1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 *	    Matthew Wilcox <willy@infradead.org>
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9 */
10
11/*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots.  In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19 * indicate that the tree is specifying ranges.  Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
21 * specific position of a B-tree.  Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 *           ���   ���   ���   ���     ���    ���    ���    ���    ���
30 *           ���   ���   ���   ���     ���    ���    ���    ���    ������ Implied maximum
31 *           ���   ���   ���   ���     ���    ���    ���    ������ Pivot 14
32 *           ���   ���   ���   ���     ���    ���    ������ Pivot 13
33 *           ���   ���   ���   ���     ���    ������ Pivot 12
34 *           ���   ���   ���   ���     ������ Pivot 11
35 *           ���   ���   ���   ������ Pivot 2
36 *           ���   ���   ������ Pivot 1
37 *           ���   ������ Pivot 0
38 *           ������  Implied minimum
39 *
40 * Slot contents:
41 *  Internal (non-leaf) nodes contain pointers to other nodes.
42 *  Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset.  All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities.  When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted.  When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56#include <linux/maple_tree.h>
57#include <linux/xarray.h>
58#include <linux/types.h>
59#include <linux/export.h>
60#include <linux/slab.h>
61#include <linux/limits.h>
62#include <asm/barrier.h>
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/maple_tree.h>
66
67#define MA_ROOT_PARENT 1
68
69/*
70 * Maple state flags
71 * * MA_STATE_BULK		- Bulk insert mode
72 * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
73 * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
74 */
75#define MA_STATE_BULK		1
76#define MA_STATE_REBALANCE	2
77#define MA_STATE_PREALLOC	4
78
79#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
80#define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
81#define ma_mnode_ptr(x) ((struct maple_node *)(x))
82#define ma_enode_ptr(x) ((struct maple_enode *)(x))
83static struct kmem_cache *maple_node_cache;
84
85#ifdef CONFIG_DEBUG_MAPLE_TREE
86static const unsigned long mt_max[] = {
87	[maple_dense]		= MAPLE_NODE_SLOTS,
88	[maple_leaf_64]		= ULONG_MAX,
89	[maple_range_64]	= ULONG_MAX,
90	[maple_arange_64]	= ULONG_MAX,
91};
92#define mt_node_max(x) mt_max[mte_node_type(x)]
93#endif
94
95static const unsigned char mt_slots[] = {
96	[maple_dense]		= MAPLE_NODE_SLOTS,
97	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
98	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
99	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
100};
101#define mt_slot_count(x) mt_slots[mte_node_type(x)]
102
103static const unsigned char mt_pivots[] = {
104	[maple_dense]		= 0,
105	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
106	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
107	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
108};
109#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
110
111static const unsigned char mt_min_slots[] = {
112	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
113	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
114	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
115	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
116};
117#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
118
119#define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
120#define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
121
122struct maple_big_node {
123	struct maple_pnode *parent;
124	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
125	union {
126		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
127		struct {
128			unsigned long padding[MAPLE_BIG_NODE_GAPS];
129			unsigned long gap[MAPLE_BIG_NODE_GAPS];
130		};
131	};
132	unsigned char b_end;
133	enum maple_type type;
134};
135
136/*
137 * The maple_subtree_state is used to build a tree to replace a segment of an
138 * existing tree in a more atomic way.  Any walkers of the older tree will hit a
139 * dead node and restart on updates.
140 */
141struct maple_subtree_state {
142	struct ma_state *orig_l;	/* Original left side of subtree */
143	struct ma_state *orig_r;	/* Original right side of subtree */
144	struct ma_state *l;		/* New left side of subtree */
145	struct ma_state *m;		/* New middle of subtree (rare) */
146	struct ma_state *r;		/* New right side of subtree */
147	struct ma_topiary *free;	/* nodes to be freed */
148	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
149	struct maple_big_node *bn;
150};
151
152#ifdef CONFIG_KASAN_STACK
153/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
154#define noinline_for_kasan noinline_for_stack
155#else
156#define noinline_for_kasan inline
157#endif
158
159/* Functions */
160static inline struct maple_node *mt_alloc_one(gfp_t gfp)
161{
162	return kmem_cache_alloc(maple_node_cache, gfp);
163}
164
165static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
166{
167	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
168}
169
170static inline void mt_free_one(struct maple_node *node)
171{
172	kmem_cache_free(maple_node_cache, node);
173}
174
175static inline void mt_free_bulk(size_t size, void __rcu **nodes)
176{
177	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
178}
179
180static void mt_free_rcu(struct rcu_head *head)
181{
182	struct maple_node *node = container_of(head, struct maple_node, rcu);
183
184	kmem_cache_free(maple_node_cache, node);
185}
186
187/*
188 * ma_free_rcu() - Use rcu callback to free a maple node
189 * @node: The node to free
190 *
191 * The maple tree uses the parent pointer to indicate this node is no longer in
192 * use and will be freed.
193 */
194static void ma_free_rcu(struct maple_node *node)
195{
196	WARN_ON(node->parent != ma_parent_ptr(node));
197	call_rcu(&node->rcu, mt_free_rcu);
198}
199
200static void mas_set_height(struct ma_state *mas)
201{
202	unsigned int new_flags = mas->tree->ma_flags;
203
204	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
205	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
206	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
207	mas->tree->ma_flags = new_flags;
208}
209
210static unsigned int mas_mt_height(struct ma_state *mas)
211{
212	return mt_height(mas->tree);
213}
214
215static inline unsigned int mt_attr(struct maple_tree *mt)
216{
217	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
218}
219
220static __always_inline enum maple_type mte_node_type(
221		const struct maple_enode *entry)
222{
223	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
224		MAPLE_NODE_TYPE_MASK;
225}
226
227static __always_inline bool ma_is_dense(const enum maple_type type)
228{
229	return type < maple_leaf_64;
230}
231
232static __always_inline bool ma_is_leaf(const enum maple_type type)
233{
234	return type < maple_range_64;
235}
236
237static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
238{
239	return ma_is_leaf(mte_node_type(entry));
240}
241
242/*
243 * We also reserve values with the bottom two bits set to '10' which are
244 * below 4096
245 */
246static __always_inline bool mt_is_reserved(const void *entry)
247{
248	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
249		xa_is_internal(entry);
250}
251
252static __always_inline void mas_set_err(struct ma_state *mas, long err)
253{
254	mas->node = MA_ERROR(err);
255	mas->status = ma_error;
256}
257
258static __always_inline bool mas_is_ptr(const struct ma_state *mas)
259{
260	return mas->status == ma_root;
261}
262
263static __always_inline bool mas_is_start(const struct ma_state *mas)
264{
265	return mas->status == ma_start;
266}
267
268static __always_inline bool mas_is_none(const struct ma_state *mas)
269{
270	return mas->status == ma_none;
271}
272
273static __always_inline bool mas_is_paused(const struct ma_state *mas)
274{
275	return mas->status == ma_pause;
276}
277
278static __always_inline bool mas_is_overflow(struct ma_state *mas)
279{
280	return mas->status == ma_overflow;
281}
282
283static inline bool mas_is_underflow(struct ma_state *mas)
284{
285	return mas->status == ma_underflow;
286}
287
288static __always_inline struct maple_node *mte_to_node(
289		const struct maple_enode *entry)
290{
291	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
292}
293
294/*
295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
296 * @entry: The maple encoded node
297 *
298 * Return: a maple topiary pointer
299 */
300static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
301{
302	return (struct maple_topiary *)
303		((unsigned long)entry & ~MAPLE_NODE_MASK);
304}
305
306/*
307 * mas_mn() - Get the maple state node.
308 * @mas: The maple state
309 *
310 * Return: the maple node (not encoded - bare pointer).
311 */
312static inline struct maple_node *mas_mn(const struct ma_state *mas)
313{
314	return mte_to_node(mas->node);
315}
316
317/*
318 * mte_set_node_dead() - Set a maple encoded node as dead.
319 * @mn: The maple encoded node.
320 */
321static inline void mte_set_node_dead(struct maple_enode *mn)
322{
323	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
324	smp_wmb(); /* Needed for RCU */
325}
326
327/* Bit 1 indicates the root is a node */
328#define MAPLE_ROOT_NODE			0x02
329/* maple_type stored bit 3-6 */
330#define MAPLE_ENODE_TYPE_SHIFT		0x03
331/* Bit 2 means a NULL somewhere below */
332#define MAPLE_ENODE_NULL		0x04
333
334static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
335					     enum maple_type type)
336{
337	return (void *)((unsigned long)node |
338			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
339}
340
341static inline void *mte_mk_root(const struct maple_enode *node)
342{
343	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
344}
345
346static inline void *mte_safe_root(const struct maple_enode *node)
347{
348	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
349}
350
351static inline void *mte_set_full(const struct maple_enode *node)
352{
353	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
354}
355
356static inline void *mte_clear_full(const struct maple_enode *node)
357{
358	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
359}
360
361static inline bool mte_has_null(const struct maple_enode *node)
362{
363	return (unsigned long)node & MAPLE_ENODE_NULL;
364}
365
366static __always_inline bool ma_is_root(struct maple_node *node)
367{
368	return ((unsigned long)node->parent & MA_ROOT_PARENT);
369}
370
371static __always_inline bool mte_is_root(const struct maple_enode *node)
372{
373	return ma_is_root(mte_to_node(node));
374}
375
376static inline bool mas_is_root_limits(const struct ma_state *mas)
377{
378	return !mas->min && mas->max == ULONG_MAX;
379}
380
381static __always_inline bool mt_is_alloc(struct maple_tree *mt)
382{
383	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
384}
385
386/*
387 * The Parent Pointer
388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
390 * bit values need an extra bit to store the offset.  This extra bit comes from
391 * a reuse of the last bit in the node type.  This is possible by using bit 1 to
392 * indicate if bit 2 is part of the type or the slot.
393 *
394 * Note types:
395 *  0x??1 = Root
396 *  0x?00 = 16 bit nodes
397 *  0x010 = 32 bit nodes
398 *  0x110 = 64 bit nodes
399 *
400 * Slot size and alignment
401 *  0b??1 : Root
402 *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
403 *  0b010 : 32 bit values, type in 0-2, slot in 3-7
404 *  0b110 : 64 bit values, type in 0-2, slot in 3-7
405 */
406
407#define MAPLE_PARENT_ROOT		0x01
408
409#define MAPLE_PARENT_SLOT_SHIFT		0x03
410#define MAPLE_PARENT_SLOT_MASK		0xF8
411
412#define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
413#define MAPLE_PARENT_16B_SLOT_MASK	0xFC
414
415#define MAPLE_PARENT_RANGE64		0x06
416#define MAPLE_PARENT_RANGE32		0x04
417#define MAPLE_PARENT_NOT_RANGE16	0x02
418
419/*
420 * mte_parent_shift() - Get the parent shift for the slot storage.
421 * @parent: The parent pointer cast as an unsigned long
422 * Return: The shift into that pointer to the star to of the slot
423 */
424static inline unsigned long mte_parent_shift(unsigned long parent)
425{
426	/* Note bit 1 == 0 means 16B */
427	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
428		return MAPLE_PARENT_SLOT_SHIFT;
429
430	return MAPLE_PARENT_16B_SLOT_SHIFT;
431}
432
433/*
434 * mte_parent_slot_mask() - Get the slot mask for the parent.
435 * @parent: The parent pointer cast as an unsigned long.
436 * Return: The slot mask for that parent.
437 */
438static inline unsigned long mte_parent_slot_mask(unsigned long parent)
439{
440	/* Note bit 1 == 0 means 16B */
441	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442		return MAPLE_PARENT_SLOT_MASK;
443
444	return MAPLE_PARENT_16B_SLOT_MASK;
445}
446
447/*
448 * mas_parent_type() - Return the maple_type of the parent from the stored
449 * parent type.
