1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/mm.h>
5#include <linux/sched.h>
6#include <linux/sched/mm.h>
7#include <linux/sched/coredump.h>
8#include <linux/mmu_notifier.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/mm_inline.h>
12#include <linux/kthread.h>
13#include <linux/khugepaged.h>
14#include <linux/freezer.h>
15#include <linux/mman.h>
16#include <linux/hashtable.h>
17#include <linux/userfaultfd_k.h>
18#include <linux/page_idle.h>
19#include <linux/page_table_check.h>
20#include <linux/rcupdate_wait.h>
21#include <linux/swapops.h>
22#include <linux/shmem_fs.h>
23#include <linux/ksm.h>
24
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28#include "mm_slot.h"
29
30enum scan_result {
31	SCAN_FAIL,
32	SCAN_SUCCEED,
33	SCAN_PMD_NULL,
34	SCAN_PMD_NONE,
35	SCAN_PMD_MAPPED,
36	SCAN_EXCEED_NONE_PTE,
37	SCAN_EXCEED_SWAP_PTE,
38	SCAN_EXCEED_SHARED_PTE,
39	SCAN_PTE_NON_PRESENT,
40	SCAN_PTE_UFFD_WP,
41	SCAN_PTE_MAPPED_HUGEPAGE,
42	SCAN_PAGE_RO,
43	SCAN_LACK_REFERENCED_PAGE,
44	SCAN_PAGE_NULL,
45	SCAN_SCAN_ABORT,
46	SCAN_PAGE_COUNT,
47	SCAN_PAGE_LRU,
48	SCAN_PAGE_LOCK,
49	SCAN_PAGE_ANON,
50	SCAN_PAGE_COMPOUND,
51	SCAN_ANY_PROCESS,
52	SCAN_VMA_NULL,
53	SCAN_VMA_CHECK,
54	SCAN_ADDRESS_RANGE,
55	SCAN_DEL_PAGE_LRU,
56	SCAN_ALLOC_HUGE_PAGE_FAIL,
57	SCAN_CGROUP_CHARGE_FAIL,
58	SCAN_TRUNCATED,
59	SCAN_PAGE_HAS_PRIVATE,
60	SCAN_STORE_FAILED,
61	SCAN_COPY_MC,
62	SCAN_PAGE_FILLED,
63};
64
65#define CREATE_TRACE_POINTS
66#include <trace/events/huge_memory.h>
67
68static struct task_struct *khugepaged_thread __read_mostly;
69static DEFINE_MUTEX(khugepaged_mutex);
70
71/* default scan 8*512 pte (or vmas) every 30 second */
72static unsigned int khugepaged_pages_to_scan __read_mostly;
73static unsigned int khugepaged_pages_collapsed;
74static unsigned int khugepaged_full_scans;
75static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76/* during fragmentation poll the hugepage allocator once every minute */
77static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78static unsigned long khugepaged_sleep_expire;
79static DEFINE_SPINLOCK(khugepaged_mm_lock);
80static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81/*
82 * default collapse hugepages if there is at least one pte mapped like
83 * it would have happened if the vma was large enough during page
84 * fault.
85 *
86 * Note that these are only respected if collapse was initiated by khugepaged.
87 */
88static unsigned int khugepaged_max_ptes_none __read_mostly;
89static unsigned int khugepaged_max_ptes_swap __read_mostly;
90static unsigned int khugepaged_max_ptes_shared __read_mostly;
91
92#define MM_SLOTS_HASH_BITS 10
93static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94
95static struct kmem_cache *mm_slot_cache __ro_after_init;
96
97struct collapse_control {
98	bool is_khugepaged;
99
100	/* Num pages scanned per node */
101	u32 node_load[MAX_NUMNODES];
102
103	/* nodemask for allocation fallback */
104	nodemask_t alloc_nmask;
105};
106
107/**
108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109 * @slot: hash lookup from mm to mm_slot
110 */
111struct khugepaged_mm_slot {
112	struct mm_slot slot;
113};
114
115/**
116 * struct khugepaged_scan - cursor for scanning
117 * @mm_head: the head of the mm list to scan
118 * @mm_slot: the current mm_slot we are scanning
119 * @address: the next address inside that to be scanned
120 *
121 * There is only the one khugepaged_scan instance of this cursor structure.
122 */
123struct khugepaged_scan {
124	struct list_head mm_head;
125	struct khugepaged_mm_slot *mm_slot;
126	unsigned long address;
127};
128
129static struct khugepaged_scan khugepaged_scan = {
130	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
131};
132
133#ifdef CONFIG_SYSFS
134static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
135					 struct kobj_attribute *attr,
136					 char *buf)
137{
138	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
139}
140
141static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
142					  struct kobj_attribute *attr,
143					  const char *buf, size_t count)
144{
145	unsigned int msecs;
146	int err;
147
148	err = kstrtouint(buf, 10, &msecs);
149	if (err)
150		return -EINVAL;
151
152	khugepaged_scan_sleep_millisecs = msecs;
153	khugepaged_sleep_expire = 0;
154	wake_up_interruptible(&khugepaged_wait);
155
156	return count;
157}
158static struct kobj_attribute scan_sleep_millisecs_attr =
159	__ATTR_RW(scan_sleep_millisecs);
160
161static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
162					  struct kobj_attribute *attr,
163					  char *buf)
164{
165	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
166}
167
168static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
169					   struct kobj_attribute *attr,
170					   const char *buf, size_t count)
171{
172	unsigned int msecs;
173	int err;
174
175	err = kstrtouint(buf, 10, &msecs);
176	if (err)
177		return -EINVAL;
178
179	khugepaged_alloc_sleep_millisecs = msecs;
180	khugepaged_sleep_expire = 0;
181	wake_up_interruptible(&khugepaged_wait);
182
183	return count;
184}
185static struct kobj_attribute alloc_sleep_millisecs_attr =
186	__ATTR_RW(alloc_sleep_millisecs);
187
188static ssize_t pages_to_scan_show(struct kobject *kobj,
189				  struct kobj_attribute *attr,
190				  char *buf)
191{
192	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193}
194static ssize_t pages_to_scan_store(struct kobject *kobj,
195				   struct kobj_attribute *attr,
196				   const char *buf, size_t count)
197{
198	unsigned int pages;
199	int err;
200
201	err = kstrtouint(buf, 10, &pages);
202	if (err || !pages)
203		return -EINVAL;
204
205	khugepaged_pages_to_scan = pages;
206
207	return count;
208}
209static struct kobj_attribute pages_to_scan_attr =
210	__ATTR_RW(pages_to_scan);
211
212static ssize_t pages_collapsed_show(struct kobject *kobj,
213				    struct kobj_attribute *attr,
214				    char *buf)
215{
216	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217}
218static struct kobj_attribute pages_collapsed_attr =
219	__ATTR_RO(pages_collapsed);
220
221static ssize_t full_scans_show(struct kobject *kobj,
222			       struct kobj_attribute *attr,
223			       char *buf)
224{
225	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226}
227static struct kobj_attribute full_scans_attr =
228	__ATTR_RO(full_scans);
229
230static ssize_t defrag_show(struct kobject *kobj,
231			   struct kobj_attribute *attr, char *buf)
232{
233	return single_hugepage_flag_show(kobj, attr, buf,
234					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235}
236static ssize_t defrag_store(struct kobject *kobj,
237			    struct kobj_attribute *attr,
238			    const char *buf, size_t count)
239{
240	return single_hugepage_flag_store(kobj, attr, buf, count,
241				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242}
243static struct kobj_attribute khugepaged_defrag_attr =
244	__ATTR_RW(defrag);
245
246/*
247 * max_ptes_none controls if khugepaged should collapse hugepages over
248 * any unmapped ptes in turn potentially increasing the memory
249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
250 * reduce the available free memory in the system as it
251 * runs. Increasing max_ptes_none will instead potentially reduce the
252 * free memory in the system during the khugepaged scan.
253 */
254static ssize_t max_ptes_none_show(struct kobject *kobj,
255				  struct kobj_attribute *attr,
256				  char *buf)
257{
258	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259}
260static ssize_t max_ptes_none_store(struct kobject *kobj,
261				   struct kobj_attribute *attr,
262				   const char *buf, size_t count)
263{
264	int err;
265	unsigned long max_ptes_none;
266
267	err = kstrtoul(buf, 10, &max_ptes_none);
268	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
269		return -EINVAL;
270
271	khugepaged_max_ptes_none = max_ptes_none;
272
273	return count;
274}
275static struct kobj_attribute khugepaged_max_ptes_none_attr =
276	__ATTR_RW(max_ptes_none);
277
278static ssize_t max_ptes_swap_show(struct kobject *kobj,
279				  struct kobj_attribute *attr,
280				  char *buf)
281{
282	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
283}
284
285static ssize_t max_ptes_swap_store(struct kobject *kobj,
286				   struct kobj_attribute *attr,
287				   const char *buf, size_t count)
288{
289	int err;
290	unsigned long max_ptes_swap;
291
292	err  = kstrtoul(buf, 10, &max_ptes_swap);
293	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
294		return -EINVAL;
295
296	khugepaged_max_ptes_swap = max_ptes_swap;
297
298	return count;
299}
300
301static struct kobj_attribute khugepaged_max_ptes_swap_attr =
302	__ATTR_RW(max_ptes_swap);
303
304static ssize_t max_ptes_shared_show(struct kobject *kobj,
305				    struct kobj_attribute *attr,
306				    char *buf)
307{
308	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
309}
310
311static ssize_t max_ptes_shared_store(struct kobject *kobj,
312				     struct kobj_attribute *attr,
313				     const char *buf, size_t count)
314{
315	int err;
316	unsigned long max_ptes_shared;
317
318	err  = kstrtoul(buf, 10, &max_ptes_shared);
319	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
320		return -EINVAL;
321
322	khugepaged_max_ptes_shared = max_ptes_shared;
323
324	return count;
325}
326
327static struct kobj_attribute khugepaged_max_ptes_shared_attr =
328	__ATTR_RW(max_ptes_shared);
329
330static struct attribute *khugepaged_attr[] = {
331	&khugepaged_defrag_attr.attr,
332	&khugepaged_max_ptes_none_attr.attr,
333	&khugepaged_max_ptes_swap_attr.attr,
334	&khugepaged_max_ptes_shared_attr.attr,
335	&pages_to_scan_attr.attr,
336	&pages_collapsed_attr.attr,
337	&full_scans_attr.attr,
338	&scan_sleep_millisecs_attr.attr,
339	&alloc_sleep_millisecs_attr.attr,
340	NULL,
341};
342
343struct attribute_group khugepaged_attr_group = {
344	.attrs = khugepaged_attr,
345	.name = "khugepaged",
346};
347#endif /* CONFIG_SYSFS */
348
349int hugepage_madvise(struct vm_area_struct *vma,
350		     unsigned long *vm_flags, int advice)
351{
352	switch (advice) {
353	case MADV_HUGEPAGE:
354#ifdef CONFIG_S390
355		/*
356		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
357		 * can't handle this properly after s390_enable_sie, so we simply
358		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
359		 */
360		if (mm_has_pgste(vma->vm_mm))
361			return 0;
362#endif
363		*vm_flags &= ~VM_NOHUGEPAGE;
364		*vm_flags |= VM_HUGEPAGE;
365		/*
366		 * If the vma become good for khugepaged to scan,
367		 * register it here without waiting a page fault that
368		 * may not happen any time soon.
