1130561Sobrien/* SPDX-License-Identifier: GPL-2.0-or-later */
2130561Sobrien/* internal.h: mm/ internal definitions
3130561Sobrien *
4130561Sobrien * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5130561Sobrien * Written by David Howells (dhowells@redhat.com)
6130561Sobrien */
7130561Sobrien#ifndef __MM_INTERNAL_H
8130561Sobrien#define __MM_INTERNAL_H
9130561Sobrien
10130561Sobrien#include <linux/fs.h>
11130561Sobrien#include <linux/mm.h>
12130561Sobrien#include <linux/pagemap.h>
13130561Sobrien#include <linux/rmap.h>
14130561Sobrien#include <linux/tracepoint-defs.h>
15130561Sobrien
16130561Sobrienstruct folio_batch;
17130561Sobrien
18218822Sdim/*
19130561Sobrien * The set of flags that only affect watermark checking and reclaim
20130561Sobrien * behaviour. This is used by the MM to obey the caller constraints
21130561Sobrien * about IO, FS and watermark checking while ignoring placement
22130561Sobrien * hints such as HIGHMEM usage.
23130561Sobrien */
24130561Sobrien#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25130561Sobrien			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26130561Sobrien			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27130561Sobrien			__GFP_NOLOCKDEP)
28130561Sobrien
29130561Sobrien/* The GFP flags allowed during early boot */
30130561Sobrien#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31130561Sobrien
32130561Sobrien/* Control allocation cpuset and node placement constraints */
33130561Sobrien#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34130561Sobrien
35130561Sobrien/* Do not use these with a slab allocator */
36130561Sobrien#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37130561Sobrien
38130561Sobrien/*
39130561Sobrien * Different from WARN_ON_ONCE(), no warning will be issued
40130561Sobrien * when we specify __GFP_NOWARN.
41130561Sobrien */
42130561Sobrien#define WARN_ON_ONCE_GFP(cond, gfp)	({				\
43130561Sobrien	static bool __section(".data.once") __warned;			\
44130561Sobrien	int __ret_warn_once = !!(cond);					\
45130561Sobrien									\
46130561Sobrien	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47130561Sobrien		__warned = true;					\
48130561Sobrien		WARN_ON(1);						\
49130561Sobrien	}								\
50130561Sobrien	unlikely(__ret_warn_once);					\
51130561Sobrien})
52130561Sobrien
53130561Sobrienvoid page_writeback_init(void);
54130561Sobrien
55130561Sobrien/*
56130561Sobrien * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57130561Sobrien * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
58130561Sobrien * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
59130561Sobrien * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
60130561Sobrien */
61130561Sobrien#define ENTIRELY_MAPPED		0x800000
62130561Sobrien#define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
63
64/*
65 * Flags passed to __show_mem() and show_free_areas() to suppress output in
66 * various contexts.
67 */
68#define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
69
70/*
71 * How many individual pages have an elevated _mapcount.  Excludes
72 * the folio's entire_mapcount.
73 */
74static inline int folio_nr_pages_mapped(struct folio *folio)
75{
76	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
77}
78
79static inline void *folio_raw_mapping(struct folio *folio)
80{
81	unsigned long mapping = (unsigned long)folio->mapping;
82
83	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
84}
85
86#ifdef CONFIG_MMU
87
88/* Flags for folio_pte_batch(). */
89typedef int __bitwise fpb_t;
90
91/* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
92#define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
93
94/* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
95#define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
96
97static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
98{
99	if (flags & FPB_IGNORE_DIRTY)
100		pte = pte_mkclean(pte);
101	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
102		pte = pte_clear_soft_dirty(pte);
103	return pte_wrprotect(pte_mkold(pte));
104}
105
106/**
107 * folio_pte_batch - detect a PTE batch for a large folio
108 * @folio: The large folio to detect a PTE batch for.
109 * @addr: The user virtual address the first page is mapped at.
110 * @start_ptep: Page table pointer for the first entry.
111 * @pte: Page table entry for the first page.
112 * @max_nr: The maximum number of table entries to consider.
113 * @flags: Flags to modify the PTE batch semantics.
114 * @any_writable: Optional pointer to indicate whether any entry except the
115 *		  first one is writable.
116 *
117 * Detect a PTE batch: consecutive (present) PTEs that map consecutive
118 * pages of the same large folio.
119 *
120 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
121 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
122 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
123 *
124 * start_ptep must map any page of the folio. max_nr must be at least one and
125 * must be limited by the caller so scanning cannot exceed a single page table.
126 *
127 * Return: the number of table entries in the batch.
128 */
129static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
130		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
131		bool *any_writable)
132{
133	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
134	const pte_t *end_ptep = start_ptep + max_nr;
135	pte_t expected_pte, *ptep;
136	bool writable;
137	int nr;
138
139	if (any_writable)
140		*any_writable = false;
141
142	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
143	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
144	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
145
146	nr = pte_batch_hint(start_ptep, pte);
147	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
148	ptep = start_ptep + nr;
149
150	while (ptep < end_ptep) {
151		pte = ptep_get(ptep);
152		if (any_writable)
153			writable = !!pte_write(pte);
154		pte = __pte_batch_clear_ignored(pte, flags);
155
156		if (!pte_same(pte, expected_pte))
157			break;
158
159		/*
160		 * Stop immediately once we reached the end of the folio. In
161		 * corner cases the next PFN might fall into a different
162		 * folio.