450 * @mas: The maple state
451 * @enode: The maple_enode to extract the parent's enum
452 * Return: The node->parent maple_type
453 */
454static inline
455enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
456{
457	unsigned long p_type;
458
459	p_type = (unsigned long)mte_to_node(enode)->parent;
460	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
461		return 0;
462
463	p_type &= MAPLE_NODE_MASK;
464	p_type &= ~mte_parent_slot_mask(p_type);
465	switch (p_type) {
466	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
467		if (mt_is_alloc(mas->tree))
468			return maple_arange_64;
469		return maple_range_64;
470	}
471
472	return 0;
473}
474
475/*
476 * mas_set_parent() - Set the parent node and encode the slot
477 * @enode: The encoded maple node.
478 * @parent: The encoded maple node that is the parent of @enode.
479 * @slot: The slot that @enode resides in @parent.
480 *
481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
482 * parent type.
483 */
484static inline
485void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
486		    const struct maple_enode *parent, unsigned char slot)
487{
488	unsigned long val = (unsigned long)parent;
489	unsigned long shift;
490	unsigned long type;
491	enum maple_type p_type = mte_node_type(parent);
492
493	MAS_BUG_ON(mas, p_type == maple_dense);
494	MAS_BUG_ON(mas, p_type == maple_leaf_64);
495
496	switch (p_type) {
497	case maple_range_64:
498	case maple_arange_64:
499		shift = MAPLE_PARENT_SLOT_SHIFT;
500		type = MAPLE_PARENT_RANGE64;
501		break;
502	default:
503	case maple_dense:
504	case maple_leaf_64:
505		shift = type = 0;
506		break;
507	}
508
509	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
510	val |= (slot << shift) | type;
511	mte_to_node(enode)->parent = ma_parent_ptr(val);
512}
513
514/*
515 * mte_parent_slot() - get the parent slot of @enode.
516 * @enode: The encoded maple node.
517 *
518 * Return: The slot in the parent node where @enode resides.
519 */
520static __always_inline
521unsigned int mte_parent_slot(const struct maple_enode *enode)
522{
523	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
524
525	if (unlikely(val & MA_ROOT_PARENT))
526		return 0;
527
528	/*
529	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
530	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
531	 */
532	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
533}
534
535/*
536 * mte_parent() - Get the parent of @node.
537 * @node: The encoded maple node.
538 *
539 * Return: The parent maple node.
540 */
541static __always_inline
542struct maple_node *mte_parent(const struct maple_enode *enode)
543{
544	return (void *)((unsigned long)
545			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
546}
547
548/*
549 * ma_dead_node() - check if the @enode is dead.
550 * @enode: The encoded maple node
551 *
552 * Return: true if dead, false otherwise.
553 */
554static __always_inline bool ma_dead_node(const struct maple_node *node)
555{
556	struct maple_node *parent;
557
558	/* Do not reorder reads from the node prior to the parent check */
559	smp_rmb();
560	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
561	return (parent == node);
562}
563
564/*
565 * mte_dead_node() - check if the @enode is dead.
566 * @enode: The encoded maple node
567 *
568 * Return: true if dead, false otherwise.
569 */
570static __always_inline bool mte_dead_node(const struct maple_enode *enode)
571{
572	struct maple_node *parent, *node;
573
574	node = mte_to_node(enode);
575	/* Do not reorder reads from the node prior to the parent check */
576	smp_rmb();
577	parent = mte_parent(enode);
578	return (parent == node);
579}
580
581/*
582 * mas_allocated() - Get the number of nodes allocated in a maple state.
583 * @mas: The maple state
584 *
585 * The ma_state alloc member is overloaded to hold a pointer to the first
586 * allocated node or to the number of requested nodes to allocate.  If bit 0 is
587 * set, then the alloc contains the number of requested nodes.  If there is an
588 * allocated node, then the total allocated nodes is in that node.
589 *
590 * Return: The total number of nodes allocated
591 */
592static inline unsigned long mas_allocated(const struct ma_state *mas)
593{
594	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
595		return 0;
596
597	return mas->alloc->total;
598}
599
600/*
601 * mas_set_alloc_req() - Set the requested number of allocations.
602 * @mas: the maple state
603 * @count: the number of allocations.
604 *
605 * The requested number of allocations is either in the first allocated node,
606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
607 * no allocated node.  Set the request either in the node or do the necessary
608 * encoding to store in @mas->alloc directly.
609 */
610static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
611{
612	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
613		if (!count)
614			mas->alloc = NULL;
615		else
616			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
617		return;
618	}
619
620	mas->alloc->request_count = count;
621}
622
623/*
624 * mas_alloc_req() - get the requested number of allocations.
625 * @mas: The maple state
626 *
627 * The alloc count is either stored directly in @mas, or in
628 * @mas->alloc->request_count if there is at least one node allocated.  Decode
629 * the request count if it's stored directly in @mas->alloc.
630 *
631 * Return: The allocation request count.
632 */
633static inline unsigned int mas_alloc_req(const struct ma_state *mas)
634{
635	if ((unsigned long)mas->alloc & 0x1)
636		return (unsigned long)(mas->alloc) >> 1;
637	else if (mas->alloc)
638		return mas->alloc->request_count;
639	return 0;
640}
641
642/*
643 * ma_pivots() - Get a pointer to the maple node pivots.
644 * @node - the maple node
645 * @type - the node type
646 *
647 * In the event of a dead node, this array may be %NULL
648 *
649 * Return: A pointer to the maple node pivots
650 */
651static inline unsigned long *ma_pivots(struct maple_node *node,
652					   enum maple_type type)
653{
654	switch (type) {
655	case maple_arange_64:
656		return node->ma64.pivot;
657	case maple_range_64:
658	case maple_leaf_64:
659		return node->mr64.pivot;
660	case maple_dense:
661		return NULL;
662	}
663	return NULL;
664}
665
666/*
667 * ma_gaps() - Get a pointer to the maple node gaps.
668 * @node - the maple node
669 * @type - the node type
670 *
671 * Return: A pointer to the maple node gaps
672 */
673static inline unsigned long *ma_gaps(struct maple_node *node,
674				     enum maple_type type)
675{
676	switch (type) {
677	case maple_arange_64:
678		return node->ma64.gap;
679	case maple_range_64:
680	case maple_leaf_64:
681	case maple_dense:
682		return NULL;
683	}
684	return NULL;
685}
686
687/*
688 * mas_safe_pivot() - get the pivot at @piv or mas->max.
689 * @mas: The maple state
690 * @pivots: The pointer to the maple node pivots
691 * @piv: The pivot to fetch
692 * @type: The maple node type
693 *
694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
695 * otherwise.
696 */
697static __always_inline unsigned long
698mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
699	       unsigned char piv, enum maple_type type)
700{
701	if (piv >= mt_pivots[type])
702		return mas->max;
703
704	return pivots[piv];
705}
706
707/*
708 * mas_safe_min() - Return the minimum for a given offset.
709 * @mas: The maple state
710 * @pivots: The pointer to the maple node pivots
711 * @offset: The offset into the pivot array
712 *
713 * Return: The minimum range value that is contained in @offset.
714 */
715static inline unsigned long
716mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
717{
718	if (likely(offset))
719		return pivots[offset - 1] + 1;
720
721	return mas->min;
722}
723
724/*
725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
726 * @mn: The encoded maple node
727 * @piv: The pivot offset
728 * @val: The value of the pivot
729 */
730static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
731				unsigned long val)
732{
733	struct maple_node *node = mte_to_node(mn);
734	enum maple_type type = mte_node_type(mn);
735
736	BUG_ON(piv >= mt_pivots[type]);
737	switch (type) {
738	case maple_range_64:
739	case maple_leaf_64:
740		node->mr64.pivot[piv] = val;
741		break;
742	case maple_arange_64:
743		node->ma64.pivot[piv] = val;
744		break;
745	case maple_dense:
746		break;
747	}
748
749}
750
751/*
752 * ma_slots() - Get a pointer to the maple node slots.
753 * @mn: The maple node
754 * @mt: The maple node type
755 *
756 * Return: A pointer to the maple node slots
757 */
758static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
759{
760	switch (mt) {
761	case maple_arange_64:
762		return mn->ma64.slot;
763	case maple_range_64:
764	case maple_leaf_64:
765		return mn->mr64.slot;
766	case maple_dense:
767		return mn->slot;
768	}
769
770	return NULL;
771}
772
773static inline bool mt_write_locked(const struct maple_tree *mt)
774{
775	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
776		lockdep_is_held(&mt->ma_lock);
777}
778
779static __always_inline bool mt_locked(const struct maple_tree *mt)
780{
781	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
782		lockdep_is_held(&mt->ma_lock);
783}
784
785static __always_inline void *mt_slot(const struct maple_tree *mt,
786		void __rcu **slots, unsigned char offset)
787{
788	return rcu_dereference_check(slots[offset], mt_locked(mt));
789}
790
791static __always_inline void *mt_slot_locked(struct maple_tree *mt,
792		void __rcu **slots, unsigned char offset)
793{
794	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
795}
796/*
797 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
798 * @mas: The maple state
799 * @slots: The pointer to the slots
800 * @offset: The offset into the slots array to fetch
801 *
802 * Return: The entry stored in @slots at the @offset.
803 */
804static __always_inline void *mas_slot_locked(struct ma_state *mas,
805		void __rcu **slots, unsigned char offset)
806{
807	return mt_slot_locked(mas->tree, slots, offset);
808}
809
810/*
811 * mas_slot() - Get the slot value when not holding the maple tree lock.
812 * @mas: The maple state
813 * @slots: The pointer to the slots
814 * @offset: The offset into the slots array to fetch
815 *
816 * Return: The entry stored in @slots at the @offset
817 */
818static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
819		unsigned char offset)
820{
821	return mt_slot(mas->tree, slots, offset);
822}
823
824/*
825 * mas_root() - Get the maple tree root.
826 * @mas: The maple state.
827 *
828 * Return: The pointer to the root of the tree
829 */
830static __always_inline void *mas_root(struct ma_state *mas)
831{
832	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
833}
834
835static inline void *mt_root_locked(struct maple_tree *mt)
836{
837	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
838}
839
840/*
841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
842 * @mas: The maple state.
843 *
844 * Return: The pointer to the root of the tree
845 */
846static inline void *mas_root_locked(struct ma_state *mas)
847{
848	return mt_root_locked(mas->tree);
849}
850
851static inline struct maple_metadata *ma_meta(struct maple_node *mn,
852					     enum maple_type mt)
853{
854	switch (mt) {
855	case maple_arange_64:
856		return &mn->ma64.meta;
857	default:
858		return &mn->mr64.meta;
859	}
860}
861
862/*
863 * ma_set_meta() - Set the metadata information of a node.
864 * @mn: The maple node
865 * @mt: The maple node type
866 * @offset: The offset of the highest sub-gap in this node.
867 * @end: The end of the data in this node.
868 */
869static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
870			       unsigned char offset, unsigned char end)
871{
872	struct maple_metadata *meta = ma_meta(mn, mt);
873
874	meta->gap = offset;
875	meta->end = end;
876}
877
878/*
879 * mt_clear_meta() - clear the metadata information of a node, if it exists
880 * @mt: The maple tree
881 * @mn: The maple node
882 * @type: The maple node type
883 * @offset: The offset of the highest sub-gap in this node.
884 * @end: The end of the data in this node.
885 */
886static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
887				  enum maple_type type)
888{
889	struct maple_metadata *meta;
890	unsigned long *pivots;
891	void __rcu **slots;
892	void *next;
893
894	switch (type) {
895	case maple_range_64:
896		pivots = mn->mr64.pivot;
897		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
898			slots = mn->mr64.slot;
899			next = mt_slot_locked(mt, slots,
900					      MAPLE_RANGE64_SLOTS - 1);
901			if (unlikely((mte_to_node(next) &&
902				      mte_node_type(next))))
903				return; /* no metadata, could be node */
904		}
905		fallthrough;
906	case maple_arange_64:
907		meta = ma_meta(mn, type);
908		break;
909	default:
910		return;
911	}
912
913	meta->gap = 0;
914	meta->end = 0;
915}
916
917/*
918 * ma_meta_end() - Get the data end of a node from the metadata
919 * @mn: The maple node
920 * @mt: The maple node type
921 */
922static inline unsigned char ma_meta_end(struct maple_node *mn,
923					enum maple_type mt)
924{
925	struct maple_metadata *meta = ma_meta(mn, mt);
926
927	return meta->end;
928}
929
930/*
931 * ma_meta_gap() - Get the largest gap location of a node from the metadata
932 * @mn: The maple node
933 */
934static inline unsigned char ma_meta_gap(struct maple_node *mn)
935{
936	return mn->ma64.meta.gap;
937}
938
939/*
940 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
941 * @mn: The maple node
942 * @mn: The maple node type
943 * @offset: The location of the largest gap.
