1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This kernel test validates architecture page table helpers and
4 * accessors and helps in verifying their continued compliance with
5 * expected generic MM semantics.
6 *
7 * Copyright (C) 2019 ARM Ltd.
8 *
9 * Author: Anshuman Khandual <anshuman.khandual@arm.com>
10 */
11#define pr_fmt(fmt) "debug_vm_pgtable: [%-25s]: " fmt, __func__
12
13#include <linux/gfp.h>
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/kernel.h>
17#include <linux/kconfig.h>
18#include <linux/memblock.h>
19#include <linux/mm.h>
20#include <linux/mman.h>
21#include <linux/mm_types.h>
22#include <linux/module.h>
23#include <linux/pfn_t.h>
24#include <linux/printk.h>
25#include <linux/pgtable.h>
26#include <linux/random.h>
27#include <linux/spinlock.h>
28#include <linux/swap.h>
29#include <linux/swapops.h>
30#include <linux/start_kernel.h>
31#include <linux/sched/mm.h>
32#include <linux/io.h>
33
34#include <asm/cacheflush.h>
35#include <asm/pgalloc.h>
36#include <asm/tlbflush.h>
37
38/*
39 * Please refer Documentation/mm/arch_pgtable_helpers.rst for the semantics
40 * expectations that are being validated here. All future changes in here
41 * or the documentation need to be in sync.
42 *
43 * On s390 platform, the lower 4 bits are used to identify given page table
44 * entry type. But these bits might affect the ability to clear entries with
45 * pxx_clear() because of how dynamic page table folding works on s390. So
46 * while loading up the entries do not change the lower 4 bits. It does not
47 * have affect any other platform. Also avoid the 62nd bit on ppc64 that is
48 * used to mark a pte entry.
49 */
50#define S390_SKIP_MASK		GENMASK(3, 0)
51#if __BITS_PER_LONG == 64
52#define PPC64_SKIP_MASK		GENMASK(62, 62)
53#else
54#define PPC64_SKIP_MASK		0x0
55#endif
56#define ARCH_SKIP_MASK (S390_SKIP_MASK | PPC64_SKIP_MASK)
57#define RANDOM_ORVALUE (GENMASK(BITS_PER_LONG - 1, 0) & ~ARCH_SKIP_MASK)
58#define RANDOM_NZVALUE	GENMASK(7, 0)
59
60struct pgtable_debug_args {
61	struct mm_struct	*mm;
62	struct vm_area_struct	*vma;
63
64	pgd_t			*pgdp;
65	p4d_t			*p4dp;
66	pud_t			*pudp;
67	pmd_t			*pmdp;
68	pte_t			*ptep;
69
70	p4d_t			*start_p4dp;
71	pud_t			*start_pudp;
72	pmd_t			*start_pmdp;
73	pgtable_t		start_ptep;
74
75	unsigned long		vaddr;
76	pgprot_t		page_prot;
77	pgprot_t		page_prot_none;
78
79	bool			is_contiguous_page;
80	unsigned long		pud_pfn;
81	unsigned long		pmd_pfn;
82	unsigned long		pte_pfn;
83
84	unsigned long		fixed_alignment;
85	unsigned long		fixed_pgd_pfn;
86	unsigned long		fixed_p4d_pfn;
87	unsigned long		fixed_pud_pfn;
88	unsigned long		fixed_pmd_pfn;
89	unsigned long		fixed_pte_pfn;
90};
91
92static void __init pte_basic_tests(struct pgtable_debug_args *args, int idx)
93{
94	pgprot_t prot = vm_get_page_prot(idx);
95	pte_t pte = pfn_pte(args->fixed_pte_pfn, prot);
96	unsigned long val = idx, *ptr = &val;
97
98	pr_debug("Validating PTE basic (%pGv)\n", ptr);
99
100	/*
101	 * This test needs to be executed after the given page table entry
102	 * is created with pfn_pte() to make sure that vm_get_page_prot(idx)
103	 * does not have the dirty bit enabled from the beginning. This is
104	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
105	 * dirty bit being set.
106	 */
107	WARN_ON(pte_dirty(pte_wrprotect(pte)));
108
109	WARN_ON(!pte_same(pte, pte));
110	WARN_ON(!pte_young(pte_mkyoung(pte_mkold(pte))));
111	WARN_ON(!pte_dirty(pte_mkdirty(pte_mkclean(pte))));
112	WARN_ON(!pte_write(pte_mkwrite(pte_wrprotect(pte), args->vma)));
113	WARN_ON(pte_young(pte_mkold(pte_mkyoung(pte))));
114	WARN_ON(pte_dirty(pte_mkclean(pte_mkdirty(pte))));
115	WARN_ON(pte_write(pte_wrprotect(pte_mkwrite(pte, args->vma))));
116	WARN_ON(pte_dirty(pte_wrprotect(pte_mkclean(pte))));
117	WARN_ON(!pte_dirty(pte_wrprotect(pte_mkdirty(pte))));
118}
119
120static void __init pte_advanced_tests(struct pgtable_debug_args *args)
121{
122	struct page *page;
123	pte_t pte;
124
125	/*
126	 * Architectures optimize set_pte_at by avoiding TLB flush.
127	 * This requires set_pte_at to be not used to update an
128	 * existing pte entry. Clear pte before we do set_pte_at
129	 *
130	 * flush_dcache_page() is called after set_pte_at() to clear
131	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
132	 * when it's released and page allocation check will fail when
133	 * the page is allocated again. For architectures other than ARM64,
134	 * the unexpected overhead of cache flushing is acceptable.
135	 */
136	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
137	if (!page)
138		return;
139
140	pr_debug("Validating PTE advanced\n");
141	if (WARN_ON(!args->ptep))
142		return;
143
144	pte = pfn_pte(args->pte_pfn, args->page_prot);
145	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
146	flush_dcache_page(page);
147	ptep_set_wrprotect(args->mm, args->vaddr, args->ptep);
148	pte = ptep_get(args->ptep);
149	WARN_ON(pte_write(pte));
150	ptep_get_and_clear(args->mm, args->vaddr, args->ptep);
151	pte = ptep_get(args->ptep);
152	WARN_ON(!pte_none(pte));
153
154	pte = pfn_pte(args->pte_pfn, args->page_prot);
155	pte = pte_wrprotect(pte);
156	pte = pte_mkclean(pte);
157	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
158	flush_dcache_page(page);
159	pte = pte_mkwrite(pte, args->vma);
160	pte = pte_mkdirty(pte);
161	ptep_set_access_flags(args->vma, args->vaddr, args->ptep, pte, 1);
162	pte = ptep_get(args->ptep);
163	WARN_ON(!(pte_write(pte) && pte_dirty(pte)));
164	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
165	pte = ptep_get(args->ptep);
166	WARN_ON(!pte_none(pte));
167
168	pte = pfn_pte(args->pte_pfn, args->page_prot);
169	pte = pte_mkyoung(pte);
170	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
171	flush_dcache_page(page);
172	ptep_test_and_clear_young(args->vma, args->vaddr, args->ptep);
173	pte = ptep_get(args->ptep);
174	WARN_ON(pte_young(pte));
175
176	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
177}
178
179#ifdef CONFIG_TRANSPARENT_HUGEPAGE
180static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx)
181{
182	pgprot_t prot = vm_get_page_prot(idx);
183	unsigned long val = idx, *ptr = &val;
184	pmd_t pmd;
185
186	if (!has_transparent_hugepage())
187		return;
188
189	pr_debug("Validating PMD basic (%pGv)\n", ptr);
190	pmd = pfn_pmd(args->fixed_pmd_pfn, prot);
191
192	/*
193	 * This test needs to be executed after the given page table entry
194	 * is created with pfn_pmd() to make sure that vm_get_page_prot(idx)
195	 * does not have the dirty bit enabled from the beginning. This is
196	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
197	 * dirty bit being set.
