1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
5 * Authors: J��r��me Glisse <jglisse@redhat.com>
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11#include <linux/pagewalk.h>
12#include <linux/hmm.h>
13#include <linux/init.h>
14#include <linux/rmap.h>
15#include <linux/swap.h>
16#include <linux/slab.h>
17#include <linux/sched.h>
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
22#include <linux/memremap.h>
23#include <linux/sched/mm.h>
24#include <linux/jump_label.h>
25#include <linux/dma-mapping.h>
26#include <linux/mmu_notifier.h>
27#include <linux/memory_hotplug.h>
28
29#include "internal.h"
30
31struct hmm_vma_walk {
32	struct hmm_range	*range;
33	unsigned long		last;
34};
35
36enum {
37	HMM_NEED_FAULT = 1 << 0,
38	HMM_NEED_WRITE_FAULT = 1 << 1,
39	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
40};
41
42static int hmm_pfns_fill(unsigned long addr, unsigned long end,
43			 struct hmm_range *range, unsigned long cpu_flags)
44{
45	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
46
47	for (; addr < end; addr += PAGE_SIZE, i++)
48		range->hmm_pfns[i] = cpu_flags;
49	return 0;
50}
51
52/*
53 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
54 * @addr: range virtual start address (inclusive)
55 * @end: range virtual end address (exclusive)
56 * @required_fault: HMM_NEED_* flags
57 * @walk: mm_walk structure
58 * Return: -EBUSY after page fault, or page fault error
59 *
60 * This function will be called whenever pmd_none() or pte_none() returns true,
61 * or whenever there is no page directory covering the virtual address range.
62 */
63static int hmm_vma_fault(unsigned long addr, unsigned long end,
64			 unsigned int required_fault, struct mm_walk *walk)
65{
66	struct hmm_vma_walk *hmm_vma_walk = walk->private;
67	struct vm_area_struct *vma = walk->vma;
68	unsigned int fault_flags = FAULT_FLAG_REMOTE;
69
70	WARN_ON_ONCE(!required_fault);
71	hmm_vma_walk->last = addr;
72
73	if (required_fault & HMM_NEED_WRITE_FAULT) {
74		if (!(vma->vm_flags & VM_WRITE))
75			return -EPERM;
76		fault_flags |= FAULT_FLAG_WRITE;
77	}
78
79	for (; addr < end; addr += PAGE_SIZE)
80		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
81		    VM_FAULT_ERROR)
82			return -EFAULT;
83	return -EBUSY;
84}
85
86static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
87				       unsigned long pfn_req_flags,
88				       unsigned long cpu_flags)
89{
90	struct hmm_range *range = hmm_vma_walk->range;
91
92	/*
93	 * So we not only consider the individual per page request we also
94	 * consider the default flags requested for the range. The API can
95	 * be used 2 ways. The first one where the HMM user coalesces
96	 * multiple page faults into one request and sets flags per pfn for
97	 * those faults. The second one where the HMM user wants to pre-
98	 * fault a range with specific flags. For the latter one it is a
99	 * waste to have the user pre-fill the pfn arrays with a default
100	 * flags value.
101	 */
102	pfn_req_flags &= range->pfn_flags_mask;
103	pfn_req_flags |= range->default_flags;
104
105	/* We aren't ask to do anything ... */
106	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
107		return 0;
108
109	/* Need to write fault ? */
110	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
111	    !(cpu_flags & HMM_PFN_WRITE))
112		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
113
114	/* If CPU page table is not valid then we need to fault */
115	if (!(cpu_flags & HMM_PFN_VALID))
116		return HMM_NEED_FAULT;
117	return 0;
118}
119
120static unsigned int
121hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
122		     const unsigned long hmm_pfns[], unsigned long npages,
123		     unsigned long cpu_flags)
124{
125	struct hmm_range *range = hmm_vma_walk->range;
126	unsigned int required_fault = 0;
127	unsigned long i;
128
129	/*
130	 * If the default flags do not request to fault pages, and the mask does
131	 * not allow for individual pages to be faulted, then
132	 * hmm_pte_need_fault() will always return 0.