944 */
945static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
946				   unsigned char offset)
947{
948
949	struct maple_metadata *meta = ma_meta(mn, mt);
950
951	meta->gap = offset;
952}
953
954/*
955 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
956 * @mat - the ma_topiary, a linked list of dead nodes.
957 * @dead_enode - the node to be marked as dead and added to the tail of the list
958 *
959 * Add the @dead_enode to the linked list in @mat.
960 */
961static inline void mat_add(struct ma_topiary *mat,
962			   struct maple_enode *dead_enode)
963{
964	mte_set_node_dead(dead_enode);
965	mte_to_mat(dead_enode)->next = NULL;
966	if (!mat->tail) {
967		mat->tail = mat->head = dead_enode;
968		return;
969	}
970
971	mte_to_mat(mat->tail)->next = dead_enode;
972	mat->tail = dead_enode;
973}
974
975static void mt_free_walk(struct rcu_head *head);
976static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
977			    bool free);
978/*
979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
980 * @mas - the maple state
981 * @mat - the ma_topiary linked list of dead nodes to free.
982 *
983 * Destroy walk a dead list.
984 */
985static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
986{
987	struct maple_enode *next;
988	struct maple_node *node;
989	bool in_rcu = mt_in_rcu(mas->tree);
990
991	while (mat->head) {
992		next = mte_to_mat(mat->head)->next;
993		node = mte_to_node(mat->head);
994		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
995		if (in_rcu)
996			call_rcu(&node->rcu, mt_free_walk);
997		mat->head = next;
998	}
999}
1000/*
1001 * mas_descend() - Descend into the slot stored in the ma_state.
1002 * @mas - the maple state.
1003 *
1004 * Note: Not RCU safe, only use in write side or debug code.
1005 */
1006static inline void mas_descend(struct ma_state *mas)
1007{
1008	enum maple_type type;
1009	unsigned long *pivots;
1010	struct maple_node *node;
1011	void __rcu **slots;
1012
1013	node = mas_mn(mas);
1014	type = mte_node_type(mas->node);
1015	pivots = ma_pivots(node, type);
1016	slots = ma_slots(node, type);
1017
1018	if (mas->offset)
1019		mas->min = pivots[mas->offset - 1] + 1;
1020	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1021	mas->node = mas_slot(mas, slots, mas->offset);
1022}
1023
1024/*
1025 * mte_set_gap() - Set a maple node gap.
1026 * @mn: The encoded maple node
1027 * @gap: The offset of the gap to set
1028 * @val: The gap value
1029 */
1030static inline void mte_set_gap(const struct maple_enode *mn,
1031				 unsigned char gap, unsigned long val)
1032{
1033	switch (mte_node_type(mn)) {
1034	default:
1035		break;
1036	case maple_arange_64:
1037		mte_to_node(mn)->ma64.gap[gap] = val;
1038		break;
1039	}
1040}
1041
1042/*
1043 * mas_ascend() - Walk up a level of the tree.
1044 * @mas: The maple state
1045 *
1046 * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1047 * may cause several levels of walking up to find the correct min and max.
1048 * May find a dead node which will cause a premature return.
1049 * Return: 1 on dead node, 0 otherwise
1050 */
1051static int mas_ascend(struct ma_state *mas)
1052{
1053	struct maple_enode *p_enode; /* parent enode. */
1054	struct maple_enode *a_enode; /* ancestor enode. */
1055	struct maple_node *a_node; /* ancestor node. */
1056	struct maple_node *p_node; /* parent node. */
1057	unsigned char a_slot;
1058	enum maple_type a_type;
1059	unsigned long min, max;
1060	unsigned long *pivots;
1061	bool set_max = false, set_min = false;
1062
1063	a_node = mas_mn(mas);
1064	if (ma_is_root(a_node)) {
1065		mas->offset = 0;
1066		return 0;
1067	}
1068
1069	p_node = mte_parent(mas->node);
1070	if (unlikely(a_node == p_node))
1071		return 1;
1072
1073	a_type = mas_parent_type(mas, mas->node);
1074	mas->offset = mte_parent_slot(mas->node);
1075	a_enode = mt_mk_node(p_node, a_type);
1076
1077	/* Check to make sure all parent information is still accurate */
1078	if (p_node != mte_parent(mas->node))
1079		return 1;
1080
1081	mas->node = a_enode;
1082
1083	if (mte_is_root(a_enode)) {
1084		mas->max = ULONG_MAX;
1085		mas->min = 0;
1086		return 0;
1087	}
1088
1089	min = 0;
1090	max = ULONG_MAX;
1091	if (!mas->offset) {
1092		min = mas->min;
1093		set_min = true;
1094	}
1095
1096	if (mas->max == ULONG_MAX)
1097		set_max = true;
1098
1099	do {
1100		p_enode = a_enode;
1101		a_type = mas_parent_type(mas, p_enode);
1102		a_node = mte_parent(p_enode);
1103		a_slot = mte_parent_slot(p_enode);
1104		a_enode = mt_mk_node(a_node, a_type);
1105		pivots = ma_pivots(a_node, a_type);
1106
1107		if (unlikely(ma_dead_node(a_node)))
1108			return 1;
1109
1110		if (!set_min && a_slot) {
1111			set_min = true;
1112			min = pivots[a_slot - 1] + 1;
1113		}
1114
1115		if (!set_max && a_slot < mt_pivots[a_type]) {
1116			set_max = true;
1117			max = pivots[a_slot];
1118		}
1119
1120		if (unlikely(ma_dead_node(a_node)))
1121			return 1;
1122
1123		if (unlikely(ma_is_root(a_node)))
1124			break;
1125
1126	} while (!set_min || !set_max);
1127
1128	mas->max = max;
1129	mas->min = min;
1130	return 0;
1131}
1132
1133/*
1134 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1135 * @mas: The maple state
1136 *
1137 * Return: A pointer to a maple node.
1138 */
1139static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1140{
1141	struct maple_alloc *ret, *node = mas->alloc;
1142	unsigned long total = mas_allocated(mas);
1143	unsigned int req = mas_alloc_req(mas);
1144
1145	/* nothing or a request pending. */
1146	if (WARN_ON(!total))
1147		return NULL;
1148
1149	if (total == 1) {
1150		/* single allocation in this ma_state */
1151		mas->alloc = NULL;
1152		ret = node;
1153		goto single_node;
1154	}
1155
1156	if (node->node_count == 1) {
1157		/* Single allocation in this node. */
1158		mas->alloc = node->slot[0];
1159		mas->alloc->total = node->total - 1;
1160		ret = node;
1161		goto new_head;
1162	}
1163	node->total--;
1164	ret = node->slot[--node->node_count];
1165	node->slot[node->node_count] = NULL;
1166
1167single_node:
1168new_head:
1169	if (req) {
1170		req++;
1171		mas_set_alloc_req(mas, req);
1172	}
1173
1174	memset(ret, 0, sizeof(*ret));
1175	return (struct maple_node *)ret;
1176}
1177
1178/*
1179 * mas_push_node() - Push a node back on the maple state allocation.
1180 * @mas: The maple state
1181 * @used: The used maple node
1182 *
1183 * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1184 * requested node count as necessary.
1185 */
1186static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1187{
1188	struct maple_alloc *reuse = (struct maple_alloc *)used;
1189	struct maple_alloc *head = mas->alloc;
1190	unsigned long count;
1191	unsigned int requested = mas_alloc_req(mas);
1192
1193	count = mas_allocated(mas);
1194
1195	reuse->request_count = 0;
1196	reuse->node_count = 0;
1197	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1198		head->slot[head->node_count++] = reuse;
1199		head->total++;
1200		goto done;
1201	}
1202
1203	reuse->total = 1;
1204	if ((head) && !((unsigned long)head & 0x1)) {
1205		reuse->slot[0] = head;
1206		reuse->node_count = 1;
1207		reuse->total += head->total;
1208	}
1209
1210	mas->alloc = reuse;
1211done:
1212	if (requested > 1)
1213		mas_set_alloc_req(mas, requested - 1);
1214}
1215
1216/*
1217 * mas_alloc_nodes() - Allocate nodes into a maple state
1218 * @mas: The maple state
1219 * @gfp: The GFP Flags
1220 */
1221static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1222{
1223	struct maple_alloc *node;
1224	unsigned long allocated = mas_allocated(mas);
1225	unsigned int requested = mas_alloc_req(mas);
1226	unsigned int count;
1227	void **slots = NULL;
1228	unsigned int max_req = 0;
1229
1230	if (!requested)
1231		return;
1232
1233	mas_set_alloc_req(mas, 0);
1234	if (mas->mas_flags & MA_STATE_PREALLOC) {
1235		if (allocated)
1236			return;
1237		BUG_ON(!allocated);
1238		WARN_ON(!allocated);
1239	}
1240
1241	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1242		node = (struct maple_alloc *)mt_alloc_one(gfp);
1243		if (!node)
1244			goto nomem_one;
1245
1246		if (allocated) {
1247			node->slot[0] = mas->alloc;
1248			node->node_count = 1;
1249		} else {
1250			node->node_count = 0;
1251		}
1252
1253		mas->alloc = node;
1254		node->total = ++allocated;
1255		requested--;
1256	}
1257
1258	node = mas->alloc;
1259	node->request_count = 0;
1260	while (requested) {
1261		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1262		slots = (void **)&node->slot[node->node_count];
1263		max_req = min(requested, max_req);
1264		count = mt_alloc_bulk(gfp, max_req, slots);
1265		if (!count)
1266			goto nomem_bulk;
1267
1268		if (node->node_count == 0) {
1269			node->slot[0]->node_count = 0;
1270			node->slot[0]->request_count = 0;
1271		}
1272
1273		node->node_count += count;
1274		allocated += count;
1275		node = node->slot[0];
1276		requested -= count;
1277	}
1278	mas->alloc->total = allocated;
1279	return;
1280
1281nomem_bulk:
1282	/* Clean up potential freed allocations on bulk failure */
1283	memset(slots, 0, max_req * sizeof(unsigned long));
1284nomem_one:
1285	mas_set_alloc_req(mas, requested);
1286	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1287		mas->alloc->total = allocated;
1288	mas_set_err(mas, -ENOMEM);
1289}
1290
1291/*
1292 * mas_free() - Free an encoded maple node
1293 * @mas: The maple state
1294 * @used: The encoded maple node to free.
1295 *
1296 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1297 * otherwise.
1298 */
1299static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1300{
1301	struct maple_node *tmp = mte_to_node(used);
1302
1303	if (mt_in_rcu(mas->tree))
1304		ma_free_rcu(tmp);
1305	else
1306		mas_push_node(mas, tmp);
1307}
1308
1309/*
1310 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1311 * if there is not enough nodes.
1312 * @mas: The maple state
1313 * @count: The number of nodes needed
1314 * @gfp: the gfp flags
1315 */
1316static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1317{
1318	unsigned long allocated = mas_allocated(mas);
1319
1320	if (allocated < count) {
1321		mas_set_alloc_req(mas, count - allocated);
1322		mas_alloc_nodes(mas, gfp);
1323	}
1324}
1325
1326/*
1327 * mas_node_count() - Check if enough nodes are allocated and request more if
1328 * there is not enough nodes.
1329 * @mas: The maple state
1330 * @count: The number of nodes needed
1331 *
1332 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1333 */
1334static void mas_node_count(struct ma_state *mas, int count)
1335{
1336	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1337}
1338
1339/*
1340 * mas_start() - Sets up maple state for operations.
1341 * @mas: The maple state.
1342 *
1343 * If mas->status == mas_start, then set the min, max and depth to
1344 * defaults.
1345 *
1346 * Return:
1347 * - If mas->node is an error or not mas_start, return NULL.
