1/*
2 * Copyright (c) Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11/* zstd_decompress_block :
12 * this module takes care of decompressing _compressed_ block */
13
14/*-*******************************************************
15*  Dependencies
16*********************************************************/
17#include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
18#include "../common/compiler.h"    /* prefetch */
19#include "../common/cpu.h"         /* bmi2 */
20#include "../common/mem.h"         /* low level memory routines */
21#define FSE_STATIC_LINKING_ONLY
22#include "../common/fse.h"
23#define HUF_STATIC_LINKING_ONLY
24#include "../common/huf.h"
25#include "../common/zstd_internal.h"
26#include "zstd_decompress_internal.h"   /* ZSTD_DCtx */
27#include "zstd_ddict.h"  /* ZSTD_DDictDictContent */
28#include "zstd_decompress_block.h"
29
30/*_*******************************************************
31*  Macros
32**********************************************************/
33
34/* These two optional macros force the use one way or another of the two
35 * ZSTD_decompressSequences implementations. You can't force in both directions
36 * at the same time.
37 */
38#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
39    defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
40#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
41#endif
42
43
44/*_*******************************************************
45*  Memory operations
46**********************************************************/
47static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
48
49
50/*-*************************************************************
51 *   Block decoding
52 ***************************************************************/
53
54/*! ZSTD_getcBlockSize() :
55 *  Provides the size of compressed block from block header `src` */
56size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
57                          blockProperties_t* bpPtr)
58{
59    RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
60
61    {   U32 const cBlockHeader = MEM_readLE24(src);
62        U32 const cSize = cBlockHeader >> 3;
63        bpPtr->lastBlock = cBlockHeader & 1;
64        bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
65        bpPtr->origSize = cSize;   /* only useful for RLE */
66        if (bpPtr->blockType == bt_rle) return 1;
67        RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
68        return cSize;
69    }
70}
71
72/* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */
73static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize,
74    const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately)
75{
76    if (streaming == not_streaming && dstCapacity > ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH)
77    {
78        /* room for litbuffer to fit without read faulting */
79        dctx->litBuffer = (BYTE*)dst + ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH;
80        dctx->litBufferEnd = dctx->litBuffer + litSize;
81        dctx->litBufferLocation = ZSTD_in_dst;
82    }
83    else if (litSize > ZSTD_LITBUFFEREXTRASIZE)
84    {
85        /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
86        if (splitImmediately) {
87            /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
88            dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
89            dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
90        }
91        else {
92            /* initially this will be stored entirely in dst during huffman decoding, it will partially shifted to litExtraBuffer after */
93            dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
94            dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
95        }
96        dctx->litBufferLocation = ZSTD_split;
97    }
98    else
99    {
100        /* fits entirely within litExtraBuffer, so no split is necessary */
101        dctx->litBuffer = dctx->litExtraBuffer;
102        dctx->litBufferEnd = dctx->litBuffer + litSize;
103        dctx->litBufferLocation = ZSTD_not_in_dst;
104    }
105}
106
107/* Hidden declaration for fullbench */
108size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
109                          const void* src, size_t srcSize,
110                          void* dst, size_t dstCapacity, const streaming_operation streaming);
111/*! ZSTD_decodeLiteralsBlock() :
112 * Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored
113 * in the dstBuffer.  If there is room to do so, it will be stored in full in the excess dst space after where the current
114 * block will be output.  Otherwise it will be stored at the end of the current dst blockspace, with a small portion being
115 * stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write.
116 *
117 * @return : nb of bytes read from src (< srcSize )
118 *  note : symbol not declared but exposed for fullbench */
119size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
120                          const void* src, size_t srcSize,   /* note : srcSize < BLOCKSIZE */
121                          void* dst, size_t dstCapacity, const streaming_operation streaming)
122{
123    DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
124    RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
125
126    {   const BYTE* const istart = (const BYTE*) src;
127        symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
128
129        switch(litEncType)
130        {
131        case set_repeat:
132            DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
133            RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
134            ZSTD_FALLTHROUGH;
135
136        case set_compressed:
137            RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
138            {   size_t lhSize, litSize, litCSize;
139                U32 singleStream=0;
140                U32 const lhlCode = (istart[0] >> 2) & 3;
141                U32 const lhc = MEM_readLE32(istart);
142                size_t hufSuccess;
143                size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
144                switch(lhlCode)
145                {
146                case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
147                    /* 2 - 2 - 10 - 10 */
148                    singleStream = !lhlCode;
149                    lhSize = 3;
150                    litSize  = (lhc >> 4) & 0x3FF;
151                    litCSize = (lhc >> 14) & 0x3FF;
152                    break;
153                case 2:
154                    /* 2 - 2 - 14 - 14 */
155                    lhSize = 4;
156                    litSize  = (lhc >> 4) & 0x3FFF;
157                    litCSize = lhc >> 18;
158                    break;
159                case 3:
160                    /* 2 - 2 - 18 - 18 */
161                    lhSize = 5;
162                    litSize  = (lhc >> 4) & 0x3FFFF;
163                    litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
164                    break;
165                }
166                RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
167                RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
168                RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
169                RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, "");
170                ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0);
171
172                /* prefetch huffman table if cold */
173                if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
174                    PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
175                }
176
177                if (litEncType==set_repeat) {
178                    if (singleStream) {
179                        hufSuccess = HUF_decompress1X_usingDTable_bmi2(
180                            dctx->litBuffer, litSize, istart+lhSize, litCSize,
181                            dctx->HUFptr, ZSTD_DCtx_get_bmi2(dctx));
182                    } else {
183                        hufSuccess = HUF_decompress4X_usingDTable_bmi2(
184                            dctx->litBuffer, litSize, istart+lhSize, litCSize,
185                            dctx->HUFptr, ZSTD_DCtx_get_bmi2(dctx));
186                    }
187                } else {
188                    if (singleStream) {
189#if defined(HUF_FORCE_DECOMPRESS_X2)
190                        hufSuccess = HUF_decompress1X_DCtx_wksp(
191                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
192                            istart+lhSize, litCSize, dctx->workspace,
193                            sizeof(dctx->workspace));
194#else
195                        hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
196                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
197                            istart+lhSize, litCSize, dctx->workspace,
198                            sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx));
199#endif
200                    } else {
201                        hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
202                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
203                            istart+lhSize, litCSize, dctx->workspace,
204                            sizeof(dctx->workspace), ZSTD_DCtx_get_bmi2(dctx));
205                    }
206                }
207                if (dctx->litBufferLocation == ZSTD_split)
208                {
209                    ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
210                    ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE);
211                    dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
212                    dctx->litBufferEnd -= WILDCOPY_OVERLENGTH;
213                }
214
215                RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
216
217                dctx->litPtr = dctx->litBuffer;
218                dctx->litSize = litSize;
219                dctx->litEntropy = 1;
220                if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
221                return litCSize + lhSize;
222            }
223
224        case set_basic:
225            {   size_t litSize, lhSize;
226                U32 const lhlCode = ((istart[0]) >> 2) & 3;
227                size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
228                switch(lhlCode)
229                {
230                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
231                    lhSize = 1;
232                    litSize = istart[0] >> 3;
233                    break;
234                case 1:
235                    lhSize = 2;
236                    litSize = MEM_readLE16(istart) >> 4;
237                    break;
238                case 3:
239                    lhSize = 3;
240                    litSize = MEM_readLE24(istart) >> 4;
241                    break;
242                }
243
244                RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
245                RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
246                ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
247                if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) {  /* risk reading beyond src buffer with wildcopy */
248                    RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
249                    if (dctx->litBufferLocation == ZSTD_split)
250                    {
251                        ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE);
252                        ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
253                    }
254                    else
255                    {
256                        ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize);
257                    }
258                    dctx->litPtr = dctx->litBuffer;
259                    dctx->litSize = litSize;
260                    return lhSize+litSize;
261                }
262                /* direct reference into compressed stream */
263                dctx->litPtr = istart+lhSize;
264                dctx->litSize = litSize;
265                dctx->litBufferEnd = dctx->litPtr + litSize;
266                dctx->litBufferLocation = ZSTD_not_in_dst;
267                return lhSize+litSize;
268            }
269
270        case set_rle:
271            {   U32 const lhlCode = ((istart[0]) >> 2) & 3;
272                size_t litSize, lhSize;
273                size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
274                switch(lhlCode)
275                {
276                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
277                    lhSize = 1;
278                    litSize = istart[0] >> 3;
279                    break;
280                case 1:
281                    lhSize = 2;
282                    litSize = MEM_readLE16(istart) >> 4;
283                    break;
284                case 3:
285                    lhSize = 3;
286                    litSize = MEM_readLE24(istart) >> 4;
287                    RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
288                    break;
289                }
290                RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
291                RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
292                RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
293                ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
294                if (dctx->litBufferLocation == ZSTD_split)
295                {
296                    ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE);
297                    ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE);
298                }
299                else
300                {
301                    ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize);
302                }
303                dctx->litPtr = dctx->litBuffer;
304                dctx->litSize = litSize;
305                return lhSize+1;
306            }
307        default:
308            RETURN_ERROR(corruption_detected, "impossible");
309        }
310    }
311}
312
313/* Default FSE distribution tables.