133	 */
134	if (!((range->default_flags | range->pfn_flags_mask) &
135	      HMM_PFN_REQ_FAULT))
136		return 0;
137
138	for (i = 0; i < npages; ++i) {
139		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
140						     cpu_flags);
141		if (required_fault == HMM_NEED_ALL_BITS)
142			return required_fault;
143	}
144	return required_fault;
145}
146
147static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
148			     __always_unused int depth, struct mm_walk *walk)
149{
150	struct hmm_vma_walk *hmm_vma_walk = walk->private;
151	struct hmm_range *range = hmm_vma_walk->range;
152	unsigned int required_fault;
153	unsigned long i, npages;
154	unsigned long *hmm_pfns;
155
156	i = (addr - range->start) >> PAGE_SHIFT;
157	npages = (end - addr) >> PAGE_SHIFT;
158	hmm_pfns = &range->hmm_pfns[i];
159	required_fault =
160		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
161	if (!walk->vma) {
162		if (required_fault)
163			return -EFAULT;
164		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
165	}
166	if (required_fault)
167		return hmm_vma_fault(addr, end, required_fault, walk);
168	return hmm_pfns_fill(addr, end, range, 0);
169}
170
171static inline unsigned long hmm_pfn_flags_order(unsigned long order)
172{
173	return order << HMM_PFN_ORDER_SHIFT;
174}
175
176static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
177						 pmd_t pmd)
178{
179	if (pmd_protnone(pmd))
180		return 0;
181	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
182				 HMM_PFN_VALID) |
183	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
184}
185
186#ifdef CONFIG_TRANSPARENT_HUGEPAGE
187static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
188			      unsigned long end, unsigned long hmm_pfns[],
189			      pmd_t pmd)
190{
191	struct hmm_vma_walk *hmm_vma_walk = walk->private;
192	struct hmm_range *range = hmm_vma_walk->range;
193	unsigned long pfn, npages, i;
194	unsigned int required_fault;
195	unsigned long cpu_flags;
196
197	npages = (end - addr) >> PAGE_SHIFT;
198	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
199	required_fault =
200		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
201	if (required_fault)
202		return hmm_vma_fault(addr, end, required_fault, walk);
203
204	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
205	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
206		hmm_pfns[i] = pfn | cpu_flags;
207	return 0;
208}
209#else /* CONFIG_TRANSPARENT_HUGEPAGE */
210/* stub to allow the code below to compile */
211int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
212		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
213#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
214
215static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
216						 pte_t pte)
217{
218	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
219		return 0;
220	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
221}
222
223static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
224			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
225			      unsigned long *hmm_pfn)
226{
227	struct hmm_vma_walk *hmm_vma_walk = walk->private;
228	struct hmm_range *range = hmm_vma_walk->range;
229	unsigned int required_fault;
230	unsigned long cpu_flags;
231	pte_t pte = ptep_get(ptep);
232	uint64_t pfn_req_flags = *hmm_pfn;
233
234	if (pte_none_mostly(pte)) {
235		required_fault =
236			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
237		if (required_fault)
238			goto fault;
239		*hmm_pfn = 0;
240		return 0;
241	}
242
243	if (!pte_present(pte)) {
244		swp_entry_t entry = pte_to_swp_entry(pte);
245
246		/*
247		 * Don't fault in device private pages owned by the caller,
248		 * just report the PFN.
249		 */
250		if (is_device_private_entry(entry) &&
251		    pfn_swap_entry_to_page(entry)->pgmap->owner ==
252		    range->dev_private_owner) {
253			cpu_flags = HMM_PFN_VALID;
254			if (is_writable_device_private_entry(entry))
255				cpu_flags |= HMM_PFN_WRITE;
256			*hmm_pfn = swp_offset_pfn(entry) | cpu_flags;
257			return 0;
258		}
259
260		required_fault =
261			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
262		if (!required_fault) {
263			*hmm_pfn = 0;
264			return 0;
265		}
266
267		if (!non_swap_entry(entry))
268			goto fault;
269
270		if (is_device_private_entry(entry))
271			goto fault;
272
273		if (is_device_exclusive_entry(entry))
274			goto fault;
275
276		if (is_migration_entry(entry)) {
277			pte_unmap(ptep);
278			hmm_vma_walk->last = addr;
279			migration_entry_wait(walk->mm, pmdp, addr);
280			return -EBUSY;
281		}
282
283		/* Report error for everything else */
284		pte_unmap(ptep);
285		return -EFAULT;
286	}
287
288	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
289	required_fault =
290		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
291	if (required_fault)
292		goto fault;
293
294	/*
295	 * Bypass devmap pte such as DAX page when all pfn requested
296	 * flags(pfn_req_flags) are fulfilled.
297	 * Since each architecture defines a struct page for the zero page, just
298	 * fall through and treat it like a normal page.