1348 * - If it's an empty tree:     NULL & mas->status == ma_none
1349 * - If it's a single entry:    The entry & mas->status == mas_root
1350 * - If it's a tree:            NULL & mas->status == safe root node.
1351 */
1352static inline struct maple_enode *mas_start(struct ma_state *mas)
1353{
1354	if (likely(mas_is_start(mas))) {
1355		struct maple_enode *root;
1356
1357		mas->min = 0;
1358		mas->max = ULONG_MAX;
1359
1360retry:
1361		mas->depth = 0;
1362		root = mas_root(mas);
1363		/* Tree with nodes */
1364		if (likely(xa_is_node(root))) {
1365			mas->depth = 1;
1366			mas->status = ma_active;
1367			mas->node = mte_safe_root(root);
1368			mas->offset = 0;
1369			if (mte_dead_node(mas->node))
1370				goto retry;
1371
1372			return NULL;
1373		}
1374
1375		/* empty tree */
1376		if (unlikely(!root)) {
1377			mas->node = NULL;
1378			mas->status = ma_none;
1379			mas->offset = MAPLE_NODE_SLOTS;
1380			return NULL;
1381		}
1382
1383		/* Single entry tree */
1384		mas->status = ma_root;
1385		mas->offset = MAPLE_NODE_SLOTS;
1386
1387		/* Single entry tree. */
1388		if (mas->index > 0)
1389			return NULL;
1390
1391		return root;
1392	}
1393
1394	return NULL;
1395}
1396
1397/*
1398 * ma_data_end() - Find the end of the data in a node.
1399 * @node: The maple node
1400 * @type: The maple node type
1401 * @pivots: The array of pivots in the node
1402 * @max: The maximum value in the node
1403 *
1404 * Uses metadata to find the end of the data when possible.
1405 * Return: The zero indexed last slot with data (may be null).
1406 */
1407static __always_inline unsigned char ma_data_end(struct maple_node *node,
1408		enum maple_type type, unsigned long *pivots, unsigned long max)
1409{
1410	unsigned char offset;
1411
1412	if (!pivots)
1413		return 0;
1414
1415	if (type == maple_arange_64)
1416		return ma_meta_end(node, type);
1417
1418	offset = mt_pivots[type] - 1;
1419	if (likely(!pivots[offset]))
1420		return ma_meta_end(node, type);
1421
1422	if (likely(pivots[offset] == max))
1423		return offset;
1424
1425	return mt_pivots[type];
1426}
1427
1428/*
1429 * mas_data_end() - Find the end of the data (slot).
1430 * @mas: the maple state
1431 *
1432 * This method is optimized to check the metadata of a node if the node type
1433 * supports data end metadata.
1434 *
1435 * Return: The zero indexed last slot with data (may be null).
1436 */
1437static inline unsigned char mas_data_end(struct ma_state *mas)
1438{
1439	enum maple_type type;
1440	struct maple_node *node;
1441	unsigned char offset;
1442	unsigned long *pivots;
1443
1444	type = mte_node_type(mas->node);
1445	node = mas_mn(mas);
1446	if (type == maple_arange_64)
1447		return ma_meta_end(node, type);
1448
1449	pivots = ma_pivots(node, type);
1450	if (unlikely(ma_dead_node(node)))
1451		return 0;
1452
1453	offset = mt_pivots[type] - 1;
1454	if (likely(!pivots[offset]))
1455		return ma_meta_end(node, type);
1456
1457	if (likely(pivots[offset] == mas->max))
1458		return offset;
1459
1460	return mt_pivots[type];
1461}
1462
1463/*
1464 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1465 * @mas - the maple state
1466 *
1467 * Return: The maximum gap in the leaf.
1468 */
1469static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1470{
1471	enum maple_type mt;
1472	unsigned long pstart, gap, max_gap;
1473	struct maple_node *mn;
1474	unsigned long *pivots;
1475	void __rcu **slots;
1476	unsigned char i;
1477	unsigned char max_piv;
1478
1479	mt = mte_node_type(mas->node);
1480	mn = mas_mn(mas);
1481	slots = ma_slots(mn, mt);
1482	max_gap = 0;
1483	if (unlikely(ma_is_dense(mt))) {
1484		gap = 0;
1485		for (i = 0; i < mt_slots[mt]; i++) {
1486			if (slots[i]) {
1487				if (gap > max_gap)
1488					max_gap = gap;
1489				gap = 0;
1490			} else {
1491				gap++;
1492			}
1493		}
1494		if (gap > max_gap)
1495			max_gap = gap;
1496		return max_gap;
1497	}
1498
1499	/*
1500	 * Check the first implied pivot optimizes the loop below and slot 1 may
1501	 * be skipped if there is a gap in slot 0.
1502	 */
1503	pivots = ma_pivots(mn, mt);
1504	if (likely(!slots[0])) {
1505		max_gap = pivots[0] - mas->min + 1;
1506		i = 2;
1507	} else {
1508		i = 1;
1509	}
1510
1511	/* reduce max_piv as the special case is checked before the loop */
1512	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1513	/*
1514	 * Check end implied pivot which can only be a gap on the right most
1515	 * node.
1516	 */
1517	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1518		gap = ULONG_MAX - pivots[max_piv];
1519		if (gap > max_gap)
1520			max_gap = gap;
1521
1522		if (max_gap > pivots[max_piv] - mas->min)
1523			return max_gap;
1524	}
1525
1526	for (; i <= max_piv; i++) {
1527		/* data == no gap. */
1528		if (likely(slots[i]))
1529			continue;
1530
1531		pstart = pivots[i - 1];
1532		gap = pivots[i] - pstart;
1533		if (gap > max_gap)
1534			max_gap = gap;
1535
1536		/* There cannot be two gaps in a row. */
1537		i++;
1538	}
1539	return max_gap;
1540}
1541
1542/*
1543 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1544 * @node: The maple node
1545 * @gaps: The pointer to the gaps
1546 * @mt: The maple node type
1547 * @*off: Pointer to store the offset location of the gap.
1548 *
1549 * Uses the metadata data end to scan backwards across set gaps.
1550 *
1551 * Return: The maximum gap value
1552 */
1553static inline unsigned long
1554ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1555	    unsigned char *off)
1556{
1557	unsigned char offset, i;
1558	unsigned long max_gap = 0;
1559
1560	i = offset = ma_meta_end(node, mt);
1561	do {
1562		if (gaps[i] > max_gap) {
1563			max_gap = gaps[i];
1564			offset = i;
1565		}
1566	} while (i--);
1567
1568	*off = offset;
1569	return max_gap;
1570}
1571
1572/*
1573 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1574 * @mas: The maple state.
1575 *
1576 * Return: The gap value.
1577 */
1578static inline unsigned long mas_max_gap(struct ma_state *mas)
1579{
1580	unsigned long *gaps;
1581	unsigned char offset;
1582	enum maple_type mt;
1583	struct maple_node *node;
1584
1585	mt = mte_node_type(mas->node);
1586	if (ma_is_leaf(mt))
1587		return mas_leaf_max_gap(mas);
1588
1589	node = mas_mn(mas);
1590	MAS_BUG_ON(mas, mt != maple_arange_64);
1591	offset = ma_meta_gap(node);
1592	gaps = ma_gaps(node, mt);
1593	return gaps[offset];
1594}
1595
1596/*
1597 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1598 * @mas: The maple state
1599 * @offset: The gap offset in the parent to set
1600 * @new: The new gap value.
1601 *
1602 * Set the parent gap then continue to set the gap upwards, using the metadata
1603 * of the parent to see if it is necessary to check the node above.
1604 */
1605static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1606		unsigned long new)
1607{
1608	unsigned long meta_gap = 0;
1609	struct maple_node *pnode;
1610	struct maple_enode *penode;
1611	unsigned long *pgaps;
1612	unsigned char meta_offset;
1613	enum maple_type pmt;
1614
1615	pnode = mte_parent(mas->node);
1616	pmt = mas_parent_type(mas, mas->node);
1617	penode = mt_mk_node(pnode, pmt);
1618	pgaps = ma_gaps(pnode, pmt);
1619
1620ascend:
1621	MAS_BUG_ON(mas, pmt != maple_arange_64);
1622	meta_offset = ma_meta_gap(pnode);
1623	meta_gap = pgaps[meta_offset];
1624
1625	pgaps[offset] = new;
1626
1627	if (meta_gap == new)
1628		return;
1629
1630	if (offset != meta_offset) {
1631		if (meta_gap > new)
1632			return;
1633
1634		ma_set_meta_gap(pnode, pmt, offset);
1635	} else if (new < meta_gap) {
1636		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1637		ma_set_meta_gap(pnode, pmt, meta_offset);
1638	}
1639
1640	if (ma_is_root(pnode))
1641		return;
1642
1643	/* Go to the parent node. */
1644	pnode = mte_parent(penode);
1645	pmt = mas_parent_type(mas, penode);
1646	pgaps = ma_gaps(pnode, pmt);
1647	offset = mte_parent_slot(penode);
1648	penode = mt_mk_node(pnode, pmt);
1649	goto ascend;
1650}
1651
1652/*
1653 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1654 * @mas - the maple state.
1655 */
1656static inline void mas_update_gap(struct ma_state *mas)
1657{
1658	unsigned char pslot;
1659	unsigned long p_gap;
1660	unsigned long max_gap;
1661
1662	if (!mt_is_alloc(mas->tree))
1663		return;
1664
1665	if (mte_is_root(mas->node))
1666		return;
1667
1668	max_gap = mas_max_gap(mas);
1669
1670	pslot = mte_parent_slot(mas->node);
1671	p_gap = ma_gaps(mte_parent(mas->node),
1672			mas_parent_type(mas, mas->node))[pslot];
1673
1674	if (p_gap != max_gap)
1675		mas_parent_gap(mas, pslot, max_gap);
1676}
1677
1678/*
1679 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1680 * @parent with the slot encoded.
1681 * @mas - the maple state (for the tree)
1682 * @parent - the maple encoded node containing the children.
1683 */
1684static inline void mas_adopt_children(struct ma_state *mas,
1685		struct maple_enode *parent)
1686{
1687	enum maple_type type = mte_node_type(parent);
1688	struct maple_node *node = mte_to_node(parent);
1689	void __rcu **slots = ma_slots(node, type);
1690	unsigned long *pivots = ma_pivots(node, type);
1691	struct maple_enode *child;
1692	unsigned char offset;
1693
1694	offset = ma_data_end(node, type, pivots, mas->max);
1695	do {
1696		child = mas_slot_locked(mas, slots, offset);
1697		mas_set_parent(mas, child, parent, offset);
1698	} while (offset--);
1699}
1700
1701/*
1702 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1703 * node as dead.
1704 * @mas - the maple state with the new node
1705 * @old_enode - The old maple encoded node to replace.
1706 */
1707static inline void mas_put_in_tree(struct ma_state *mas,
1708		struct maple_enode *old_enode)
1709	__must_hold(mas->tree->ma_lock)
1710{
1711	unsigned char offset;
1712	void __rcu **slots;
1713
1714	if (mte_is_root(mas->node)) {
1715		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1716		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1717		mas_set_height(mas);
1718	} else {
1719
1720		offset = mte_parent_slot(mas->node);
1721		slots = ma_slots(mte_parent(mas->node),
1722				 mas_parent_type(mas, mas->node));
1723		rcu_assign_pointer(slots[offset], mas->node);
1724	}
1725
1726	mte_set_node_dead(old_enode);
1727}
1728
1729/*
1730 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1731 * dead, and freeing it.
1732 * the parent encoding to locate the maple node in the tree.
1733 * @mas - the ma_state with @mas->node pointing to the new node.
1734 * @old_enode - The old maple encoded node.
1735 */
1736static inline void mas_replace_node(struct ma_state *mas,
1737		struct maple_enode *old_enode)
1738	__must_hold(mas->tree->ma_lock)
1739{
1740	mas_put_in_tree(mas, old_enode);
1741	mas_free(mas, old_enode);
1742}
1743
1744/*
1745 * mas_find_child() - Find a child who has the parent @mas->node.
1746 * @mas: the maple state with the parent.
1747 * @child: the maple state to store the child.