163		 */
164		if (pte_pfn(pte) >= folio_end_pfn)
165			break;
166
167		if (any_writable)
168			*any_writable |= writable;
169
170		nr = pte_batch_hint(ptep, pte);
171		expected_pte = pte_advance_pfn(expected_pte, nr);
172		ptep += nr;
173	}
174
175	return min(ptep - start_ptep, max_nr);
176}
177#endif /* CONFIG_MMU */
178
179void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
180						int nr_throttled);
181static inline void acct_reclaim_writeback(struct folio *folio)
182{
183	pg_data_t *pgdat = folio_pgdat(folio);
184	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
185
186	if (nr_throttled)
187		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
188}
189
190static inline void wake_throttle_isolated(pg_data_t *pgdat)
191{
192	wait_queue_head_t *wqh;
193
194	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
195	if (waitqueue_active(wqh))
196		wake_up(wqh);
197}
198
199vm_fault_t vmf_anon_prepare(struct vm_fault *vmf);
200vm_fault_t do_swap_page(struct vm_fault *vmf);
201void folio_rotate_reclaimable(struct folio *folio);
202bool __folio_end_writeback(struct folio *folio);
203void deactivate_file_folio(struct folio *folio);
204void folio_activate(struct folio *folio);
205
206void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
207		   struct vm_area_struct *start_vma, unsigned long floor,
208		   unsigned long ceiling, bool mm_wr_locked);
209void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
210
211struct zap_details;
212void unmap_page_range(struct mmu_gather *tlb,
213			     struct vm_area_struct *vma,
214			     unsigned long addr, unsigned long end,
215			     struct zap_details *details);
216
217void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
218		unsigned int order);
219void force_page_cache_ra(struct readahead_control *, unsigned long nr);
220static inline void force_page_cache_readahead(struct address_space *mapping,
221		struct file *file, pgoff_t index, unsigned long nr_to_read)
222{
223	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
224	force_page_cache_ra(&ractl, nr_to_read);
225}
226
227unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
228		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
229unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
230		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
231void filemap_free_folio(struct address_space *mapping, struct folio *folio);
232int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
233bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
234		loff_t end);
235long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
236unsigned long mapping_try_invalidate(struct address_space *mapping,
237		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
238
239/**
240 * folio_evictable - Test whether a folio is evictable.
241 * @folio: The folio to test.
242 *
243 * Test whether @folio is evictable -- i.e., should be placed on
244 * active/inactive lists vs unevictable list.
245 *
246 * Reasons folio might not be evictable:
247 * 1. folio's mapping marked unevictable
248 * 2. One of the pages in the folio is part of an mlocked VMA
249 */
250static inline bool folio_evictable(struct folio *folio)
251{
252	bool ret;
253
254	/* Prevent address_space of inode and swap cache from being freed */
255	rcu_read_lock();
256	ret = !mapping_unevictable(folio_mapping(folio)) &&
257			!folio_test_mlocked(folio);
258	rcu_read_unlock();
259	return ret;
260}
261
262/*
263 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
264 * a count of one.
265 */
266static inline void set_page_refcounted(struct page *page)
267{
268	VM_BUG_ON_PAGE(PageTail(page), page);
269	VM_BUG_ON_PAGE(page_ref_count(page), page);
270	set_page_count(page, 1);
271}
272
273/*
274 * Return true if a folio needs ->release_folio() calling upon it.
275 */
276static inline bool folio_needs_release(struct folio *folio)
277{
278	struct address_space *mapping = folio_mapping(folio);
279
280	return folio_has_private(folio) ||
281		(mapping && mapping_release_always(mapping));
282}
283
284extern unsigned long highest_memmap_pfn;
285
286/*
287 * Maximum number of reclaim retries without progress before the OOM
288 * killer is consider the only way forward.
289 */
290#define MAX_RECLAIM_RETRIES 16
291
292/*
293 * in mm/vmscan.c:
294 */
295bool isolate_lru_page(struct page *page);
296bool folio_isolate_lru(struct folio *folio);
297void putback_lru_page(struct page *page);
298void folio_putback_lru(struct folio *folio);
299extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
300
301/*
302 * in mm/rmap.c:
303 */
304pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
305
306/*
307 * in mm/page_alloc.c
308 */
309#define K(x) ((x) << (PAGE_SHIFT-10))
310
311extern char * const zone_names[MAX_NR_ZONES];
312
313/* perform sanity checks on struct pages being allocated or freed */
314DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
315
316extern int min_free_kbytes;
317
318void setup_per_zone_wmarks(void);
319void calculate_min_free_kbytes(void);
320int __meminit init_per_zone_wmark_min(void);
321void page_alloc_sysctl_init(void);
322
323/*
324 * Structure for holding the mostly immutable allocation parameters passed
325 * between functions involved in allocations, including the alloc_pages*
326 * family of functions.
327 *
328 * nodemask, migratetype and highest_zoneidx are initialized only once in
329 * __alloc_pages() and then never change.