198	 */
199	WARN_ON(pmd_dirty(pmd_wrprotect(pmd)));
200
201
202	WARN_ON(!pmd_same(pmd, pmd));
203	WARN_ON(!pmd_young(pmd_mkyoung(pmd_mkold(pmd))));
204	WARN_ON(!pmd_dirty(pmd_mkdirty(pmd_mkclean(pmd))));
205	WARN_ON(!pmd_write(pmd_mkwrite(pmd_wrprotect(pmd), args->vma)));
206	WARN_ON(pmd_young(pmd_mkold(pmd_mkyoung(pmd))));
207	WARN_ON(pmd_dirty(pmd_mkclean(pmd_mkdirty(pmd))));
208	WARN_ON(pmd_write(pmd_wrprotect(pmd_mkwrite(pmd, args->vma))));
209	WARN_ON(pmd_dirty(pmd_wrprotect(pmd_mkclean(pmd))));
210	WARN_ON(!pmd_dirty(pmd_wrprotect(pmd_mkdirty(pmd))));
211	/*
212	 * A huge page does not point to next level page table
213	 * entry. Hence this must qualify as pmd_bad().
214	 */
215	WARN_ON(!pmd_bad(pmd_mkhuge(pmd)));
216}
217
218static void __init pmd_advanced_tests(struct pgtable_debug_args *args)
219{
220	struct page *page;
221	pmd_t pmd;
222	unsigned long vaddr = args->vaddr;
223
224	if (!has_transparent_hugepage())
225		return;
226
227	page = (args->pmd_pfn != ULONG_MAX) ? pfn_to_page(args->pmd_pfn) : NULL;
228	if (!page)
229		return;
230
231	/*
232	 * flush_dcache_page() is called after set_pmd_at() to clear
233	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
234	 * when it's released and page allocation check will fail when
235	 * the page is allocated again. For architectures other than ARM64,
236	 * the unexpected overhead of cache flushing is acceptable.
237	 */
238	pr_debug("Validating PMD advanced\n");
239	/* Align the address wrt HPAGE_PMD_SIZE */
240	vaddr &= HPAGE_PMD_MASK;
241
242	pgtable_trans_huge_deposit(args->mm, args->pmdp, args->start_ptep);
243
244	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
245	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
246	flush_dcache_page(page);
247	pmdp_set_wrprotect(args->mm, vaddr, args->pmdp);
248	pmd = READ_ONCE(*args->pmdp);
249	WARN_ON(pmd_write(pmd));
250	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
251	pmd = READ_ONCE(*args->pmdp);
252	WARN_ON(!pmd_none(pmd));
253
254	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
255	pmd = pmd_wrprotect(pmd);
256	pmd = pmd_mkclean(pmd);
257	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
258	flush_dcache_page(page);
259	pmd = pmd_mkwrite(pmd, args->vma);
260	pmd = pmd_mkdirty(pmd);
261	pmdp_set_access_flags(args->vma, vaddr, args->pmdp, pmd, 1);
262	pmd = READ_ONCE(*args->pmdp);
263	WARN_ON(!(pmd_write(pmd) && pmd_dirty(pmd)));
264	pmdp_huge_get_and_clear_full(args->vma, vaddr, args->pmdp, 1);
265	pmd = READ_ONCE(*args->pmdp);
266	WARN_ON(!pmd_none(pmd));
267
268	pmd = pmd_mkhuge(pfn_pmd(args->pmd_pfn, args->page_prot));
269	pmd = pmd_mkyoung(pmd);
270	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
271	flush_dcache_page(page);
272	pmdp_test_and_clear_young(args->vma, vaddr, args->pmdp);
273	pmd = READ_ONCE(*args->pmdp);
274	WARN_ON(pmd_young(pmd));
275
276	/*  Clear the pte entries  */
277	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
278	pgtable_trans_huge_withdraw(args->mm, args->pmdp);
279}
280
281static void __init pmd_leaf_tests(struct pgtable_debug_args *args)
282{
283	pmd_t pmd;
284
285	if (!has_transparent_hugepage())
286		return;
287
288	pr_debug("Validating PMD leaf\n");
289	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
290
291	/*
292	 * PMD based THP is a leaf entry.
293	 */
294	pmd = pmd_mkhuge(pmd);
295	WARN_ON(!pmd_leaf(pmd));
296}
297
298#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
299static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx)
300{
301	pgprot_t prot = vm_get_page_prot(idx);
302	unsigned long val = idx, *ptr = &val;
303	pud_t pud;
304
305	if (!has_transparent_pud_hugepage())
306		return;
307
308	pr_debug("Validating PUD basic (%pGv)\n", ptr);
309	pud = pfn_pud(args->fixed_pud_pfn, prot);
310
311	/*
312	 * This test needs to be executed after the given page table entry
313	 * is created with pfn_pud() to make sure that vm_get_page_prot(idx)
314	 * does not have the dirty bit enabled from the beginning. This is
315	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
316	 * dirty bit being set.
317	 */
318	WARN_ON(pud_dirty(pud_wrprotect(pud)));
319
320	WARN_ON(!pud_same(pud, pud));
321	WARN_ON(!pud_young(pud_mkyoung(pud_mkold(pud))));
322	WARN_ON(!pud_dirty(pud_mkdirty(pud_mkclean(pud))));
323	WARN_ON(pud_dirty(pud_mkclean(pud_mkdirty(pud))));
324	WARN_ON(!pud_write(pud_mkwrite(pud_wrprotect(pud))));
325	WARN_ON(pud_write(pud_wrprotect(pud_mkwrite(pud))));
326	WARN_ON(pud_young(pud_mkold(pud_mkyoung(pud))));
327	WARN_ON(pud_dirty(pud_wrprotect(pud_mkclean(pud))));
328	WARN_ON(!pud_dirty(pud_wrprotect(pud_mkdirty(pud))));
329
330	if (mm_pmd_folded(args->mm))
331		return;
332
333	/*
334	 * A huge page does not point to next level page table
335	 * entry. Hence this must qualify as pud_bad().