314 * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
315 * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
316 * They were generated programmatically with following method :
317 * - start from default distributions, present in /lib/common/zstd_internal.h
318 * - generate tables normally, using ZSTD_buildFSETable()
319 * - printout the content of tables
320 * - pretify output, report below, test with fuzzer to ensure it's correct */
321
322/* Default FSE distribution table for Literal Lengths */
323static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
324     {  1,  1,  1, LL_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
325     /* nextState, nbAddBits, nbBits, baseVal */
326     {  0,  0,  4,    0},  { 16,  0,  4,    0},
327     { 32,  0,  5,    1},  {  0,  0,  5,    3},
328     {  0,  0,  5,    4},  {  0,  0,  5,    6},
329     {  0,  0,  5,    7},  {  0,  0,  5,    9},
330     {  0,  0,  5,   10},  {  0,  0,  5,   12},
331     {  0,  0,  6,   14},  {  0,  1,  5,   16},
332     {  0,  1,  5,   20},  {  0,  1,  5,   22},
333     {  0,  2,  5,   28},  {  0,  3,  5,   32},
334     {  0,  4,  5,   48},  { 32,  6,  5,   64},
335     {  0,  7,  5,  128},  {  0,  8,  6,  256},
336     {  0, 10,  6, 1024},  {  0, 12,  6, 4096},
337     { 32,  0,  4,    0},  {  0,  0,  4,    1},
338     {  0,  0,  5,    2},  { 32,  0,  5,    4},
339     {  0,  0,  5,    5},  { 32,  0,  5,    7},
340     {  0,  0,  5,    8},  { 32,  0,  5,   10},
341     {  0,  0,  5,   11},  {  0,  0,  6,   13},
342     { 32,  1,  5,   16},  {  0,  1,  5,   18},
343     { 32,  1,  5,   22},  {  0,  2,  5,   24},
344     { 32,  3,  5,   32},  {  0,  3,  5,   40},
345     {  0,  6,  4,   64},  { 16,  6,  4,   64},
346     { 32,  7,  5,  128},  {  0,  9,  6,  512},
347     {  0, 11,  6, 2048},  { 48,  0,  4,    0},
348     { 16,  0,  4,    1},  { 32,  0,  5,    2},
349     { 32,  0,  5,    3},  { 32,  0,  5,    5},
350     { 32,  0,  5,    6},  { 32,  0,  5,    8},
351     { 32,  0,  5,    9},  { 32,  0,  5,   11},
352     { 32,  0,  5,   12},  {  0,  0,  6,   15},
353     { 32,  1,  5,   18},  { 32,  1,  5,   20},
354     { 32,  2,  5,   24},  { 32,  2,  5,   28},
355     { 32,  3,  5,   40},  { 32,  4,  5,   48},
356     {  0, 16,  6,65536},  {  0, 15,  6,32768},
357     {  0, 14,  6,16384},  {  0, 13,  6, 8192},
358};   /* LL_defaultDTable */
359
360/* Default FSE distribution table for Offset Codes */
361static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
362    {  1,  1,  1, OF_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
363    /* nextState, nbAddBits, nbBits, baseVal */
364    {  0,  0,  5,    0},     {  0,  6,  4,   61},
365    {  0,  9,  5,  509},     {  0, 15,  5,32765},
366    {  0, 21,  5,2097149},   {  0,  3,  5,    5},
367    {  0,  7,  4,  125},     {  0, 12,  5, 4093},
368    {  0, 18,  5,262141},    {  0, 23,  5,8388605},
369    {  0,  5,  5,   29},     {  0,  8,  4,  253},
370    {  0, 14,  5,16381},     {  0, 20,  5,1048573},
371    {  0,  2,  5,    1},     { 16,  7,  4,  125},
372    {  0, 11,  5, 2045},     {  0, 17,  5,131069},
373    {  0, 22,  5,4194301},   {  0,  4,  5,   13},
374    { 16,  8,  4,  253},     {  0, 13,  5, 8189},
375    {  0, 19,  5,524285},    {  0,  1,  5,    1},
376    { 16,  6,  4,   61},     {  0, 10,  5, 1021},
377    {  0, 16,  5,65533},     {  0, 28,  5,268435453},
378    {  0, 27,  5,134217725}, {  0, 26,  5,67108861},
379    {  0, 25,  5,33554429},  {  0, 24,  5,16777213},
380};   /* OF_defaultDTable */
381
382
383/* Default FSE distribution table for Match Lengths */
384static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
385    {  1,  1,  1, ML_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
386    /* nextState, nbAddBits, nbBits, baseVal */
387    {  0,  0,  6,    3},  {  0,  0,  4,    4},
388    { 32,  0,  5,    5},  {  0,  0,  5,    6},
389    {  0,  0,  5,    8},  {  0,  0,  5,    9},
390    {  0,  0,  5,   11},  {  0,  0,  6,   13},
391    {  0,  0,  6,   16},  {  0,  0,  6,   19},
392    {  0,  0,  6,   22},  {  0,  0,  6,   25},
393    {  0,  0,  6,   28},  {  0,  0,  6,   31},
394    {  0,  0,  6,   34},  {  0,  1,  6,   37},
395    {  0,  1,  6,   41},  {  0,  2,  6,   47},
396    {  0,  3,  6,   59},  {  0,  4,  6,   83},
397    {  0,  7,  6,  131},  {  0,  9,  6,  515},
398    { 16,  0,  4,    4},  {  0,  0,  4,    5},
399    { 32,  0,  5,    6},  {  0,  0,  5,    7},
400    { 32,  0,  5,    9},  {  0,  0,  5,   10},
401    {  0,  0,  6,   12},  {  0,  0,  6,   15},
402    {  0,  0,  6,   18},  {  0,  0,  6,   21},
403    {  0,  0,  6,   24},  {  0,  0,  6,   27},
404    {  0,  0,  6,   30},  {  0,  0,  6,   33},
405    {  0,  1,  6,   35},  {  0,  1,  6,   39},
406    {  0,  2,  6,   43},  {  0,  3,  6,   51},
407    {  0,  4,  6,   67},  {  0,  5,  6,   99},
408    {  0,  8,  6,  259},  { 32,  0,  4,    4},
409    { 48,  0,  4,    4},  { 16,  0,  4,    5},
410    { 32,  0,  5,    7},  { 32,  0,  5,    8},
411    { 32,  0,  5,   10},  { 32,  0,  5,   11},
412    {  0,  0,  6,   14},  {  0,  0,  6,   17},
413    {  0,  0,  6,   20},  {  0,  0,  6,   23},
414    {  0,  0,  6,   26},  {  0,  0,  6,   29},
415    {  0,  0,  6,   32},  {  0, 16,  6,65539},
416    {  0, 15,  6,32771},  {  0, 14,  6,16387},
417    {  0, 13,  6, 8195},  {  0, 12,  6, 4099},
418    {  0, 11,  6, 2051},  {  0, 10,  6, 1027},
419};   /* ML_defaultDTable */
420
421
422static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U8 nbAddBits)
423{
424    void* ptr = dt;
425    ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
426    ZSTD_seqSymbol* const cell = dt + 1;
427
428    DTableH->tableLog = 0;
429    DTableH->fastMode = 0;
430
431    cell->nbBits = 0;
432    cell->nextState = 0;
433    assert(nbAddBits < 255);
434    cell->nbAdditionalBits = nbAddBits;
435    cell->baseValue = baseValue;
436}
437
438
439/* ZSTD_buildFSETable() :
440 * generate FSE decoding table for one symbol (ll, ml or off)
441 * cannot fail if input is valid =>
442 * all inputs are presumed validated at this stage */
443FORCE_INLINE_TEMPLATE
444void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
445            const short* normalizedCounter, unsigned maxSymbolValue,
446            const U32* baseValue, const U8* nbAdditionalBits,
447            unsigned tableLog, void* wksp, size_t wkspSize)
448{
449    ZSTD_seqSymbol* const tableDecode = dt+1;
450    U32 const maxSV1 = maxSymbolValue + 1;
451    U32 const tableSize = 1 << tableLog;
452
453    U16* symbolNext = (U16*)wksp;
454    BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
455    U32 highThreshold = tableSize - 1;
456
457
458    /* Sanity Checks */
459    assert(maxSymbolValue <= MaxSeq);
460    assert(tableLog <= MaxFSELog);
461    assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
462    (void)wkspSize;
463    /* Init, lay down lowprob symbols */
464    {   ZSTD_seqSymbol_header DTableH;
465        DTableH.tableLog = tableLog;
466        DTableH.fastMode = 1;
467        {   S16 const largeLimit= (S16)(1 << (tableLog-1));
468            U32 s;
469            for (s=0; s<maxSV1; s++) {
470                if (normalizedCounter[s]==-1) {
471                    tableDecode[highThreshold--].baseValue = s;
472                    symbolNext[s] = 1;
473                } else {
474                    if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
475                    assert(normalizedCounter[s]>=0);
476                    symbolNext[s] = (U16)normalizedCounter[s];
477        }   }   }
478        ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
479    }
480
481    /* Spread symbols */
482    assert(tableSize <= 512);
483    /* Specialized symbol spreading for the case when there are
484     * no low probability (-1 count) symbols. When compressing
485     * small blocks we avoid low probability symbols to hit this
486     * case, since header decoding speed matters more.
