			/* self referenced, ignore */
1409			continue;
1410
1411		/*
1412		 * Avoid the lockdep recursive warning on object->lock being
1413		 * previously acquired in scan_object(). These locks are
1414		 * enclosed by scan_mutex.
1415		 */
1416		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1417		/* only pass surplus references (object already gray) */
1418		if (color_gray(object)) {
1419			excess_ref = object->excess_ref;
1420			/* no need for update_refs() if object already gray */
1421		} else {
1422			excess_ref = 0;
1423			update_refs(object);
1424		}
1425		raw_spin_unlock(&object->lock);
1426
1427		if (excess_ref) {
1428			object = lookup_object(excess_ref, 0);
1429			if (!object)
1430				continue;
1431			if (object == scanned)
1432				/* circular reference, ignore */
1433				continue;
1434			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1435			update_refs(object);
1436			raw_spin_unlock(&object->lock);
1437		}
1438	}
1439	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1440}
1441
1442/*
1443 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1444 */
1445#ifdef CONFIG_SMP
1446static void scan_large_block(void *start, void *end)
1447{
1448	void *next;
1449
1450	while (start < end) {
1451		next = min(start + MAX_SCAN_SIZE, end);
1452		scan_block(start, next, NULL);
1453		start = next;
1454		cond_resched();
1455	}
1456}
1457#endif
1458
1459/*
1460 * Scan a memory block corresponding to a kmemleak_object. A condition is
1461 * that object->use_count >= 1.
1462 */
1463static void scan_object(struct kmemleak_object *object)
1464{
1465	struct kmemleak_scan_area *area;
1466	unsigned long flags;
1467
1468	/*
1469	 * Once the object->lock is acquired, the corresponding memory block
1470	 * cannot be freed (the same lock is acquired in delete_object).
1471	 */
1472	raw_spin_lock_irqsave(&object->lock, flags);
1473	if (object->flags & OBJECT_NO_SCAN)
1474		goto out;
1475	if (!(object->flags & OBJECT_ALLOCATED))
1476		/* already freed object */
1477		goto out;
1478
1479	if (object->flags & OBJECT_PERCPU) {
1480		unsigned int cpu;
1481
1482		for_each_possible_cpu(cpu) {
1483			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1484			void *end = start + object->size;
1485
1486			scan_block(start, end, object);
1487
1488			raw_spin_unlock_irqrestore(&object->lock, flags);
1489			cond_resched();
1490			raw_spin_lock_irqsave(&object->lock, flags);
1491			if (!(object->flags & OBJECT_ALLOCATED))
1492				break;
1493		}
1494	} else if (hlist_empty(&object->area_list) ||
1495	    object->flags & OBJECT_FULL_SCAN) {
1496		void *start = object->flags & OBJECT_PHYS ?
1497				__va((phys_addr_t)object->pointer) :
1498				(void *)object->pointer;
1499		void *end = start + object->size;
1500		void *next;
1501
1502		do {
1503			next = min(start + MAX_SCAN_SIZE, end);
1504			scan_block(start, next, object);
1505
1506			start = next;
1507			if (start >= end)
1508				break;
1509
1510			raw_spin_unlock_irqrestore(&object->lock, flags);
1511			cond_resched();
1512			raw_spin_lock_irqsave(&object->lock, flags);
1513		} while (object->flags & OBJECT_ALLOCATED);
1514	} else {
1515		hlist_for_each_entry(area, &object->area_list, node)
1516			scan_block((void *)area->start,
1517				   (void *)(area->start + area->size),
1518				   object);
1519	}
1520out:
1521	raw_spin_unlock_irqrestore(&object->lock, flags);
1522}
1523
1524/*
1525 * Scan the objects already referenced (gray objects). More objects will be
1526 * referenced and, if there are no memory leaks, all the objects are scanned.
1527 */
1528static void scan_gray_list(void)
1529{
1530	struct kmemleak_object *object, *tmp;
1531
1532	/*
1533	 * The list traversal is safe for both tail additions and removals
1534	 * from inside the loop. The kmemleak objects cannot be freed from
1535	 * outside the loop because their use_count was incremented.