336	 */
337	WARN_ON(!pud_bad(pud_mkhuge(pud)));
338}
339
340static void __init pud_advanced_tests(struct pgtable_debug_args *args)
341{
342	struct page *page;
343	unsigned long vaddr = args->vaddr;
344	pud_t pud;
345
346	if (!has_transparent_pud_hugepage())
347		return;
348
349	page = (args->pud_pfn != ULONG_MAX) ? pfn_to_page(args->pud_pfn) : NULL;
350	if (!page)
351		return;
352
353	/*
354	 * flush_dcache_page() is called after set_pud_at() to clear
355	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
356	 * when it's released and page allocation check will fail when
357	 * the page is allocated again. For architectures other than ARM64,
358	 * the unexpected overhead of cache flushing is acceptable.
359	 */
360	pr_debug("Validating PUD advanced\n");
361	/* Align the address wrt HPAGE_PUD_SIZE */
362	vaddr &= HPAGE_PUD_MASK;
363
364	pud = pfn_pud(args->pud_pfn, args->page_prot);
365	/*
366	 * Some architectures have debug checks to make sure
367	 * huge pud mapping are only found with devmap entries
368	 * For now test with only devmap entries.
369	 */
370	pud = pud_mkdevmap(pud);
371	set_pud_at(args->mm, vaddr, args->pudp, pud);
372	flush_dcache_page(page);
373	pudp_set_wrprotect(args->mm, vaddr, args->pudp);
374	pud = READ_ONCE(*args->pudp);
375	WARN_ON(pud_write(pud));
376
377#ifndef __PAGETABLE_PMD_FOLDED
378	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
379	pud = READ_ONCE(*args->pudp);
380	WARN_ON(!pud_none(pud));
381#endif /* __PAGETABLE_PMD_FOLDED */
382	pud = pfn_pud(args->pud_pfn, args->page_prot);
383	pud = pud_mkdevmap(pud);
384	pud = pud_wrprotect(pud);
385	pud = pud_mkclean(pud);
386	set_pud_at(args->mm, vaddr, args->pudp, pud);
387	flush_dcache_page(page);
388	pud = pud_mkwrite(pud);
389	pud = pud_mkdirty(pud);
390	pudp_set_access_flags(args->vma, vaddr, args->pudp, pud, 1);
391	pud = READ_ONCE(*args->pudp);
392	WARN_ON(!(pud_write(pud) && pud_dirty(pud)));
393
394#ifndef __PAGETABLE_PMD_FOLDED
395	pudp_huge_get_and_clear_full(args->vma, vaddr, args->pudp, 1);
396	pud = READ_ONCE(*args->pudp);
397	WARN_ON(!pud_none(pud));
398#endif /* __PAGETABLE_PMD_FOLDED */
399
400	pud = pfn_pud(args->pud_pfn, args->page_prot);
401	pud = pud_mkdevmap(pud);
402	pud = pud_mkyoung(pud);
403	set_pud_at(args->mm, vaddr, args->pudp, pud);
404	flush_dcache_page(page);
405	pudp_test_and_clear_young(args->vma, vaddr, args->pudp);
406	pud = READ_ONCE(*args->pudp);
407	WARN_ON(pud_young(pud));
408
409	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
410}
411
412static void __init pud_leaf_tests(struct pgtable_debug_args *args)
413{
414	pud_t pud;
415
416	if (!has_transparent_pud_hugepage())
417		return;
418
419	pr_debug("Validating PUD leaf\n");
420	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
421	/*
422	 * PUD based THP is a leaf entry.
423	 */
424	pud = pud_mkhuge(pud);
425	WARN_ON(!pud_leaf(pud));
426}
427#else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
428static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
429static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
430static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
431#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
432#else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
433static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx) { }
434static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
435static void __init pmd_advanced_tests(struct pgtable_debug_args *args) { }
436static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
437static void __init pmd_leaf_tests(struct pgtable_debug_args *args) { }
438static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
439#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
440
441#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
442static void __init pmd_huge_tests(struct pgtable_debug_args *args)
443{
444	pmd_t pmd;
445
446	if (!arch_vmap_pmd_supported(args->page_prot) ||
447	    args->fixed_alignment < PMD_SIZE)
448		return;
449
450	pr_debug("Validating PMD huge\n");
451	/*
452	 * X86 defined pmd_set_huge() verifies that the given
453	 * PMD is not a populated non-leaf entry.
454	 */
455	WRITE_ONCE(*args->pmdp, __pmd(0));
456	WARN_ON(!pmd_set_huge(args->pmdp, __pfn_to_phys(args->fixed_pmd_pfn), args->page_prot));
457	WARN_ON(!pmd_clear_huge(args->pmdp));
458	pmd = READ_ONCE(*args->pmdp);
459	WARN_ON(!pmd_none(pmd));
460}
461
462static void __init pud_huge_tests(struct pgtable_debug_args *args)
463{
464	pud_t pud;
465
466	if (!arch_vmap_pud_supported(args->page_prot) ||
467	    args->fixed_alignment < PUD_SIZE)
468		return;
469
470	pr_debug("Validating PUD huge\n");
471	/*
472	 * X86 defined pud_set_huge() verifies that the given
473	 * PUD is not a populated non-leaf entry.
474	 */
475	WRITE_ONCE(*args->pudp, __pud(0));
476	WARN_ON(!pud_set_huge(args->pudp, __pfn_to_phys(args->fixed_pud_pfn), args->page_prot));
477	WARN_ON(!pud_clear_huge(args->pudp));
478	pud = READ_ONCE(*args->pudp);
479	WARN_ON(!pud_none(pud));
480}
481#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
482static void __init pmd_huge_tests(struct pgtable_debug_args *args) { }
483static void __init pud_huge_tests(struct pgtable_debug_args *args) { }
484#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
485
486static void __init p4d_basic_tests(struct pgtable_debug_args *args)
487{
488	p4d_t p4d;
489
490	pr_debug("Validating P4D basic\n");
491	memset(&p4d, RANDOM_NZVALUE, sizeof(p4d_t));
492	WARN_ON(!p4d_same(p4d, p4d));
493}
494
495static void __init pgd_basic_tests(struct pgtable_debug_args *args)
496{
497	pgd_t pgd;
498
499	pr_debug("Validating PGD basic\n");
500	memset(&pgd, RANDOM_NZVALUE, sizeof(pgd_t));
501	WARN_ON(!pgd_same(pgd, pgd));
502}
503
504#ifndef __PAGETABLE_PUD_FOLDED
505static void __init pud_clear_tests(struct pgtable_debug_args *args)
506{
507	pud_t pud = READ_ONCE(*args->pudp);
508
509	if (mm_pmd_folded(args->mm))
510		return;
511
512	pr_debug("Validating PUD clear\n");
513	pud = __pud(pud_val(pud) | RANDOM_ORVALUE);
514	WRITE_ONCE(*args->pudp, pud);
515	pud_clear(args->pudp);
516	pud = READ_ONCE(*args->pudp);
517	WARN_ON(!pud_none(pud));
518}
519
520static void __init pud_populate_tests(struct pgtable_debug_args *args)
521{
522	pud_t pud;
523
524	if (mm_pmd_folded(args->mm))
525		return;
526
527	pr_debug("Validating PUD populate\n");
528	/*
529	 * This entry points to next level page table page.