1748 */
1749static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1750	__must_hold(mas->tree->ma_lock)
1751{
1752	enum maple_type mt;
1753	unsigned char offset;
1754	unsigned char end;
1755	unsigned long *pivots;
1756	struct maple_enode *entry;
1757	struct maple_node *node;
1758	void __rcu **slots;
1759
1760	mt = mte_node_type(mas->node);
1761	node = mas_mn(mas);
1762	slots = ma_slots(node, mt);
1763	pivots = ma_pivots(node, mt);
1764	end = ma_data_end(node, mt, pivots, mas->max);
1765	for (offset = mas->offset; offset <= end; offset++) {
1766		entry = mas_slot_locked(mas, slots, offset);
1767		if (mte_parent(entry) == node) {
1768			*child = *mas;
1769			mas->offset = offset + 1;
1770			child->offset = offset;
1771			mas_descend(child);
1772			child->offset = 0;
1773			return true;
1774		}
1775	}
1776	return false;
1777}
1778
1779/*
1780 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1781 * old data or set b_node->b_end.
1782 * @b_node: the maple_big_node
1783 * @shift: the shift count
1784 */
1785static inline void mab_shift_right(struct maple_big_node *b_node,
1786				 unsigned char shift)
1787{
1788	unsigned long size = b_node->b_end * sizeof(unsigned long);
1789
1790	memmove(b_node->pivot + shift, b_node->pivot, size);
1791	memmove(b_node->slot + shift, b_node->slot, size);
1792	if (b_node->type == maple_arange_64)
1793		memmove(b_node->gap + shift, b_node->gap, size);
1794}
1795
1796/*
1797 * mab_middle_node() - Check if a middle node is needed (unlikely)
1798 * @b_node: the maple_big_node that contains the data.
1799 * @size: the amount of data in the b_node
1800 * @split: the potential split location
1801 * @slot_count: the size that can be stored in a single node being considered.
1802 *
1803 * Return: true if a middle node is required.
1804 */
1805static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1806				   unsigned char slot_count)
1807{
1808	unsigned char size = b_node->b_end;
1809
1810	if (size >= 2 * slot_count)
1811		return true;
1812
1813	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1814		return true;
1815
1816	return false;
1817}
1818
1819/*
1820 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1821 * @b_node: the maple_big_node with the data
1822 * @split: the suggested split location
1823 * @slot_count: the number of slots in the node being considered.
1824 *
1825 * Return: the split location.
1826 */
1827static inline int mab_no_null_split(struct maple_big_node *b_node,
1828				    unsigned char split, unsigned char slot_count)
1829{
1830	if (!b_node->slot[split]) {
1831		/*
1832		 * If the split is less than the max slot && the right side will
1833		 * still be sufficient, then increment the split on NULL.
1834		 */
1835		if ((split < slot_count - 1) &&
1836		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1837			split++;
1838		else
1839			split--;
1840	}
1841	return split;
1842}
1843
1844/*
1845 * mab_calc_split() - Calculate the split location and if there needs to be two
1846 * splits.
1847 * @bn: The maple_big_node with the data
1848 * @mid_split: The second split, if required.  0 otherwise.
1849 *
1850 * Return: The first split location.  The middle split is set in @mid_split.
1851 */
1852static inline int mab_calc_split(struct ma_state *mas,
1853	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1854{
1855	unsigned char b_end = bn->b_end;
1856	int split = b_end / 2; /* Assume equal split. */
1857	unsigned char slot_min, slot_count = mt_slots[bn->type];
1858
1859	/*
1860	 * To support gap tracking, all NULL entries are kept together and a node cannot
1861	 * end on a NULL entry, with the exception of the left-most leaf.  The
1862	 * limitation means that the split of a node must be checked for this condition
1863	 * and be able to put more data in one direction or the other.
1864	 */
1865	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1866		*mid_split = 0;
1867		split = b_end - mt_min_slots[bn->type];
1868
1869		if (!ma_is_leaf(bn->type))
1870			return split;
1871
1872		mas->mas_flags |= MA_STATE_REBALANCE;
1873		if (!bn->slot[split])
1874			split--;
1875		return split;
1876	}
1877
1878	/*
1879	 * Although extremely rare, it is possible to enter what is known as the 3-way
1880	 * split scenario.  The 3-way split comes about by means of a store of a range
1881	 * that overwrites the end and beginning of two full nodes.  The result is a set
1882	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1883	 * also be located in different parent nodes which are also full.  This can
1884	 * carry upwards all the way to the root in the worst case.
1885	 */
1886	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1887		split = b_end / 3;
1888		*mid_split = split * 2;
1889	} else {
1890		slot_min = mt_min_slots[bn->type];
1891
1892		*mid_split = 0;
1893		/*
1894		 * Avoid having a range less than the slot count unless it
1895		 * causes one node to be deficient.
1896		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1897		 */
1898		while ((split < slot_count - 1) &&
1899		       ((bn->pivot[split] - min) < slot_count - 1) &&
1900		       (b_end - split > slot_min))
1901			split++;
1902	}
1903
1904	/* Avoid ending a node on a NULL entry */
1905	split = mab_no_null_split(bn, split, slot_count);
1906
1907	if (unlikely(*mid_split))
1908		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1909
1910	return split;
1911}
1912
1913/*
1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1915 * and set @b_node->b_end to the next free slot.
1916 * @mas: The maple state
1917 * @mas_start: The starting slot to copy
1918 * @mas_end: The end slot to copy (inclusively)
1919 * @b_node: The maple_big_node to place the data
1920 * @mab_start: The starting location in maple_big_node to store the data.
1921 */
1922static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1923			unsigned char mas_end, struct maple_big_node *b_node,
1924			unsigned char mab_start)
1925{
1926	enum maple_type mt;
1927	struct maple_node *node;
1928	void __rcu **slots;
1929	unsigned long *pivots, *gaps;
1930	int i = mas_start, j = mab_start;
1931	unsigned char piv_end;
1932
1933	node = mas_mn(mas);
1934	mt = mte_node_type(mas->node);
1935	pivots = ma_pivots(node, mt);
1936	if (!i) {
1937		b_node->pivot[j] = pivots[i++];
1938		if (unlikely(i > mas_end))
1939			goto complete;
1940		j++;
1941	}
1942
1943	piv_end = min(mas_end, mt_pivots[mt]);
1944	for (; i < piv_end; i++, j++) {
1945		b_node->pivot[j] = pivots[i];
1946		if (unlikely(!b_node->pivot[j]))
1947			break;
1948
1949		if (unlikely(mas->max == b_node->pivot[j]))
1950			goto complete;
1951	}
1952
1953	if (likely(i <= mas_end))
1954		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1955
1956complete:
1957	b_node->b_end = ++j;
1958	j -= mab_start;
1959	slots = ma_slots(node, mt);
1960	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1961	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1962		gaps = ma_gaps(node, mt);
1963		memcpy(b_node->gap + mab_start, gaps + mas_start,
1964		       sizeof(unsigned long) * j);
1965	}
1966}
1967
1968/*
1969 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1970 * @node: The maple node
1971 * @mt: The maple type
1972 * @end: The node end
1973 */
1974static inline void mas_leaf_set_meta(struct maple_node *node,
1975		enum maple_type mt, unsigned char end)
1976{
1977	if (end < mt_slots[mt] - 1)
1978		ma_set_meta(node, mt, 0, end);
1979}
1980
1981/*
1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1983 * @b_node: the maple_big_node that has the data
1984 * @mab_start: the start location in @b_node.
1985 * @mab_end: The end location in @b_node (inclusively)
1986 * @mas: The maple state with the maple encoded node.
1987 */
1988static inline void mab_mas_cp(struct maple_big_node *b_node,
1989			      unsigned char mab_start, unsigned char mab_end,
1990			      struct ma_state *mas, bool new_max)
1991{
1992	int i, j = 0;
1993	enum maple_type mt = mte_node_type(mas->node);
1994	struct maple_node *node = mte_to_node(mas->node);
1995	void __rcu **slots = ma_slots(node, mt);
1996	unsigned long *pivots = ma_pivots(node, mt);
1997	unsigned long *gaps = NULL;
1998	unsigned char end;
1999
2000	if (mab_end - mab_start > mt_pivots[mt])
2001		mab_end--;
2002
2003	if (!pivots[mt_pivots[mt] - 1])
2004		slots[mt_pivots[mt]] = NULL;
2005
2006	i = mab_start;
2007	do {
2008		pivots[j++] = b_node->pivot[i++];
2009	} while (i <= mab_end && likely(b_node->pivot[i]));
2010
2011	memcpy(slots, b_node->slot + mab_start,
2012	       sizeof(void *) * (i - mab_start));
2013
2014	if (new_max)
2015		mas->max = b_node->pivot[i - 1];
2016
2017	end = j - 1;
2018	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2019		unsigned long max_gap = 0;
2020		unsigned char offset = 0;
2021
2022		gaps = ma_gaps(node, mt);
2023		do {
2024			gaps[--j] = b_node->gap[--i];
2025			if (gaps[j] > max_gap) {
2026				offset = j;
2027				max_gap = gaps[j];
2028			}
2029		} while (j);
2030
2031		ma_set_meta(node, mt, offset, end);
2032	} else {
2033		mas_leaf_set_meta(node, mt, end);
2034	}
2035}
2036
2037/*
2038 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2039 * @mas: The maple state
2040 * @end: The maple node end
2041 * @mt: The maple node type
2042 */
2043static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2044				      enum maple_type mt)
2045{
2046	if (!(mas->mas_flags & MA_STATE_BULK))
2047		return;
2048
2049	if (mte_is_root(mas->node))
2050		return;
2051
2052	if (end > mt_min_slots[mt]) {
2053		mas->mas_flags &= ~MA_STATE_REBALANCE;
2054		return;
2055	}
2056}
2057
2058/*
2059 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2060 * data from a maple encoded node.
2061 * @wr_mas: the maple write state
2062 * @b_node: the maple_big_node to fill with data
2063 * @offset_end: the offset to end copying
2064 *
2065 * Return: The actual end of the data stored in @b_node
2066 */
2067static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2068		struct maple_big_node *b_node, unsigned char offset_end)
2069{
2070	unsigned char slot;
2071	unsigned char b_end;
2072	/* Possible underflow of piv will wrap back to 0 before use. */
2073	unsigned long piv;
2074	struct ma_state *mas = wr_mas->mas;
2075
2076	b_node->type = wr_mas->type;
2077	b_end = 0;
2078	slot = mas->offset;
2079	if (slot) {
2080		/* Copy start data up to insert. */
2081		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2082		b_end = b_node->b_end;
2083		piv = b_node->pivot[b_end - 1];
2084	} else
2085		piv = mas->min - 1;
2086
2087	if (piv + 1 < mas->index) {
2088		/* Handle range starting after old range */
2089		b_node->slot[b_end] = wr_mas->content;
2090		if (!wr_mas->content)
2091			b_node->gap[b_end] = mas->index - 1 - piv;
2092		b_node->pivot[b_end++] = mas->index - 1;
2093	}
2094
2095	/* Store the new entry. */
2096	mas->offset = b_end;
2097	b_node->slot[b_end] = wr_mas->entry;
2098	b_node->pivot[b_end] = mas->last;
2099
2100	/* Appended. */
2101	if (mas->last >= mas->max)
2102		goto b_end;
2103
2104	/* Handle new range ending before old range ends */
2105	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2106	if (piv > mas->last) {
2107		if (piv == ULONG_MAX)
2108			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2109
2110		if (offset_end != slot)
2111			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2112							  offset_end);
2113
2114		b_node->slot[++b_end] = wr_mas->content;
2115		if (!wr_mas->content)
2116			b_node->gap[b_end] = piv - mas->last + 1;
2117		b_node->pivot[b_end] = piv;
2118	}
2119
2120	slot = offset_end + 1;
2121	if (slot > mas->end)
2122		goto b_end;
2123
2124	/* Copy end data to the end of the node. */
2125	mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2126	b_node->b_end--;
2127	return;
2128
2129b_end:
2130	b_node->b_end = b_end;
2131}
2132
2133/*
2134 * mas_prev_sibling() - Find the previous node with the same parent.