299	 */
300	if (!vm_normal_page(walk->vma, addr, pte) &&
301	    !pte_devmap(pte) &&
302	    !is_zero_pfn(pte_pfn(pte))) {
303		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
304			pte_unmap(ptep);
305			return -EFAULT;
306		}
307		*hmm_pfn = HMM_PFN_ERROR;
308		return 0;
309	}
310
311	*hmm_pfn = pte_pfn(pte) | cpu_flags;
312	return 0;
313
314fault:
315	pte_unmap(ptep);
316	/* Fault any virtual address we were asked to fault */
317	return hmm_vma_fault(addr, end, required_fault, walk);
318}
319
320static int hmm_vma_walk_pmd(pmd_t *pmdp,
321			    unsigned long start,
322			    unsigned long end,
323			    struct mm_walk *walk)
324{
325	struct hmm_vma_walk *hmm_vma_walk = walk->private;
326	struct hmm_range *range = hmm_vma_walk->range;
327	unsigned long *hmm_pfns =
328		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
329	unsigned long npages = (end - start) >> PAGE_SHIFT;
330	unsigned long addr = start;
331	pte_t *ptep;
332	pmd_t pmd;
333
334again:
335	pmd = pmdp_get_lockless(pmdp);
336	if (pmd_none(pmd))
337		return hmm_vma_walk_hole(start, end, -1, walk);
338
339	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
340		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
341			hmm_vma_walk->last = addr;
342			pmd_migration_entry_wait(walk->mm, pmdp);
343			return -EBUSY;
344		}
345		return hmm_pfns_fill(start, end, range, 0);
346	}
347
348	if (!pmd_present(pmd)) {
349		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
350			return -EFAULT;
351		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
352	}
353
354	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
355		/*
356		 * No need to take pmd_lock here, even if some other thread
357		 * is splitting the huge pmd we will get that event through
358		 * mmu_notifier callback.
359		 *
360		 * So just read pmd value and check again it's a transparent
361		 * huge or device mapping one and compute corresponding pfn
362		 * values.
363		 */
364		pmd = pmdp_get_lockless(pmdp);
365		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
366			goto again;
367
368		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
369	}
370
371	/*
372	 * We have handled all the valid cases above ie either none, migration,
373	 * huge or transparent huge. At this point either it is a valid pmd
374	 * entry pointing to pte directory or it is a bad pmd that will not
375	 * recover.
376	 */
377	if (pmd_bad(pmd)) {
378		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
379			return -EFAULT;
380		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
381	}
382
383	ptep = pte_offset_map(pmdp, addr);
384	if (!ptep)
385		goto again;
386	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
387		int r;
388
389		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
390		if (r) {
391			/* hmm_vma_handle_pte() did pte_unmap() */
392			return r;
393		}
394	}
395	pte_unmap(ptep - 1);
396	return 0;
397}
398
399#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
400    defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
401static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
402						 pud_t pud)
403{
404	if (!pud_present(pud))
405		return 0;
406	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
407				 HMM_PFN_VALID) |
408	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
409}
410
411static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
412		struct mm_walk *walk)
413{
414	struct hmm_vma_walk *hmm_vma_walk = walk->private;
415	struct hmm_range *range = hmm_vma_walk->range;
416	unsigned long addr = start;
417	pud_t pud;
418	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
419
420	if (!ptl)
421		return 0;
422
423	/* Normally we don't want to split the huge page */
424	walk->action = ACTION_CONTINUE;
425
426	pud = READ_ONCE(*pudp);
427	if (pud_none(pud)) {
428		spin_unlock(ptl);
429		return hmm_vma_walk_hole(start, end, -1, walk);
430	}
431
432	if (pud_huge(pud) && pud_devmap(pud)) {
433		unsigned long i, npages, pfn;
434		unsigned int required_fault;
435		unsigned long *hmm_pfns;
436		unsigned long cpu_flags;
437
438		if (!pud_present(pud)) {
439			spin_unlock(ptl);
440			return hmm_vma_walk_hole(start, end, -1, walk);
441		}
442
443		i = (addr - range->start) >> PAGE_SHIFT;
444		npages = (end - addr) >> PAGE_SHIFT;
445		hmm_pfns = &range->hmm_pfns[i];
446
447		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
448		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
449						      npages, cpu_flags);
450		if (required_fault) {
451			spin_unlock(ptl);
452			return hmm_vma_fault(addr, end, required_fault, walk);
453		}
454
455		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
456		for (i = 0; i < npages; ++i, ++pfn)
457			hmm_pfns[i] = pfn | cpu_flags;
458		goto out_unlock;
459	}
460
461	/* Ask for the PUD to be split */
462	walk->action = ACTION_SUBTREE;
463
464out_unlock:
465	spin_unlock(ptl);
466	return 0;
467}
468#else
469#define hmm_vma_walk_pud	NULL
470#endif
471
472#ifdef CONFIG_HUGETLB_PAGE
473static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
474				      unsigned long start, unsigned long end,
475				      struct mm_walk *walk)
476{
477	unsigned long addr = start, i, pfn;
478	struct hmm_vma_walk *hmm_vma_walk = walk->private;
479	struct hmm_range *range = hmm_vma_walk->range;
480	struct vm_area_struct *vma = walk->vma;
481	unsigned int required_fault;
482	unsigned long pfn_req_flags;
483	unsigned long cpu_flags;
484	spinlock_t *ptl;
485	pte_t entry;
486
487	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
488	entry = huge_ptep_get(pte);
489
490	i = (start - range->start) >> PAGE_SHIFT;
491	pfn_req_flags = range->hmm_pfns[i];
492	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
493		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
494	required_fault =
495		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
496	if (required_fault) {
497		int ret;
498
499		spin_unlock(ptl);
500		hugetlb_vma_unlock_read(vma);
501		/*
502		 * Avoid deadlock: drop the vma lock before calling
503		 * hmm_vma_fault(), which will itself potentially take and
504		 * drop the vma lock. This is also correct from a
505		 * protection point of view, because there is no further
506		 * use here of either pte or ptl after dropping the vma
507		 * lock.