530	 * Hence this must not qualify as pud_bad().
531	 */
532	pud_populate(args->mm, args->pudp, args->start_pmdp);
533	pud = READ_ONCE(*args->pudp);
534	WARN_ON(pud_bad(pud));
535}
536#else  /* !__PAGETABLE_PUD_FOLDED */
537static void __init pud_clear_tests(struct pgtable_debug_args *args) { }
538static void __init pud_populate_tests(struct pgtable_debug_args *args) { }
539#endif /* PAGETABLE_PUD_FOLDED */
540
541#ifndef __PAGETABLE_P4D_FOLDED
542static void __init p4d_clear_tests(struct pgtable_debug_args *args)
543{
544	p4d_t p4d = READ_ONCE(*args->p4dp);
545
546	if (mm_pud_folded(args->mm))
547		return;
548
549	pr_debug("Validating P4D clear\n");
550	p4d = __p4d(p4d_val(p4d) | RANDOM_ORVALUE);
551	WRITE_ONCE(*args->p4dp, p4d);
552	p4d_clear(args->p4dp);
553	p4d = READ_ONCE(*args->p4dp);
554	WARN_ON(!p4d_none(p4d));
555}
556
557static void __init p4d_populate_tests(struct pgtable_debug_args *args)
558{
559	p4d_t p4d;
560
561	if (mm_pud_folded(args->mm))
562		return;
563
564	pr_debug("Validating P4D populate\n");
565	/*
566	 * This entry points to next level page table page.
567	 * Hence this must not qualify as p4d_bad().
568	 */
569	pud_clear(args->pudp);
570	p4d_clear(args->p4dp);
571	p4d_populate(args->mm, args->p4dp, args->start_pudp);
572	p4d = READ_ONCE(*args->p4dp);
573	WARN_ON(p4d_bad(p4d));
574}
575
576static void __init pgd_clear_tests(struct pgtable_debug_args *args)
577{
578	pgd_t pgd = READ_ONCE(*(args->pgdp));
579
580	if (mm_p4d_folded(args->mm))
581		return;
582
583	pr_debug("Validating PGD clear\n");
584	pgd = __pgd(pgd_val(pgd) | RANDOM_ORVALUE);
585	WRITE_ONCE(*args->pgdp, pgd);
586	pgd_clear(args->pgdp);
587	pgd = READ_ONCE(*args->pgdp);
588	WARN_ON(!pgd_none(pgd));
589}
590
591static void __init pgd_populate_tests(struct pgtable_debug_args *args)
592{
593	pgd_t pgd;
594
595	if (mm_p4d_folded(args->mm))
596		return;
597
598	pr_debug("Validating PGD populate\n");
599	/*
600	 * This entry points to next level page table page.
601	 * Hence this must not qualify as pgd_bad().
602	 */
603	p4d_clear(args->p4dp);
604	pgd_clear(args->pgdp);
605	pgd_populate(args->mm, args->pgdp, args->start_p4dp);
606	pgd = READ_ONCE(*args->pgdp);
607	WARN_ON(pgd_bad(pgd));
608}
609#else  /* !__PAGETABLE_P4D_FOLDED */
610static void __init p4d_clear_tests(struct pgtable_debug_args *args) { }
611static void __init pgd_clear_tests(struct pgtable_debug_args *args) { }
612static void __init p4d_populate_tests(struct pgtable_debug_args *args) { }
613static void __init pgd_populate_tests(struct pgtable_debug_args *args) { }
614#endif /* PAGETABLE_P4D_FOLDED */
615
616static void __init pte_clear_tests(struct pgtable_debug_args *args)
617{
618	struct page *page;
619	pte_t pte = pfn_pte(args->pte_pfn, args->page_prot);
620
621	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
622	if (!page)
623		return;
624
625	/*
626	 * flush_dcache_page() is called after set_pte_at() to clear
627	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
628	 * when it's released and page allocation check will fail when
629	 * the page is allocated again. For architectures other than ARM64,
630	 * the unexpected overhead of cache flushing is acceptable.
631	 */
632	pr_debug("Validating PTE clear\n");
633	if (WARN_ON(!args->ptep))
634		return;
635
636#ifndef CONFIG_RISCV
637	pte = __pte(pte_val(pte) | RANDOM_ORVALUE);
638#endif
639	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
640	flush_dcache_page(page);
641	barrier();
642	ptep_clear(args->mm, args->vaddr, args->ptep);
643	pte = ptep_get(args->ptep);
644	WARN_ON(!pte_none(pte));
645}
646
647static void __init pmd_clear_tests(struct pgtable_debug_args *args)
648{
649	pmd_t pmd = READ_ONCE(*args->pmdp);
650
651	pr_debug("Validating PMD clear\n");
652	pmd = __pmd(pmd_val(pmd) | RANDOM_ORVALUE);
653	WRITE_ONCE(*args->pmdp, pmd);
654	pmd_clear(args->pmdp);
655	pmd = READ_ONCE(*args->pmdp);
656	WARN_ON(!pmd_none(pmd));
657}
658
659static void __init pmd_populate_tests(struct pgtable_debug_args *args)
660{
661	pmd_t pmd;
662
663	pr_debug("Validating PMD populate\n");
664	/*
665	 * This entry points to next level page table page.
666	 * Hence this must not qualify as pmd_bad().