487     */
488    if (highThreshold == tableSize - 1) {
489        size_t const tableMask = tableSize-1;
490        size_t const step = FSE_TABLESTEP(tableSize);
491        /* First lay down the symbols in order.
492         * We use a uint64_t to lay down 8 bytes at a time. This reduces branch
493         * misses since small blocks generally have small table logs, so nearly
494         * all symbols have counts <= 8. We ensure we have 8 bytes at the end of
495         * our buffer to handle the over-write.
496         */
497        {
498            U64 const add = 0x0101010101010101ull;
499            size_t pos = 0;
500            U64 sv = 0;
501            U32 s;
502            for (s=0; s<maxSV1; ++s, sv += add) {
503                int i;
504                int const n = normalizedCounter[s];
505                MEM_write64(spread + pos, sv);
506                for (i = 8; i < n; i += 8) {
507                    MEM_write64(spread + pos + i, sv);
508                }
509                pos += n;
510            }
511        }
512        /* Now we spread those positions across the table.
513         * The benefit of doing it in two stages is that we avoid the the
514         * variable size inner loop, which caused lots of branch misses.
515         * Now we can run through all the positions without any branch misses.
516         * We unroll the loop twice, since that is what emperically worked best.
517         */
518        {
519            size_t position = 0;
520            size_t s;
521            size_t const unroll = 2;
522            assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
523            for (s = 0; s < (size_t)tableSize; s += unroll) {
524                size_t u;
525                for (u = 0; u < unroll; ++u) {
526                    size_t const uPosition = (position + (u * step)) & tableMask;
527                    tableDecode[uPosition].baseValue = spread[s + u];
528                }
529                position = (position + (unroll * step)) & tableMask;
530            }
531            assert(position == 0);
532        }
533    } else {
534        U32 const tableMask = tableSize-1;
535        U32 const step = FSE_TABLESTEP(tableSize);
536        U32 s, position = 0;
537        for (s=0; s<maxSV1; s++) {
538            int i;
539            int const n = normalizedCounter[s];
540            for (i=0; i<n; i++) {
541                tableDecode[position].baseValue = s;
542                position = (position + step) & tableMask;
543                while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
544        }   }
545        assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
546    }
547
548    /* Build Decoding table */
549    {
550        U32 u;
551        for (u=0; u<tableSize; u++) {
552            U32 const symbol = tableDecode[u].baseValue;
553            U32 const nextState = symbolNext[symbol]++;
554            tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
555            tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
556            assert(nbAdditionalBits[symbol] < 255);
557            tableDecode[u].nbAdditionalBits = nbAdditionalBits[symbol];
558            tableDecode[u].baseValue = baseValue[symbol];
559        }
560    }
561}
562
563/* Avoids the FORCE_INLINE of the _body() function. */
564static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
565            const short* normalizedCounter, unsigned maxSymbolValue,
566            const U32* baseValue, const U8* nbAdditionalBits,
567            unsigned tableLog, void* wksp, size_t wkspSize)
568{
569    ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
570            baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
571}
572
573#if DYNAMIC_BMI2
574BMI2_TARGET_ATTRIBUTE static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
575            const short* normalizedCounter, unsigned maxSymbolValue,
576            const U32* baseValue, const U8* nbAdditionalBits,
577            unsigned tableLog, void* wksp, size_t wkspSize)
578{
579    ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
580            baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
581}
582#endif
583
584void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
585            const short* normalizedCounter, unsigned maxSymbolValue,
586            const U32* baseValue, const U8* nbAdditionalBits,
587            unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
588{
589#if DYNAMIC_BMI2
590    if (bmi2) {
591        ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
592                baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
593        return;
594    }
595#endif
596    (void)bmi2;
597    ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
598            baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
599}
600
601
602/*! ZSTD_buildSeqTable() :
603 * @return : nb bytes read from src,
604 *           or an error code if it fails */
605static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
606                                 symbolEncodingType_e type, unsigned max, U32 maxLog,
607                                 const void* src, size_t srcSize,
608                                 const U32* baseValue, const U8* nbAdditionalBits,
609                                 const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
610                                 int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
611                                 int bmi2)
612{
613    switch(type)
614    {
615    case set_rle :
616        RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
617        RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
618        {   U32 const symbol = *(const BYTE*)src;
619            U32 const baseline = baseValue[symbol];
620            U8 const nbBits = nbAdditionalBits[symbol];
621            ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
622        }
623        *DTablePtr = DTableSpace;
624        return 1;
625    case set_basic :
626        *DTablePtr = defaultTable;
627        return 0;
628    case set_repeat:
629        RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
630        /* prefetch FSE table if used */
631        if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
632            const void* const pStart = *DTablePtr;
633            size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
634            PREFETCH_AREA(pStart, pSize);
635        }
636        return 0;
637    case set_compressed :
638        {   unsigned tableLog;
639            S16 norm[MaxSeq+1];
640            size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
641            RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
642            RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
643            ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
644            *DTablePtr = DTableSpace;
645            return headerSize;
646        }
647    default :
648        assert(0);
649        RETURN_ERROR(GENERIC, "impossible");
650    }
651}
652
653size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
654                             const void* src, size_t srcSize)
655{
656    const BYTE* const istart = (const BYTE*)src;
657    const BYTE* const iend = istart + srcSize;
658    const BYTE* ip = istart;
659    int nbSeq;
660    DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
661
662    /* check */
663    RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
664
665    /* SeqHead */
666    nbSeq = *ip++;
667    if (!nbSeq) {
668        *nbSeqPtr=0;
669        RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, "");
670        return 1;
671    }
672    if (nbSeq > 0x7F) {
673        if (nbSeq == 0xFF) {
674            RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
675            nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
676            ip+=2;
677        } else {
678            RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
679            nbSeq = ((nbSeq-0x80)<<8) + *ip++;
680        }
681    }
682    *nbSeqPtr = nbSeq;
683
684    /* FSE table descriptors */
685    RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
686    {   symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
687        symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
688        symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
689        ip++;
690
691        /* Build DTables */
692        {   size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
693                                                      LLtype, MaxLL, LLFSELog,
694                                                      ip, iend-ip,
695                                                      LL_base, LL_bits,
696                                                      LL_defaultDTable, dctx->fseEntropy,
697                                                      dctx->ddictIsCold, nbSeq,
698                                                      dctx->workspace, sizeof(dctx->workspace),
699                                                      ZSTD_DCtx_get_bmi2(dctx));
700            RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
701            ip += llhSize;
702        }
703
704        {   size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
705                                                      OFtype, MaxOff, OffFSELog,
706                                                      ip, iend-ip,
707                                                      OF_base, OF_bits,
708                                                      OF_defaultDTable, dctx->fseEntropy,
709                                                      dctx->ddictIsCold, nbSeq,
710                                                      dctx->workspace, sizeof(dctx->workspace),
711                                                      ZSTD_DCtx_get_bmi2(dctx));
712            RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
713            ip += ofhSize;
714        }
715
716        {   size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
717                                                      MLtype, MaxML, MLFSELog,
718                                                      ip, iend-ip,
719                                                      ML_base, ML_bits,
720                                                      ML_defaultDTable, dctx->fseEntropy,
721                                                      dctx->ddictIsCold, nbSeq,
722                                                      dctx->workspace, sizeof(dctx->workspace),
723                                                      ZSTD_DCtx_get_bmi2(dctx));
724            RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
725            ip += mlhSize;
726        }
727    }
728
729    return ip-istart;
730}
731
732
733typedef struct {
734    size_t litLength;
735    size_t matchLength;
736    size_t offset;
737} seq_t;
738
739typedef struct {
740    size_t state;
741    const ZSTD_seqSymbol* table;
742} ZSTD_fseState;
743
744typedef struct {
745    BIT_DStream_t DStream;
746    ZSTD_fseState stateLL;
747    ZSTD_fseState stateOffb;
748    ZSTD_fseState stateML;
749    size_t prevOffset[ZSTD_REP_NUM];
750} seqState_t;
751
752/*! ZSTD_overlapCopy8() :
753 *  Copies 8 bytes from ip to op and updates op and ip where ip <= op.