2135 * @mas: the maple state
2136 *
2137 * Return: True if there is a previous sibling, false otherwise.
2138 */
2139static inline bool mas_prev_sibling(struct ma_state *mas)
2140{
2141	unsigned int p_slot = mte_parent_slot(mas->node);
2142
2143	if (mte_is_root(mas->node))
2144		return false;
2145
2146	if (!p_slot)
2147		return false;
2148
2149	mas_ascend(mas);
2150	mas->offset = p_slot - 1;
2151	mas_descend(mas);
2152	return true;
2153}
2154
2155/*
2156 * mas_next_sibling() - Find the next node with the same parent.
2157 * @mas: the maple state
2158 *
2159 * Return: true if there is a next sibling, false otherwise.
2160 */
2161static inline bool mas_next_sibling(struct ma_state *mas)
2162{
2163	MA_STATE(parent, mas->tree, mas->index, mas->last);
2164
2165	if (mte_is_root(mas->node))
2166		return false;
2167
2168	parent = *mas;
2169	mas_ascend(&parent);
2170	parent.offset = mte_parent_slot(mas->node) + 1;
2171	if (parent.offset > mas_data_end(&parent))
2172		return false;
2173
2174	*mas = parent;
2175	mas_descend(mas);
2176	return true;
2177}
2178
2179/*
2180 * mte_node_or_none() - Set the enode and state.
2181 * @enode: The encoded maple node.
2182 *
2183 * Set the node to the enode and the status.
2184 */
2185static inline void mas_node_or_none(struct ma_state *mas,
2186		struct maple_enode *enode)
2187{
2188	if (enode) {
2189		mas->node = enode;
2190		mas->status = ma_active;
2191	} else {
2192		mas->node = NULL;
2193		mas->status = ma_none;
2194	}
2195}
2196
2197/*
2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2199 * @wr_mas: The maple write state
2200 *
2201 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2202 */
2203static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2204{
2205	struct ma_state *mas = wr_mas->mas;
2206	unsigned char count, offset;
2207
2208	if (unlikely(ma_is_dense(wr_mas->type))) {
2209		wr_mas->r_max = wr_mas->r_min = mas->index;
2210		mas->offset = mas->index = mas->min;
2211		return;
2212	}
2213
2214	wr_mas->node = mas_mn(wr_mas->mas);
2215	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2216	count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2217				       wr_mas->pivots, mas->max);
2218	offset = mas->offset;
2219
2220	while (offset < count && mas->index > wr_mas->pivots[offset])
2221		offset++;
2222
2223	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2224	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2225	wr_mas->offset_end = mas->offset = offset;
2226}
2227
2228/*
2229 * mast_rebalance_next() - Rebalance against the next node
2230 * @mast: The maple subtree state
2231 * @old_r: The encoded maple node to the right (next node).
2232 */
2233static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2234{
2235	unsigned char b_end = mast->bn->b_end;
2236
2237	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2238		   mast->bn, b_end);
2239	mast->orig_r->last = mast->orig_r->max;
2240}
2241
2242/*
2243 * mast_rebalance_prev() - Rebalance against the previous node
2244 * @mast: The maple subtree state
2245 * @old_l: The encoded maple node to the left (previous node)
2246 */
2247static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2248{
2249	unsigned char end = mas_data_end(mast->orig_l) + 1;
2250	unsigned char b_end = mast->bn->b_end;
2251
2252	mab_shift_right(mast->bn, end);
2253	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2254	mast->l->min = mast->orig_l->min;
2255	mast->orig_l->index = mast->orig_l->min;
2256	mast->bn->b_end = end + b_end;
2257	mast->l->offset += end;
2258}
2259
2260/*
2261 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2262 * the node to the right.  Checking the nodes to the right then the left at each
2263 * level upwards until root is reached.
2264 * Data is copied into the @mast->bn.
2265 * @mast: The maple_subtree_state.
2266 */
2267static inline
2268bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2269{
2270	struct ma_state r_tmp = *mast->orig_r;
2271	struct ma_state l_tmp = *mast->orig_l;
2272	unsigned char depth = 0;
2273
2274	do {
2275		mas_ascend(mast->orig_r);
2276		mas_ascend(mast->orig_l);
2277		depth++;
2278		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2279			mast->orig_r->offset++;
2280			do {
2281				mas_descend(mast->orig_r);
2282				mast->orig_r->offset = 0;
2283			} while (--depth);
2284
2285			mast_rebalance_next(mast);
2286			*mast->orig_l = l_tmp;
2287			return true;
2288		} else if (mast->orig_l->offset != 0) {
2289			mast->orig_l->offset--;
2290			do {
2291				mas_descend(mast->orig_l);
2292				mast->orig_l->offset =
2293					mas_data_end(mast->orig_l);
2294			} while (--depth);
2295
2296			mast_rebalance_prev(mast);
2297			*mast->orig_r = r_tmp;
2298			return true;
2299		}
2300	} while (!mte_is_root(mast->orig_r->node));
2301
2302	*mast->orig_r = r_tmp;
2303	*mast->orig_l = l_tmp;
2304	return false;
2305}
2306
2307/*
2308 * mast_ascend() - Ascend the original left and right maple states.
2309 * @mast: the maple subtree state.
2310 *
2311 * Ascend the original left and right sides.  Set the offsets to point to the
2312 * data already in the new tree (@mast->l and @mast->r).
2313 */
2314static inline void mast_ascend(struct maple_subtree_state *mast)
2315{
2316	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2317	mas_ascend(mast->orig_l);
2318	mas_ascend(mast->orig_r);
2319
2320	mast->orig_r->offset = 0;
2321	mast->orig_r->index = mast->r->max;
2322	/* last should be larger than or equal to index */
2323	if (mast->orig_r->last < mast->orig_r->index)
2324		mast->orig_r->last = mast->orig_r->index;
2325
2326	wr_mas.type = mte_node_type(mast->orig_r->node);
2327	mas_wr_node_walk(&wr_mas);
2328	/* Set up the left side of things */
2329	mast->orig_l->offset = 0;
2330	mast->orig_l->index = mast->l->min;
2331	wr_mas.mas = mast->orig_l;
2332	wr_mas.type = mte_node_type(mast->orig_l->node);
2333	mas_wr_node_walk(&wr_mas);
2334
2335	mast->bn->type = wr_mas.type;
2336}
2337
2338/*
2339 * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2340 * @mas: the maple state with the allocations.
2341 * @b_node: the maple_big_node with the type encoding.
2342 *
2343 * Use the node type from the maple_big_node to allocate a new node from the
2344 * ma_state.  This function exists mainly for code readability.
2345 *
2346 * Return: A new maple encoded node
2347 */
2348static inline struct maple_enode
2349*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2350{
2351	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2352}
2353
2354/*
2355 * mas_mab_to_node() - Set up right and middle nodes
2356 *
2357 * @mas: the maple state that contains the allocations.
2358 * @b_node: the node which contains the data.
2359 * @left: The pointer which will have the left node
2360 * @right: The pointer which may have the right node
2361 * @middle: the pointer which may have the middle node (rare)
2362 * @mid_split: the split location for the middle node
2363 *
2364 * Return: the split of left.
2365 */
2366static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2367	struct maple_big_node *b_node, struct maple_enode **left,
2368	struct maple_enode **right, struct maple_enode **middle,
2369	unsigned char *mid_split, unsigned long min)
2370{
2371	unsigned char split = 0;
2372	unsigned char slot_count = mt_slots[b_node->type];
2373
2374	*left = mas_new_ma_node(mas, b_node);
2375	*right = NULL;
2376	*middle = NULL;
2377	*mid_split = 0;
2378
2379	if (b_node->b_end < slot_count) {
2380		split = b_node->b_end;
2381	} else {
2382		split = mab_calc_split(mas, b_node, mid_split, min);
2383		*right = mas_new_ma_node(mas, b_node);
2384	}
2385
2386	if (*mid_split)
2387		*middle = mas_new_ma_node(mas, b_node);
2388
2389	return split;
2390
2391}
2392
2393/*
2394 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2395 * pointer.
2396 * @b_node - the big node to add the entry
2397 * @mas - the maple state to get the pivot (mas->max)
2398 * @entry - the entry to add, if NULL nothing happens.
2399 */
2400static inline void mab_set_b_end(struct maple_big_node *b_node,
2401				 struct ma_state *mas,
2402				 void *entry)
2403{
2404	if (!entry)
2405		return;
2406
2407	b_node->slot[b_node->b_end] = entry;
2408	if (mt_is_alloc(mas->tree))
2409		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2410	b_node->pivot[b_node->b_end++] = mas->max;
2411}
2412
2413/*
2414 * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2415 * of @mas->node to either @left or @right, depending on @slot and @split
2416 *
2417 * @mas - the maple state with the node that needs a parent
2418 * @left - possible parent 1
2419 * @right - possible parent 2
2420 * @slot - the slot the mas->node was placed
2421 * @split - the split location between @left and @right
2422 */
2423static inline void mas_set_split_parent(struct ma_state *mas,
2424					struct maple_enode *left,
2425					struct maple_enode *right,
2426					unsigned char *slot, unsigned char split)
2427{
2428	if (mas_is_none(mas))
2429		return;
2430
2431	if ((*slot) <= split)
2432		mas_set_parent(mas, mas->node, left, *slot);
2433	else if (right)
2434		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2435
2436	(*slot)++;
2437}
2438
2439/*
2440 * mte_mid_split_check() - Check if the next node passes the mid-split
2441 * @**l: Pointer to left encoded maple node.
2442 * @**m: Pointer to middle encoded maple node.
2443 * @**r: Pointer to right encoded maple node.
2444 * @slot: The offset
2445 * @*split: The split location.
2446 * @mid_split: The middle split.
2447 */
2448static inline void mte_mid_split_check(struct maple_enode **l,
2449				       struct maple_enode **r,
2450				       struct maple_enode *right,
2451				       unsigned char slot,
2452				       unsigned char *split,
2453				       unsigned char mid_split)
2454{
2455	if (*r == right)
2456		return;
2457
2458	if (slot < mid_split)
2459		return;
2460
2461	*l = *r;
2462	*r = right;
2463	*split = mid_split;
2464}
2465
2466/*
2467 * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2468 * is taken from @mast->l.
2469 * @mast - the maple subtree state
2470 * @left - the left node
2471 * @right - the right node
2472 * @split - the split location.
2473 */
2474static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2475					  struct maple_enode *left,
2476					  struct maple_enode *middle,
2477					  struct maple_enode *right,
2478					  unsigned char split,
2479					  unsigned char mid_split)
2480{
2481	unsigned char slot;
2482	struct maple_enode *l = left;
2483	struct maple_enode *r = right;
2484
2485	if (mas_is_none(mast->l))
2486		return;
2487
2488	if (middle)
2489		r = middle;
2490
2491	slot = mast->l->offset;
2492
2493	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2494	mas_set_split_parent(mast->l, l, r, &slot, split);
2495
2496	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2497	mas_set_split_parent(mast->m, l, r, &slot, split);
2498
2499	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2500	mas_set_split_parent(mast->r, l, r, &slot, split);
2501}
2502
2503/*
2504 * mas_topiary_node() - Dispose of a single node
2505 * @mas: The maple state for pushing nodes
2506 * @enode: The encoded maple node
2507 * @in_rcu: If the tree is in rcu mode
2508 *
2509 * The node will either be RCU freed or pushed back on the maple state.
2510 */
2511static inline void mas_topiary_node(struct ma_state *mas,
2512		struct ma_state *tmp_mas, bool in_rcu)
2513{
2514	struct maple_node *tmp;
2515	struct maple_enode *enode;
2516
2517	if (mas_is_none(tmp_mas))
2518		return;
2519
2520	enode = tmp_mas->node;
2521	tmp = mte_to_node(enode);
2522	mte_set_node_dead(enode);
2523	if (in_rcu)
2524		ma_free_rcu(tmp);
2525	else
2526		mas_push_node(mas, tmp);
2527}
2528
2529/*
2530 * mas_topiary_replace() - Replace the data with new data, then repair the
2531 * parent links within the new tree.  Iterate over the dead sub-tree and collect
2532 * the dead subtrees and topiary the nodes that are no longer of use.