369		 */
370		khugepaged_enter_vma(vma, *vm_flags);
371		break;
372	case MADV_NOHUGEPAGE:
373		*vm_flags &= ~VM_HUGEPAGE;
374		*vm_flags |= VM_NOHUGEPAGE;
375		/*
376		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377		 * this vma even if we leave the mm registered in khugepaged if
378		 * it got registered before VM_NOHUGEPAGE was set.
379		 */
380		break;
381	}
382
383	return 0;
384}
385
386int __init khugepaged_init(void)
387{
388	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389					  sizeof(struct khugepaged_mm_slot),
390					  __alignof__(struct khugepaged_mm_slot),
391					  0, NULL);
392	if (!mm_slot_cache)
393		return -ENOMEM;
394
395	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
396	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
397	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
398	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
399
400	return 0;
401}
402
403void __init khugepaged_destroy(void)
404{
405	kmem_cache_destroy(mm_slot_cache);
406}
407
408static inline int hpage_collapse_test_exit(struct mm_struct *mm)
409{
410	return atomic_read(&mm->mm_users) == 0;
411}
412
413static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
414{
415	return hpage_collapse_test_exit(mm) ||
416	       test_bit(MMF_DISABLE_THP, &mm->flags);
417}
418
419void __khugepaged_enter(struct mm_struct *mm)
420{
421	struct khugepaged_mm_slot *mm_slot;
422	struct mm_slot *slot;
423	int wakeup;
424
425	/* __khugepaged_exit() must not run from under us */
426	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
427	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
428		return;
429
430	mm_slot = mm_slot_alloc(mm_slot_cache);
431	if (!mm_slot)
432		return;
433
434	slot = &mm_slot->slot;
435
436	spin_lock(&khugepaged_mm_lock);
437	mm_slot_insert(mm_slots_hash, mm, slot);
438	/*
439	 * Insert just behind the scanning cursor, to let the area settle
440	 * down a little.
441	 */
442	wakeup = list_empty(&khugepaged_scan.mm_head);
443	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
444	spin_unlock(&khugepaged_mm_lock);
445
446	mmgrab(mm);
447	if (wakeup)
448		wake_up_interruptible(&khugepaged_wait);
449}
450
451void khugepaged_enter_vma(struct vm_area_struct *vma,
452			  unsigned long vm_flags)
453{
454	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
455	    hugepage_flags_enabled()) {
456		if (thp_vma_allowable_order(vma, vm_flags, false, false, true,
457					    PMD_ORDER))
458			__khugepaged_enter(vma->vm_mm);
459	}
460}
461
462void __khugepaged_exit(struct mm_struct *mm)
463{
464	struct khugepaged_mm_slot *mm_slot;
465	struct mm_slot *slot;
466	int free = 0;
467
468	spin_lock(&khugepaged_mm_lock);
469	slot = mm_slot_lookup(mm_slots_hash, mm);
470	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
471	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
472		hash_del(&slot->hash);
473		list_del(&slot->mm_node);
474		free = 1;
475	}
476	spin_unlock(&khugepaged_mm_lock);
477
478	if (free) {
479		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
480		mm_slot_free(mm_slot_cache, mm_slot);
481		mmdrop(mm);
482	} else if (mm_slot) {
483		/*
484		 * This is required to serialize against
485		 * hpage_collapse_test_exit() (which is guaranteed to run
486		 * under mmap sem read mode). Stop here (after we return all
487		 * pagetables will be destroyed) until khugepaged has finished
488		 * working on the pagetables under the mmap_lock.
489		 */
490		mmap_write_lock(mm);
491		mmap_write_unlock(mm);
492	}
493}
494
495static void release_pte_folio(struct folio *folio)
496{
497	node_stat_mod_folio(folio,
498			NR_ISOLATED_ANON + folio_is_file_lru(folio),
499			-folio_nr_pages(folio));
500	folio_unlock(folio);
501	folio_putback_lru(folio);
502}
503
504static void release_pte_pages(pte_t *pte, pte_t *_pte,
505		struct list_head *compound_pagelist)
506{
507	struct folio *folio, *tmp;
508
509	while (--_pte >= pte) {
510		pte_t pteval = ptep_get(_pte);
511		unsigned long pfn;
512
513		if (pte_none(pteval))
514			continue;
515		pfn = pte_pfn(pteval);
516		if (is_zero_pfn(pfn))
517			continue;
518		folio = pfn_folio(pfn);
519		if (folio_test_large(folio))
520			continue;
521		release_pte_folio(folio);
522	}
523
524	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
525		list_del(&folio->lru);
526		release_pte_folio(folio);
527	}
528}
529
530static bool is_refcount_suitable(struct folio *folio)
531{
532	int expected_refcount;
533
534	expected_refcount = folio_mapcount(folio);
535	if (folio_test_swapcache(folio))
536		expected_refcount += folio_nr_pages(folio);
537
538	return folio_ref_count(folio) == expected_refcount;
539}
540
541static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
542					unsigned long address,
543					pte_t *pte,
544					struct collapse_control *cc,
545					struct list_head *compound_pagelist)
546{
547	struct page *page = NULL;
548	struct folio *folio = NULL;
549	pte_t *_pte;
550	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
551	bool writable = false;
552
553	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
554	     _pte++, address += PAGE_SIZE) {
555		pte_t pteval = ptep_get(_pte);
556		if (pte_none(pteval) || (pte_present(pteval) &&
557				is_zero_pfn(pte_pfn(pteval)))) {
558			++none_or_zero;
559			if (!userfaultfd_armed(vma) &&
560			    (!cc->is_khugepaged ||
561			     none_or_zero <= khugepaged_max_ptes_none)) {
562				continue;
563			} else {
564				result = SCAN_EXCEED_NONE_PTE;
565				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
566				goto out;
567			}
568		}
569		if (!pte_present(pteval)) {
570			result = SCAN_PTE_NON_PRESENT;
571			goto out;
572		}
573		if (pte_uffd_wp(pteval)) {
574			result = SCAN_PTE_UFFD_WP;
575			goto out;
576		}
577		page = vm_normal_page(vma, address, pteval);
578		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
579			result = SCAN_PAGE_NULL;
580			goto out;
581		}
582
583		folio = page_folio(page);
584		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
585
586		if (page_mapcount(page) > 1) {
587			++shared;
588			if (cc->is_khugepaged &&
589			    shared > khugepaged_max_ptes_shared) {
590				result = SCAN_EXCEED_SHARED_PTE;
591				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
592				goto out;
593			}
594		}
595
596		if (folio_test_large(folio)) {
597			struct folio *f;
598
599			/*
600			 * Check if we have dealt with the compound page
601			 * already
602			 */
603			list_for_each_entry(f, compound_pagelist, lru) {
604				if (folio == f)
605					goto next;
606			}
607		}
608
609		/*
610		 * We can do it before isolate_lru_page because the
611		 * page can't be freed from under us. NOTE: PG_lock
612		 * is needed to serialize against split_huge_page
613		 * when invoked from the VM.
614		 */
615		if (!folio_trylock(folio)) {
616			result = SCAN_PAGE_LOCK;
617			goto out;
618		}
619
620		/*
621		 * Check if the page has any GUP (or other external) pins.
622		 *
623		 * The page table that maps the page has been already unlinked
624		 * from the page table tree and this process cannot get
625		 * an additional pin on the page.
626		 *
627		 * New pins can come later if the page is shared across fork,
628		 * but not from this process. The other process cannot write to
629		 * the page, only trigger CoW.
630		 */
631		if (!is_refcount_suitable(folio)) {
632			folio_unlock(folio);
633			result = SCAN_PAGE_COUNT;
634			goto out;
635		}
636
637		/*
638		 * Isolate the page to avoid collapsing an hugepage
639		 * currently in use by the VM.
640		 */
641		if (!folio_isolate_lru(folio)) {
642			folio_unlock(folio);
643			result = SCAN_DEL_PAGE_LRU;
644			goto out;
645		}
646		node_stat_mod_folio(folio,
647				NR_ISOLATED_ANON + folio_is_file_lru(folio),
648				folio_nr_pages(folio));
649		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
650		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
651
652		if (folio_test_large(folio))
653			list_add_tail(&folio->lru, compound_pagelist);
654next:
655		/*
656		 * If collapse was initiated by khugepaged, check that there is
657		 * enough young pte to justify collapsing the page
658		 */
659		if (cc->is_khugepaged &&
660		    (pte_young(pteval) || folio_test_young(folio) ||
661		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
662								     address)))
663			referenced++;
664
665		if (pte_write(pteval))
666			writable = true;
667	}
668
669	if (unlikely(!writable)) {
670		result = SCAN_PAGE_RO;
671	} else if (unlikely(cc->is_khugepaged && !referenced)) {
672		result = SCAN_LACK_REFERENCED_PAGE;
673	} else {
674		result = SCAN_SUCCEED;
675		trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
676						    referenced, writable, result);
677		return result;
678	}
679out:
680	release_pte_pages(pte, _pte, compound_pagelist);
681	trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
682					    referenced, writable, result);
683	return result;
684}
685
686static void __collapse_huge_page_copy_succeeded(pte_t *pte,
687						struct vm_area_struct *vma,
688						unsigned long address,
689						spinlock_t *ptl,
690						struct list_head *compound_pagelist)
691{
692	struct folio *src, *tmp;
693	pte_t *_pte;
694	pte_t pteval;
695
696	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
697	     _pte++, address += PAGE_SIZE) {
698		pteval = ptep_get(_pte);
699		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
700			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
701			if (is_zero_pfn(pte_pfn(pteval))) {
702				/*
703				 * ptl mostly unnecessary.
704				 */
705				spin_lock(ptl);
706				ptep_clear(vma->vm_mm, address, _pte);
707				spin_unlock(ptl);
708				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
709			}
710		} else {
711			struct page *src_page = pte_page(pteval);
712
713			src = page_folio(src_page);
714			if (!folio_test_large(src))
715				release_pte_folio(src);
716			/*
717			 * ptl mostly unnecessary, but preempt has to
718			 * be disabled to update the per-cpu stats
719			 * inside folio_remove_rmap_pte().