330 *
331 * zonelist, preferred_zone and highest_zoneidx are set first in
332 * __alloc_pages() for the fast path, and might be later changed
333 * in __alloc_pages_slowpath(). All other functions pass the whole structure
334 * by a const pointer.
335 */
336struct alloc_context {
337	struct zonelist *zonelist;
338	nodemask_t *nodemask;
339	struct zoneref *preferred_zoneref;
340	int migratetype;
341
342	/*
343	 * highest_zoneidx represents highest usable zone index of
344	 * the allocation request. Due to the nature of the zone,
345	 * memory on lower zone than the highest_zoneidx will be
346	 * protected by lowmem_reserve[highest_zoneidx].
347	 *
348	 * highest_zoneidx is also used by reclaim/compaction to limit
349	 * the target zone since higher zone than this index cannot be
350	 * usable for this allocation request.
351	 */
352	enum zone_type highest_zoneidx;
353	bool spread_dirty_pages;
354};
355
356/*
357 * This function returns the order of a free page in the buddy system. In
358 * general, page_zone(page)->lock must be held by the caller to prevent the
359 * page from being allocated in parallel and returning garbage as the order.
360 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
361 * page cannot be allocated or merged in parallel. Alternatively, it must
362 * handle invalid values gracefully, and use buddy_order_unsafe() below.
363 */
364static inline unsigned int buddy_order(struct page *page)
365{
366	/* PageBuddy() must be checked by the caller */
367	return page_private(page);
368}
369
370/*
371 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
372 * PageBuddy() should be checked first by the caller to minimize race window,
373 * and invalid values must be handled gracefully.
374 *
375 * READ_ONCE is used so that if the caller assigns the result into a local
376 * variable and e.g. tests it for valid range before using, the compiler cannot
377 * decide to remove the variable and inline the page_private(page) multiple
378 * times, potentially observing different values in the tests and the actual
379 * use of the result.
380 */
381#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
382
383/*
384 * This function checks whether a page is free && is the buddy
385 * we can coalesce a page and its buddy if
386 * (a) the buddy is not in a hole (check before calling!) &&
387 * (b) the buddy is in the buddy system &&
388 * (c) a page and its buddy have the same order &&
389 * (d) a page and its buddy are in the same zone.
390 *
391 * For recording whether a page is in the buddy system, we set PageBuddy.
392 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
393 *
394 * For recording page's order, we use page_private(page).
395 */
396static inline bool page_is_buddy(struct page *page, struct page *buddy,
397				 unsigned int order)
398{
399	if (!page_is_guard(buddy) && !PageBuddy(buddy))
400		return false;
401
402	if (buddy_order(buddy) != order)
403		return false;
404
405	/*
406	 * zone check is done late to avoid uselessly calculating
407	 * zone/node ids for pages that could never merge.
408	 */
409	if (page_zone_id(page) != page_zone_id(buddy))
410		return false;
411
412	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
413
414	return true;
415}
416
417/*
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
420 *
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 *     B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
427 *
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 *     P = B & ~(1 << O)
431 *
432 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
433 */
434static inline unsigned long
435__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
436{
437	return page_pfn ^ (1 << order);
438}
439
440/*
441 * Find the buddy of @page and validate it.
442 * @page: The input page
443 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
444 *       function is used in the performance-critical __free_one_page().
445 * @order: The order of the page
446 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
447 *             page_to_pfn().
448 *
449 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
450 * not the same as @page. The validation is necessary before use it.
451 *
452 * Return: the found buddy page or NULL if not found.
453 */
454static inline struct page *find_buddy_page_pfn(struct page *page,
455			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
456{
457	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
458	struct page *buddy;
459
460	buddy = page + (__buddy_pfn - pfn);
461	if (buddy_pfn)
462		*buddy_pfn = __buddy_pfn;
463
464	if (page_is_buddy(page, buddy, order))
465		return buddy;
466	return NULL;
467}
468
469extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
470				unsigned long end_pfn, struct zone *zone);
471
472static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
473				unsigned long end_pfn, struct zone *zone)
474{
475	if (zone->contiguous)
476		return pfn_to_page(start_pfn);
477
478	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
479}
480
481void set_zone_contiguous(struct zone *zone);
482
483static inline void clear_zone_contiguous(struct zone *zone)
484{
485	zone->contiguous = false;
486}
487
488extern int __isolate_free_page(struct page *page, unsigned int order);
489extern void __putback_isolated_page(struct page *page, unsigned int order,
490				    int mt);
491extern void memblock_free_pages(struct page *page, unsigned long pfn,
492					unsigned int order);
493extern void __free_pages_core(struct page *page, unsigned int order);
494
495/*
496 * This will have no effect, other than possibly generating a warning, if the
497 * caller passes in a non-large folio.