667	 */
668	pmd_populate(args->mm, args->pmdp, args->start_ptep);
669	pmd = READ_ONCE(*args->pmdp);
670	WARN_ON(pmd_bad(pmd));
671}
672
673static void __init pte_special_tests(struct pgtable_debug_args *args)
674{
675	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
676
677	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL))
678		return;
679
680	pr_debug("Validating PTE special\n");
681	WARN_ON(!pte_special(pte_mkspecial(pte)));
682}
683
684static void __init pte_protnone_tests(struct pgtable_debug_args *args)
685{
686	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none);
687
688	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
689		return;
690
691	pr_debug("Validating PTE protnone\n");
692	WARN_ON(!pte_protnone(pte));
693	WARN_ON(!pte_present(pte));
694}
695
696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
697static void __init pmd_protnone_tests(struct pgtable_debug_args *args)
698{
699	pmd_t pmd;
700
701	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
702		return;
703
704	if (!has_transparent_hugepage())
705		return;
706
707	pr_debug("Validating PMD protnone\n");
708	pmd = pmd_mkhuge(pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none));
709	WARN_ON(!pmd_protnone(pmd));
710	WARN_ON(!pmd_present(pmd));
711}
712#else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
713static void __init pmd_protnone_tests(struct pgtable_debug_args *args) { }
714#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
715
716#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
717static void __init pte_devmap_tests(struct pgtable_debug_args *args)
718{
719	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
720
721	pr_debug("Validating PTE devmap\n");
722	WARN_ON(!pte_devmap(pte_mkdevmap(pte)));
723}
724
725#ifdef CONFIG_TRANSPARENT_HUGEPAGE
726static void __init pmd_devmap_tests(struct pgtable_debug_args *args)
727{
728	pmd_t pmd;
729
730	if (!has_transparent_hugepage())
731		return;
732
733	pr_debug("Validating PMD devmap\n");
734	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
735	WARN_ON(!pmd_devmap(pmd_mkdevmap(pmd)));
736}
737
738#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
739static void __init pud_devmap_tests(struct pgtable_debug_args *args)
740{
741	pud_t pud;
742
743	if (!has_transparent_pud_hugepage())
744		return;
745
746	pr_debug("Validating PUD devmap\n");
747	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
748	WARN_ON(!pud_devmap(pud_mkdevmap(pud)));
749}
750#else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
751static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
752#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
753#else  /* CONFIG_TRANSPARENT_HUGEPAGE */
754static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
755static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
756#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757#else
758static void __init pte_devmap_tests(struct pgtable_debug_args *args) { }
759static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
760static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
761#endif /* CONFIG_ARCH_HAS_PTE_DEVMAP */
762
763static void __init pte_soft_dirty_tests(struct pgtable_debug_args *args)
764{
765	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
766
767	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
768		return;
769
770	pr_debug("Validating PTE soft dirty\n");
771	WARN_ON(!pte_soft_dirty(pte_mksoft_dirty(pte)));
772	WARN_ON(pte_soft_dirty(pte_clear_soft_dirty(pte)));
773}
774
775static void __init pte_swap_soft_dirty_tests(struct pgtable_debug_args *args)
776{
777	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
778
779	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
780		return;
781
782	pr_debug("Validating PTE swap soft dirty\n");
783	WARN_ON(!pte_swp_soft_dirty(pte_swp_mksoft_dirty(pte)));
784	WARN_ON(pte_swp_soft_dirty(pte_swp_clear_soft_dirty(pte)));
785}
786
787#ifdef CONFIG_TRANSPARENT_HUGEPAGE
788static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args)
789{
790	pmd_t pmd;
791
792	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
793		return;
794
795	if (!has_transparent_hugepage())
796		return;
797
798	pr_debug("Validating PMD soft dirty\n");
799	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
800	WARN_ON(!pmd_soft_dirty(pmd_mksoft_dirty(pmd)));
801	WARN_ON(pmd_soft_dirty(pmd_clear_soft_dirty(pmd)));
802}
803
804static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args)
805{
806	pmd_t pmd;
807
808	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) ||
809		!IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION))
810		return;
811
812	if (!has_transparent_hugepage())
813		return;
814
815	pr_debug("Validating PMD swap soft dirty\n");
816	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
817	WARN_ON(!pmd_swp_soft_dirty(pmd_swp_mksoft_dirty(pmd)));
818	WARN_ON(pmd_swp_soft_dirty(pmd_swp_clear_soft_dirty(pmd)));
819}
820#else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
821static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args) { }
822static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args) { }
823#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
824
825static void __init pte_swap_exclusive_tests(struct pgtable_debug_args *args)
826{
827	unsigned long max_swap_offset;
828	swp_entry_t entry, entry2;
829	pte_t pte;
830
831	pr_debug("Validating PTE swap exclusive\n");
832
833	/* See generic_max_swapfile_size(): probe the maximum offset */
834	max_swap_offset = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0, ~0UL))));
835
836	/* Create a swp entry with all possible bits set */
837	entry = swp_entry((1 << MAX_SWAPFILES_SHIFT) - 1, max_swap_offset);
838
839	pte = swp_entry_to_pte(entry);
840	WARN_ON(pte_swp_exclusive(pte));
841	WARN_ON(!is_swap_pte(pte));
842	entry2 = pte_to_swp_entry(pte);
843	WARN_ON(memcmp(&entry, &entry2, sizeof(entry)));
844
845	pte = pte_swp_mkexclusive(pte);
846	WARN_ON(!pte_swp_exclusive(pte));
847	WARN_ON(!is_swap_pte(pte));
848	WARN_ON(pte_swp_soft_dirty(pte));
849	entry2 = pte_to_swp_entry(pte);
850	WARN_ON(memcmp(&entry, &entry2, sizeof(entry)));
851
852	pte = pte_swp_clear_exclusive(pte);
853	WARN_ON(pte_swp_exclusive(pte));
854	WARN_ON(!is_swap_pte(pte));
855	entry2 = pte_to_swp_entry(pte);
856	WARN_ON(memcmp(&entry, &entry2, sizeof(entry)));
857}
858
859static void __init pte_swap_tests(struct pgtable_debug_args *args)
860{
861	swp_entry_t swp;
862	pte_t pte;
863
864	pr_debug("Validating PTE swap\n");
865	pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
866	swp = __pte_to_swp_entry(pte);
867	pte = __swp_entry_to_pte(swp);
868	WARN_ON(args->fixed_pte_pfn != pte_pfn(pte));
869}
870
871#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
872static void __init pmd_swap_tests(struct pgtable_debug_args *args)
873{
874	swp_entry_t swp;
875	pmd_t pmd;
876
877	if (!has_transparent_hugepage())
878		return;
879
880	pr_debug("Validating PMD swap\n");
881	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
882	swp = __pmd_to_swp_entry(pmd);
883	pmd = __swp_entry_to_pmd(swp);
884	WARN_ON(args->fixed_pmd_pfn != pmd_pfn(pmd));
885}
886#else  /* !CONFIG_ARCH_ENABLE_THP_MIGRATION */
887static void __init pmd_swap_tests(struct pgtable_debug_args *args) { }
888#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
889
890static void __init swap_migration_tests(struct pgtable_debug_args *args)
891{
892	struct page *page;
893	swp_entry_t swp;
894
895	if (!IS_ENABLED(CONFIG_MIGRATION))
896		return;
897
898	/*
899	 * swap_migration_tests() requires a dedicated page as it needs to
900	 * be locked before creating a migration entry from it. Locking the
901	 * page that actually maps kernel text ('start_kernel') can be real
902	 * problematic. Lets use the allocated page explicitly for this
903	 * purpose.