720			 */
721			spin_lock(ptl);
722			ptep_clear(vma->vm_mm, address, _pte);
723			folio_remove_rmap_pte(src, src_page, vma);
724			spin_unlock(ptl);
725			free_page_and_swap_cache(src_page);
726		}
727	}
728
729	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
730		list_del(&src->lru);
731		node_stat_sub_folio(src, NR_ISOLATED_ANON +
732				folio_is_file_lru(src));
733		folio_unlock(src);
734		free_swap_cache(src);
735		folio_putback_lru(src);
736	}
737}
738
739static void __collapse_huge_page_copy_failed(pte_t *pte,
740					     pmd_t *pmd,
741					     pmd_t orig_pmd,
742					     struct vm_area_struct *vma,
743					     struct list_head *compound_pagelist)
744{
745	spinlock_t *pmd_ptl;
746
747	/*
748	 * Re-establish the PMD to point to the original page table
749	 * entry. Restoring PMD needs to be done prior to releasing
750	 * pages. Since pages are still isolated and locked here,
751	 * acquiring anon_vma_lock_write is unnecessary.
752	 */
753	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
754	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
755	spin_unlock(pmd_ptl);
756	/*
757	 * Release both raw and compound pages isolated
758	 * in __collapse_huge_page_isolate.
759	 */
760	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
761}
762
763/*
764 * __collapse_huge_page_copy - attempts to copy memory contents from raw
765 * pages to a hugepage. Cleans up the raw pages if copying succeeds;
766 * otherwise restores the original page table and releases isolated raw pages.
767 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
768 *
769 * @pte: starting of the PTEs to copy from
770 * @page: the new hugepage to copy contents to
771 * @pmd: pointer to the new hugepage's PMD
772 * @orig_pmd: the original raw pages' PMD
773 * @vma: the original raw pages' virtual memory area
774 * @address: starting address to copy
775 * @ptl: lock on raw pages' PTEs
776 * @compound_pagelist: list that stores compound pages
777 */
778static int __collapse_huge_page_copy(pte_t *pte,
779				     struct page *page,
780				     pmd_t *pmd,
781				     pmd_t orig_pmd,
782				     struct vm_area_struct *vma,
783				     unsigned long address,
784				     spinlock_t *ptl,
785				     struct list_head *compound_pagelist)
786{
787	struct page *src_page;
788	pte_t *_pte;
789	pte_t pteval;
790	unsigned long _address;
791	int result = SCAN_SUCCEED;
792
793	/*
794	 * Copying pages' contents is subject to memory poison at any iteration.
795	 */
796	for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
797	     _pte++, page++, _address += PAGE_SIZE) {
798		pteval = ptep_get(_pte);
799		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
800			clear_user_highpage(page, _address);
801			continue;
802		}
803		src_page = pte_page(pteval);
804		if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
805			result = SCAN_COPY_MC;
806			break;
807		}
808	}
809
810	if (likely(result == SCAN_SUCCEED))
811		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
812						    compound_pagelist);
813	else
814		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
815						 compound_pagelist);
816
817	return result;
818}
819
820static void khugepaged_alloc_sleep(void)
821{
822	DEFINE_WAIT(wait);
823
824	add_wait_queue(&khugepaged_wait, &wait);
825	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
826	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
827	remove_wait_queue(&khugepaged_wait, &wait);
828}
829
830struct collapse_control khugepaged_collapse_control = {
831	.is_khugepaged = true,
832};
833
834static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
835{
836	int i;
837
838	/*
839	 * If node_reclaim_mode is disabled, then no extra effort is made to
840	 * allocate memory locally.
841	 */
842	if (!node_reclaim_enabled())
843		return false;
844
845	/* If there is a count for this node already, it must be acceptable */
846	if (cc->node_load[nid])
847		return false;
848
849	for (i = 0; i < MAX_NUMNODES; i++) {
850		if (!cc->node_load[i])
851			continue;
852		if (node_distance(nid, i) > node_reclaim_distance)
853			return true;
854	}
855	return false;
856}
857
858#define khugepaged_defrag()					\
859	(transparent_hugepage_flags &				\
860	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
861
862/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
863static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
864{
865	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
866}
867
868#ifdef CONFIG_NUMA
869static int hpage_collapse_find_target_node(struct collapse_control *cc)
870{
871	int nid, target_node = 0, max_value = 0;
872
873	/* find first node with max normal pages hit */
874	for (nid = 0; nid < MAX_NUMNODES; nid++)
875		if (cc->node_load[nid] > max_value) {
876			max_value = cc->node_load[nid];
877			target_node = nid;
878		}
879
880	for_each_online_node(nid) {
881		if (max_value == cc->node_load[nid])
882			node_set(nid, cc->alloc_nmask);
883	}
884
885	return target_node;
886}
887#else
888static int hpage_collapse_find_target_node(struct collapse_control *cc)
889{
890	return 0;
891}
892#endif
893
894static bool hpage_collapse_alloc_folio(struct folio **folio, gfp_t gfp, int node,
895				      nodemask_t *nmask)
896{
897	*folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, nmask);
898
899	if (unlikely(!*folio)) {
900		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
901		return false;
902	}
903
904	count_vm_event(THP_COLLAPSE_ALLOC);
905	return true;
906}
907
908/*
909 * If mmap_lock temporarily dropped, revalidate vma
910 * before taking mmap_lock.
911 * Returns enum scan_result value.
912 */
913
914static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
915				   bool expect_anon,
916				   struct vm_area_struct **vmap,
917				   struct collapse_control *cc)
918{
919	struct vm_area_struct *vma;
920
921	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
922		return SCAN_ANY_PROCESS;
923
924	*vmap = vma = find_vma(mm, address);
925	if (!vma)
926		return SCAN_VMA_NULL;
927
928	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
929		return SCAN_ADDRESS_RANGE;
930	if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false,
931				     cc->is_khugepaged, PMD_ORDER))
932		return SCAN_VMA_CHECK;
933	/*
934	 * Anon VMA expected, the address may be unmapped then
935	 * remapped to file after khugepaged reaquired the mmap_lock.
936	 *
937	 * thp_vma_allowable_order may return true for qualified file
938	 * vmas.
939	 */
940	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
941		return SCAN_PAGE_ANON;
942	return SCAN_SUCCEED;
943}
944
945static int find_pmd_or_thp_or_none(struct mm_struct *mm,
946				   unsigned long address,
947				   pmd_t **pmd)
948{
949	pmd_t pmde;
950
951	*pmd = mm_find_pmd(mm, address);
952	if (!*pmd)
953		return SCAN_PMD_NULL;
954
955	pmde = pmdp_get_lockless(*pmd);
956	if (pmd_none(pmde))
957		return SCAN_PMD_NONE;
958	if (!pmd_present(pmde))
959		return SCAN_PMD_NULL;
960	if (pmd_trans_huge(pmde))
961		return SCAN_PMD_MAPPED;
962	if (pmd_devmap(pmde))
963		return SCAN_PMD_NULL;
964	if (pmd_bad(pmde))
965		return SCAN_PMD_NULL;
966	return SCAN_SUCCEED;
967}
968
969static int check_pmd_still_valid(struct mm_struct *mm,
970				 unsigned long address,
971				 pmd_t *pmd)
972{
973	pmd_t *new_pmd;
974	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
975
976	if (result != SCAN_SUCCEED)
977		return result;
978	if (new_pmd != pmd)
979		return SCAN_FAIL;
980	return SCAN_SUCCEED;
981}
982
983/*
984 * Bring missing pages in from swap, to complete THP collapse.
985 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
986 *
987 * Called and returns without pte mapped or spinlocks held.
988 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
989 */
990static int __collapse_huge_page_swapin(struct mm_struct *mm,
991				       struct vm_area_struct *vma,
992				       unsigned long haddr, pmd_t *pmd,
993				       int referenced)
994{
995	int swapped_in = 0;
996	vm_fault_t ret = 0;
997	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
998	int result;
999	pte_t *pte = NULL;
1000	spinlock_t *ptl;
1001
1002	for (address = haddr; address < end; address += PAGE_SIZE) {
1003		struct vm_fault vmf = {
1004			.vma = vma,
1005			.address = address,
1006			.pgoff = linear_page_index(vma, address),
1007			.flags = FAULT_FLAG_ALLOW_RETRY,
1008			.pmd = pmd,
1009		};
1010
1011		if (!pte++) {
1012			pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
1013			if (!pte) {
1014				mmap_read_unlock(mm);
1015				result = SCAN_PMD_NULL;
1016				goto out;
1017			}
1018		}
1019
1020		vmf.orig_pte = ptep_get_lockless(pte);
1021		if (!is_swap_pte(vmf.orig_pte))
1022			continue;
1023
1024		vmf.pte = pte;
1025		vmf.ptl = ptl;
1026		ret = do_swap_page(&vmf);
1027		/* Which unmaps pte (after perhaps re-checking the entry) */
1028		pte = NULL;
1029
1030		/*
1031		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1032		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1033		 * we do not retry here and swap entry will remain in pagetable
1034		 * resulting in later failure.
1035		 */
1036		if (ret & VM_FAULT_RETRY) {
1037			/* Likely, but not guaranteed, that page lock failed */
1038			result = SCAN_PAGE_LOCK;
1039			goto out;
1040		}
1041		if (ret & VM_FAULT_ERROR) {
1042			mmap_read_unlock(mm);
1043			result = SCAN_FAIL;
1044			goto out;
1045		}
1046		swapped_in++;
1047	}
1048
1049	if (pte)
1050		pte_unmap(pte);
1051
1052	/* Drain LRU cache to remove extra pin on the swapped in pages */
1053	if (swapped_in)
1054		lru_add_drain();
1055
1056	result = SCAN_SUCCEED;
1057out:
1058	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1059	return result;
1060}
1061
1062static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
1063			      struct collapse_control *cc)
1064{
1065	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1066		     GFP_TRANSHUGE);
1067	int node = hpage_collapse_find_target_node(cc);
1068	struct folio *folio;
1069
1070	if (!hpage_collapse_alloc_folio(&folio, gfp, node, &cc->alloc_nmask)) {
1071		*hpage = NULL;
1072		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1073	}
1074
1075	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1076		folio_put(folio);
1077		*hpage = NULL;
1078		return SCAN_CGROUP_CHARGE_FAIL;
1079	}
1080
1081	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1082
1083	*hpage = folio_page(folio, 0);
1084	return SCAN_SUCCEED;
1085}
1086
1087static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1088			      int referenced, int unmapped,
1089			      struct collapse_control *cc)
1090{
1091	LIST_HEAD(compound_pagelist);
1092	pmd_t *pmd, _pmd;
1093	pte_t *pte;
1094	pgtable_t pgtable;
1095	struct folio *folio;
1096	struct page *hpage;
1097	spinlock_t *pmd_ptl, *pte_ptl;
1098	int result = SCAN_FAIL;
1099	struct vm_area_struct *vma;
1100	struct mmu_notifier_range range;
1101
1102	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1103
1104	/*
1105	 * Before allocating the hugepage, release the mmap_lock read lock.