498 */
499static inline void folio_set_order(struct folio *folio, unsigned int order)
500{
501	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
502		return;
503
504	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
505#ifdef CONFIG_64BIT
506	folio->_folio_nr_pages = 1U << order;
507#endif
508}
509
510void folio_undo_large_rmappable(struct folio *folio);
511
512static inline struct folio *page_rmappable_folio(struct page *page)
513{
514	struct folio *folio = (struct folio *)page;
515
516	folio_prep_large_rmappable(folio);
517	return folio;
518}
519
520static inline void prep_compound_head(struct page *page, unsigned int order)
521{
522	struct folio *folio = (struct folio *)page;
523
524	folio_set_order(folio, order);
525	atomic_set(&folio->_entire_mapcount, -1);
526	atomic_set(&folio->_nr_pages_mapped, 0);
527	atomic_set(&folio->_pincount, 0);
528}
529
530static inline void prep_compound_tail(struct page *head, int tail_idx)
531{
532	struct page *p = head + tail_idx;
533
534	p->mapping = TAIL_MAPPING;
535	set_compound_head(p, head);
536	set_page_private(p, 0);
537}
538
539extern void prep_compound_page(struct page *page, unsigned int order);
540
541extern void post_alloc_hook(struct page *page, unsigned int order,
542					gfp_t gfp_flags);
543extern bool free_pages_prepare(struct page *page, unsigned int order);
544
545extern int user_min_free_kbytes;
546
547void free_unref_page(struct page *page, unsigned int order);
548void free_unref_folios(struct folio_batch *fbatch);
549
550extern void zone_pcp_reset(struct zone *zone);
551extern void zone_pcp_disable(struct zone *zone);
552extern void zone_pcp_enable(struct zone *zone);
553extern void zone_pcp_init(struct zone *zone);
554
555extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
556			  phys_addr_t min_addr,
557			  int nid, bool exact_nid);
558
559void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
560		unsigned long, enum meminit_context, struct vmem_altmap *, int);
561
562
563int split_free_page(struct page *free_page,
564			unsigned int order, unsigned long split_pfn_offset);
565
566#if defined CONFIG_COMPACTION || defined CONFIG_CMA
567
568/*
569 * in mm/compaction.c
570 */
571/*
572 * compact_control is used to track pages being migrated and the free pages
573 * they are being migrated to during memory compaction. The free_pfn starts
574 * at the end of a zone and migrate_pfn begins at the start. Movable pages
575 * are moved to the end of a zone during a compaction run and the run
576 * completes when free_pfn <= migrate_pfn
577 */
578struct compact_control {
579	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
580	struct list_head migratepages;	/* List of pages being migrated */
581	unsigned int nr_freepages;	/* Number of isolated free pages */
582	unsigned int nr_migratepages;	/* Number of pages to migrate */
583	unsigned long free_pfn;		/* isolate_freepages search base */
584	/*
585	 * Acts as an in/out parameter to page isolation for migration.
586	 * isolate_migratepages uses it as a search base.
587	 * isolate_migratepages_block will update the value to the next pfn
588	 * after the last isolated one.
589	 */
590	unsigned long migrate_pfn;
591	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
592	struct zone *zone;
593	unsigned long total_migrate_scanned;
594	unsigned long total_free_scanned;
595	unsigned short fast_search_fail;/* failures to use free list searches */
596	short search_order;		/* order to start a fast search at */
597	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
598	int order;			/* order a direct compactor needs */
599	int migratetype;		/* migratetype of direct compactor */
600	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
601	const int highest_zoneidx;	/* zone index of a direct compactor */
602	enum migrate_mode mode;		/* Async or sync migration mode */
603	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
604	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
605	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
606	bool direct_compaction;		/* False from kcompactd or /proc/... */
607	bool proactive_compaction;	/* kcompactd proactive compaction */
608	bool whole_zone;		/* Whole zone should/has been scanned */
609	bool contended;			/* Signal lock contention */
610	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
611					 * when there are potentially transient
612					 * isolation or migration failures to
613					 * ensure forward progress.
614					 */
615	bool alloc_contig;		/* alloc_contig_range allocation */
616};
617
618/*
619 * Used in direct compaction when a page should be taken from the freelists
620 * immediately when one is created during the free path.
621 */
622struct capture_control {
623	struct compact_control *cc;
624	struct page *page;
625};
626
627unsigned long
628isolate_freepages_range(struct compact_control *cc,
629			unsigned long start_pfn, unsigned long end_pfn);
630int
631isolate_migratepages_range(struct compact_control *cc,
632			   unsigned long low_pfn, unsigned long end_pfn);
633
634int __alloc_contig_migrate_range(struct compact_control *cc,
635					unsigned long start, unsigned long end,
636					int migratetype);
637
638/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
639void init_cma_reserved_pageblock(struct page *page);
640
641#endif /* CONFIG_COMPACTION || CONFIG_CMA */
642
643int find_suitable_fallback(struct free_area *area, unsigned int order,
644			int migratetype, bool only_stealable, bool *can_steal);
645
646static inline bool free_area_empty(struct free_area *area, int migratetype)
647{
648	return list_empty(&area->free_list[migratetype]);
649}
650
651/*
652 * These three helpers classifies VMAs for virtual memory accounting.
653 */
654
655/*
656 * Executable code area - executable, not writable, not stack
657 */
658static inline bool is_exec_mapping(vm_flags_t flags)
659{
660	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
661}
662
663/*
664 * Stack area (including shadow stacks)
665 *
666 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
667 * do_mmap() forbids all other combinations.