1536	 */
1537	object = list_entry(gray_list.next, typeof(*object), gray_list);
1538	while (&object->gray_list != &gray_list) {
1539		cond_resched();
1540
1541		/* may add new objects to the list */
1542		if (!scan_should_stop())
1543			scan_object(object);
1544
1545		tmp = list_entry(object->gray_list.next, typeof(*object),
1546				 gray_list);
1547
1548		/* remove the object from the list and release it */
1549		list_del(&object->gray_list);
1550		put_object(object);
1551
1552		object = tmp;
1553	}
1554	WARN_ON(!list_empty(&gray_list));
1555}
1556
1557/*
1558 * Conditionally call resched() in an object iteration loop while making sure
1559 * that the given object won't go away without RCU read lock by performing a
1560 * get_object() if necessaary.
1561 */
1562static void kmemleak_cond_resched(struct kmemleak_object *object)
1563{
1564	if (!get_object(object))
1565		return;	/* Try next object */
1566
1567	raw_spin_lock_irq(&kmemleak_lock);
1568	if (object->del_state & DELSTATE_REMOVED)
1569		goto unlock_put;	/* Object removed */
1570	object->del_state |= DELSTATE_NO_DELETE;
1571	raw_spin_unlock_irq(&kmemleak_lock);
1572
1573	rcu_read_unlock();
1574	cond_resched();
1575	rcu_read_lock();
1576
1577	raw_spin_lock_irq(&kmemleak_lock);
1578	if (object->del_state & DELSTATE_REMOVED)
1579		list_del_rcu(&object->object_list);
1580	object->del_state &= ~DELSTATE_NO_DELETE;
1581unlock_put:
1582	raw_spin_unlock_irq(&kmemleak_lock);
1583	put_object(object);
1584}
1585
1586/*
1587 * Scan data sections and all the referenced memory blocks allocated via the
1588 * kernel's standard allocators. This function must be called with the
1589 * scan_mutex held.
1590 */
1591static void kmemleak_scan(void)
1592{
1593	struct kmemleak_object *object;
1594	struct zone *zone;
1595	int __maybe_unused i;
1596	int new_leaks = 0;
1597
1598	jiffies_last_scan = jiffies;
1599
1600	/* prepare the kmemleak_object's */
1601	rcu_read_lock();
1602	list_for_each_entry_rcu(object, &object_list, object_list) {
1603		raw_spin_lock_irq(&object->lock);
1604#ifdef DEBUG
1605		/*
1606		 * With a few exceptions there should be a maximum of
1607		 * 1 reference to any object at this point.
1608		 */
1609		if (atomic_read(&object->use_count) > 1) {
1610			pr_debug("object->use_count = %d\n",
1611				 atomic_read(&object->use_count));
1612			dump_object_info(object);
1613		}
1614#endif
1615
1616		/* ignore objects outside lowmem (paint them black) */
1617		if ((object->flags & OBJECT_PHYS) &&
1618		   !(object->flags & OBJECT_NO_SCAN)) {
1619			unsigned long phys = object->pointer;
1620
1621			if (PHYS_PFN(phys) < min_low_pfn ||
1622			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1623				__paint_it(object, KMEMLEAK_BLACK);
1624		}
1625
1626		/* reset the reference count (whiten the object) */
1627		object->count = 0;
1628		if (color_gray(object) && get_object(object))
1629			list_add_tail(&object->gray_list, &gray_list);
1630
1631		raw_spin_unlock_irq(&object->lock);
1632
1633		if (need_resched())
1634			kmemleak_cond_resched(object);
1635	}
1636	rcu_read_unlock();
1637
1638#ifdef CONFIG_SMP
1639	/* per-cpu sections scanning */
1640	for_each_possible_cpu(i)
1641		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1642				 __per_cpu_end + per_cpu_offset(i));
1643#endif
1644
1645	/*
1646	 * Struct page scanning for each node.
1647	 */
1648	get_online_mems();
1649	for_each_populated_zone(zone) {
1650		unsigned long start_pfn = zone->zone_start_pfn;
1651		unsigned long end_pfn = zone_end_pfn(zone);
1652		unsigned long pfn;
1653
1654		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1655			struct page *page = pfn_to_online_page(pfn);
1656
1657			if (!(pfn & 63))
1658				cond_resched();
1659
1660			if (!page)
1661				continue;
1662
1663			/* only scan pages belonging to this zone */
1664			if (page_zone(page) != zone)
1665				continue;
1666			/* only scan if page is in use */
1667			if (page_count(page) == 0)
1668				continue;
1669			scan_block(page, page + 1, NULL);
1670		}
1671	}
1672	put_online_mems();
1673
1674	/*
1675	 * Scanning the task stacks (may introduce false negatives).