1106	 * The allocation can take potentially a long time if it involves
1107	 * sync compaction, and we do not need to hold the mmap_lock during
1108	 * that. We will recheck the vma after taking it again in write mode.
1109	 */
1110	mmap_read_unlock(mm);
1111
1112	result = alloc_charge_hpage(&hpage, mm, cc);
1113	if (result != SCAN_SUCCEED)
1114		goto out_nolock;
1115
1116	mmap_read_lock(mm);
1117	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1118	if (result != SCAN_SUCCEED) {
1119		mmap_read_unlock(mm);
1120		goto out_nolock;
1121	}
1122
1123	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1124	if (result != SCAN_SUCCEED) {
1125		mmap_read_unlock(mm);
1126		goto out_nolock;
1127	}
1128
1129	if (unmapped) {
1130		/*
1131		 * __collapse_huge_page_swapin will return with mmap_lock
1132		 * released when it fails. So we jump out_nolock directly in
1133		 * that case.  Continuing to collapse causes inconsistency.
1134		 */
1135		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1136						     referenced);
1137		if (result != SCAN_SUCCEED)
1138			goto out_nolock;
1139	}
1140
1141	mmap_read_unlock(mm);
1142	/*
1143	 * Prevent all access to pagetables with the exception of
1144	 * gup_fast later handled by the ptep_clear_flush and the VM
1145	 * handled by the anon_vma lock + PG_lock.
1146	 *
1147	 * UFFDIO_MOVE is prevented to race as well thanks to the
1148	 * mmap_lock.
1149	 */
1150	mmap_write_lock(mm);
1151	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1152	if (result != SCAN_SUCCEED)
1153		goto out_up_write;
1154	/* check if the pmd is still valid */
1155	result = check_pmd_still_valid(mm, address, pmd);
1156	if (result != SCAN_SUCCEED)
1157		goto out_up_write;
1158
1159	vma_start_write(vma);
1160	anon_vma_lock_write(vma->anon_vma);
1161
1162	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1163				address + HPAGE_PMD_SIZE);
1164	mmu_notifier_invalidate_range_start(&range);
1165
1166	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1167	/*
1168	 * This removes any huge TLB entry from the CPU so we won't allow
1169	 * huge and small TLB entries for the same virtual address to
1170	 * avoid the risk of CPU bugs in that area.
1171	 *
1172	 * Parallel fast GUP is fine since fast GUP will back off when
1173	 * it detects PMD is changed.
1174	 */
1175	_pmd = pmdp_collapse_flush(vma, address, pmd);
1176	spin_unlock(pmd_ptl);
1177	mmu_notifier_invalidate_range_end(&range);
1178	tlb_remove_table_sync_one();
1179
1180	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1181	if (pte) {
1182		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1183						      &compound_pagelist);
1184		spin_unlock(pte_ptl);
1185	} else {
1186		result = SCAN_PMD_NULL;
1187	}
1188
1189	if (unlikely(result != SCAN_SUCCEED)) {
1190		if (pte)
1191			pte_unmap(pte);
1192		spin_lock(pmd_ptl);
1193		BUG_ON(!pmd_none(*pmd));
1194		/*
1195		 * We can only use set_pmd_at when establishing
1196		 * hugepmds and never for establishing regular pmds that
1197		 * points to regular pagetables. Use pmd_populate for that
1198		 */
1199		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1200		spin_unlock(pmd_ptl);
1201		anon_vma_unlock_write(vma->anon_vma);
1202		goto out_up_write;
1203	}
1204
1205	/*
1206	 * All pages are isolated and locked so anon_vma rmap
1207	 * can't run anymore.
1208	 */
1209	anon_vma_unlock_write(vma->anon_vma);
1210
1211	result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
1212					   vma, address, pte_ptl,
1213					   &compound_pagelist);
1214	pte_unmap(pte);
1215	if (unlikely(result != SCAN_SUCCEED))
1216		goto out_up_write;
1217
1218	folio = page_folio(hpage);
1219	/*
1220	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1221	 * copy_huge_page writes become visible before the set_pmd_at()
1222	 * write.
1223	 */
1224	__folio_mark_uptodate(folio);
1225	pgtable = pmd_pgtable(_pmd);
1226
1227	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1228	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1229
1230	spin_lock(pmd_ptl);
1231	BUG_ON(!pmd_none(*pmd));
1232	folio_add_new_anon_rmap(folio, vma, address);
1233	folio_add_lru_vma(folio, vma);
1234	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1235	set_pmd_at(mm, address, pmd, _pmd);
1236	update_mmu_cache_pmd(vma, address, pmd);
1237	spin_unlock(pmd_ptl);
1238
1239	hpage = NULL;
1240
1241	result = SCAN_SUCCEED;
1242out_up_write:
1243	mmap_write_unlock(mm);
1244out_nolock:
1245	if (hpage)
1246		put_page(hpage);
1247	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1248	return result;
1249}
1250
1251static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1252				   struct vm_area_struct *vma,
1253				   unsigned long address, bool *mmap_locked,
1254				   struct collapse_control *cc)
1255{
1256	pmd_t *pmd;
1257	pte_t *pte, *_pte;
1258	int result = SCAN_FAIL, referenced = 0;
1259	int none_or_zero = 0, shared = 0;
1260	struct page *page = NULL;
1261	struct folio *folio = NULL;
1262	unsigned long _address;
1263	spinlock_t *ptl;
1264	int node = NUMA_NO_NODE, unmapped = 0;
1265	bool writable = false;
1266
1267	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1268
1269	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1270	if (result != SCAN_SUCCEED)
1271		goto out;
1272
1273	memset(cc->node_load, 0, sizeof(cc->node_load));
1274	nodes_clear(cc->alloc_nmask);
1275	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1276	if (!pte) {
1277		result = SCAN_PMD_NULL;
1278		goto out;
1279	}
1280
1281	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1282	     _pte++, _address += PAGE_SIZE) {
1283		pte_t pteval = ptep_get(_pte);
1284		if (is_swap_pte(pteval)) {
1285			++unmapped;
1286			if (!cc->is_khugepaged ||
1287			    unmapped <= khugepaged_max_ptes_swap) {
1288				/*
1289				 * Always be strict with uffd-wp
1290				 * enabled swap entries.  Please see
1291				 * comment below for pte_uffd_wp().
1292				 */
1293				if (pte_swp_uffd_wp_any(pteval)) {
1294					result = SCAN_PTE_UFFD_WP;
1295					goto out_unmap;
1296				}
1297				continue;
1298			} else {
1299				result = SCAN_EXCEED_SWAP_PTE;
1300				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1301				goto out_unmap;
1302			}
1303		}
1304		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1305			++none_or_zero;
1306			if (!userfaultfd_armed(vma) &&
1307			    (!cc->is_khugepaged ||
1308			     none_or_zero <= khugepaged_max_ptes_none)) {
1309				continue;
1310			} else {
1311				result = SCAN_EXCEED_NONE_PTE;
1312				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1313				goto out_unmap;
1314			}
1315		}
1316		if (pte_uffd_wp(pteval)) {
1317			/*
1318			 * Don't collapse the page if any of the small
1319			 * PTEs are armed with uffd write protection.
1320			 * Here we can also mark the new huge pmd as
1321			 * write protected if any of the small ones is
1322			 * marked but that could bring unknown
1323			 * userfault messages that falls outside of
1324			 * the registered range.  So, just be simple.
1325			 */
1326			result = SCAN_PTE_UFFD_WP;
1327			goto out_unmap;
1328		}
1329		if (pte_write(pteval))
1330			writable = true;
1331
1332		page = vm_normal_page(vma, _address, pteval);
1333		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1334			result = SCAN_PAGE_NULL;
1335			goto out_unmap;
1336		}
1337
1338		if (page_mapcount(page) > 1) {
1339			++shared;
1340			if (cc->is_khugepaged &&
1341			    shared > khugepaged_max_ptes_shared) {
1342				result = SCAN_EXCEED_SHARED_PTE;
1343				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1344				goto out_unmap;
1345			}
1346		}
1347
1348		folio = page_folio(page);
1349		/*
1350		 * Record which node the original page is from and save this
1351		 * information to cc->node_load[].
1352		 * Khugepaged will allocate hugepage from the node has the max
1353		 * hit record.
1354		 */
1355		node = folio_nid(folio);
1356		if (hpage_collapse_scan_abort(node, cc)) {
1357			result = SCAN_SCAN_ABORT;
1358			goto out_unmap;
1359		}
1360		cc->node_load[node]++;
1361		if (!folio_test_lru(folio)) {
1362			result = SCAN_PAGE_LRU;
1363			goto out_unmap;
1364		}
1365		if (folio_test_locked(folio)) {
1366			result = SCAN_PAGE_LOCK;
1367			goto out_unmap;
1368		}
1369		if (!folio_test_anon(folio)) {
1370			result = SCAN_PAGE_ANON;
1371			goto out_unmap;
1372		}
1373
1374		/*
1375		 * Check if the page has any GUP (or other external) pins.
1376		 *
1377		 * Here the check may be racy:
1378		 * it may see total_mapcount > refcount in some cases?
1379		 * But such case is ephemeral we could always retry collapse
1380		 * later.  However it may report false positive if the page
1381		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1382		 * will be done again later the risk seems low.
1383		 */
1384		if (!is_refcount_suitable(folio)) {
1385			result = SCAN_PAGE_COUNT;
1386			goto out_unmap;
1387		}
1388
1389		/*
1390		 * If collapse was initiated by khugepaged, check that there is
1391		 * enough young pte to justify collapsing the page
1392		 */
1393		if (cc->is_khugepaged &&
1394		    (pte_young(pteval) || folio_test_young(folio) ||
1395		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1396								     address)))
1397			referenced++;
1398	}
1399	if (!writable) {
1400		result = SCAN_PAGE_RO;
1401	} else if (cc->is_khugepaged &&
1402		   (!referenced ||
1403		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1404		result = SCAN_LACK_REFERENCED_PAGE;
1405	} else {
1406		result = SCAN_SUCCEED;
1407	}
1408out_unmap:
1409	pte_unmap_unlock(pte, ptl);
1410	if (result == SCAN_SUCCEED) {
1411		result = collapse_huge_page(mm, address, referenced,
1412					    unmapped, cc);
1413		/* collapse_huge_page will return with the mmap_lock released */
1414		*mmap_locked = false;
1415	}
1416out:
1417	trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
1418				     none_or_zero, result, unmapped);
1419	return result;
1420}
1421
1422static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1423{
1424	struct mm_slot *slot = &mm_slot->slot;
1425	struct mm_struct *mm = slot->mm;
1426
1427	lockdep_assert_held(&khugepaged_mm_lock);
1428
1429	if (hpage_collapse_test_exit(mm)) {
1430		/* free mm_slot */
1431		hash_del(&slot->hash);
1432		list_del(&slot->mm_node);
1433
1434		/*
1435		 * Not strictly needed because the mm exited already.