668 */
669static inline bool is_stack_mapping(vm_flags_t flags)
670{
671	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
672}
673
674/*
675 * Data area - private, writable, not stack
676 */
677static inline bool is_data_mapping(vm_flags_t flags)
678{
679	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
680}
681
682/* mm/util.c */
683struct anon_vma *folio_anon_vma(struct folio *folio);
684
685#ifdef CONFIG_MMU
686void unmap_mapping_folio(struct folio *folio);
687extern long populate_vma_page_range(struct vm_area_struct *vma,
688		unsigned long start, unsigned long end, int *locked);
689extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
690		unsigned long end, bool write, int *locked);
691extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
692			       unsigned long bytes);
693
694/*
695 * NOTE: This function can't tell whether the folio is "fully mapped" in the
696 * range.
697 * "fully mapped" means all the pages of folio is associated with the page
698 * table of range while this function just check whether the folio range is
699 * within the range [start, end). Function caller needs to do page table
700 * check if it cares about the page table association.
701 *
702 * Typical usage (like mlock or madvise) is:
703 * Caller knows at least 1 page of folio is associated with page table of VMA
704 * and the range [start, end) is intersect with the VMA range. Caller wants
705 * to know whether the folio is fully associated with the range. It calls
706 * this function to check whether the folio is in the range first. Then checks
707 * the page table to know whether the folio is fully mapped to the range.
708 */
709static inline bool
710folio_within_range(struct folio *folio, struct vm_area_struct *vma,
711		unsigned long start, unsigned long end)
712{
713	pgoff_t pgoff, addr;
714	unsigned long vma_pglen = vma_pages(vma);
715
716	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
717	if (start > end)
718		return false;
719
720	if (start < vma->vm_start)
721		start = vma->vm_start;
722
723	if (end > vma->vm_end)
724		end = vma->vm_end;
725
726	pgoff = folio_pgoff(folio);
727
728	/* if folio start address is not in vma range */
729	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
730		return false;
731
732	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
733
734	return !(addr < start || end - addr < folio_size(folio));
735}
736
737static inline bool
738folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
739{
740	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
741}
742
743/*
744 * mlock_vma_folio() and munlock_vma_folio():
745 * should be called with vma's mmap_lock held for read or write,
746 * under page table lock for the pte/pmd being added or removed.
747 *
748 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
749 * the end of folio_remove_rmap_*(); but new anon folios are managed by
750 * folio_add_lru_vma() calling mlock_new_folio().
751 */
752void mlock_folio(struct folio *folio);
753static inline void mlock_vma_folio(struct folio *folio,
754				struct vm_area_struct *vma)
755{
756	/*
757	 * The VM_SPECIAL check here serves two purposes.
758	 * 1) VM_IO check prevents migration from double-counting during mlock.
759	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
760	 *    is never left set on a VM_SPECIAL vma, there is an interval while
761	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
762	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
763	 */
764	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
765		mlock_folio(folio);
766}
767
768void munlock_folio(struct folio *folio);
769static inline void munlock_vma_folio(struct folio *folio,
770					struct vm_area_struct *vma)
771{
772	/*
773	 * munlock if the function is called. Ideally, we should only
774	 * do munlock if any page of folio is unmapped from VMA and
775	 * cause folio not fully mapped to VMA.
776	 *
777	 * But it's not easy to confirm that's the situation. So we
778	 * always munlock the folio and page reclaim will correct it
779	 * if it's wrong.
780	 */
781	if (unlikely(vma->vm_flags & VM_LOCKED))
782		munlock_folio(folio);
783}
784
785void mlock_new_folio(struct folio *folio);
786bool need_mlock_drain(int cpu);
787void mlock_drain_local(void);
788void mlock_drain_remote(int cpu);
789
790extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
791
792/*
793 * Return the start of user virtual address at the specific offset within
794 * a vma.
795 */
796static inline unsigned long
797vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
798		  struct vm_area_struct *vma)
799{
800	unsigned long address;
801
802	if (pgoff >= vma->vm_pgoff) {
803		address = vma->vm_start +
804			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
805		/* Check for address beyond vma (or wrapped through 0?) */
806		if (address < vma->vm_start || address >= vma->vm_end)
807			address = -EFAULT;
808	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
809		/* Test above avoids possibility of wrap to 0 on 32-bit */
810		address = vma->vm_start;
811	} else {
812		address = -EFAULT;
813	}
814	return address;
815}
816
817/*
818 * Return the start of user virtual address of a page within a vma.
819 * Returns -EFAULT if all of the page is outside the range of vma.
820 * If page is a compound head, the entire compound page is considered.
821 */
822static inline unsigned long
823vma_address(struct page *page, struct vm_area_struct *vma)
824{
825	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
826	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
827}
828
829/*
830 * Then at what user virtual address will none of the range be found in vma?
831 * Assumes that vma_address() already returned a good starting address.