2533 *
2534 * The new tree will have up to three children with the correct parent.  Keep
2535 * track of the new entries as they need to be followed to find the next level
2536 * of new entries.
2537 *
2538 * The old tree will have up to three children with the old parent.  Keep track
2539 * of the old entries as they may have more nodes below replaced.  Nodes within
2540 * [index, last] are dead subtrees, others need to be freed and followed.
2541 *
2542 * @mas: The maple state pointing at the new data
2543 * @old_enode: The maple encoded node being replaced
2544 *
2545 */
2546static inline void mas_topiary_replace(struct ma_state *mas,
2547		struct maple_enode *old_enode)
2548{
2549	struct ma_state tmp[3], tmp_next[3];
2550	MA_TOPIARY(subtrees, mas->tree);
2551	bool in_rcu;
2552	int i, n;
2553
2554	/* Place data in tree & then mark node as old */
2555	mas_put_in_tree(mas, old_enode);
2556
2557	/* Update the parent pointers in the tree */
2558	tmp[0] = *mas;
2559	tmp[0].offset = 0;
2560	tmp[1].status = ma_none;
2561	tmp[2].status = ma_none;
2562	while (!mte_is_leaf(tmp[0].node)) {
2563		n = 0;
2564		for (i = 0; i < 3; i++) {
2565			if (mas_is_none(&tmp[i]))
2566				continue;
2567
2568			while (n < 3) {
2569				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2570					break;
2571				n++;
2572			}
2573
2574			mas_adopt_children(&tmp[i], tmp[i].node);
2575		}
2576
2577		if (MAS_WARN_ON(mas, n == 0))
2578			break;
2579
2580		while (n < 3)
2581			tmp_next[n++].status = ma_none;
2582
2583		for (i = 0; i < 3; i++)
2584			tmp[i] = tmp_next[i];
2585	}
2586
2587	/* Collect the old nodes that need to be discarded */
2588	if (mte_is_leaf(old_enode))
2589		return mas_free(mas, old_enode);
2590
2591	tmp[0] = *mas;
2592	tmp[0].offset = 0;
2593	tmp[0].node = old_enode;
2594	tmp[1].status = ma_none;
2595	tmp[2].status = ma_none;
2596	in_rcu = mt_in_rcu(mas->tree);
2597	do {
2598		n = 0;
2599		for (i = 0; i < 3; i++) {
2600			if (mas_is_none(&tmp[i]))
2601				continue;
2602
2603			while (n < 3) {
2604				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2605					break;
2606
2607				if ((tmp_next[n].min >= tmp_next->index) &&
2608				    (tmp_next[n].max <= tmp_next->last)) {
2609					mat_add(&subtrees, tmp_next[n].node);
2610					tmp_next[n].status = ma_none;
2611				} else {
2612					n++;
2613				}
2614			}
2615		}
2616
2617		if (MAS_WARN_ON(mas, n == 0))
2618			break;
2619
2620		while (n < 3)
2621			tmp_next[n++].status = ma_none;
2622
2623		for (i = 0; i < 3; i++) {
2624			mas_topiary_node(mas, &tmp[i], in_rcu);
2625			tmp[i] = tmp_next[i];
2626		}
2627	} while (!mte_is_leaf(tmp[0].node));
2628
2629	for (i = 0; i < 3; i++)
2630		mas_topiary_node(mas, &tmp[i], in_rcu);
2631
2632	mas_mat_destroy(mas, &subtrees);
2633}
2634
2635/*
2636 * mas_wmb_replace() - Write memory barrier and replace
2637 * @mas: The maple state
2638 * @old: The old maple encoded node that is being replaced.
2639 *
2640 * Updates gap as necessary.
2641 */
2642static inline void mas_wmb_replace(struct ma_state *mas,
2643		struct maple_enode *old_enode)
2644{
2645	/* Insert the new data in the tree */
2646	mas_topiary_replace(mas, old_enode);
2647
2648	if (mte_is_leaf(mas->node))
2649		return;
2650
2651	mas_update_gap(mas);
2652}
2653
2654/*
2655 * mast_cp_to_nodes() - Copy data out to nodes.
2656 * @mast: The maple subtree state
2657 * @left: The left encoded maple node
2658 * @middle: The middle encoded maple node
2659 * @right: The right encoded maple node
2660 * @split: The location to split between left and (middle ? middle : right)
2661 * @mid_split: The location to split between middle and right.
2662 */
2663static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2664	struct maple_enode *left, struct maple_enode *middle,
2665	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2666{
2667	bool new_lmax = true;
2668
2669	mas_node_or_none(mast->l, left);
2670	mas_node_or_none(mast->m, middle);
2671	mas_node_or_none(mast->r, right);
2672
2673	mast->l->min = mast->orig_l->min;
2674	if (split == mast->bn->b_end) {
2675		mast->l->max = mast->orig_r->max;
2676		new_lmax = false;
2677	}
2678
2679	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2680
2681	if (middle) {
2682		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2683		mast->m->min = mast->bn->pivot[split] + 1;
2684		split = mid_split;
2685	}
2686
2687	mast->r->max = mast->orig_r->max;
2688	if (right) {
2689		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2690		mast->r->min = mast->bn->pivot[split] + 1;
2691	}
2692}
2693
2694/*
2695 * mast_combine_cp_left - Copy in the original left side of the tree into the
2696 * combined data set in the maple subtree state big node.
2697 * @mast: The maple subtree state
2698 */
2699static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2700{
2701	unsigned char l_slot = mast->orig_l->offset;
2702
2703	if (!l_slot)
2704		return;
2705
2706	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2707}
2708
2709/*
2710 * mast_combine_cp_right: Copy in the original right side of the tree into the
2711 * combined data set in the maple subtree state big node.
2712 * @mast: The maple subtree state
2713 */
2714static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2715{
2716	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2717		return;
2718
2719	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2720		   mt_slot_count(mast->orig_r->node), mast->bn,
2721		   mast->bn->b_end);
2722	mast->orig_r->last = mast->orig_r->max;
2723}
2724
2725/*
2726 * mast_sufficient: Check if the maple subtree state has enough data in the big
2727 * node to create at least one sufficient node
2728 * @mast: the maple subtree state
2729 */
2730static inline bool mast_sufficient(struct maple_subtree_state *mast)
2731{
2732	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2733		return true;
2734
2735	return false;
2736}
2737
2738/*
2739 * mast_overflow: Check if there is too much data in the subtree state for a
2740 * single node.
2741 * @mast: The maple subtree state
2742 */
2743static inline bool mast_overflow(struct maple_subtree_state *mast)
2744{
2745	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2746		return true;
2747
2748	return false;
2749}
2750
2751static inline void *mtree_range_walk(struct ma_state *mas)
2752{
2753	unsigned long *pivots;
2754	unsigned char offset;
2755	struct maple_node *node;
2756	struct maple_enode *next, *last;
2757	enum maple_type type;
2758	void __rcu **slots;
2759	unsigned char end;
2760	unsigned long max, min;
2761	unsigned long prev_max, prev_min;
2762
2763	next = mas->node;
2764	min = mas->min;
2765	max = mas->max;
2766	do {
2767		last = next;
2768		node = mte_to_node(next);
2769		type = mte_node_type(next);
2770		pivots = ma_pivots(node, type);
2771		end = ma_data_end(node, type, pivots, max);
2772		prev_min = min;
2773		prev_max = max;
2774		if (pivots[0] >= mas->index) {
2775			offset = 0;
2776			max = pivots[0];
2777			goto next;
2778		}
2779
2780		offset = 1;
2781		while (offset < end) {
2782			if (pivots[offset] >= mas->index) {
2783				max = pivots[offset];
2784				break;
2785			}
2786			offset++;
2787		}
2788
2789		min = pivots[offset - 1] + 1;
2790next:
2791		slots = ma_slots(node, type);
2792		next = mt_slot(mas->tree, slots, offset);
2793		if (unlikely(ma_dead_node(node)))
2794			goto dead_node;
2795	} while (!ma_is_leaf(type));
2796
2797	mas->end = end;
2798	mas->offset = offset;
2799	mas->index = min;
2800	mas->last = max;
2801	mas->min = prev_min;
2802	mas->max = prev_max;
2803	mas->node = last;
2804	return (void *)next;
2805
2806dead_node:
2807	mas_reset(mas);
2808	return NULL;
2809}
2810
2811/*
2812 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2813 * @mas: The starting maple state
2814 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2815 * @count: The estimated count of iterations needed.
2816 *
2817 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2818 * is hit.  First @b_node is split into two entries which are inserted into the
2819 * next iteration of the loop.  @b_node is returned populated with the final
2820 * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2821 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2822 * to account of what has been copied into the new sub-tree.  The update of
2823 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2824 * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2825 * the new sub-tree in case the sub-tree becomes the full tree.
2826 *
2827 * Return: the number of elements in b_node during the last loop.
2828 */
2829static int mas_spanning_rebalance(struct ma_state *mas,
2830		struct maple_subtree_state *mast, unsigned char count)
2831{
2832	unsigned char split, mid_split;
2833	unsigned char slot = 0;
2834	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2835	struct maple_enode *old_enode;
2836
2837	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2838	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2839	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2840
2841	/*
2842	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2843	 * Rebalancing is done by use of the ``struct maple_topiary``.
2844	 */
2845	mast->l = &l_mas;
2846	mast->m = &m_mas;
2847	mast->r = &r_mas;
2848	l_mas.status = r_mas.status = m_mas.status = ma_none;
2849
2850	/* Check if this is not root and has sufficient data.  */
2851	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2852	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2853		mast_spanning_rebalance(mast);
2854
2855	l_mas.depth = 0;
2856
2857	/*
2858	 * Each level of the tree is examined and balanced, pushing data to the left or
2859	 * right, or rebalancing against left or right nodes is employed to avoid
2860	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2861	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2862	 * will have the incorrect parent pointers and currently be in two trees: the
2863	 * original tree and the partially new tree.  To remedy the parent pointers in
2864	 * the old tree, the new data is swapped into the active tree and a walk down
2865	 * the tree is performed and the parent pointers are updated.
2866	 * See mas_topiary_replace() for more information.
2867	 */
2868	while (count--) {
2869		mast->bn->b_end--;
2870		mast->bn->type = mte_node_type(mast->orig_l->node);
2871		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2872					&mid_split, mast->orig_l->min);
2873		mast_set_split_parents(mast, left, middle, right, split,
2874				       mid_split);
2875		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2876
2877		/*
2878		 * Copy data from next level in the tree to mast->bn from next
2879		 * iteration
2880		 */
2881		memset(mast->bn, 0, sizeof(struct maple_big_node));
2882		mast->bn->type = mte_node_type(left);
2883		l_mas.depth++;
2884
2885		/* Root already stored in l->node. */
2886		if (mas_is_root_limits(mast->l))
2887			goto new_root;
2888
2889		mast_ascend(mast);
2890		mast_combine_cp_left(mast);
2891		l_mas.offset = mast->bn->b_end;
2892		mab_set_b_end(mast->bn, &l_mas, left);
2893		mab_set_b_end(mast->bn, &m_mas, middle);
2894		mab_set_b_end(mast->bn, &r_mas, right);
2895
2896		/* Copy anything necessary out of the right node. */
2897		mast_combine_cp_right(mast);
2898		mast->orig_l->last = mast->orig_l->max;
2899
2900		if (mast_sufficient(mast))
2901			continue;
2902
2903		if (mast_overflow(mast))
2904			continue;
2905
2906		/* May be a new root stored in mast->bn */
2907		if (mas_is_root_limits(mast->orig_l))
2908			break;
2909
2910		mast_spanning_rebalance(mast);
2911
2912		/* rebalancing from other nodes may require another loop. */
2913		if (!count)
2914			count++;
2915	}
2916
2917	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2918				mte_node_type(mast->orig_l->node));
2919	l_mas.depth++;
2920	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2921	mas_set_parent(mas, left, l_mas.node, slot);
2922	if (middle)
2923		mas_set_parent(mas, middle, l_mas.node, ++slot);
2924
2925	if (right)
2926		mas_set_parent(mas, right, l_mas.node, ++slot);
2927
2928	if (mas_is_root_limits(mast->l)) {
2929new_root:
2930		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2931		while (!mte_is_root(mast->orig_l->node))
2932			mast_ascend(mast);
2933	} else {
2934		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2935	}
2936
2937	old_enode = mast->orig_l->node;
2938	mas->depth = l_mas.depth;
2939	mas->node = l_mas.node;
2940	mas->min = l_mas.min;
2941	mas->max = l_mas.max;
2942	mas->offset = l_mas.offset;
2943	mas_wmb_replace(mas, old_enode);
2944	mtree_range_walk(mas);
2945	return mast->bn->b_end;
2946}
2947
2948/*
2949 * mas_rebalance() - Rebalance a given node.