1436		 *
1437		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1438		 */
1439
1440		/* khugepaged_mm_lock actually not necessary for the below */
1441		mm_slot_free(mm_slot_cache, mm_slot);
1442		mmdrop(mm);
1443	}
1444}
1445
1446#ifdef CONFIG_SHMEM
1447/* hpage must be locked, and mmap_lock must be held */
1448static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1449			pmd_t *pmdp, struct page *hpage)
1450{
1451	struct vm_fault vmf = {
1452		.vma = vma,
1453		.address = addr,
1454		.flags = 0,
1455		.pmd = pmdp,
1456	};
1457
1458	VM_BUG_ON(!PageTransHuge(hpage));
1459	mmap_assert_locked(vma->vm_mm);
1460
1461	if (do_set_pmd(&vmf, hpage))
1462		return SCAN_FAIL;
1463
1464	get_page(hpage);
1465	return SCAN_SUCCEED;
1466}
1467
1468/**
1469 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1470 * address haddr.
1471 *
1472 * @mm: process address space where collapse happens
1473 * @addr: THP collapse address
1474 * @install_pmd: If a huge PMD should be installed
1475 *
1476 * This function checks whether all the PTEs in the PMD are pointing to the
1477 * right THP. If so, retract the page table so the THP can refault in with
1478 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1479 */
1480int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1481			    bool install_pmd)
1482{
1483	struct mmu_notifier_range range;
1484	bool notified = false;
1485	unsigned long haddr = addr & HPAGE_PMD_MASK;
1486	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1487	struct folio *folio;
1488	pte_t *start_pte, *pte;
1489	pmd_t *pmd, pgt_pmd;
1490	spinlock_t *pml = NULL, *ptl;
1491	int nr_ptes = 0, result = SCAN_FAIL;
1492	int i;
1493
1494	mmap_assert_locked(mm);
1495
1496	/* First check VMA found, in case page tables are being torn down */
1497	if (!vma || !vma->vm_file ||
1498	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1499		return SCAN_VMA_CHECK;
1500
1501	/* Fast check before locking page if already PMD-mapped */
1502	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1503	if (result == SCAN_PMD_MAPPED)
1504		return result;
1505
1506	/*
1507	 * If we are here, we've succeeded in replacing all the native pages
1508	 * in the page cache with a single hugepage. If a mm were to fault-in
1509	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1510	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1511	 * analogously elide sysfs THP settings here.
1512	 */
1513	if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false,
1514				     PMD_ORDER))
1515		return SCAN_VMA_CHECK;
1516
1517	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1518	if (userfaultfd_wp(vma))
1519		return SCAN_PTE_UFFD_WP;
1520
1521	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1522			       linear_page_index(vma, haddr));
1523	if (IS_ERR(folio))
1524		return SCAN_PAGE_NULL;
1525
1526	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1527		result = SCAN_PAGE_COMPOUND;
1528		goto drop_folio;
1529	}
1530
1531	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1532	switch (result) {
1533	case SCAN_SUCCEED:
1534		break;
1535	case SCAN_PMD_NONE:
1536		/*
1537		 * All pte entries have been removed and pmd cleared.
1538		 * Skip all the pte checks and just update the pmd mapping.
1539		 */
1540		goto maybe_install_pmd;
1541	default:
1542		goto drop_folio;
1543	}
1544
1545	result = SCAN_FAIL;
1546	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1547	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1548		goto drop_folio;
1549
1550	/* step 1: check all mapped PTEs are to the right huge page */
1551	for (i = 0, addr = haddr, pte = start_pte;
1552	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1553		struct page *page;
1554		pte_t ptent = ptep_get(pte);
1555
1556		/* empty pte, skip */
1557		if (pte_none(ptent))
1558			continue;
1559
1560		/* page swapped out, abort */
1561		if (!pte_present(ptent)) {
1562			result = SCAN_PTE_NON_PRESENT;
1563			goto abort;
1564		}
1565
1566		page = vm_normal_page(vma, addr, ptent);
1567		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1568			page = NULL;
1569		/*
1570		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1571		 * page table, but the new page will not be a subpage of hpage.
1572		 */
1573		if (folio_page(folio, i) != page)
1574			goto abort;
1575	}
1576
1577	pte_unmap_unlock(start_pte, ptl);
1578	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1579				haddr, haddr + HPAGE_PMD_SIZE);
1580	mmu_notifier_invalidate_range_start(&range);
1581	notified = true;
1582
1583	/*
1584	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1585	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1586	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1587	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1588	 * So page lock of folio does not protect from it, so we must not drop
1589	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1590	 */
1591	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1592		pml = pmd_lock(mm, pmd);
1593
1594	start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1595	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1596		goto abort;
1597	if (!pml)
1598		spin_lock(ptl);
1599	else if (ptl != pml)
1600		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1601
1602	/* step 2: clear page table and adjust rmap */
1603	for (i = 0, addr = haddr, pte = start_pte;
1604	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1605		struct page *page;
1606		pte_t ptent = ptep_get(pte);
1607
1608		if (pte_none(ptent))
1609			continue;
1610		/*
1611		 * We dropped ptl after the first scan, to do the mmu_notifier:
1612		 * page lock stops more PTEs of the folio being faulted in, but
1613		 * does not stop write faults COWing anon copies from existing
1614		 * PTEs; and does not stop those being swapped out or migrated.
1615		 */
1616		if (!pte_present(ptent)) {
1617			result = SCAN_PTE_NON_PRESENT;
1618			goto abort;
1619		}
1620		page = vm_normal_page(vma, addr, ptent);
1621		if (folio_page(folio, i) != page)
1622			goto abort;
1623
1624		/*
1625		 * Must clear entry, or a racing truncate may re-remove it.
1626		 * TLB flush can be left until pmdp_collapse_flush() does it.
1627		 * PTE dirty? Shmem page is already dirty; file is read-only.
1628		 */
1629		ptep_clear(mm, addr, pte);
1630		folio_remove_rmap_pte(folio, page, vma);
1631		nr_ptes++;
1632	}
1633
1634	pte_unmap(start_pte);
1635	if (!pml)
1636		spin_unlock(ptl);
1637
1638	/* step 3: set proper refcount and mm_counters. */
1639	if (nr_ptes) {
1640		folio_ref_sub(folio, nr_ptes);
1641		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1642	}
1643
1644	/* step 4: remove empty page table */
1645	if (!pml) {
1646		pml = pmd_lock(mm, pmd);
1647		if (ptl != pml)
1648			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1649	}
1650	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1651	pmdp_get_lockless_sync();
1652	if (ptl != pml)
1653		spin_unlock(ptl);
1654	spin_unlock(pml);
1655
1656	mmu_notifier_invalidate_range_end(&range);
1657
1658	mm_dec_nr_ptes(mm);
1659	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1660	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1661
1662maybe_install_pmd:
1663	/* step 5: install pmd entry */
1664	result = install_pmd
1665			? set_huge_pmd(vma, haddr, pmd, &folio->page)
1666			: SCAN_SUCCEED;
1667	goto drop_folio;
1668abort:
1669	if (nr_ptes) {
1670		flush_tlb_mm(mm);
1671		folio_ref_sub(folio, nr_ptes);
1672		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1673	}
1674	if (start_pte)
1675		pte_unmap_unlock(start_pte, ptl);
1676	if (pml && pml != ptl)
1677		spin_unlock(pml);
1678	if (notified)
1679		mmu_notifier_invalidate_range_end(&range);
1680drop_folio:
1681	folio_unlock(folio);
1682	folio_put(folio);
1683	return result;
1684}
1685
1686static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1687{
1688	struct vm_area_struct *vma;
1689
1690	i_mmap_lock_read(mapping);
1691	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1692		struct mmu_notifier_range range;
1693		struct mm_struct *mm;
1694		unsigned long addr;
1695		pmd_t *pmd, pgt_pmd;
1696		spinlock_t *pml;
1697		spinlock_t *ptl;
1698		bool skipped_uffd = false;
1699
1700		/*
1701		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1702		 * got written to. These VMAs are likely not worth removing
1703		 * page tables from, as PMD-mapping is likely to be split later.
1704		 */
1705		if (READ_ONCE(vma->anon_vma))
1706			continue;
1707
1708		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1709		if (addr & ~HPAGE_PMD_MASK ||
1710		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1711			continue;
1712
1713		mm = vma->vm_mm;
1714		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1715			continue;
1716
1717		if (hpage_collapse_test_exit(mm))
1718			continue;
1719		/*
1720		 * When a vma is registered with uffd-wp, we cannot recycle
1721		 * the page table because there may be pte markers installed.
1722		 * Other vmas can still have the same file mapped hugely, but
1723		 * skip this one: it will always be mapped in small page size
1724		 * for uffd-wp registered ranges.
1725		 */
1726		if (userfaultfd_wp(vma))
1727			continue;
1728
1729		/* PTEs were notified when unmapped; but now for the PMD? */
1730		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1731					addr, addr + HPAGE_PMD_SIZE);
1732		mmu_notifier_invalidate_range_start(&range);
1733
1734		pml = pmd_lock(mm, pmd);
1735		ptl = pte_lockptr(mm, pmd);
1736		if (ptl != pml)
1737			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1738
1739		/*
1740		 * Huge page lock is still held, so normally the page table
1741		 * must remain empty; and we have already skipped anon_vma
1742		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1743		 * held, it is still possible for a racing userfaultfd_ioctl()
1744		 * to have inserted ptes or markers.  Now that we hold ptlock,
1745		 * repeating the anon_vma check protects from one category,
1746		 * and repeating the userfaultfd_wp() check from another.