904	 */
905	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
906	if (!page)
907		return;
908
909	pr_debug("Validating swap migration\n");
910
911	/*
912	 * make_[readable|writable]_migration_entry() expects given page to
913	 * be locked, otherwise it stumbles upon a BUG_ON().
914	 */
915	__SetPageLocked(page);
916	swp = make_writable_migration_entry(page_to_pfn(page));
917	WARN_ON(!is_migration_entry(swp));
918	WARN_ON(!is_writable_migration_entry(swp));
919
920	swp = make_readable_migration_entry(swp_offset(swp));
921	WARN_ON(!is_migration_entry(swp));
922	WARN_ON(is_writable_migration_entry(swp));
923
924	swp = make_readable_migration_entry(page_to_pfn(page));
925	WARN_ON(!is_migration_entry(swp));
926	WARN_ON(is_writable_migration_entry(swp));
927	__ClearPageLocked(page);
928}
929
930#ifdef CONFIG_HUGETLB_PAGE
931static void __init hugetlb_basic_tests(struct pgtable_debug_args *args)
932{
933	struct page *page;
934	pte_t pte;
935
936	pr_debug("Validating HugeTLB basic\n");
937	/*
938	 * Accessing the page associated with the pfn is safe here,
939	 * as it was previously derived from a real kernel symbol.
940	 */
941	page = pfn_to_page(args->fixed_pmd_pfn);
942	pte = mk_huge_pte(page, args->page_prot);
943
944	WARN_ON(!huge_pte_dirty(huge_pte_mkdirty(pte)));
945	WARN_ON(!huge_pte_write(huge_pte_mkwrite(huge_pte_wrprotect(pte))));
946	WARN_ON(huge_pte_write(huge_pte_wrprotect(huge_pte_mkwrite(pte))));
947
948#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
949	pte = pfn_pte(args->fixed_pmd_pfn, args->page_prot);
950
951	WARN_ON(!pte_huge(arch_make_huge_pte(pte, PMD_SHIFT, VM_ACCESS_FLAGS)));
952#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
953}
954#else  /* !CONFIG_HUGETLB_PAGE */
955static void __init hugetlb_basic_tests(struct pgtable_debug_args *args) { }
956#endif /* CONFIG_HUGETLB_PAGE */
957
958#ifdef CONFIG_TRANSPARENT_HUGEPAGE
959static void __init pmd_thp_tests(struct pgtable_debug_args *args)
960{
961	pmd_t pmd;
962
963	if (!has_transparent_hugepage())
964		return;
965
966	pr_debug("Validating PMD based THP\n");
967	/*
968	 * pmd_trans_huge() and pmd_present() must return positive after
969	 * MMU invalidation with pmd_mkinvalid(). This behavior is an
970	 * optimization for transparent huge page. pmd_trans_huge() must
971	 * be true if pmd_page() returns a valid THP to avoid taking the
972	 * pmd_lock when others walk over non transhuge pmds (i.e. there
973	 * are no THP allocated). Especially when splitting a THP and
974	 * removing the present bit from the pmd, pmd_trans_huge() still
975	 * needs to return true. pmd_present() should be true whenever
976	 * pmd_trans_huge() returns true.
977	 */
978	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
979	WARN_ON(!pmd_trans_huge(pmd_mkhuge(pmd)));
980
981#ifndef __HAVE_ARCH_PMDP_INVALIDATE
982	WARN_ON(!pmd_trans_huge(pmd_mkinvalid(pmd_mkhuge(pmd))));
983	WARN_ON(!pmd_present(pmd_mkinvalid(pmd_mkhuge(pmd))));
984#endif /* __HAVE_ARCH_PMDP_INVALIDATE */
985}
986
987#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
988static void __init pud_thp_tests(struct pgtable_debug_args *args)
989{
990	pud_t pud;
991
992	if (!has_transparent_pud_hugepage())
993		return;
994
995	pr_debug("Validating PUD based THP\n");
996	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
997	WARN_ON(!pud_trans_huge(pud_mkhuge(pud)));
998
999	/*
1000	 * pud_mkinvalid() has been dropped for now. Enable back
1001	 * these tests when it comes back with a modified pud_present().
1002	 *
1003	 * WARN_ON(!pud_trans_huge(pud_mkinvalid(pud_mkhuge(pud))));
1004	 * WARN_ON(!pud_present(pud_mkinvalid(pud_mkhuge(pud))));
1005	 */
1006}
1007#else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1008static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
1009#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1010#else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
1011static void __init pmd_thp_tests(struct pgtable_debug_args *args) { }
1012static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
1013#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1014
1015static unsigned long __init get_random_vaddr(void)
1016{
1017	unsigned long random_vaddr, random_pages, total_user_pages;
1018
1019	total_user_pages = (TASK_SIZE - FIRST_USER_ADDRESS) / PAGE_SIZE;
1020
1021	random_pages = get_random_long() % total_user_pages;
1022	random_vaddr = FIRST_USER_ADDRESS + random_pages * PAGE_SIZE;
1023
1024	return random_vaddr;
1025}
1026
1027static void __init destroy_args(struct pgtable_debug_args *args)
1028{
1029	struct page *page = NULL;
1030
1031	/* Free (huge) page */
1032	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1033	    has_transparent_pud_hugepage() &&
1034	    args->pud_pfn != ULONG_MAX) {
1035		if (args->is_contiguous_page) {
1036			free_contig_range(args->pud_pfn,
1037					  (1 << (HPAGE_PUD_SHIFT - PAGE_SHIFT)));
1038		} else {
1039			page = pfn_to_page(args->pud_pfn);
1040			__free_pages(page, HPAGE_PUD_SHIFT - PAGE_SHIFT);
1041		}
1042
1043		args->pud_pfn = ULONG_MAX;
1044		args->pmd_pfn = ULONG_MAX;
1045		args->pte_pfn = ULONG_MAX;
1046	}
1047
1048	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1049	    has_transparent_hugepage() &&
1050	    args->pmd_pfn != ULONG_MAX) {
1051		if (args->is_contiguous_page) {
1052			free_contig_range(args->pmd_pfn, (1 << HPAGE_PMD_ORDER));
1053		} else {
1054			page = pfn_to_page(args->pmd_pfn);
1055			__free_pages(page, HPAGE_PMD_ORDER);
1056		}
1057
1058		args->pmd_pfn = ULONG_MAX;
1059		args->pte_pfn = ULONG_MAX;
1060	}
1061
1062	if (args->pte_pfn != ULONG_MAX) {
1063		page = pfn_to_page(args->pte_pfn);
1064		__free_page(page);
1065
1066		args->pte_pfn = ULONG_MAX;
1067	}
1068
1069	/* Free page table entries */
1070	if (args->start_ptep) {
1071		pte_free(args->mm, args->start_ptep);
1072		mm_dec_nr_ptes(args->mm);
1073	}
1074
1075	if (args->start_pmdp) {
1076		pmd_free(args->mm, args->start_pmdp);
1077		mm_dec_nr_pmds(args->mm);
1078	}
1079
1080	if (args->start_pudp) {
1081		pud_free(args->mm, args->start_pudp);
1082		mm_dec_nr_puds(args->mm);
1083	}
1084
1085	if (args->start_p4dp)
1086		p4d_free(args->mm, args->start_p4dp);
1087
1088	/* Free vma and mm struct */
1089	if (args->vma)
1090		vm_area_free(args->vma);
1091
1092	if (args->mm)
1093		mmdrop(args->mm);
1094}
1095
1096static struct page * __init
1097debug_vm_pgtable_alloc_huge_page(struct pgtable_debug_args *args, int order)
1098{
1099	struct page *page = NULL;
1100
1101#ifdef CONFIG_CONTIG_ALLOC
1102	if (order > MAX_PAGE_ORDER) {
1103		page = alloc_contig_pages((1 << order), GFP_KERNEL,
1104					  first_online_node, NULL);
1105		if (page) {
1106			args->is_contiguous_page = true;
1107			return page;
1108		}
1109	}
1110#endif
1111
1112	if (order <= MAX_PAGE_ORDER)
1113		page = alloc_pages(GFP_KERNEL, order);
1114
1115	return page;
1116}
1117
1118/*
1119 * Check if a physical memory range described by <pstart, pend> contains
1120 * an area that is of size psize, and aligned to psize.