1676	 */
1677	if (kmemleak_stack_scan) {
1678		struct task_struct *p, *g;
1679
1680		rcu_read_lock();
1681		for_each_process_thread(g, p) {
1682			void *stack = try_get_task_stack(p);
1683			if (stack) {
1684				scan_block(stack, stack + THREAD_SIZE, NULL);
1685				put_task_stack(p);
1686			}
1687		}
1688		rcu_read_unlock();
1689	}
1690
1691	/*
1692	 * Scan the objects already referenced from the sections scanned
1693	 * above.
1694	 */
1695	scan_gray_list();
1696
1697	/*
1698	 * Check for new or unreferenced objects modified since the previous
1699	 * scan and color them gray until the next scan.
1700	 */
1701	rcu_read_lock();
1702	list_for_each_entry_rcu(object, &object_list, object_list) {
1703		if (need_resched())
1704			kmemleak_cond_resched(object);
1705
1706		/*
1707		 * This is racy but we can save the overhead of lock/unlock
1708		 * calls. The missed objects, if any, should be caught in
1709		 * the next scan.
1710		 */
1711		if (!color_white(object))
1712			continue;
1713		raw_spin_lock_irq(&object->lock);
1714		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1715		    && update_checksum(object) && get_object(object)) {
1716			/* color it gray temporarily */
1717			object->count = object->min_count;
1718			list_add_tail(&object->gray_list, &gray_list);
1719		}
1720		raw_spin_unlock_irq(&object->lock);
1721	}
1722	rcu_read_unlock();
1723
1724	/*
1725	 * Re-scan the gray list for modified unreferenced objects.
1726	 */
1727	scan_gray_list();
1728
1729	/*
1730	 * If scanning was stopped do not report any new unreferenced objects.
1731	 */
1732	if (scan_should_stop())
1733		return;
1734
1735	/*
1736	 * Scanning result reporting.
1737	 */
1738	rcu_read_lock();
1739	list_for_each_entry_rcu(object, &object_list, object_list) {
1740		if (need_resched())
1741			kmemleak_cond_resched(object);
1742
1743		/*
1744		 * This is racy but we can save the overhead of lock/unlock
1745		 * calls. The missed objects, if any, should be caught in
1746		 * the next scan.
1747		 */
1748		if (!color_white(object))
1749			continue;
1750		raw_spin_lock_irq(&object->lock);
1751		if (unreferenced_object(object) &&
1752		    !(object->flags & OBJECT_REPORTED)) {
1753			object->flags |= OBJECT_REPORTED;
1754
1755			if (kmemleak_verbose)
1756				print_unreferenced(NULL, object);
1757
1758			new_leaks++;
1759		}
1760		raw_spin_unlock_irq(&object->lock);
1761	}
1762	rcu_read_unlock();
1763
1764	if (new_leaks) {
1765		kmemleak_found_leaks = true;
1766
1767		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1768			new_leaks);
1769	}
1770
1771}
1772
1773/*
1774 * Thread function performing automatic memory scanning. Unreferenced objects
1775 * at the end of a memory scan are reported but only the first time.
1776 */
1777static int kmemleak_scan_thread(void *arg)
1778{
1779	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1780
1781	pr_info("Automatic memory scanning thread started\n");
1782	set_user_nice(current, 10);
1783
1784	/*
1785	 * Wait before the first scan to allow the system to fully initialize.
1786	 */
1787	if (first_run) {
1788		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1789		first_run = 0;
1790		while (timeout && !kthread_should_stop())
1791			timeout = schedule_timeout_interruptible(timeout);
1792	}
1793
1794	while (!kthread_should_stop()) {
1795		signed long timeout = READ_ONCE(jiffies_scan_wait);
1796
1797		mutex_lock(&scan_mutex);
1798		kmemleak_scan();
1799		mutex_unlock(&scan_mutex);
1800
1801		/* wait before the next scan */
1802		while (timeout && !kthread_should_stop())
1803			timeout = schedule_timeout_interruptible(timeout);
1804	}
1805
1806	pr_info("Automatic memory scanning thread ended\n");
1807
1808	return 0;
1809}
1810
1811/*
1812 * Start the automatic memory scanning thread. This function must be called
1813 * with the scan_mutex held.