1747		 */
1748		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1749			skipped_uffd = true;
1750		} else {
1751			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1752			pmdp_get_lockless_sync();
1753		}
1754
1755		if (ptl != pml)
1756			spin_unlock(ptl);
1757		spin_unlock(pml);
1758
1759		mmu_notifier_invalidate_range_end(&range);
1760
1761		if (!skipped_uffd) {
1762			mm_dec_nr_ptes(mm);
1763			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1764			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1765		}
1766	}
1767	i_mmap_unlock_read(mapping);
1768}
1769
1770/**
1771 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1772 *
1773 * @mm: process address space where collapse happens
1774 * @addr: virtual collapse start address
1775 * @file: file that collapse on
1776 * @start: collapse start address
1777 * @cc: collapse context and scratchpad
1778 *
1779 * Basic scheme is simple, details are more complex:
1780 *  - allocate and lock a new huge page;
1781 *  - scan page cache, locking old pages
1782 *    + swap/gup in pages if necessary;
1783 *  - copy data to new page
1784 *  - handle shmem holes
1785 *    + re-validate that holes weren't filled by someone else
1786 *    + check for userfaultfd
1787 *  - finalize updates to the page cache;
1788 *  - if replacing succeeds:
1789 *    + unlock huge page;
1790 *    + free old pages;
1791 *  - if replacing failed;
1792 *    + unlock old pages
1793 *    + unlock and free huge page;
1794 */
1795static int collapse_file(struct mm_struct *mm, unsigned long addr,
1796			 struct file *file, pgoff_t start,
1797			 struct collapse_control *cc)
1798{
1799	struct address_space *mapping = file->f_mapping;
1800	struct page *hpage;
1801	struct page *page;
1802	struct page *tmp;
1803	struct folio *folio;
1804	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1805	LIST_HEAD(pagelist);
1806	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1807	int nr_none = 0, result = SCAN_SUCCEED;
1808	bool is_shmem = shmem_file(file);
1809	int nr = 0;
1810
1811	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1812	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1813
1814	result = alloc_charge_hpage(&hpage, mm, cc);
1815	if (result != SCAN_SUCCEED)
1816		goto out;
1817
1818	__SetPageLocked(hpage);
1819	if (is_shmem)
1820		__SetPageSwapBacked(hpage);
1821	hpage->index = start;
1822	hpage->mapping = mapping;
1823
1824	/*
1825	 * Ensure we have slots for all the pages in the range.  This is
1826	 * almost certainly a no-op because most of the pages must be present
1827	 */
1828	do {
1829		xas_lock_irq(&xas);
1830		xas_create_range(&xas);
1831		if (!xas_error(&xas))
1832			break;
1833		xas_unlock_irq(&xas);
1834		if (!xas_nomem(&xas, GFP_KERNEL)) {
1835			result = SCAN_FAIL;
1836			goto rollback;
1837		}
1838	} while (1);
1839
1840	for (index = start; index < end; index++) {
1841		xas_set(&xas, index);
1842		page = xas_load(&xas);
1843
1844		VM_BUG_ON(index != xas.xa_index);
1845		if (is_shmem) {
1846			if (!page) {
1847				/*
1848				 * Stop if extent has been truncated or
1849				 * hole-punched, and is now completely
1850				 * empty.
1851				 */
1852				if (index == start) {
1853					if (!xas_next_entry(&xas, end - 1)) {
1854						result = SCAN_TRUNCATED;
1855						goto xa_locked;
1856					}
1857				}
1858				nr_none++;
1859				continue;
1860			}
1861
1862			if (xa_is_value(page) || !PageUptodate(page)) {
1863				xas_unlock_irq(&xas);
1864				/* swap in or instantiate fallocated page */
1865				if (shmem_get_folio(mapping->host, index,
1866						&folio, SGP_NOALLOC)) {
1867					result = SCAN_FAIL;
1868					goto xa_unlocked;
1869				}
1870				/* drain lru cache to help isolate_lru_page() */
1871				lru_add_drain();
1872				page = folio_file_page(folio, index);
1873			} else if (trylock_page(page)) {
1874				get_page(page);
1875				xas_unlock_irq(&xas);
1876			} else {
1877				result = SCAN_PAGE_LOCK;
1878				goto xa_locked;
1879			}
1880		} else {	/* !is_shmem */
1881			if (!page || xa_is_value(page)) {
1882				xas_unlock_irq(&xas);
1883				page_cache_sync_readahead(mapping, &file->f_ra,
1884							  file, index,
1885							  end - index);
1886				/* drain lru cache to help isolate_lru_page() */
1887				lru_add_drain();
1888				page = find_lock_page(mapping, index);
1889				if (unlikely(page == NULL)) {
1890					result = SCAN_FAIL;
1891					goto xa_unlocked;
1892				}
1893			} else if (PageDirty(page)) {
1894				/*
1895				 * khugepaged only works on read-only fd,
1896				 * so this page is dirty because it hasn't
1897				 * been flushed since first write. There
1898				 * won't be new dirty pages.
1899				 *
1900				 * Trigger async flush here and hope the
1901				 * writeback is done when khugepaged
1902				 * revisits this page.
1903				 *
1904				 * This is a one-off situation. We are not
1905				 * forcing writeback in loop.
1906				 */
1907				xas_unlock_irq(&xas);
1908				filemap_flush(mapping);
1909				result = SCAN_FAIL;
1910				goto xa_unlocked;
1911			} else if (PageWriteback(page)) {
1912				xas_unlock_irq(&xas);
1913				result = SCAN_FAIL;
1914				goto xa_unlocked;
1915			} else if (trylock_page(page)) {
1916				get_page(page);
1917				xas_unlock_irq(&xas);
1918			} else {
1919				result = SCAN_PAGE_LOCK;
1920				goto xa_locked;
1921			}
1922		}
1923
1924		/*
1925		 * The page must be locked, so we can drop the i_pages lock
1926		 * without racing with truncate.
1927		 */
1928		VM_BUG_ON_PAGE(!PageLocked(page), page);
1929
1930		/* make sure the page is up to date */
1931		if (unlikely(!PageUptodate(page))) {
1932			result = SCAN_FAIL;
1933			goto out_unlock;
1934		}
1935
1936		/*
1937		 * If file was truncated then extended, or hole-punched, before
1938		 * we locked the first page, then a THP might be there already.
1939		 * This will be discovered on the first iteration.
1940		 */
1941		if (PageTransCompound(page)) {
1942			struct page *head = compound_head(page);
1943
1944			result = compound_order(head) == HPAGE_PMD_ORDER &&
1945					head->index == start
1946					/* Maybe PMD-mapped */
1947					? SCAN_PTE_MAPPED_HUGEPAGE
1948					: SCAN_PAGE_COMPOUND;
1949			goto out_unlock;
1950		}
1951
1952		folio = page_folio(page);
1953
1954		if (folio_mapping(folio) != mapping) {
1955			result = SCAN_TRUNCATED;
1956			goto out_unlock;
1957		}
1958
1959		if (!is_shmem && (folio_test_dirty(folio) ||
1960				  folio_test_writeback(folio))) {
1961			/*
1962			 * khugepaged only works on read-only fd, so this
1963			 * page is dirty because it hasn't been flushed
1964			 * since first write.
1965			 */
1966			result = SCAN_FAIL;
1967			goto out_unlock;
1968		}
1969
1970		if (!folio_isolate_lru(folio)) {
1971			result = SCAN_DEL_PAGE_LRU;
1972			goto out_unlock;
1973		}
1974
1975		if (!filemap_release_folio(folio, GFP_KERNEL)) {
1976			result = SCAN_PAGE_HAS_PRIVATE;
1977			folio_putback_lru(folio);
1978			goto out_unlock;
1979		}
1980
1981		if (folio_mapped(folio))
1982			try_to_unmap(folio,
1983					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1984
1985		xas_lock_irq(&xas);
1986
1987		VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page);
1988
1989		/*
1990		 * We control three references to the page:
1991		 *  - we hold a pin on it;
1992		 *  - one reference from page cache;
1993		 *  - one from isolate_lru_page;
1994		 * If those are the only references, then any new usage of the
1995		 * page will have to fetch it from the page cache. That requires
1996		 * locking the page to handle truncate, so any new usage will be
1997		 * blocked until we unlock page after collapse/during rollback.
1998		 */
1999		if (page_count(page) != 3) {
2000			result = SCAN_PAGE_COUNT;
2001			xas_unlock_irq(&xas);
2002			putback_lru_page(page);
2003			goto out_unlock;
2004		}
2005
2006		/*
2007		 * Accumulate the pages that are being collapsed.
2008		 */
2009		list_add_tail(&page->lru, &pagelist);
2010		continue;
2011out_unlock:
2012		unlock_page(page);
2013		put_page(page);
2014		goto xa_unlocked;
2015	}
2016
2017	if (!is_shmem) {
2018		filemap_nr_thps_inc(mapping);
2019		/*
2020		 * Paired with smp_mb() in do_dentry_open() to ensure
2021		 * i_writecount is up to date and the update to nr_thps is
2022		 * visible. Ensures the page cache will be truncated if the
2023		 * file is opened writable.
2024		 */
2025		smp_mb();
2026		if (inode_is_open_for_write(mapping->host)) {
2027			result = SCAN_FAIL;
2028			filemap_nr_thps_dec(mapping);
2029		}
2030	}
2031
2032xa_locked:
2033	xas_unlock_irq(&xas);
2034xa_unlocked:
2035
2036	/*
2037	 * If collapse is successful, flush must be done now before copying.
2038	 * If collapse is unsuccessful, does flush actually need to be done?
2039	 * Do it anyway, to clear the state.
2040	 */
2041	try_to_unmap_flush();
2042
2043	if (result == SCAN_SUCCEED && nr_none &&
2044	    !shmem_charge(mapping->host, nr_none))
2045		result = SCAN_FAIL;
2046	if (result != SCAN_SUCCEED) {
2047		nr_none = 0;
2048		goto rollback;
2049	}
2050
2051	/*
2052	 * The old pages are locked, so they won't change anymore.
2053	 */
2054	index = start;
2055	list_for_each_entry(page, &pagelist, lru) {
2056		while (index < page->index) {
2057			clear_highpage(hpage + (index % HPAGE_PMD_NR));
2058			index++;
2059		}
2060		if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
2061			result = SCAN_COPY_MC;
2062			goto rollback;
2063		}
2064		index++;
2065	}
2066	while (index < end) {
2067		clear_highpage(hpage + (index % HPAGE_PMD_NR));
2068		index++;
2069	}
2070
2071	if (nr_none) {
2072		struct vm_area_struct *vma;
2073		int nr_none_check = 0;
2074
2075		i_mmap_lock_read(mapping);
2076		xas_lock_irq(&xas);
2077
2078		xas_set(&xas, start);
2079		for (index = start; index < end; index++) {
2080			if (!xas_next(&xas)) {
2081				xas_store(&xas, XA_RETRY_ENTRY);
2082				if (xas_error(&xas)) {
2083					result = SCAN_STORE_FAILED;
2084					goto immap_locked;
2085				}
2086				nr_none_check++;
2087			}
2088		}
2089
2090		if (nr_none != nr_none_check) {
2091			result = SCAN_PAGE_FILLED;
2092			goto immap_locked;
2093		}
2094
2095		/*
2096		 * If userspace observed a missing page in a VMA with a MODE_MISSING
2097		 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
2098		 * page. If so, we need to roll back to avoid suppressing such an
2099		 * event. Since wp/minor userfaultfds don't give userspace any
2100		 * guarantees that the kernel doesn't fill a missing page with a zero
2101		 * page, so they don't matter here.
2102		 *
2103		 * Any userfaultfds registered after this point will not be able to
2104		 * observe any missing pages due to the previously inserted retry
2105		 * entries.