754 *  If the offset is < 8 then the offset is spread to at least 8 bytes.
755 *
756 *  Precondition: *ip <= *op
757 *  Postcondition: *op - *op >= 8
758 */
759HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
760    assert(*ip <= *op);
761    if (offset < 8) {
762        /* close range match, overlap */
763        static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
764        static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* subtracted */
765        int const sub2 = dec64table[offset];
766        (*op)[0] = (*ip)[0];
767        (*op)[1] = (*ip)[1];
768        (*op)[2] = (*ip)[2];
769        (*op)[3] = (*ip)[3];
770        *ip += dec32table[offset];
771        ZSTD_copy4(*op+4, *ip);
772        *ip -= sub2;
773    } else {
774        ZSTD_copy8(*op, *ip);
775    }
776    *ip += 8;
777    *op += 8;
778    assert(*op - *ip >= 8);
779}
780
781/*! ZSTD_safecopy() :
782 *  Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
783 *  and write up to 16 bytes past oend_w (op >= oend_w is allowed).
784 *  This function is only called in the uncommon case where the sequence is near the end of the block. It
785 *  should be fast for a single long sequence, but can be slow for several short sequences.
786 *
787 *  @param ovtype controls the overlap detection
788 *         - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
789 *         - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
790 *           The src buffer must be before the dst buffer.
791 */
792static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
793    ptrdiff_t const diff = op - ip;
794    BYTE* const oend = op + length;
795
796    assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
797           (ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
798
799    if (length < 8) {
800        /* Handle short lengths. */
801        while (op < oend) *op++ = *ip++;
802        return;
803    }
804    if (ovtype == ZSTD_overlap_src_before_dst) {
805        /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
806        assert(length >= 8);
807        ZSTD_overlapCopy8(&op, &ip, diff);
808        length -= 8;
809        assert(op - ip >= 8);
810        assert(op <= oend);
811    }
812
813    if (oend <= oend_w) {
814        /* No risk of overwrite. */
815        ZSTD_wildcopy(op, ip, length, ovtype);
816        return;
817    }
818    if (op <= oend_w) {
819        /* Wildcopy until we get close to the end. */
820        assert(oend > oend_w);
821        ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
822        ip += oend_w - op;
823        op += oend_w - op;
824    }
825    /* Handle the leftovers. */
826    while (op < oend) *op++ = *ip++;
827}
828
829/* ZSTD_safecopyDstBeforeSrc():
830 * This version allows overlap with dst before src, or handles the non-overlap case with dst after src
831 * Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */
832static void ZSTD_safecopyDstBeforeSrc(BYTE* op, BYTE const* ip, ptrdiff_t length) {
833    ptrdiff_t const diff = op - ip;
834    BYTE* const oend = op + length;
835
836    if (length < 8 || diff > -8) {
837        /* Handle short lengths, close overlaps, and dst not before src. */
838        while (op < oend) *op++ = *ip++;
839        return;
840    }
841
842    if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) {
843        ZSTD_wildcopy(op, ip, oend - WILDCOPY_OVERLENGTH - op, ZSTD_no_overlap);
844        ip += oend - WILDCOPY_OVERLENGTH - op;
845        op += oend - WILDCOPY_OVERLENGTH - op;
846    }
847
848    /* Handle the leftovers. */
849    while (op < oend) *op++ = *ip++;
850}
851
852/* ZSTD_execSequenceEnd():
853 * This version handles cases that are near the end of the output buffer. It requires
854 * more careful checks to make sure there is no overflow. By separating out these hard
855 * and unlikely cases, we can speed up the common cases.
856 *
857 * NOTE: This function needs to be fast for a single long sequence, but doesn't need
858 * to be optimized for many small sequences, since those fall into ZSTD_execSequence().
859 */
860FORCE_NOINLINE
861size_t ZSTD_execSequenceEnd(BYTE* op,
862    BYTE* const oend, seq_t sequence,
863    const BYTE** litPtr, const BYTE* const litLimit,
864    const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
865{
866    BYTE* const oLitEnd = op + sequence.litLength;
867    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
868    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
869    const BYTE* match = oLitEnd - sequence.offset;
870    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
871
872    /* bounds checks : careful of address space overflow in 32-bit mode */
873    RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
874    RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
875    assert(op < op + sequenceLength);
876    assert(oLitEnd < op + sequenceLength);
877
878    /* copy literals */
879    ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
880    op = oLitEnd;
881    *litPtr = iLitEnd;
882
883    /* copy Match */
884    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
885        /* offset beyond prefix */
886        RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
887        match = dictEnd - (prefixStart - match);
888        if (match + sequence.matchLength <= dictEnd) {
889            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
890            return sequenceLength;
891        }
892        /* span extDict & currentPrefixSegment */
893        {   size_t const length1 = dictEnd - match;
894        ZSTD_memmove(oLitEnd, match, length1);
895        op = oLitEnd + length1;
896        sequence.matchLength -= length1;
897        match = prefixStart;
898        }
899    }
900    ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
901    return sequenceLength;
902}
903
904/* ZSTD_execSequenceEndSplitLitBuffer():
905 * This version is intended to be used during instances where the litBuffer is still split.  It is kept separate to avoid performance impact for the good case.
906 */
907FORCE_NOINLINE
908size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
909    BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
910    const BYTE** litPtr, const BYTE* const litLimit,
911    const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
912{
913    BYTE* const oLitEnd = op + sequence.litLength;
914    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
915    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
916    const BYTE* match = oLitEnd - sequence.offset;
917
918
919    /* bounds checks : careful of address space overflow in 32-bit mode */
920    RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
921    RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
922    assert(op < op + sequenceLength);
923    assert(oLitEnd < op + sequenceLength);
924
925    /* copy literals */
926    RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer");
927    ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength);
928    op = oLitEnd;
929    *litPtr = iLitEnd;
930
931    /* copy Match */
932    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
933        /* offset beyond prefix */
934        RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
935        match = dictEnd - (prefixStart - match);
936        if (match + sequence.matchLength <= dictEnd) {
937            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
938            return sequenceLength;
939        }
940        /* span extDict & currentPrefixSegment */
941        {   size_t const length1 = dictEnd - match;
942        ZSTD_memmove(oLitEnd, match, length1);
943        op = oLitEnd + length1;
944        sequence.matchLength -= length1;
945        match = prefixStart;
946        }
947    }
948    ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
949    return sequenceLength;
950}
951
952HINT_INLINE
953size_t ZSTD_execSequence(BYTE* op,
954    BYTE* const oend, seq_t sequence,
955    const BYTE** litPtr, const BYTE* const litLimit,
956    const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
957{
958    BYTE* const oLitEnd = op + sequence.litLength;
959    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
960    BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
961    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;   /* risk : address space underflow on oend=NULL */
962    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
963    const BYTE* match = oLitEnd - sequence.offset;
964
965    assert(op != NULL /* Precondition */);
966    assert(oend_w < oend /* No underflow */);
967    /* Handle edge cases in a slow path:
968     *   - Read beyond end of literals
969     *   - Match end is within WILDCOPY_OVERLIMIT of oend
970     *   - 32-bit mode and the match length overflows
971     */
972    if (UNLIKELY(
973        iLitEnd > litLimit ||
974        oMatchEnd > oend_w ||
975        (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
976        return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
977
978    /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
979    assert(op <= oLitEnd /* No overflow */);
980    assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
981    assert(oMatchEnd <= oend /* No underflow */);
982    assert(iLitEnd <= litLimit /* Literal length is in bounds */);
983    assert(oLitEnd <= oend_w /* Can wildcopy literals */);
984    assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
985
986    /* Copy Literals:
987     * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
988     * We likely don't need the full 32-byte wildcopy.