1814 */
1815static void start_scan_thread(void)
1816{
1817	if (scan_thread)
1818		return;
1819	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1820	if (IS_ERR(scan_thread)) {
1821		pr_warn("Failed to create the scan thread\n");
1822		scan_thread = NULL;
1823	}
1824}
1825
1826/*
1827 * Stop the automatic memory scanning thread.
1828 */
1829static void stop_scan_thread(void)
1830{
1831	if (scan_thread) {
1832		kthread_stop(scan_thread);
1833		scan_thread = NULL;
1834	}
1835}
1836
1837/*
1838 * Iterate over the object_list and return the first valid object at or after
1839 * the required position with its use_count incremented. The function triggers
1840 * a memory scanning when the pos argument points to the first position.
1841 */
1842static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1843{
1844	struct kmemleak_object *object;
1845	loff_t n = *pos;
1846	int err;
1847
1848	err = mutex_lock_interruptible(&scan_mutex);
1849	if (err < 0)
1850		return ERR_PTR(err);
1851
1852	rcu_read_lock();
1853	list_for_each_entry_rcu(object, &object_list, object_list) {
1854		if (n-- > 0)
1855			continue;
1856		if (get_object(object))
1857			goto out;
1858	}
1859	object = NULL;
1860out:
1861	return object;
1862}
1863
1864/*
1865 * Return the next object in the object_list. The function decrements the
1866 * use_count of the previous object and increases that of the next one.
1867 */
1868static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1869{
1870	struct kmemleak_object *prev_obj = v;
1871	struct kmemleak_object *next_obj = NULL;
1872	struct kmemleak_object *obj = prev_obj;
1873
1874	++(*pos);
1875
1876	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1877		if (get_object(obj)) {
1878			next_obj = obj;
1879			break;
1880		}
1881	}
1882
1883	put_object(prev_obj);
1884	return next_obj;
1885}
1886
1887/*
1888 * Decrement the use_count of the last object required, if any.
1889 */
1890static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1891{
1892	if (!IS_ERR(v)) {
1893		/*
1894		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1895		 * waiting was interrupted, so only release it if !IS_ERR.
1896		 */
1897		rcu_read_unlock();
1898		mutex_unlock(&scan_mutex);
1899		if (v)
1900			put_object(v);
1901	}
1902}
1903
1904/*
1905 * Print the information for an unreferenced object to the seq file.
1906 */
1907static int kmemleak_seq_show(struct seq_file *seq, void *v)
1908{
1909	struct kmemleak_object *object = v;
1910	unsigned long flags;
1911
1912	raw_spin_lock_irqsave(&object->lock, flags);
1913	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1914		print_unreferenced(seq, object);
1915	raw_spin_unlock_irqrestore(&object->lock, flags);
1916	return 0;
1917}
1918
1919static const struct seq_operations kmemleak_seq_ops = {
1920	.start = kmemleak_seq_start,
1921	.next  = kmemleak_seq_next,
1922	.stop  = kmemleak_seq_stop,
1923	.show  = kmemleak_seq_show,
1924};
1925
1926static int kmemleak_open(struct inode *inode, struct file *file)
1927{
1928	return seq_open(file, &kmemleak_seq_ops);
1929}
1930
1931static int dump_str_object_info(const char *str)
1932{
1933	unsigned long flags;
1934	struct kmemleak_object *object;
1935	unsigned long addr;
1936
1937	if (kstrtoul(str, 0, &addr))
1938		return -EINVAL;
1939	object = find_and_get_object(addr, 0);
1940	if (!object) {
1941		pr_info("Unknown object at 0x%08lx\n", addr);
1942		return -EINVAL;
1943	}
1944
1945	raw_spin_lock_irqsave(&object->lock, flags);
1946	dump_object_info(object);
1947	raw_spin_unlock_irqrestore(&object->lock, flags);
1948
1949	put_object(object);
1950	return 0;
1951}
1952
1953/*
1954 * We use grey instead of black to ensure we can do future scans on the same
1955 * objects. If we did not do future scans these black objects could
1956 * potentially contain references to newly allocated objects in the future and
1957 * we'd end up with false positives.