508		 */
509		ret = hmm_vma_fault(addr, end, required_fault, walk);
510		hugetlb_vma_lock_read(vma);
511		return ret;
512	}
513
514	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
515	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
516		range->hmm_pfns[i] = pfn | cpu_flags;
517
518	spin_unlock(ptl);
519	return 0;
520}
521#else
522#define hmm_vma_walk_hugetlb_entry NULL
523#endif /* CONFIG_HUGETLB_PAGE */
524
525static int hmm_vma_walk_test(unsigned long start, unsigned long end,
526			     struct mm_walk *walk)
527{
528	struct hmm_vma_walk *hmm_vma_walk = walk->private;
529	struct hmm_range *range = hmm_vma_walk->range;
530	struct vm_area_struct *vma = walk->vma;
531
532	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
533	    vma->vm_flags & VM_READ)
534		return 0;
535
536	/*
537	 * vma ranges that don't have struct page backing them or map I/O
538	 * devices directly cannot be handled by hmm_range_fault().
539	 *
540	 * If the vma does not allow read access, then assume that it does not
541	 * allow write access either. HMM does not support architectures that
542	 * allow write without read.
543	 *
544	 * If a fault is requested for an unsupported range then it is a hard
545	 * failure.
546	 */
547	if (hmm_range_need_fault(hmm_vma_walk,
548				 range->hmm_pfns +
549					 ((start - range->start) >> PAGE_SHIFT),
550				 (end - start) >> PAGE_SHIFT, 0))
551		return -EFAULT;
552
553	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
554
555	/* Skip this vma and continue processing the next vma. */
556	return 1;
557}
558
559static const struct mm_walk_ops hmm_walk_ops = {
560	.pud_entry	= hmm_vma_walk_pud,
561	.pmd_entry	= hmm_vma_walk_pmd,
562	.pte_hole	= hmm_vma_walk_hole,
563	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
564	.test_walk	= hmm_vma_walk_test,
565	.walk_lock	= PGWALK_RDLOCK,
566};
567
568/**
569 * hmm_range_fault - try to fault some address in a virtual address range
570 * @range:	argument structure
571 *
572 * Returns 0 on success or one of the following error codes:
573 *
574 * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
575 *		(e.g., device file vma).
576 * -ENOMEM:	Out of memory.
577 * -EPERM:	Invalid permission (e.g., asking for write and range is read
578 *		only).
579 * -EBUSY:	The range has been invalidated and the caller needs to wait for
580 *		the invalidation to finish.
581 * -EFAULT:     A page was requested to be valid and could not be made valid
582 *              ie it has no backing VMA or it is illegal to access
583 *
584 * This is similar to get_user_pages(), except that it can read the page tables
585 * without mutating them (ie causing faults).
586 */
587int hmm_range_fault(struct hmm_range *range)
588{
589	struct hmm_vma_walk hmm_vma_walk = {
590		.range = range,
591		.last = range->start,
592	};
593	struct mm_struct *mm = range->notifier->mm;
594	int ret;
595
596	mmap_assert_locked(mm);
597
598	do {
599		/* If range is no longer valid force retry. */
600		if (mmu_interval_check_retry(range->notifier,
601					     range->notifier_seq))
602			return -EBUSY;
603		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
604				      &hmm_walk_ops, &hmm_vma_walk);
605		/*
606		 * When -EBUSY is returned the loop restarts with
607		 * hmm_vma_walk.last set to an address that has not been stored
608		 * in pfns. All entries < last in the pfn array are set to their
609		 * output, and all >= are still at their input values.
610		 */
611	} while (ret == -EBUSY);
612	return ret;
613}
614EXPORT_SYMBOL(hmm_range_fault);
615