989     */
990    assert(WILDCOPY_OVERLENGTH >= 16);
991    ZSTD_copy16(op, (*litPtr));
992    if (UNLIKELY(sequence.litLength > 16)) {
993        ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap);
994    }
995    op = oLitEnd;
996    *litPtr = iLitEnd;   /* update for next sequence */
997
998    /* Copy Match */
999    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1000        /* offset beyond prefix -> go into extDict */
1001        RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1002        match = dictEnd + (match - prefixStart);
1003        if (match + sequence.matchLength <= dictEnd) {
1004            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1005            return sequenceLength;
1006        }
1007        /* span extDict & currentPrefixSegment */
1008        {   size_t const length1 = dictEnd - match;
1009        ZSTD_memmove(oLitEnd, match, length1);
1010        op = oLitEnd + length1;
1011        sequence.matchLength -= length1;
1012        match = prefixStart;
1013        }
1014    }
1015    /* Match within prefix of 1 or more bytes */
1016    assert(op <= oMatchEnd);
1017    assert(oMatchEnd <= oend_w);
1018    assert(match >= prefixStart);
1019    assert(sequence.matchLength >= 1);
1020
1021    /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1022     * without overlap checking.
1023     */
1024    if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1025        /* We bet on a full wildcopy for matches, since we expect matches to be
1026         * longer than literals (in general). In silesia, ~10% of matches are longer
1027         * than 16 bytes.
1028         */
1029        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1030        return sequenceLength;
1031    }
1032    assert(sequence.offset < WILDCOPY_VECLEN);
1033
1034    /* Copy 8 bytes and spread the offset to be >= 8. */
1035    ZSTD_overlapCopy8(&op, &match, sequence.offset);
1036
1037    /* If the match length is > 8 bytes, then continue with the wildcopy. */
1038    if (sequence.matchLength > 8) {
1039        assert(op < oMatchEnd);
1040        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8, ZSTD_overlap_src_before_dst);
1041    }
1042    return sequenceLength;
1043}
1044
1045HINT_INLINE
1046size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op,
1047    BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
1048    const BYTE** litPtr, const BYTE* const litLimit,
1049    const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
1050{
1051    BYTE* const oLitEnd = op + sequence.litLength;
1052    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
1053    BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
1054    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
1055    const BYTE* match = oLitEnd - sequence.offset;
1056
1057    assert(op != NULL /* Precondition */);
1058    assert(oend_w < oend /* No underflow */);
1059    /* Handle edge cases in a slow path:
1060     *   - Read beyond end of literals
1061     *   - Match end is within WILDCOPY_OVERLIMIT of oend
1062     *   - 32-bit mode and the match length overflows
1063     */
1064    if (UNLIKELY(
1065            iLitEnd > litLimit ||
1066            oMatchEnd > oend_w ||
1067            (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
1068        return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
1069
1070    /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
1071    assert(op <= oLitEnd /* No overflow */);
1072    assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
1073    assert(oMatchEnd <= oend /* No underflow */);
1074    assert(iLitEnd <= litLimit /* Literal length is in bounds */);
1075    assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1076    assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1077
1078    /* Copy Literals:
1079     * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1080     * We likely don't need the full 32-byte wildcopy.
1081     */
1082    assert(WILDCOPY_OVERLENGTH >= 16);
1083    ZSTD_copy16(op, (*litPtr));
1084    if (UNLIKELY(sequence.litLength > 16)) {
1085        ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
1086    }
1087    op = oLitEnd;
1088    *litPtr = iLitEnd;   /* update for next sequence */
1089
1090    /* Copy Match */
1091    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1092        /* offset beyond prefix -> go into extDict */
1093        RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1094        match = dictEnd + (match - prefixStart);
1095        if (match + sequence.matchLength <= dictEnd) {
1096            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1097            return sequenceLength;
1098        }
1099        /* span extDict & currentPrefixSegment */
1100        {   size_t const length1 = dictEnd - match;
1101            ZSTD_memmove(oLitEnd, match, length1);
1102            op = oLitEnd + length1;
1103            sequence.matchLength -= length1;
1104            match = prefixStart;
1105    }   }
1106    /* Match within prefix of 1 or more bytes */
1107    assert(op <= oMatchEnd);
1108    assert(oMatchEnd <= oend_w);
1109    assert(match >= prefixStart);
1110    assert(sequence.matchLength >= 1);
1111
1112    /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1113     * without overlap checking.
1114     */
1115    if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1116        /* We bet on a full wildcopy for matches, since we expect matches to be
1117         * longer than literals (in general). In silesia, ~10% of matches are longer
1118         * than 16 bytes.
1119         */
1120        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1121        return sequenceLength;
1122    }
1123    assert(sequence.offset < WILDCOPY_VECLEN);
1124
1125    /* Copy 8 bytes and spread the offset to be >= 8. */
1126    ZSTD_overlapCopy8(&op, &match, sequence.offset);
1127
1128    /* If the match length is > 8 bytes, then continue with the wildcopy. */
1129    if (sequence.matchLength > 8) {
1130        assert(op < oMatchEnd);
1131        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
1132    }
1133    return sequenceLength;
1134}
1135
1136
1137static void
1138ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
1139{
1140    const void* ptr = dt;
1141    const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
1142    DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
1143    DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
1144                (U32)DStatePtr->state, DTableH->tableLog);
1145    BIT_reloadDStream(bitD);
1146    DStatePtr->table = dt + 1;
1147}
1148
1149FORCE_INLINE_TEMPLATE void
1150ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits)
1151{
1152    size_t const lowBits = BIT_readBits(bitD, nbBits);
1153    DStatePtr->state = nextState + lowBits;
1154}
1155
1156/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
1157 * offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
1158 * bits before reloading. This value is the maximum number of bytes we read
1159 * after reloading when we are decoding long offsets.
1160 */
1161#define LONG_OFFSETS_MAX_EXTRA_BITS_32                       \
1162    (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32       \
1163        ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32  \
1164        : 0)
1165
1166typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
1167
1168FORCE_INLINE_TEMPLATE seq_t
1169ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
1170{
1171    seq_t seq;
1172    const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
1173    const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
1174    const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
1175    seq.matchLength = mlDInfo->baseValue;
1176    seq.litLength = llDInfo->baseValue;
1177    {   U32 const ofBase = ofDInfo->baseValue;
1178        BYTE const llBits = llDInfo->nbAdditionalBits;
1179        BYTE const mlBits = mlDInfo->nbAdditionalBits;
1180        BYTE const ofBits = ofDInfo->nbAdditionalBits;
1181        BYTE const totalBits = llBits+mlBits+ofBits;
1182
1183        U16 const llNext = llDInfo->nextState;
1184        U16 const mlNext = mlDInfo->nextState;
1185        U16 const ofNext = ofDInfo->nextState;
1186        U32 const llnbBits = llDInfo->nbBits;
1187        U32 const mlnbBits = mlDInfo->nbBits;
1188        U32 const ofnbBits = ofDInfo->nbBits;
1189        /*
1190         * As gcc has better branch and block analyzers, sometimes it is only
1191         * valuable to mark likelyness for clang, it gives around 3-4% of
1192         * performance.