832 */
833static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
834{
835	struct vm_area_struct *vma = pvmw->vma;
836	pgoff_t pgoff;
837	unsigned long address;
838
839	/* Common case, plus ->pgoff is invalid for KSM */
840	if (pvmw->nr_pages == 1)
841		return pvmw->address + PAGE_SIZE;
842
843	pgoff = pvmw->pgoff + pvmw->nr_pages;
844	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
845	/* Check for address beyond vma (or wrapped through 0?) */
846	if (address < vma->vm_start || address > vma->vm_end)
847		address = vma->vm_end;
848	return address;
849}
850
851static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
852						    struct file *fpin)
853{
854	int flags = vmf->flags;
855
856	if (fpin)
857		return fpin;
858
859	/*
860	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
861	 * anything, so we only pin the file and drop the mmap_lock if only
862	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
863	 */
864	if (fault_flag_allow_retry_first(flags) &&
865	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
866		fpin = get_file(vmf->vma->vm_file);
867		release_fault_lock(vmf);
868	}
869	return fpin;
870}
871#else /* !CONFIG_MMU */
872static inline void unmap_mapping_folio(struct folio *folio) { }
873static inline void mlock_new_folio(struct folio *folio) { }
874static inline bool need_mlock_drain(int cpu) { return false; }
875static inline void mlock_drain_local(void) { }
876static inline void mlock_drain_remote(int cpu) { }
877static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
878{
879}
880#endif /* !CONFIG_MMU */
881
882/* Memory initialisation debug and verification */
883#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
884DECLARE_STATIC_KEY_TRUE(deferred_pages);
885
886bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
887#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
888
889enum mminit_level {
890	MMINIT_WARNING,
891	MMINIT_VERIFY,
892	MMINIT_TRACE
893};
894
895#ifdef CONFIG_DEBUG_MEMORY_INIT
896
897extern int mminit_loglevel;
898
899#define mminit_dprintk(level, prefix, fmt, arg...) \
900do { \
901	if (level < mminit_loglevel) { \
902		if (level <= MMINIT_WARNING) \
903			pr_warn("mminit::" prefix " " fmt, ##arg);	\
904		else \
905			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
906	} \
907} while (0)
908
909extern void mminit_verify_pageflags_layout(void);
910extern void mminit_verify_zonelist(void);
911#else
912
913static inline void mminit_dprintk(enum mminit_level level,
914				const char *prefix, const char *fmt, ...)
915{
916}
917
918static inline void mminit_verify_pageflags_layout(void)
919{
920}
921
922static inline void mminit_verify_zonelist(void)
923{
924}
925#endif /* CONFIG_DEBUG_MEMORY_INIT */
926
927#define NODE_RECLAIM_NOSCAN	-2
928#define NODE_RECLAIM_FULL	-1
929#define NODE_RECLAIM_SOME	0
930#define NODE_RECLAIM_SUCCESS	1
931
932#ifdef CONFIG_NUMA
933extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
934extern int find_next_best_node(int node, nodemask_t *used_node_mask);
935#else
936static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
937				unsigned int order)
938{
939	return NODE_RECLAIM_NOSCAN;
940}
941static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
942{
943	return NUMA_NO_NODE;
944}
945#endif
946
947/*
948 * mm/memory-failure.c
949 */
950extern int hwpoison_filter(struct page *p);
951
952extern u32 hwpoison_filter_dev_major;
953extern u32 hwpoison_filter_dev_minor;
954extern u64 hwpoison_filter_flags_mask;
955extern u64 hwpoison_filter_flags_value;
956extern u64 hwpoison_filter_memcg;
957extern u32 hwpoison_filter_enable;
958
959extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
960        unsigned long, unsigned long,
961        unsigned long, unsigned long);
962
963extern void set_pageblock_order(void);
964unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references);
965unsigned int reclaim_clean_pages_from_list(struct zone *zone,
966					    struct list_head *folio_list);
967/* The ALLOC_WMARK bits are used as an index to zone->watermark */
968#define ALLOC_WMARK_MIN		WMARK_MIN
969#define ALLOC_WMARK_LOW		WMARK_LOW
970#define ALLOC_WMARK_HIGH	WMARK_HIGH
971#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
972
973/* Mask to get the watermark bits */
974#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
975
976/*
977 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
978 * cannot assume a reduced access to memory reserves is sufficient for
979 * !MMU
980 */
981#ifdef CONFIG_MMU
982#define ALLOC_OOM		0x08
983#else
984#define ALLOC_OOM		ALLOC_NO_WATERMARKS
985#endif
986
987#define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
988				       * to 25% of the min watermark or
989				       * 62.5% if __GFP_HIGH is set.
990				       */
991#define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
992				       * of the min watermark.