2106		 */
2107		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2108			if (userfaultfd_missing(vma)) {
2109				result = SCAN_EXCEED_NONE_PTE;
2110				goto immap_locked;
2111			}
2112		}
2113
2114immap_locked:
2115		i_mmap_unlock_read(mapping);
2116		if (result != SCAN_SUCCEED) {
2117			xas_set(&xas, start);
2118			for (index = start; index < end; index++) {
2119				if (xas_next(&xas) == XA_RETRY_ENTRY)
2120					xas_store(&xas, NULL);
2121			}
2122
2123			xas_unlock_irq(&xas);
2124			goto rollback;
2125		}
2126	} else {
2127		xas_lock_irq(&xas);
2128	}
2129
2130	folio = page_folio(hpage);
2131	nr = folio_nr_pages(folio);
2132	if (is_shmem)
2133		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
2134	else
2135		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, nr);
2136
2137	if (nr_none) {
2138		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_none);
2139		/* nr_none is always 0 for non-shmem. */
2140		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_none);
2141	}
2142
2143	/*
2144	 * Mark hpage as uptodate before inserting it into the page cache so
2145	 * that it isn't mistaken for an fallocated but unwritten page.
2146	 */
2147	folio_mark_uptodate(folio);
2148	folio_ref_add(folio, HPAGE_PMD_NR - 1);
2149
2150	if (is_shmem)
2151		folio_mark_dirty(folio);
2152	folio_add_lru(folio);
2153
2154	/* Join all the small entries into a single multi-index entry. */
2155	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2156	xas_store(&xas, folio);
2157	WARN_ON_ONCE(xas_error(&xas));
2158	xas_unlock_irq(&xas);
2159
2160	/*
2161	 * Remove pte page tables, so we can re-fault the page as huge.
2162	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2163	 */
2164	retract_page_tables(mapping, start);
2165	if (cc && !cc->is_khugepaged)
2166		result = SCAN_PTE_MAPPED_HUGEPAGE;
2167	folio_unlock(folio);
2168
2169	/*
2170	 * The collapse has succeeded, so free the old pages.
2171	 */
2172	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2173		list_del(&page->lru);
2174		page->mapping = NULL;
2175		ClearPageActive(page);
2176		ClearPageUnevictable(page);
2177		unlock_page(page);
2178		folio_put_refs(page_folio(page), 3);
2179	}
2180
2181	goto out;
2182
2183rollback:
2184	/* Something went wrong: roll back page cache changes */
2185	if (nr_none) {
2186		xas_lock_irq(&xas);
2187		mapping->nrpages -= nr_none;
2188		xas_unlock_irq(&xas);
2189		shmem_uncharge(mapping->host, nr_none);
2190	}
2191
2192	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2193		list_del(&page->lru);
2194		unlock_page(page);
2195		putback_lru_page(page);
2196		put_page(page);
2197	}
2198	/*
2199	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2200	 * file only. This undo is not needed unless failure is
2201	 * due to SCAN_COPY_MC.
2202	 */
2203	if (!is_shmem && result == SCAN_COPY_MC) {
2204		filemap_nr_thps_dec(mapping);
2205		/*
2206		 * Paired with smp_mb() in do_dentry_open() to
2207		 * ensure the update to nr_thps is visible.
2208		 */
2209		smp_mb();
2210	}
2211
2212	hpage->mapping = NULL;
2213
2214	unlock_page(hpage);
2215	put_page(hpage);
2216out:
2217	VM_BUG_ON(!list_empty(&pagelist));
2218	trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
2219	return result;
2220}
2221
2222static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2223				    struct file *file, pgoff_t start,
2224				    struct collapse_control *cc)
2225{
2226	struct page *page = NULL;
2227	struct address_space *mapping = file->f_mapping;
2228	XA_STATE(xas, &mapping->i_pages, start);
2229	int present, swap;
2230	int node = NUMA_NO_NODE;
2231	int result = SCAN_SUCCEED;
2232
2233	present = 0;
2234	swap = 0;
2235	memset(cc->node_load, 0, sizeof(cc->node_load));
2236	nodes_clear(cc->alloc_nmask);
2237	rcu_read_lock();
2238	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2239		if (xas_retry(&xas, page))
2240			continue;
2241
2242		if (xa_is_value(page)) {
2243			++swap;
2244			if (cc->is_khugepaged &&
2245			    swap > khugepaged_max_ptes_swap) {
2246				result = SCAN_EXCEED_SWAP_PTE;
2247				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2248				break;
2249			}
2250			continue;
2251		}
2252
2253		/*
2254		 * TODO: khugepaged should compact smaller compound pages
2255		 * into a PMD sized page
2256		 */
2257		if (PageTransCompound(page)) {
2258			struct page *head = compound_head(page);
2259
2260			result = compound_order(head) == HPAGE_PMD_ORDER &&
2261					head->index == start
2262					/* Maybe PMD-mapped */
2263					? SCAN_PTE_MAPPED_HUGEPAGE
2264					: SCAN_PAGE_COMPOUND;
2265			/*
2266			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2267			 * by the caller won't touch the page cache, and so
2268			 * it's safe to skip LRU and refcount checks before
2269			 * returning.
2270			 */
2271			break;
2272		}
2273
2274		node = page_to_nid(page);
2275		if (hpage_collapse_scan_abort(node, cc)) {
2276			result = SCAN_SCAN_ABORT;
2277			break;
2278		}
2279		cc->node_load[node]++;
2280
2281		if (!PageLRU(page)) {
2282			result = SCAN_PAGE_LRU;
2283			break;
2284		}
2285
2286		if (page_count(page) !=
2287		    1 + page_mapcount(page) + page_has_private(page)) {
2288			result = SCAN_PAGE_COUNT;
2289			break;
2290		}
2291
2292		/*
2293		 * We probably should check if the page is referenced here, but
2294		 * nobody would transfer pte_young() to PageReferenced() for us.
2295		 * And rmap walk here is just too costly...
2296		 */
2297
2298		present++;
2299
2300		if (need_resched()) {
2301			xas_pause(&xas);
2302			cond_resched_rcu();
2303		}
2304	}
2305	rcu_read_unlock();
2306
2307	if (result == SCAN_SUCCEED) {
2308		if (cc->is_khugepaged &&
2309		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2310			result = SCAN_EXCEED_NONE_PTE;
2311			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2312		} else {
2313			result = collapse_file(mm, addr, file, start, cc);
2314		}
2315	}
2316
2317	trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2318	return result;
2319}
2320#else
2321static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2322				    struct file *file, pgoff_t start,
2323				    struct collapse_control *cc)
2324{
2325	BUILD_BUG();
2326}
2327#endif
2328
2329static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2330					    struct collapse_control *cc)
2331	__releases(&khugepaged_mm_lock)
2332	__acquires(&khugepaged_mm_lock)
2333{
2334	struct vma_iterator vmi;
2335	struct khugepaged_mm_slot *mm_slot;
2336	struct mm_slot *slot;
2337	struct mm_struct *mm;
2338	struct vm_area_struct *vma;
2339	int progress = 0;
2340
2341	VM_BUG_ON(!pages);
2342	lockdep_assert_held(&khugepaged_mm_lock);
2343	*result = SCAN_FAIL;
2344
2345	if (khugepaged_scan.mm_slot) {
2346		mm_slot = khugepaged_scan.mm_slot;
2347		slot = &mm_slot->slot;
2348	} else {
2349		slot = list_entry(khugepaged_scan.mm_head.next,
2350				     struct mm_slot, mm_node);
2351		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2352		khugepaged_scan.address = 0;
2353		khugepaged_scan.mm_slot = mm_slot;
2354	}
2355	spin_unlock(&khugepaged_mm_lock);
2356
2357	mm = slot->mm;
2358	/*
2359	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2360	 * the next mm on the list.
2361	 */
2362	vma = NULL;
2363	if (unlikely(!mmap_read_trylock(mm)))
2364		goto breakouterloop_mmap_lock;
2365
2366	progress++;
2367	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2368		goto breakouterloop;
2369
2370	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2371	for_each_vma(vmi, vma) {
2372		unsigned long hstart, hend;
2373
2374		cond_resched();
2375		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2376			progress++;
2377			break;
2378		}
2379		if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false,
2380					     true, PMD_ORDER)) {
2381skip:
2382			progress++;
2383			continue;
2384		}
2385		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2386		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2387		if (khugepaged_scan.address > hend)
2388			goto skip;
2389		if (khugepaged_scan.address < hstart)
2390			khugepaged_scan.address = hstart;
2391		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2392
2393		while (khugepaged_scan.address < hend) {
2394			bool mmap_locked = true;
2395
2396			cond_resched();
2397			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2398				goto breakouterloop;
2399
2400			VM_BUG_ON(khugepaged_scan.address < hstart ||
2401				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2402				  hend);
2403			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2404				struct file *file = get_file(vma->vm_file);
2405				pgoff_t pgoff = linear_page_index(vma,
2406						khugepaged_scan.address);
2407
2408				mmap_read_unlock(mm);
2409				mmap_locked = false;
2410				*result = hpage_collapse_scan_file(mm,
2411					khugepaged_scan.address, file, pgoff, cc);
2412				fput(file);
2413				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2414					mmap_read_lock(mm);
2415					if (hpage_collapse_test_exit_or_disable(mm))
2416						goto breakouterloop;
2417					*result = collapse_pte_mapped_thp(mm,
2418						khugepaged_scan.address, false);
2419					if (*result == SCAN_PMD_MAPPED)
2420						*result = SCAN_SUCCEED;
2421					mmap_read_unlock(mm);
2422				}
2423			} else {
2424				*result = hpage_collapse_scan_pmd(mm, vma,
2425					khugepaged_scan.address, &mmap_locked, cc);
2426			}
2427
2428			if (*result == SCAN_SUCCEED)
2429				++khugepaged_pages_collapsed;
2430
2431			/* move to next address */
2432			khugepaged_scan.address += HPAGE_PMD_SIZE;
2433			progress += HPAGE_PMD_NR;
2434			if (!mmap_locked)
2435				/*
2436				 * We released mmap_lock so break loop.  Note
2437				 * that we drop mmap_lock before all hugepage
2438				 * allocations, so if allocation fails, we are
2439				 * guaranteed to break here and report the
2440				 * correct result back to caller.
2441				 */
2442				goto breakouterloop_mmap_lock;
2443			if (progress >= pages)
2444				goto breakouterloop;
2445		}
2446	}
2447breakouterloop:
2448	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2449breakouterloop_mmap_lock:
2450
2451	spin_lock(&khugepaged_mm_lock);
2452	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2453	/*
2454	 * Release the current mm_slot if this mm is about to die, or
2455	 * if we scanned all vmas of this mm.
2456	 */
2457	if (hpage_collapse_test_exit(mm) || !vma) {
2458		/*
2459		 * Make sure that if mm_users is reaching zero while
2460		 * khugepaged runs here, khugepaged_exit will find
2461		 * mm_slot not pointing to the exiting mm.