1193         */
1194
1195        /* sequence */
1196        {   size_t offset;
1197    #if defined(__clang__)
1198            if (LIKELY(ofBits > 1)) {
1199    #else
1200            if (ofBits > 1) {
1201    #endif
1202                ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
1203                ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
1204                assert(ofBits <= MaxOff);
1205                if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
1206                    U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
1207                    offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
1208                    BIT_reloadDStream(&seqState->DStream);
1209                    if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
1210                    assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32);   /* to avoid another reload */
1211                } else {
1212                    offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
1213                    if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
1214                }
1215                seqState->prevOffset[2] = seqState->prevOffset[1];
1216                seqState->prevOffset[1] = seqState->prevOffset[0];
1217                seqState->prevOffset[0] = offset;
1218            } else {
1219                U32 const ll0 = (llDInfo->baseValue == 0);
1220                if (LIKELY((ofBits == 0))) {
1221                    offset = seqState->prevOffset[ll0];
1222                    seqState->prevOffset[1] = seqState->prevOffset[!ll0];
1223                    seqState->prevOffset[0] = offset;
1224                } else {
1225                    offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
1226                    {   size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
1227                        temp += !temp;   /* 0 is not valid; input is corrupted; force offset to 1 */
1228                        if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
1229                        seqState->prevOffset[1] = seqState->prevOffset[0];
1230                        seqState->prevOffset[0] = offset = temp;
1231            }   }   }
1232            seq.offset = offset;
1233        }
1234
1235    #if defined(__clang__)
1236        if (UNLIKELY(mlBits > 0))
1237    #else
1238        if (mlBits > 0)
1239    #endif
1240            seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
1241
1242        if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
1243            BIT_reloadDStream(&seqState->DStream);
1244        if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
1245            BIT_reloadDStream(&seqState->DStream);
1246        /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
1247        ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
1248
1249    #if defined(__clang__)
1250        if (UNLIKELY(llBits > 0))
1251    #else
1252        if (llBits > 0)
1253    #endif
1254            seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
1255
1256        if (MEM_32bits())
1257            BIT_reloadDStream(&seqState->DStream);
1258
1259        DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
1260                    (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1261
1262        ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits);    /* <=  9 bits */
1263        ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits);    /* <=  9 bits */
1264        if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
1265        ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits);  /* <=  8 bits */
1266    }
1267
1268    return seq;
1269}
1270
1271#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1272MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
1273{
1274    size_t const windowSize = dctx->fParams.windowSize;
1275    /* No dictionary used. */
1276    if (dctx->dictContentEndForFuzzing == NULL) return 0;
1277    /* Dictionary is our prefix. */
1278    if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
1279    /* Dictionary is not our ext-dict. */
1280    if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
1281    /* Dictionary is not within our window size. */
1282    if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
1283    /* Dictionary is active. */
1284    return 1;
1285}
1286
1287MEM_STATIC void ZSTD_assertValidSequence(
1288        ZSTD_DCtx const* dctx,
1289        BYTE const* op, BYTE const* oend,
1290        seq_t const seq,
1291        BYTE const* prefixStart, BYTE const* virtualStart)
1292{
1293#if DEBUGLEVEL >= 1
1294    size_t const windowSize = dctx->fParams.windowSize;
1295    size_t const sequenceSize = seq.litLength + seq.matchLength;
1296    BYTE const* const oLitEnd = op + seq.litLength;
1297    DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
1298            (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1299    assert(op <= oend);
1300    assert((size_t)(oend - op) >= sequenceSize);
1301    assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX);
1302    if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
1303        size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
1304        /* Offset must be within the dictionary. */
1305        assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
1306        assert(seq.offset <= windowSize + dictSize);
1307    } else {
1308        /* Offset must be within our window. */
1309        assert(seq.offset <= windowSize);
1310    }
1311#else
1312    (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
1313#endif
1314}
1315#endif
1316
1317#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1318
1319
1320FORCE_INLINE_TEMPLATE size_t
1321DONT_VECTORIZE
1322ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
1323                               void* dst, size_t maxDstSize,
1324                         const void* seqStart, size_t seqSize, int nbSeq,
1325                         const ZSTD_longOffset_e isLongOffset,
1326                         const int frame)
1327{
1328    const BYTE* ip = (const BYTE*)seqStart;
1329    const BYTE* const iend = ip + seqSize;
1330    BYTE* const ostart = (BYTE*)dst;
1331    BYTE* const oend = ostart + maxDstSize;
1332    BYTE* op = ostart;
1333    const BYTE* litPtr = dctx->litPtr;
1334    const BYTE* litBufferEnd = dctx->litBufferEnd;
1335    const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1336    const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
1337    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1338    DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer");
1339    (void)frame;
1340
1341    /* Regen sequences */
1342    if (nbSeq) {
1343        seqState_t seqState;
1344        dctx->fseEntropy = 1;
1345        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1346        RETURN_ERROR_IF(
1347            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1348            corruption_detected, "");
1349        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1350        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1351        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1352        assert(dst != NULL);
1353
1354        ZSTD_STATIC_ASSERT(
1355                BIT_DStream_unfinished < BIT_DStream_completed &&
1356                BIT_DStream_endOfBuffer < BIT_DStream_completed &&
1357                BIT_DStream_completed < BIT_DStream_overflow);
1358
1359        /* decompress without overrunning litPtr begins */
1360        {
1361            seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1362            /* Align the decompression loop to 32 + 16 bytes.
1363                *
1364                * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
1365                * speed swings based on the alignment of the decompression loop. This
1366                * performance swing is caused by parts of the decompression loop falling
1367                * out of the DSB. The entire decompression loop should fit in the DSB,
1368                * when it can't we get much worse performance. You can measure if you've
1369                * hit the good case or the bad case with this perf command for some
1370                * compressed file test.zst:
1371                *
1372                *   perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
1373                *             -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
1374                *
1375                * If you see most cycles served out of the MITE you've hit the bad case.
1376                * If you see most cycles served out of the DSB you've hit the good case.
1377                * If it is pretty even then you may be in an okay case.
1378                *
1379                * This issue has been reproduced on the following CPUs:
1380                *   - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
1381                *               Use Instruments->Counters to get DSB/MITE cycles.
1382                *               I never got performance swings, but I was able to
1383                *               go from the good case of mostly DSB to half of the
1384                *               cycles served from MITE.
1385                *   - Coffeelake: Intel i9-9900k
1386                *   - Coffeelake: Intel i7-9700k
1387                *
1388                * I haven't been able to reproduce the instability or DSB misses on any
1389                * of the following CPUS:
1390                *   - Haswell
1391                *   - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
1392                *   - Skylake
1393                *
1394                * Alignment is done for each of the three major decompression loops:
1395                *   - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer
1396                *   - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer
1397                *   - ZSTD_decompressSequences_body
1398                * Alignment choices are made to minimize large swings on bad cases and influence on performance
1399                * from changes external to this code, rather than to overoptimize on the current commit.
1400                *
1401                * If you are seeing performance stability this script can help test.
1402                * It tests on 4 commits in zstd where I saw performance change.
1403                *
1404                *   https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
1405                */
1406#if defined(__x86_64__)
1407            __asm__(".p2align 6");
1408#  if __GNUC__ >= 7
1409	    /* good for gcc-7, gcc-9, and gcc-11 */
1410            __asm__("nop");
1411            __asm__(".p2align 5");
1412            __asm__("nop");
1413            __asm__(".p2align 4");
1414#    if __GNUC__ == 8 || __GNUC__ == 10
1415	    /* good for gcc-8 and gcc-10 */
1416            __asm__("nop");
1417            __asm__(".p2align 3");
1418#    endif
1419#  endif
1420#endif
1421
1422            /* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */
1423            for (; litPtr + sequence.litLength <= dctx->litBufferEnd; ) {
1424                size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1425#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1426                assert(!ZSTD_isError(oneSeqSize));
1427                if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1428#endif
1429                if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1430                    return oneSeqSize;
1431                DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1432                op += oneSeqSize;
1433                if (UNLIKELY(!--nbSeq))
1434                    break;
1435                BIT_reloadDStream(&(seqState.DStream));
1436                sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1437            }
1438
1439            /* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */
1440            if (nbSeq > 0) {
1441                const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1442                if (leftoverLit)
1443                {
1444                    RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1445                    ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1446                    sequence.litLength -= leftoverLit;
1447                    op += leftoverLit;
1448                }
1449                litPtr = dctx->litExtraBuffer;
1450                litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1451                dctx->litBufferLocation = ZSTD_not_in_dst;
1452                {
1453                    size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1454#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1455                    assert(!ZSTD_isError(oneSeqSize));
1456                    if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1457#endif
1458                    if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1459                        return oneSeqSize;