993				       */
994#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
995#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
996#ifdef CONFIG_ZONE_DMA32
997#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
998#else
999#define ALLOC_NOFRAGMENT	  0x0
1000#endif
1001#define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1002#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1003
1004/* Flags that allow allocations below the min watermark. */
1005#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1006
1007enum ttu_flags;
1008struct tlbflush_unmap_batch;
1009
1010
1011/*
1012 * only for MM internal work items which do not depend on
1013 * any allocations or locks which might depend on allocations
1014 */
1015extern struct workqueue_struct *mm_percpu_wq;
1016
1017#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1018void try_to_unmap_flush(void);
1019void try_to_unmap_flush_dirty(void);
1020void flush_tlb_batched_pending(struct mm_struct *mm);
1021#else
1022static inline void try_to_unmap_flush(void)
1023{
1024}
1025static inline void try_to_unmap_flush_dirty(void)
1026{
1027}
1028static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1029{
1030}
1031#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1032
1033extern const struct trace_print_flags pageflag_names[];
1034extern const struct trace_print_flags pagetype_names[];
1035extern const struct trace_print_flags vmaflag_names[];
1036extern const struct trace_print_flags gfpflag_names[];
1037
1038static inline bool is_migrate_highatomic(enum migratetype migratetype)
1039{
1040	return migratetype == MIGRATE_HIGHATOMIC;
1041}
1042
1043static inline bool is_migrate_highatomic_page(struct page *page)
1044{
1045	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
1046}
1047
1048void setup_zone_pageset(struct zone *zone);
1049
1050struct migration_target_control {
1051	int nid;		/* preferred node id */
1052	nodemask_t *nmask;
1053	gfp_t gfp_mask;
1054};
1055
1056/*
1057 * mm/filemap.c
1058 */
1059size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1060			      struct folio *folio, loff_t fpos, size_t size);
1061
1062/*
1063 * mm/vmalloc.c
1064 */
1065#ifdef CONFIG_MMU
1066void __init vmalloc_init(void);
1067int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1068                pgprot_t prot, struct page **pages, unsigned int page_shift);
1069#else
1070static inline void vmalloc_init(void)
1071{
1072}
1073
1074static inline
1075int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1076                pgprot_t prot, struct page **pages, unsigned int page_shift)
1077{
1078	return -EINVAL;
1079}
1080#endif
1081
1082int __must_check __vmap_pages_range_noflush(unsigned long addr,
1083			       unsigned long end, pgprot_t prot,
1084			       struct page **pages, unsigned int page_shift);
1085
1086void vunmap_range_noflush(unsigned long start, unsigned long end);
1087
1088void __vunmap_range_noflush(unsigned long start, unsigned long end);
1089
1090int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
1091		      unsigned long addr, int page_nid, int *flags);
1092
1093void free_zone_device_page(struct page *page);
1094int migrate_device_coherent_page(struct page *page);
1095
1096/*
1097 * mm/gup.c
1098 */
1099struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
1100int __must_check try_grab_page(struct page *page, unsigned int flags);
1101
1102/*
1103 * mm/huge_memory.c
1104 */
1105struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1106				   unsigned long addr, pmd_t *pmd,
1107				   unsigned int flags);
1108
1109/*
1110 * mm/mmap.c
1111 */
1112struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1113					struct vm_area_struct *vma,
1114					unsigned long delta);
1115
1116enum {
1117	/* mark page accessed */
1118	FOLL_TOUCH = 1 << 16,
1119	/* a retry, previous pass started an IO */
1120	FOLL_TRIED = 1 << 17,
1121	/* we are working on non-current tsk/mm */
1122	FOLL_REMOTE = 1 << 18,
1123	/* pages must be released via unpin_user_page */
1124	FOLL_PIN = 1 << 19,
1125	/* gup_fast: prevent fall-back to slow gup */
1126	FOLL_FAST_ONLY = 1 << 20,
1127	/* allow unlocking the mmap lock */
1128	FOLL_UNLOCKABLE = 1 << 21,
1129	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1130	FOLL_MADV_POPULATE = 1 << 22,
1131};
1132
1133#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1134			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1135			    FOLL_MADV_POPULATE)
1136
1137/*
1138 * Indicates for which pages that are write-protected in the page table,
1139 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1140 * GUP pin will remain consistent with the pages mapped into the page tables
1141 * of the MM.
1142 *
1143 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1144 * PageAnonExclusive() has to protect against concurrent GUP:
1145 * * Ordinary GUP: Using the PT lock
1146 * * GUP-fast and fork(): mm->write_protect_seq
1147 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1148 *    folio_try_share_anon_rmap_*()
1149 *
1150 * Must be called with the (sub)page that's actually referenced via the
1151 * page table entry, which might not necessarily be the head page for a
1152 * PTE-mapped THP.
1153 *
1154 * If the vma is NULL, we're coming from the GUP-fast path and might have
1155 * to fallback to the slow path just to lookup the vma.
1156 */
1157static inline bool gup_must_unshare(struct vm_area_struct *vma,
1158				    unsigned int flags, struct page *page)
1159{
1160	/*
1161	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1162	 * has to be writable -- and if it references (part of) an anonymous
1163	 * folio, that part is required to be marked exclusive.
1164	 */
1165	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1166		return false;
1167	/*
1168	 * Note: PageAnon(page) is stable until the page is actually getting
1169	 * freed.
1170	 */
1171	if (!PageAnon(page)) {
1172		/*
1173		 * We only care about R/O long-term pining: R/O short-term
1174		 * pinning does not have the semantics to observe successive
1175		 * changes through the process page tables.
1176		 */
1177		if (!(flags & FOLL_LONGTERM))
1178			return false;
1179
1180		/* We really need the vma ... */
1181		if (!vma)
1182			return true;
1183
1184		/*
1185		 * ... because we only care about writable private ("COW")
1186		 * mappings where we have to break COW early.