1958 */
1959static void kmemleak_clear(void)
1960{
1961	struct kmemleak_object *object;
1962
1963	rcu_read_lock();
1964	list_for_each_entry_rcu(object, &object_list, object_list) {
1965		raw_spin_lock_irq(&object->lock);
1966		if ((object->flags & OBJECT_REPORTED) &&
1967		    unreferenced_object(object))
1968			__paint_it(object, KMEMLEAK_GREY);
1969		raw_spin_unlock_irq(&object->lock);
1970	}
1971	rcu_read_unlock();
1972
1973	kmemleak_found_leaks = false;
1974}
1975
1976static void __kmemleak_do_cleanup(void);
1977
1978/*
1979 * File write operation to configure kmemleak at run-time. The following
1980 * commands can be written to the /sys/kernel/debug/kmemleak file:
1981 *   off	- disable kmemleak (irreversible)
1982 *   stack=on	- enable the task stacks scanning
1983 *   stack=off	- disable the tasks stacks scanning
1984 *   scan=on	- start the automatic memory scanning thread
1985 *   scan=off	- stop the automatic memory scanning thread
1986 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1987 *		  disable it)
1988 *   scan	- trigger a memory scan
1989 *   clear	- mark all current reported unreferenced kmemleak objects as
1990 *		  grey to ignore printing them, or free all kmemleak objects
1991 *		  if kmemleak has been disabled.
1992 *   dump=...	- dump information about the object found at the given address
1993 */
1994static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1995			      size_t size, loff_t *ppos)
1996{
1997	char buf[64];
1998	int buf_size;
1999	int ret;
2000
2001	buf_size = min(size, (sizeof(buf) - 1));
2002	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2003		return -EFAULT;
2004	buf[buf_size] = 0;
2005
2006	ret = mutex_lock_interruptible(&scan_mutex);
2007	if (ret < 0)
2008		return ret;
2009
2010	if (strncmp(buf, "clear", 5) == 0) {
2011		if (kmemleak_enabled)
2012			kmemleak_clear();
2013		else
2014			__kmemleak_do_cleanup();
2015		goto out;
2016	}
2017
2018	if (!kmemleak_enabled) {
2019		ret = -EPERM;
2020		goto out;
2021	}
2022
2023	if (strncmp(buf, "off", 3) == 0)
2024		kmemleak_disable();
2025	else if (strncmp(buf, "stack=on", 8) == 0)
2026		kmemleak_stack_scan = 1;
2027	else if (strncmp(buf, "stack=off", 9) == 0)
2028		kmemleak_stack_scan = 0;
2029	else if (strncmp(buf, "scan=on", 7) == 0)
2030		start_scan_thread();
2031	else if (strncmp(buf, "scan=off", 8) == 0)
2032		stop_scan_thread();
2033	else if (strncmp(buf, "scan=", 5) == 0) {
2034		unsigned secs;
2035		unsigned long msecs;
2036
2037		ret = kstrtouint(buf + 5, 0, &secs);
2038		if (ret < 0)
2039			goto out;
2040
2041		msecs = secs * MSEC_PER_SEC;
2042		if (msecs > UINT_MAX)
2043			msecs = UINT_MAX;
2044
2045		stop_scan_thread();
2046		if (msecs) {
2047			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2048			start_scan_thread();
2049		}
2050	} else if (strncmp(buf, "scan", 4) == 0)
2051		kmemleak_scan();
2052	else if (strncmp(buf, "dump=", 5) == 0)
2053		ret = dump_str_object_info(buf + 5);
2054	else
2055		ret = -EINVAL;
2056
2057out:
2058	mutex_unlock(&scan_mutex);
2059	if (ret < 0)
2060		return ret;
2061
2062	/* ignore the rest of the buffer, only one command at a time */
2063	*ppos += size;
2064	return size;
2065}
2066
2067static const struct file_operations kmemleak_fops = {
2068	.owner		= THIS_MODULE,
2069	.open		= kmemleak_open,
2070	.read		= seq_read,
2071	.write		= kmemleak_write,
2072	.llseek		= seq_lseek,
2073	.release	= seq_release,
2074};
2075
2076static void __kmemleak_do_cleanup(void)
2077{
2078	struct kmemleak_object *object, *tmp;
2079
2080	/*
2081	 * Kmemleak has already been disabled, no need for RCU list traversal
2082	 * or kmemleak_lock held.