1460                    DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1461                    op += oneSeqSize;
1462                    if (--nbSeq)
1463                        BIT_reloadDStream(&(seqState.DStream));
1464                }
1465            }
1466        }
1467
1468        if (nbSeq > 0) /* there is remaining lit from extra buffer */
1469        {
1470
1471#if defined(__x86_64__)
1472            __asm__(".p2align 6");
1473            __asm__("nop");
1474#  if __GNUC__ != 7
1475            /* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */
1476            __asm__(".p2align 4");
1477            __asm__("nop");
1478            __asm__(".p2align 3");
1479#  elif __GNUC__ >= 11
1480            __asm__(".p2align 3");
1481#  else
1482            __asm__(".p2align 5");
1483            __asm__("nop");
1484            __asm__(".p2align 3");
1485#  endif
1486#endif
1487
1488            for (; ; ) {
1489                seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1490                size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1491#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1492                assert(!ZSTD_isError(oneSeqSize));
1493                if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1494#endif
1495                if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1496                    return oneSeqSize;
1497                DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1498                op += oneSeqSize;
1499                if (UNLIKELY(!--nbSeq))
1500                    break;
1501                BIT_reloadDStream(&(seqState.DStream));
1502            }
1503        }
1504
1505        /* check if reached exact end */
1506        DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq);
1507        RETURN_ERROR_IF(nbSeq, corruption_detected, "");
1508        RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
1509        /* save reps for next block */
1510        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1511    }
1512
1513    /* last literal segment */
1514    if (dctx->litBufferLocation == ZSTD_split)  /* split hasn't been reached yet, first get dst then copy litExtraBuffer */
1515    {
1516        size_t const lastLLSize = litBufferEnd - litPtr;
1517        RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1518        if (op != NULL) {
1519            ZSTD_memmove(op, litPtr, lastLLSize);
1520            op += lastLLSize;
1521        }
1522        litPtr = dctx->litExtraBuffer;
1523        litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1524        dctx->litBufferLocation = ZSTD_not_in_dst;
1525    }
1526    {   size_t const lastLLSize = litBufferEnd - litPtr;
1527        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1528        if (op != NULL) {
1529            ZSTD_memcpy(op, litPtr, lastLLSize);
1530            op += lastLLSize;
1531        }
1532    }
1533
1534    return op-ostart;
1535}
1536
1537FORCE_INLINE_TEMPLATE size_t
1538DONT_VECTORIZE
1539ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
1540    void* dst, size_t maxDstSize,
1541    const void* seqStart, size_t seqSize, int nbSeq,
1542    const ZSTD_longOffset_e isLongOffset,
1543    const int frame)
1544{
1545    const BYTE* ip = (const BYTE*)seqStart;
1546    const BYTE* const iend = ip + seqSize;
1547    BYTE* const ostart = (BYTE*)dst;
1548    BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ostart + maxDstSize : dctx->litBuffer;
1549    BYTE* op = ostart;
1550    const BYTE* litPtr = dctx->litPtr;
1551    const BYTE* const litEnd = litPtr + dctx->litSize;
1552    const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart);
1553    const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
1554    const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
1555    DEBUGLOG(5, "ZSTD_decompressSequences_body");
1556    (void)frame;
1557
1558    /* Regen sequences */
1559    if (nbSeq) {
1560        seqState_t seqState;
1561        dctx->fseEntropy = 1;
1562        { U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1563        RETURN_ERROR_IF(
1564            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend - ip)),
1565            corruption_detected, "");
1566        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1567        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1568        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1569        assert(dst != NULL);
1570
1571        ZSTD_STATIC_ASSERT(
1572            BIT_DStream_unfinished < BIT_DStream_completed &&
1573            BIT_DStream_endOfBuffer < BIT_DStream_completed &&
1574            BIT_DStream_completed < BIT_DStream_overflow);
1575
1576#if defined(__x86_64__)
1577            __asm__(".p2align 6");
1578            __asm__("nop");
1579#  if __GNUC__ >= 7
1580            __asm__(".p2align 5");
1581            __asm__("nop");
1582            __asm__(".p2align 3");
1583#  else
1584            __asm__(".p2align 4");
1585            __asm__("nop");
1586            __asm__(".p2align 3");
1587#  endif
1588#endif
1589
1590        for ( ; ; ) {
1591            seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1592            size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
1593#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1594            assert(!ZSTD_isError(oneSeqSize));
1595            if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1596#endif
1597            if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1598                return oneSeqSize;
1599            DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1600            op += oneSeqSize;
1601            if (UNLIKELY(!--nbSeq))
1602                break;
1603            BIT_reloadDStream(&(seqState.DStream));
1604        }
1605
1606        /* check if reached exact end */
1607        DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
1608        RETURN_ERROR_IF(nbSeq, corruption_detected, "");
1609        RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
1610        /* save reps for next block */
1611        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1612    }
1613
1614    /* last literal segment */
1615    {   size_t const lastLLSize = litEnd - litPtr;
1616        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1617        if (op != NULL) {
1618            ZSTD_memcpy(op, litPtr, lastLLSize);
1619            op += lastLLSize;
1620        }
1621    }
1622
1623    return op-ostart;
1624}
1625
1626static size_t
1627ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
1628                                 void* dst, size_t maxDstSize,
1629                           const void* seqStart, size_t seqSize, int nbSeq,
1630                           const ZSTD_longOffset_e isLongOffset,
1631                           const int frame)
1632{
1633    return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1634}
1635
1636static size_t
1637ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx,
1638                                               void* dst, size_t maxDstSize,
1639                                         const void* seqStart, size_t seqSize, int nbSeq,
1640                                         const ZSTD_longOffset_e isLongOffset,
1641                                         const int frame)
1642{
1643    return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1644}
1645#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1646
1647#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1648
1649FORCE_INLINE_TEMPLATE size_t
1650ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
1651                   const BYTE* const prefixStart, const BYTE* const dictEnd)
1652{
1653    prefetchPos += sequence.litLength;
1654    {   const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart;
1655        const BYTE* const match = matchBase + prefetchPos - sequence.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
1656                                                                              * No consequence though : memory address is only used for prefetching, not for dereferencing */
1657        PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE);   /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
1658    }
1659    return prefetchPos + sequence.matchLength;
1660}
1661
1662/* This decoding function employs prefetching
1663 * to reduce latency impact of cache misses.
1664 * It's generally employed when block contains a significant portion of long-distance matches
1665 * or when coupled with a "cold" dictionary */
1666FORCE_INLINE_TEMPLATE size_t
1667ZSTD_decompressSequencesLong_body(
1668                               ZSTD_DCtx* dctx,
1669                               void* dst, size_t maxDstSize,
1670                         const void* seqStart, size_t seqSize, int nbSeq,
1671                         const ZSTD_longOffset_e isLongOffset,
1672                         const int frame)
1673{
1674    const BYTE* ip = (const BYTE*)seqStart;
1675    const BYTE* const iend = ip + seqSize;
1676    BYTE* const ostart = (BYTE*)dst;
1677    BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ostart + maxDstSize;
1678    BYTE* op = ostart;
1679    const BYTE* litPtr = dctx->litPtr;
1680    const BYTE* litBufferEnd = dctx->litBufferEnd;
1681    const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1682    const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
1683    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1684    (void)frame;
1685
1686    /* Regen sequences */
1687    if (nbSeq) {
1688#define STORED_SEQS 8
1689#define STORED_SEQS_MASK (STORED_SEQS-1)
1690#define ADVANCED_SEQS STORED_SEQS
1691        seq_t sequences[STORED_SEQS];
1692        int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
1693        seqState_t seqState;
1694        int seqNb;
1695        size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */
1696
1697        dctx->fseEntropy = 1;
1698        { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1699        assert(dst != NULL);
1700        assert(iend >= ip);
1701        RETURN_ERROR_IF(
1702            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1703            corruption_detected, "");
1704        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1705        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1706        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1707
1708        /* prepare in advance */
1709        for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
1710            seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1711            prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1712            sequences[seqNb] = sequence;
1713        }
1714        RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, "");
1715
1716        /* decompress without stomping litBuffer */
1717        for (; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb < nbSeq); seqNb++) {
1718            seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1719            size_t oneSeqSize;
1720
1721            if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd)
1722            {
1723                /* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */
1724                const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1725                if (leftoverLit)
1726                {
1727                    RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1728                    ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1729                    sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit;
1730                    op += leftoverLit;
1731                }
1732                litPtr = dctx->litExtraBuffer;
1733                litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1734                dctx->litBufferLocation = ZSTD_not_in_dst;
1735                oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1736#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1737                assert(!ZSTD_isError(oneSeqSize));
1738                if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1739#endif
1740                if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1741
1742                prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1743                sequences[seqNb & STORED_SEQS_MASK] = sequence;
1744                op += oneSeqSize;
1745            }
1746            else
1747            {
1748                /* lit buffer is either wholly contained in first or second split, or not split at all*/
1749                oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1750                    ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1751                    ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1752#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1753                assert(!ZSTD_isError(oneSeqSize));
1754                if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1755#endif
1756                if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1757