1187		 */
1188		return is_cow_mapping(vma->vm_flags);
1189	}
1190
1191	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1192	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
1193		smp_rmb();
1194
1195	/*
1196	 * During GUP-fast we might not get called on the head page for a
1197	 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
1198	 * not work with the abstracted hugetlb PTEs that always point at the
1199	 * head page. For hugetlb, PageAnonExclusive only applies on the head
1200	 * page (as it cannot be partially COW-shared), so lookup the head page.
1201	 */
1202	if (unlikely(!PageHead(page) && PageHuge(page)))
1203		page = compound_head(page);
1204
1205	/*
1206	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1207	 * cannot get pinned.
1208	 */
1209	return !PageAnonExclusive(page);
1210}
1211
1212extern bool mirrored_kernelcore;
1213extern bool memblock_has_mirror(void);
1214
1215static __always_inline void vma_set_range(struct vm_area_struct *vma,
1216					  unsigned long start, unsigned long end,
1217					  pgoff_t pgoff)
1218{
1219	vma->vm_start = start;
1220	vma->vm_end = end;
1221	vma->vm_pgoff = pgoff;
1222}
1223
1224static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1225{
1226	/*
1227	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1228	 * enablements, because when without soft-dirty being compiled in,
1229	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1230	 * will be constantly true.
1231	 */
1232	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1233		return false;
1234
1235	/*
1236	 * Soft-dirty is kind of special: its tracking is enabled when the
1237	 * vma flags not set.
1238	 */
1239	return !(vma->vm_flags & VM_SOFTDIRTY);
1240}
1241
1242static inline void vma_iter_config(struct vma_iterator *vmi,
1243		unsigned long index, unsigned long last)
1244{
1245	__mas_set_range(&vmi->mas, index, last - 1);
1246}
1247
1248/*
1249 * VMA Iterator functions shared between nommu and mmap
1250 */
1251static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1252		struct vm_area_struct *vma)
1253{
1254	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1255}
1256
1257static inline void vma_iter_clear(struct vma_iterator *vmi)
1258{
1259	mas_store_prealloc(&vmi->mas, NULL);
1260}
1261
1262static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1263{
1264	return mas_walk(&vmi->mas);
1265}
1266
1267/* Store a VMA with preallocated memory */
1268static inline void vma_iter_store(struct vma_iterator *vmi,
1269				  struct vm_area_struct *vma)
1270{
1271
1272#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1273	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1274			vmi->mas.index > vma->vm_start)) {
1275		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1276			vmi->mas.index, vma->vm_start, vma->vm_start,
1277			vma->vm_end, vmi->mas.index, vmi->mas.last);
1278	}
1279	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1280			vmi->mas.last <  vma->vm_start)) {
1281		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1282		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1283		       vmi->mas.index, vmi->mas.last);
1284	}
1285#endif
1286
1287	if (vmi->mas.status != ma_start &&
1288	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1289		vma_iter_invalidate(vmi);
1290
1291	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1292	mas_store_prealloc(&vmi->mas, vma);
1293}
1294
1295static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1296			struct vm_area_struct *vma, gfp_t gfp)
1297{
1298	if (vmi->mas.status != ma_start &&
1299	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1300		vma_iter_invalidate(vmi);
1301
1302	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1303	mas_store_gfp(&vmi->mas, vma, gfp);
1304	if (unlikely(mas_is_err(&vmi->mas)))
1305		return -ENOMEM;
1306
1307	return 0;
1308}
1309
1310/*
1311 * VMA lock generalization
1312 */
1313struct vma_prepare {
1314	struct vm_area_struct *vma;
1315	struct vm_area_struct *adj_next;
1316	struct file *file;
1317	struct address_space *mapping;
1318	struct anon_vma *anon_vma;
1319	struct vm_area_struct *insert;
1320	struct vm_area_struct *remove;
1321	struct vm_area_struct *remove2;
1322};
1323
1324void __meminit __init_single_page(struct page *page, unsigned long pfn,
1325				unsigned long zone, int nid);
1326
1327/* shrinker related functions */
1328unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1329			  int priority);
1330
1331#ifdef CONFIG_SHRINKER_DEBUG
1332static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1333			struct shrinker *shrinker, const char *fmt, va_list ap)
1334{
1335	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1336
1337	return shrinker->name ? 0 : -ENOMEM;
1338}
1339
1340static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1341{
1342	kfree_const(shrinker->name);
1343	shrinker->name = NULL;
1344}
1345
1346extern int shrinker_debugfs_add(struct shrinker *shrinker);
1347extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1348					      int *debugfs_id);
1349extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1350				    int debugfs_id);
1351#else /* CONFIG_SHRINKER_DEBUG */
1352static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1353{
1354	return 0;
1355}
1356static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1357					      const char *fmt, va_list ap)
1358{
1359	return 0;
1360}
1361static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1362{
1363}
1364static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1365						     int *debugfs_id)
1366{
1367	*debugfs_id = -1;
1368	return NULL;
1369}
1370static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1371					   int debugfs_id)
1372{
1373}
1374#endif /* CONFIG_SHRINKER_DEBUG */
1375
1376/* Only track the nodes of mappings with shadow entries */
1377void workingset_update_node(struct xa_node *node);
1378extern struct list_lru shadow_nodes;
1379
1380#endif	/* __MM_INTERNAL_H */
1381