1121 *
1122 * Don't use address 0, an all-zeroes physical address might mask bugs, and
1123 * it's not used on x86.
1124 */
1125static void  __init phys_align_check(phys_addr_t pstart,
1126				     phys_addr_t pend, unsigned long psize,
1127				     phys_addr_t *physp, unsigned long *alignp)
1128{
1129	phys_addr_t aligned_start, aligned_end;
1130
1131	if (pstart == 0)
1132		pstart = PAGE_SIZE;
1133
1134	aligned_start = ALIGN(pstart, psize);
1135	aligned_end = aligned_start + psize;
1136
1137	if (aligned_end > aligned_start && aligned_end <= pend) {
1138		*alignp = psize;
1139		*physp = aligned_start;
1140	}
1141}
1142
1143static void __init init_fixed_pfns(struct pgtable_debug_args *args)
1144{
1145	u64 idx;
1146	phys_addr_t phys, pstart, pend;
1147
1148	/*
1149	 * Initialize the fixed pfns. To do this, try to find a
1150	 * valid physical range, preferably aligned to PUD_SIZE,
1151	 * but settling for aligned to PMD_SIZE as a fallback. If
1152	 * neither of those is found, use the physical address of
1153	 * the start_kernel symbol.
1154	 *
1155	 * The memory doesn't need to be allocated, it just needs to exist
1156	 * as usable memory. It won't be touched.
1157	 *
1158	 * The alignment is recorded, and can be checked to see if we
1159	 * can run the tests that require an actual valid physical
1160	 * address range on some architectures ({pmd,pud}_huge_test
1161	 * on x86).
1162	 */
1163
1164	phys = __pa_symbol(&start_kernel);
1165	args->fixed_alignment = PAGE_SIZE;
1166
1167	for_each_mem_range(idx, &pstart, &pend) {
1168		/* First check for a PUD-aligned area */
1169		phys_align_check(pstart, pend, PUD_SIZE, &phys,
1170				 &args->fixed_alignment);
1171
1172		/* If a PUD-aligned area is found, we're done */
1173		if (args->fixed_alignment == PUD_SIZE)
1174			break;
1175
1176		/*
1177		 * If no PMD-aligned area found yet, check for one,
1178		 * but continue the loop to look for a PUD-aligned area.
1179		 */
1180		if (args->fixed_alignment < PMD_SIZE)
1181			phys_align_check(pstart, pend, PMD_SIZE, &phys,
1182					 &args->fixed_alignment);
1183	}
1184
1185	args->fixed_pgd_pfn = __phys_to_pfn(phys & PGDIR_MASK);
1186	args->fixed_p4d_pfn = __phys_to_pfn(phys & P4D_MASK);
1187	args->fixed_pud_pfn = __phys_to_pfn(phys & PUD_MASK);
1188	args->fixed_pmd_pfn = __phys_to_pfn(phys & PMD_MASK);
1189	args->fixed_pte_pfn = __phys_to_pfn(phys & PAGE_MASK);
1190	WARN_ON(!pfn_valid(args->fixed_pte_pfn));
1191}
1192
1193
1194static int __init init_args(struct pgtable_debug_args *args)
1195{
1196	struct page *page = NULL;
1197	int ret = 0;
1198
1199	/*
1200	 * Initialize the debugging data.
1201	 *
1202	 * vm_get_page_prot(VM_NONE) or vm_get_page_prot(VM_SHARED|VM_NONE)
1203	 * will help create page table entries with PROT_NONE permission as
1204	 * required for pxx_protnone_tests().
1205	 */
1206	memset(args, 0, sizeof(*args));
1207	args->vaddr              = get_random_vaddr();
1208	args->page_prot          = vm_get_page_prot(VM_ACCESS_FLAGS);
1209	args->page_prot_none     = vm_get_page_prot(VM_NONE);
1210	args->is_contiguous_page = false;
1211	args->pud_pfn            = ULONG_MAX;
1212	args->pmd_pfn            = ULONG_MAX;
1213	args->pte_pfn            = ULONG_MAX;
1214	args->fixed_pgd_pfn      = ULONG_MAX;
1215	args->fixed_p4d_pfn      = ULONG_MAX;
1216	args->fixed_pud_pfn      = ULONG_MAX;
1217	args->fixed_pmd_pfn      = ULONG_MAX;
1218	args->fixed_pte_pfn      = ULONG_MAX;
1219
1220	/* Allocate mm and vma */
1221	args->mm = mm_alloc();
1222	if (!args->mm) {
1223		pr_err("Failed to allocate mm struct\n");
1224		ret = -ENOMEM;
1225		goto error;
1226	}
1227
1228	args->vma = vm_area_alloc(args->mm);
1229	if (!args->vma) {
1230		pr_err("Failed to allocate vma\n");
1231		ret = -ENOMEM;
1232		goto error;
1233	}
1234
1235	/*
1236	 * Allocate page table entries. They will be modified in the tests.
1237	 * Lets save the page table entries so that they can be released
1238	 * when the tests are completed.