2083	 */
2084	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2085		__remove_object(object);
2086		__delete_object(object);
2087	}
2088}
2089
2090/*
2091 * Stop the memory scanning thread and free the kmemleak internal objects if
2092 * no previous scan thread (otherwise, kmemleak may still have some useful
2093 * information on memory leaks).
2094 */
2095static void kmemleak_do_cleanup(struct work_struct *work)
2096{
2097	stop_scan_thread();
2098
2099	mutex_lock(&scan_mutex);
2100	/*
2101	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2102	 * longer track object freeing. Ordering of the scan thread stopping and
2103	 * the memory accesses below is guaranteed by the kthread_stop()
2104	 * function.
2105	 */
2106	kmemleak_free_enabled = 0;
2107	mutex_unlock(&scan_mutex);
2108
2109	if (!kmemleak_found_leaks)
2110		__kmemleak_do_cleanup();
2111	else
2112		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2113}
2114
2115static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2116
2117/*
2118 * Disable kmemleak. No memory allocation/freeing will be traced once this
2119 * function is called. Disabling kmemleak is an irreversible operation.
2120 */
2121static void kmemleak_disable(void)
2122{
2123	/* atomically check whether it was already invoked */
2124	if (cmpxchg(&kmemleak_error, 0, 1))
2125		return;
2126
2127	/* stop any memory operation tracing */
2128	kmemleak_enabled = 0;
2129
2130	/* check whether it is too early for a kernel thread */
2131	if (kmemleak_late_initialized)
2132		schedule_work(&cleanup_work);
2133	else
2134		kmemleak_free_enabled = 0;
2135
2136	pr_info("Kernel memory leak detector disabled\n");
2137}
2138
2139/*
2140 * Allow boot-time kmemleak disabling (enabled by default).
2141 */
2142static int __init kmemleak_boot_config(char *str)
2143{
2144	if (!str)
2145		return -EINVAL;
2146	if (strcmp(str, "off") == 0)
2147		kmemleak_disable();
2148	else if (strcmp(str, "on") == 0) {
2149		kmemleak_skip_disable = 1;
2150		stack_depot_request_early_init();
2151	}
2152	else
2153		return -EINVAL;
2154	return 0;
2155}
2156early_param("kmemleak", kmemleak_boot_config);
2157
2158/*
2159 * Kmemleak initialization.
2160 */
2161void __init kmemleak_init(void)
2162{
2163#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2164	if (!kmemleak_skip_disable) {
2165		kmemleak_disable();
2166		return;
2167	}
2168#endif
2169
2170	if (kmemleak_error)
2171		return;
2172
2173	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2174	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2175
2176	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2177	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2178
2179	/* register the data/bss sections */
2180	create_object((unsigned long)_sdata, _edata - _sdata,
2181		      KMEMLEAK_GREY, GFP_ATOMIC);
2182	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2183		      KMEMLEAK_GREY, GFP_ATOMIC);
2184	/* only register .data..ro_after_init if not within .data */
2185	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2186		create_object((unsigned long)__start_ro_after_init,
2187			      __end_ro_after_init - __start_ro_after_init,
2188			      KMEMLEAK_GREY, GFP_ATOMIC);
2189}
2190
2191/*
2192 * Late initialization function.
2193 */
2194static int __init kmemleak_late_init(void)
2195{
2196	kmemleak_late_initialized = 1;
2197
2198	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2199
2200	if (kmemleak_error) {
2201		/*
2202		 * Some error occurred and kmemleak was disabled. There is a
2203		 * small chance that kmemleak_disable() was called immediately
2204		 * after setting kmemleak_late_initialized and we may end up with
2205		 * two clean-up threads but serialized by scan_mutex.
2206		 */
2207		schedule_work(&cleanup_work);
2208		return -ENOMEM;
2209	}
2210
2211	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2212		mutex_lock(&scan_mutex);
2213		start_scan_thread();
2214		mutex_unlock(&scan_mutex);
2215	}
2216
2217	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2218		mem_pool_free_count);
2219
2220	return 0;
2221}
2222late_initcall(kmemleak_late_init);
2223