1758                prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1759                sequences[seqNb & STORED_SEQS_MASK] = sequence;
1760                op += oneSeqSize;
1761            }
1762        }
1763        RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, "");
1764
1765        /* finish queue */
1766        seqNb -= seqAdvance;
1767        for ( ; seqNb<nbSeq ; seqNb++) {
1768            seq_t *sequence = &(sequences[seqNb&STORED_SEQS_MASK]);
1769            if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd)
1770            {
1771                const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1772                if (leftoverLit)
1773                {
1774                    RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1775                    ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1776                    sequence->litLength -= leftoverLit;
1777                    op += leftoverLit;
1778                }
1779                litPtr = dctx->litExtraBuffer;
1780                litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1781                dctx->litBufferLocation = ZSTD_not_in_dst;
1782                {
1783                    size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1784#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1785                    assert(!ZSTD_isError(oneSeqSize));
1786                    if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1787#endif
1788                    if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1789                    op += oneSeqSize;
1790                }
1791            }
1792            else
1793            {
1794                size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1795                    ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1796                    ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1797#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1798                assert(!ZSTD_isError(oneSeqSize));
1799                if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1800#endif
1801                if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1802                op += oneSeqSize;
1803            }
1804        }
1805
1806        /* save reps for next block */
1807        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1808    }
1809
1810    /* last literal segment */
1811    if (dctx->litBufferLocation == ZSTD_split)  /* first deplete literal buffer in dst, then copy litExtraBuffer */
1812    {
1813        size_t const lastLLSize = litBufferEnd - litPtr;
1814        RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1815        if (op != NULL) {
1816            ZSTD_memmove(op, litPtr, lastLLSize);
1817            op += lastLLSize;
1818        }
1819        litPtr = dctx->litExtraBuffer;
1820        litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1821    }
1822    {   size_t const lastLLSize = litBufferEnd - litPtr;
1823        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1824        if (op != NULL) {
1825            ZSTD_memmove(op, litPtr, lastLLSize);
1826            op += lastLLSize;
1827        }
1828    }
1829
1830    return op-ostart;
1831}
1832
1833static size_t
1834ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
1835                                 void* dst, size_t maxDstSize,
1836                           const void* seqStart, size_t seqSize, int nbSeq,
1837                           const ZSTD_longOffset_e isLongOffset,
1838                           const int frame)
1839{
1840    return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1841}
1842#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1843
1844
1845
1846#if DYNAMIC_BMI2
1847
1848#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1849static BMI2_TARGET_ATTRIBUTE size_t
1850DONT_VECTORIZE
1851ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
1852                                 void* dst, size_t maxDstSize,
1853                           const void* seqStart, size_t seqSize, int nbSeq,
1854                           const ZSTD_longOffset_e isLongOffset,
1855                           const int frame)
1856{
1857    return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1858}
1859static BMI2_TARGET_ATTRIBUTE size_t
1860DONT_VECTORIZE
1861ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx,
1862                                 void* dst, size_t maxDstSize,
1863                           const void* seqStart, size_t seqSize, int nbSeq,
1864                           const ZSTD_longOffset_e isLongOffset,
1865                           const int frame)
1866{
1867    return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1868}
1869#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1870
1871#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1872static BMI2_TARGET_ATTRIBUTE size_t
1873ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
1874                                 void* dst, size_t maxDstSize,
1875                           const void* seqStart, size_t seqSize, int nbSeq,
1876                           const ZSTD_longOffset_e isLongOffset,
1877                           const int frame)
1878{
1879    return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1880}
1881#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1882
1883#endif /* DYNAMIC_BMI2 */
1884
1885typedef size_t (*ZSTD_decompressSequences_t)(
1886                            ZSTD_DCtx* dctx,
1887                            void* dst, size_t maxDstSize,
1888                            const void* seqStart, size_t seqSize, int nbSeq,
1889                            const ZSTD_longOffset_e isLongOffset,
1890                            const int frame);
1891
1892#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1893static size_t
1894ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1895                   const void* seqStart, size_t seqSize, int nbSeq,
1896                   const ZSTD_longOffset_e isLongOffset,
1897                   const int frame)
1898{
1899    DEBUGLOG(5, "ZSTD_decompressSequences");
1900#if DYNAMIC_BMI2
1901    if (ZSTD_DCtx_get_bmi2(dctx)) {
1902        return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1903    }
1904#endif
1905    return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1906}
1907static size_t
1908ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1909                                 const void* seqStart, size_t seqSize, int nbSeq,
1910                                 const ZSTD_longOffset_e isLongOffset,
1911                                 const int frame)
1912{
1913    DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer");
1914#if DYNAMIC_BMI2
1915    if (ZSTD_DCtx_get_bmi2(dctx)) {
1916        return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1917    }
1918#endif
1919    return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1920}
1921#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1922
1923
1924#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1925/* ZSTD_decompressSequencesLong() :
1926 * decompression function triggered when a minimum share of offsets is considered "long",
1927 * aka out of cache.
1928 * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
1929 * This function will try to mitigate main memory latency through the use of prefetching */
1930static size_t
1931ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
1932                             void* dst, size_t maxDstSize,
1933                             const void* seqStart, size_t seqSize, int nbSeq,
1934                             const ZSTD_longOffset_e isLongOffset,
1935                             const int frame)
1936{
1937    DEBUGLOG(5, "ZSTD_decompressSequencesLong");
1938#if DYNAMIC_BMI2
1939    if (ZSTD_DCtx_get_bmi2(dctx)) {
1940        return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1941    }
1942#endif
1943  return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1944}
1945#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1946
1947
1948
1949#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
1950    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
1951/* ZSTD_getLongOffsetsShare() :
1952 * condition : offTable must be valid
1953 * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
1954 *           compared to maximum possible of (1<<OffFSELog) */
1955static unsigned
1956ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
1957{
1958    const void* ptr = offTable;
1959    U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
1960    const ZSTD_seqSymbol* table = offTable + 1;
1961    U32 const max = 1 << tableLog;
1962    U32 u, total = 0;
1963    DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
1964
1965    assert(max <= (1 << OffFSELog));  /* max not too large */
1966    for (u=0; u<max; u++) {
1967        if (table[u].nbAdditionalBits > 22) total += 1;
1968    }
1969
1970    assert(tableLog <= OffFSELog);
1971    total <<= (OffFSELog - tableLog);  /* scale to OffFSELog */
1972
1973    return total;
1974}
1975#endif
1976
1977size_t
1978ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
1979                              void* dst, size_t dstCapacity,
1980                        const void* src, size_t srcSize, const int frame, const streaming_operation streaming)
1981{   /* blockType == blockCompressed */
1982    const BYTE* ip = (const BYTE*)src;
1983    /* isLongOffset must be true if there are long offsets.
1984     * Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
1985     * We don't expect that to be the case in 64-bit mode.
1986     * In block mode, window size is not known, so we have to be conservative.
1987     * (note: but it could be evaluated from current-lowLimit)
1988     */
1989    ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
1990    DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
1991
1992    RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");
1993
1994    /* Decode literals section */
1995    {   size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
1996        DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
1997        if (ZSTD_isError(litCSize)) return litCSize;
1998        ip += litCSize;
1999        srcSize -= litCSize;
2000    }
2001
2002    /* Build Decoding Tables */
2003    {
2004        /* These macros control at build-time which decompressor implementation
2005         * we use. If neither is defined, we do some inspection and dispatch at
2006         * runtime.
2007         */
2008#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2009    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2010        int usePrefetchDecoder = dctx->ddictIsCold;
2011#endif
2012        int nbSeq;
2013        size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
2014        if (ZSTD_isError(seqHSize)) return seqHSize;
2015        ip += seqHSize;
2016        srcSize -= seqHSize;
2017
2018        RETURN_ERROR_IF(dst == NULL && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
2019
2020#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2021    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2022        if ( !usePrefetchDecoder
2023          && (!frame || (dctx->fParams.windowSize > (1<<24)))
2024          && (nbSeq>ADVANCED_SEQS) ) {  /* could probably use a larger nbSeq limit */
2025            U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
2026            U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
2027            usePrefetchDecoder = (shareLongOffsets >= minShare);
2028        }
2029#endif
2030
2031        dctx->ddictIsCold = 0;
2032
2033#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2034    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2035        if (usePrefetchDecoder)
2036#endif
2037#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
2038            return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
2039#endif
2040
2041#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
2042        /* else */
2043        if (dctx->litBufferLocation == ZSTD_split)
2044            return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
2045        else
2046            return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
2047#endif
2048    }
2049}
2050
2051
2052void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
2053{
2054    if (dst != dctx->previousDstEnd && dstSize > 0) {   /* not contiguous */
2055        dctx->dictEnd = dctx->previousDstEnd;
2056        dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
2057        dctx->prefixStart = dst;
2058        dctx->previousDstEnd = dst;
2059    }
2060}
2061
2062
2063size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
2064                            void* dst, size_t dstCapacity,
2065                      const void* src, size_t srcSize)
2066{
2067    size_t dSize;
2068    ZSTD_checkContinuity(dctx, dst, dstCapacity);
2069    dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0, not_streaming);
2070    dctx->previousDstEnd = (char*)dst + dSize;
2071    return dSize;
2072}
2073