1239	 */
1240	args->pgdp = pgd_offset(args->mm, args->vaddr);
1241	args->p4dp = p4d_alloc(args->mm, args->pgdp, args->vaddr);
1242	if (!args->p4dp) {
1243		pr_err("Failed to allocate p4d entries\n");
1244		ret = -ENOMEM;
1245		goto error;
1246	}
1247	args->start_p4dp = p4d_offset(args->pgdp, 0UL);
1248	WARN_ON(!args->start_p4dp);
1249
1250	args->pudp = pud_alloc(args->mm, args->p4dp, args->vaddr);
1251	if (!args->pudp) {
1252		pr_err("Failed to allocate pud entries\n");
1253		ret = -ENOMEM;
1254		goto error;
1255	}
1256	args->start_pudp = pud_offset(args->p4dp, 0UL);
1257	WARN_ON(!args->start_pudp);
1258
1259	args->pmdp = pmd_alloc(args->mm, args->pudp, args->vaddr);
1260	if (!args->pmdp) {
1261		pr_err("Failed to allocate pmd entries\n");
1262		ret = -ENOMEM;
1263		goto error;
1264	}
1265	args->start_pmdp = pmd_offset(args->pudp, 0UL);
1266	WARN_ON(!args->start_pmdp);
1267
1268	if (pte_alloc(args->mm, args->pmdp)) {
1269		pr_err("Failed to allocate pte entries\n");
1270		ret = -ENOMEM;
1271		goto error;
1272	}
1273	args->start_ptep = pmd_pgtable(READ_ONCE(*args->pmdp));
1274	WARN_ON(!args->start_ptep);
1275
1276	init_fixed_pfns(args);
1277
1278	/*
1279	 * Allocate (huge) pages because some of the tests need to access
1280	 * the data in the pages. The corresponding tests will be skipped
1281	 * if we fail to allocate (huge) pages.
1282	 */
1283	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1284	    has_transparent_pud_hugepage()) {
1285		page = debug_vm_pgtable_alloc_huge_page(args,
1286				HPAGE_PUD_SHIFT - PAGE_SHIFT);
1287		if (page) {
1288			args->pud_pfn = page_to_pfn(page);
1289			args->pmd_pfn = args->pud_pfn;
1290			args->pte_pfn = args->pud_pfn;
1291			return 0;
1292		}
1293	}
1294
1295	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1296	    has_transparent_hugepage()) {
1297		page = debug_vm_pgtable_alloc_huge_page(args, HPAGE_PMD_ORDER);
1298		if (page) {
1299			args->pmd_pfn = page_to_pfn(page);
1300			args->pte_pfn = args->pmd_pfn;
1301			return 0;
1302		}
1303	}
1304
1305	page = alloc_page(GFP_KERNEL);
1306	if (page)
1307		args->pte_pfn = page_to_pfn(page);
1308
1309	return 0;
1310
1311error:
1312	destroy_args(args);
1313	return ret;
1314}
1315
1316static int __init debug_vm_pgtable(void)
1317{
1318	struct pgtable_debug_args args;
1319	spinlock_t *ptl = NULL;
1320	int idx, ret;
1321
1322	pr_info("Validating architecture page table helpers\n");
1323	ret = init_args(&args);
1324	if (ret)
1325		return ret;
1326
1327	/*
1328	 * Iterate over each possible vm_flags to make sure that all
1329	 * the basic page table transformation validations just hold
1330	 * true irrespective of the starting protection value for a
1331	 * given page table entry.
1332	 *
1333	 * Protection based vm_flags combinations are always linear
1334	 * and increasing i.e starting from VM_NONE and going up to
1335	 * (VM_SHARED | READ | WRITE | EXEC).
1336	 */
1337#define VM_FLAGS_START	(VM_NONE)
1338#define VM_FLAGS_END	(VM_SHARED | VM_EXEC | VM_WRITE | VM_READ)
1339
1340	for (idx = VM_FLAGS_START; idx <= VM_FLAGS_END; idx++) {
1341		pte_basic_tests(&args, idx);
1342		pmd_basic_tests(&args, idx);
1343		pud_basic_tests(&args, idx);
1344	}
1345
1346	/*
1347	 * Both P4D and PGD level tests are very basic which do not
1348	 * involve creating page table entries from the protection
1349	 * value and the given pfn. Hence just keep them out from
1350	 * the above iteration for now to save some test execution
1351	 * time.
1352	 */
1353	p4d_basic_tests(&args);
1354	pgd_basic_tests(&args);
1355
1356	pmd_leaf_tests(&args);
1357	pud_leaf_tests(&args);
1358
1359	pte_special_tests(&args);
1360	pte_protnone_tests(&args);
1361	pmd_protnone_tests(&args);
1362
1363	pte_devmap_tests(&args);
1364	pmd_devmap_tests(&args);
1365	pud_devmap_tests(&args);
1366
1367	pte_soft_dirty_tests(&args);
1368	pmd_soft_dirty_tests(&args);
1369	pte_swap_soft_dirty_tests(&args);
1370	pmd_swap_soft_dirty_tests(&args);
1371
1372	pte_swap_exclusive_tests(&args);
1373
1374	pte_swap_tests(&args);
1375	pmd_swap_tests(&args);
1376
1377	swap_migration_tests(&args);
1378
1379	pmd_thp_tests(&args);
1380	pud_thp_tests(&args);
1381
1382	hugetlb_basic_tests(&args);
1383
1384	/*
1385	 * Page table modifying tests. They need to hold
1386	 * proper page table lock.
1387	 */
1388
1389	args.ptep = pte_offset_map_lock(args.mm, args.pmdp, args.vaddr, &ptl);
1390	pte_clear_tests(&args);
1391	pte_advanced_tests(&args);
1392	if (args.ptep)
1393		pte_unmap_unlock(args.ptep, ptl);
1394
1395	ptl = pmd_lock(args.mm, args.pmdp);
1396	pmd_clear_tests(&args);
1397	pmd_advanced_tests(&args);
1398	pmd_huge_tests(&args);
1399	pmd_populate_tests(&args);
1400	spin_unlock(ptl);
1401
1402	ptl = pud_lock(args.mm, args.pudp);
1403	pud_clear_tests(&args);
1404	pud_advanced_tests(&args);
1405	pud_huge_tests(&args);
1406	pud_populate_tests(&args);
1407	spin_unlock(ptl);
1408
1409	spin_lock(&(args.mm->page_table_lock));
1410	p4d_clear_tests(&args);
1411	pgd_clear_tests(&args);
1412	p4d_populate_tests(&args);
1413	pgd_populate_tests(&args);
1414	spin_unlock(&(args.mm->page_table_lock));
1415
1416	destroy_args(&args);
1417	return 0;
1418}
1419late_initcall(debug_vm_pgtable);
1420