2462		 */
2463		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2464			slot = list_entry(slot->mm_node.next,
2465					  struct mm_slot, mm_node);
2466			khugepaged_scan.mm_slot =
2467				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2468			khugepaged_scan.address = 0;
2469		} else {
2470			khugepaged_scan.mm_slot = NULL;
2471			khugepaged_full_scans++;
2472		}
2473
2474		collect_mm_slot(mm_slot);
2475	}
2476
2477	return progress;
2478}
2479
2480static int khugepaged_has_work(void)
2481{
2482	return !list_empty(&khugepaged_scan.mm_head) &&
2483		hugepage_flags_enabled();
2484}
2485
2486static int khugepaged_wait_event(void)
2487{
2488	return !list_empty(&khugepaged_scan.mm_head) ||
2489		kthread_should_stop();
2490}
2491
2492static void khugepaged_do_scan(struct collapse_control *cc)
2493{
2494	unsigned int progress = 0, pass_through_head = 0;
2495	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2496	bool wait = true;
2497	int result = SCAN_SUCCEED;
2498
2499	lru_add_drain_all();
2500
2501	while (true) {
2502		cond_resched();
2503
2504		if (unlikely(kthread_should_stop()))
2505			break;
2506
2507		spin_lock(&khugepaged_mm_lock);
2508		if (!khugepaged_scan.mm_slot)
2509			pass_through_head++;
2510		if (khugepaged_has_work() &&
2511		    pass_through_head < 2)
2512			progress += khugepaged_scan_mm_slot(pages - progress,
2513							    &result, cc);
2514		else
2515			progress = pages;
2516		spin_unlock(&khugepaged_mm_lock);
2517
2518		if (progress >= pages)
2519			break;
2520
2521		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2522			/*
2523			 * If fail to allocate the first time, try to sleep for
2524			 * a while.  When hit again, cancel the scan.
2525			 */
2526			if (!wait)
2527				break;
2528			wait = false;
2529			khugepaged_alloc_sleep();
2530		}
2531	}
2532}
2533
2534static bool khugepaged_should_wakeup(void)
2535{
2536	return kthread_should_stop() ||
2537	       time_after_eq(jiffies, khugepaged_sleep_expire);
2538}
2539
2540static void khugepaged_wait_work(void)
2541{
2542	if (khugepaged_has_work()) {
2543		const unsigned long scan_sleep_jiffies =
2544			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2545
2546		if (!scan_sleep_jiffies)
2547			return;
2548
2549		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2550		wait_event_freezable_timeout(khugepaged_wait,
2551					     khugepaged_should_wakeup(),
2552					     scan_sleep_jiffies);
2553		return;
2554	}
2555
2556	if (hugepage_flags_enabled())
2557		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2558}
2559
2560static int khugepaged(void *none)
2561{
2562	struct khugepaged_mm_slot *mm_slot;
2563
2564	set_freezable();
2565	set_user_nice(current, MAX_NICE);
2566
2567	while (!kthread_should_stop()) {
2568		khugepaged_do_scan(&khugepaged_collapse_control);
2569		khugepaged_wait_work();
2570	}
2571
2572	spin_lock(&khugepaged_mm_lock);
2573	mm_slot = khugepaged_scan.mm_slot;
2574	khugepaged_scan.mm_slot = NULL;
2575	if (mm_slot)
2576		collect_mm_slot(mm_slot);
2577	spin_unlock(&khugepaged_mm_lock);
2578	return 0;
2579}
2580
2581static void set_recommended_min_free_kbytes(void)
2582{
2583	struct zone *zone;
2584	int nr_zones = 0;
2585	unsigned long recommended_min;
2586
2587	if (!hugepage_flags_enabled()) {
2588		calculate_min_free_kbytes();
2589		goto update_wmarks;
2590	}
2591
2592	for_each_populated_zone(zone) {
2593		/*
2594		 * We don't need to worry about fragmentation of
2595		 * ZONE_MOVABLE since it only has movable pages.
2596		 */
2597		if (zone_idx(zone) > gfp_zone(GFP_USER))
2598			continue;
2599
2600		nr_zones++;
2601	}
2602
2603	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2604	recommended_min = pageblock_nr_pages * nr_zones * 2;
2605
2606	/*
2607	 * Make sure that on average at least two pageblocks are almost free
2608	 * of another type, one for a migratetype to fall back to and a
2609	 * second to avoid subsequent fallbacks of other types There are 3
2610	 * MIGRATE_TYPES we care about.
2611	 */
2612	recommended_min += pageblock_nr_pages * nr_zones *
2613			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2614
2615	/* don't ever allow to reserve more than 5% of the lowmem */
2616	recommended_min = min(recommended_min,
2617			      (unsigned long) nr_free_buffer_pages() / 20);
2618	recommended_min <<= (PAGE_SHIFT-10);
2619
2620	if (recommended_min > min_free_kbytes) {
2621		if (user_min_free_kbytes >= 0)
2622			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2623				min_free_kbytes, recommended_min);
2624
2625		min_free_kbytes = recommended_min;
2626	}
2627
2628update_wmarks:
2629	setup_per_zone_wmarks();
2630}
2631
2632int start_stop_khugepaged(void)
2633{
2634	int err = 0;
2635
2636	mutex_lock(&khugepaged_mutex);
2637	if (hugepage_flags_enabled()) {
2638		if (!khugepaged_thread)
2639			khugepaged_thread = kthread_run(khugepaged, NULL,
2640							"khugepaged");
2641		if (IS_ERR(khugepaged_thread)) {
2642			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2643			err = PTR_ERR(khugepaged_thread);
2644			khugepaged_thread = NULL;
2645			goto fail;
2646		}
2647
2648		if (!list_empty(&khugepaged_scan.mm_head))
2649			wake_up_interruptible(&khugepaged_wait);
2650	} else if (khugepaged_thread) {
2651		kthread_stop(khugepaged_thread);
2652		khugepaged_thread = NULL;
2653	}
2654	set_recommended_min_free_kbytes();
2655fail:
2656	mutex_unlock(&khugepaged_mutex);
2657	return err;
2658}
2659
2660void khugepaged_min_free_kbytes_update(void)
2661{
2662	mutex_lock(&khugepaged_mutex);
2663	if (hugepage_flags_enabled() && khugepaged_thread)
2664		set_recommended_min_free_kbytes();
2665	mutex_unlock(&khugepaged_mutex);
2666}
2667
2668bool current_is_khugepaged(void)
2669{
2670	return kthread_func(current) == khugepaged;
2671}
2672
2673static int madvise_collapse_errno(enum scan_result r)
2674{
2675	/*
2676	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2677	 * actionable feedback to caller, so they may take an appropriate
2678	 * fallback measure depending on the nature of the failure.
2679	 */
2680	switch (r) {
2681	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2682		return -ENOMEM;
2683	case SCAN_CGROUP_CHARGE_FAIL:
2684	case SCAN_EXCEED_NONE_PTE:
2685		return -EBUSY;
2686	/* Resource temporary unavailable - trying again might succeed */
2687	case SCAN_PAGE_COUNT:
2688	case SCAN_PAGE_LOCK:
2689	case SCAN_PAGE_LRU:
2690	case SCAN_DEL_PAGE_LRU:
2691	case SCAN_PAGE_FILLED:
2692		return -EAGAIN;
2693	/*
2694	 * Other: Trying again likely not to succeed / error intrinsic to
2695	 * specified memory range. khugepaged likely won't be able to collapse
2696	 * either.
2697	 */
2698	default:
2699		return -EINVAL;
2700	}
2701}
2702
2703int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2704		     unsigned long start, unsigned long end)
2705{
2706	struct collapse_control *cc;
2707	struct mm_struct *mm = vma->vm_mm;
2708	unsigned long hstart, hend, addr;
2709	int thps = 0, last_fail = SCAN_FAIL;
2710	bool mmap_locked = true;
2711
2712	BUG_ON(vma->vm_start > start);
2713	BUG_ON(vma->vm_end < end);
2714
2715	*prev = vma;
2716
2717	if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false,
2718				     PMD_ORDER))
2719		return -EINVAL;
2720
2721	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2722	if (!cc)
2723		return -ENOMEM;
2724	cc->is_khugepaged = false;
2725
2726	mmgrab(mm);
2727	lru_add_drain_all();
2728
2729	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2730	hend = end & HPAGE_PMD_MASK;
2731
2732	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2733		int result = SCAN_FAIL;
2734
2735		if (!mmap_locked) {
2736			cond_resched();
2737			mmap_read_lock(mm);
2738			mmap_locked = true;
2739			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2740							 cc);
2741			if (result  != SCAN_SUCCEED) {
2742				last_fail = result;
2743				goto out_nolock;
2744			}
2745
2746			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2747		}
2748		mmap_assert_locked(mm);
2749		memset(cc->node_load, 0, sizeof(cc->node_load));
2750		nodes_clear(cc->alloc_nmask);
2751		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2752			struct file *file = get_file(vma->vm_file);
2753			pgoff_t pgoff = linear_page_index(vma, addr);
2754
2755			mmap_read_unlock(mm);
2756			mmap_locked = false;
2757			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2758							  cc);
2759			fput(file);
2760		} else {
2761			result = hpage_collapse_scan_pmd(mm, vma, addr,
2762							 &mmap_locked, cc);
2763		}
2764		if (!mmap_locked)
2765			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2766
2767handle_result:
2768		switch (result) {
2769		case SCAN_SUCCEED:
2770		case SCAN_PMD_MAPPED:
2771			++thps;
2772			break;
2773		case SCAN_PTE_MAPPED_HUGEPAGE:
2774			BUG_ON(mmap_locked);
2775			BUG_ON(*prev);
2776			mmap_read_lock(mm);
2777			result = collapse_pte_mapped_thp(mm, addr, true);
2778			mmap_read_unlock(mm);
2779			goto handle_result;
2780		/* Whitelisted set of results where continuing OK */
2781		case SCAN_PMD_NULL:
2782		case SCAN_PTE_NON_PRESENT:
2783		case SCAN_PTE_UFFD_WP:
2784		case SCAN_PAGE_RO:
2785		case SCAN_LACK_REFERENCED_PAGE:
2786		case SCAN_PAGE_NULL:
2787		case SCAN_PAGE_COUNT:
2788		case SCAN_PAGE_LOCK:
2789		case SCAN_PAGE_COMPOUND:
2790		case SCAN_PAGE_LRU:
2791		case SCAN_DEL_PAGE_LRU:
2792			last_fail = result;
2793			break;
2794		default:
2795			last_fail = result;
2796			/* Other error, exit */
2797			goto out_maybelock;
2798		}
2799	}
2800
2801out_maybelock:
2802	/* Caller expects us to hold mmap_lock on return */
2803	if (!mmap_locked)
2804		mmap_read_lock(mm);
2805out_nolock:
2806	mmap_assert_locked(mm);
2807	mmdrop(mm);
2808	kfree(cc);
2809
2810	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2811			: madvise_collapse_errno(last_fail);
2812}
2813