2950 * @mas: The maple state
2951 * @b_node: The big maple node.
2952 *
2953 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2954 * Continue upwards until tree is sufficient.
2955 *
2956 * Return: the number of elements in b_node during the last loop.
2957 */
2958static inline int mas_rebalance(struct ma_state *mas,
2959				struct maple_big_node *b_node)
2960{
2961	char empty_count = mas_mt_height(mas);
2962	struct maple_subtree_state mast;
2963	unsigned char shift, b_end = ++b_node->b_end;
2964
2965	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2966	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2967
2968	trace_ma_op(__func__, mas);
2969
2970	/*
2971	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
2972	 * against the node to the right if it exists, otherwise the node to the
2973	 * left of this node is rebalanced against this node.  If rebalancing
2974	 * causes just one node to be produced instead of two, then the parent
2975	 * is also examined and rebalanced if it is insufficient.  Every level
2976	 * tries to combine the data in the same way.  If one node contains the
2977	 * entire range of the tree, then that node is used as a new root node.
2978	 */
2979	mas_node_count(mas, empty_count * 2 - 1);
2980	if (mas_is_err(mas))
2981		return 0;
2982
2983	mast.orig_l = &l_mas;
2984	mast.orig_r = &r_mas;
2985	mast.bn = b_node;
2986	mast.bn->type = mte_node_type(mas->node);
2987
2988	l_mas = r_mas = *mas;
2989
2990	if (mas_next_sibling(&r_mas)) {
2991		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2992		r_mas.last = r_mas.index = r_mas.max;
2993	} else {
2994		mas_prev_sibling(&l_mas);
2995		shift = mas_data_end(&l_mas) + 1;
2996		mab_shift_right(b_node, shift);
2997		mas->offset += shift;
2998		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2999		b_node->b_end = shift + b_end;
3000		l_mas.index = l_mas.last = l_mas.min;
3001	}
3002
3003	return mas_spanning_rebalance(mas, &mast, empty_count);
3004}
3005
3006/*
3007 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3008 * state.
3009 * @mas: The maple state
3010 * @end: The end of the left-most node.
3011 *
3012 * During a mass-insert event (such as forking), it may be necessary to
3013 * rebalance the left-most node when it is not sufficient.
3014 */
3015static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3016{
3017	enum maple_type mt = mte_node_type(mas->node);
3018	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3019	struct maple_enode *eparent, *old_eparent;
3020	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3021	void __rcu **l_slots, **slots;
3022	unsigned long *l_pivs, *pivs, gap;
3023	bool in_rcu = mt_in_rcu(mas->tree);
3024
3025	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3026
3027	l_mas = *mas;
3028	mas_prev_sibling(&l_mas);
3029
3030	/* set up node. */
3031	if (in_rcu) {
3032		/* Allocate for both left and right as well as parent. */
3033		mas_node_count(mas, 3);
3034		if (mas_is_err(mas))
3035			return;
3036
3037		newnode = mas_pop_node(mas);
3038	} else {
3039		newnode = &reuse;
3040	}
3041
3042	node = mas_mn(mas);
3043	newnode->parent = node->parent;
3044	slots = ma_slots(newnode, mt);
3045	pivs = ma_pivots(newnode, mt);
3046	left = mas_mn(&l_mas);
3047	l_slots = ma_slots(left, mt);
3048	l_pivs = ma_pivots(left, mt);
3049	if (!l_slots[split])
3050		split++;
3051	tmp = mas_data_end(&l_mas) - split;
3052
3053	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3054	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3055	pivs[tmp] = l_mas.max;
3056	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3057	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3058
3059	l_mas.max = l_pivs[split];
3060	mas->min = l_mas.max + 1;
3061	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3062			     mas_parent_type(&l_mas, l_mas.node));
3063	tmp += end;
3064	if (!in_rcu) {
3065		unsigned char max_p = mt_pivots[mt];
3066		unsigned char max_s = mt_slots[mt];
3067
3068		if (tmp < max_p)
3069			memset(pivs + tmp, 0,
3070			       sizeof(unsigned long) * (max_p - tmp));
3071
3072		if (tmp < mt_slots[mt])
3073			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3074
3075		memcpy(node, newnode, sizeof(struct maple_node));
3076		ma_set_meta(node, mt, 0, tmp - 1);
3077		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3078			      l_pivs[split]);
3079
3080		/* Remove data from l_pivs. */
3081		tmp = split + 1;
3082		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3083		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3084		ma_set_meta(left, mt, 0, split);
3085		eparent = old_eparent;
3086
3087		goto done;
3088	}
3089
3090	/* RCU requires replacing both l_mas, mas, and parent. */
3091	mas->node = mt_mk_node(newnode, mt);
3092	ma_set_meta(newnode, mt, 0, tmp);
3093
3094	new_left = mas_pop_node(mas);
3095	new_left->parent = left->parent;
3096	mt = mte_node_type(l_mas.node);
3097	slots = ma_slots(new_left, mt);
3098	pivs = ma_pivots(new_left, mt);
3099	memcpy(slots, l_slots, sizeof(void *) * split);
3100	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3101	ma_set_meta(new_left, mt, 0, split);
3102	l_mas.node = mt_mk_node(new_left, mt);
3103
3104	/* replace parent. */
3105	offset = mte_parent_slot(mas->node);
3106	mt = mas_parent_type(&l_mas, l_mas.node);
3107	parent = mas_pop_node(mas);
3108	slots = ma_slots(parent, mt);
3109	pivs = ma_pivots(parent, mt);
3110	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3111	rcu_assign_pointer(slots[offset], mas->node);
3112	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3113	pivs[offset - 1] = l_mas.max;
3114	eparent = mt_mk_node(parent, mt);
3115done:
3116	gap = mas_leaf_max_gap(mas);
3117	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3118	gap = mas_leaf_max_gap(&l_mas);
3119	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3120	mas_ascend(mas);
3121
3122	if (in_rcu) {
3123		mas_replace_node(mas, old_eparent);
3124		mas_adopt_children(mas, mas->node);
3125	}
3126
3127	mas_update_gap(mas);
3128}
3129
3130/*
3131 * mas_split_final_node() - Split the final node in a subtree operation.
3132 * @mast: the maple subtree state
3133 * @mas: The maple state
3134 * @height: The height of the tree in case it's a new root.
3135 */
3136static inline void mas_split_final_node(struct maple_subtree_state *mast,
3137					struct ma_state *mas, int height)
3138{
3139	struct maple_enode *ancestor;
3140
3141	if (mte_is_root(mas->node)) {
3142		if (mt_is_alloc(mas->tree))
3143			mast->bn->type = maple_arange_64;
3144		else
3145			mast->bn->type = maple_range_64;
3146		mas->depth = height;
3147	}
3148	/*
3149	 * Only a single node is used here, could be root.
3150	 * The Big_node data should just fit in a single node.
3151	 */
3152	ancestor = mas_new_ma_node(mas, mast->bn);
3153	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3154	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3155	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3156
3157	mast->l->node = ancestor;
3158	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3159	mas->offset = mast->bn->b_end - 1;
3160}
3161
3162/*
3163 * mast_fill_bnode() - Copy data into the big node in the subtree state
3164 * @mast: The maple subtree state
3165 * @mas: the maple state
3166 * @skip: The number of entries to skip for new nodes insertion.
3167 */
3168static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3169					 struct ma_state *mas,
3170					 unsigned char skip)
3171{
3172	bool cp = true;
3173	unsigned char split;
3174
3175	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3176	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3177	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3178	mast->bn->b_end = 0;
3179
3180	if (mte_is_root(mas->node)) {
3181		cp = false;
3182	} else {
3183		mas_ascend(mas);
3184		mas->offset = mte_parent_slot(mas->node);
3185	}
3186
3187	if (cp && mast->l->offset)
3188		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3189
3190	split = mast->bn->b_end;
3191	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3192	mast->r->offset = mast->bn->b_end;
3193	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3194	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3195		cp = false;
3196
3197	if (cp)
3198		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3199			   mast->bn, mast->bn->b_end);
3200
3201	mast->bn->b_end--;
3202	mast->bn->type = mte_node_type(mas->node);
3203}
3204
3205/*
3206 * mast_split_data() - Split the data in the subtree state big node into regular
3207 * nodes.
3208 * @mast: The maple subtree state
3209 * @mas: The maple state
3210 * @split: The location to split the big node
3211 */
3212static inline void mast_split_data(struct maple_subtree_state *mast,
3213	   struct ma_state *mas, unsigned char split)
3214{
3215	unsigned char p_slot;
3216
3217	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3218	mte_set_pivot(mast->r->node, 0, mast->r->max);
3219	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3220	mast->l->offset = mte_parent_slot(mas->node);
3221	mast->l->max = mast->bn->pivot[split];
3222	mast->r->min = mast->l->max + 1;
3223	if (mte_is_leaf(mas->node))
3224		return;
3225
3226	p_slot = mast->orig_l->offset;
3227	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3228			     &p_slot, split);
3229	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3230			     &p_slot, split);
3231}
3232
3233/*
3234 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3235 * data to the right or left node if there is room.
3236 * @mas: The maple state
3237 * @height: The current height of the maple state
3238 * @mast: The maple subtree state
3239 * @left: Push left or not.
3240 *
3241 * Keeping the height of the tree low means faster lookups.
3242 *
3243 * Return: True if pushed, false otherwise.
3244 */
3245static inline bool mas_push_data(struct ma_state *mas, int height,
3246				 struct maple_subtree_state *mast, bool left)
3247{
3248	unsigned char slot_total = mast->bn->b_end;
3249	unsigned char end, space, split;
3250
3251	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3252	tmp_mas = *mas;
3253	tmp_mas.depth = mast->l->depth;
3254
3255	if (left && !mas_prev_sibling(&tmp_mas))
3256		return false;
3257	else if (!left && !mas_next_sibling(&tmp_mas))
3258		return false;
3259
3260	end = mas_data_end(&tmp_mas);
3261	slot_total += end;
3262	space = 2 * mt_slot_count(mas->node) - 2;
3263	/* -2 instead of -1 to ensure there isn't a triple split */
3264	if (ma_is_leaf(mast->bn->type))
3265		space--;
3266
3267	if (mas->max == ULONG_MAX)
3268		space--;
3269
3270	if (slot_total >= space)
3271		return false;
3272
3273	/* Get the data; Fill mast->bn */
3274	mast->bn->b_end++;
3275	if (left) {
3276		mab_shift_right(mast->bn, end + 1);
3277		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3278		mast->bn->b_end = slot_total + 1;
3279	} else {
3280		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3281	}
3282
3283	/* Configure mast for splitting of mast->bn */
3284	split = mt_slots[mast->bn->type] - 2;
3285	if (left) {
3286		/*  Switch mas to prev node  */
3287		*mas = tmp_mas;
3288		/* Start using mast->l for the left side. */
3289		tmp_mas.node = mast->l->node;
3290		*mast->l = tmp_mas;
3291	} else {
3292		tmp_mas.node = mast->r->node;
3293		*mast->r = tmp_mas;
3294		split = slot_total - split;
3295	}
3296	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3297	/* Update parent slot for split calculation. */
3298	if (left)
3299		mast->orig_l->offset += end + 1;
3300
3301	mast_split_data(mast, mas, split);
3302	mast_fill_bnode(mast, mas, 2);
3303	mas_split_final_node(mast, mas, height + 1);
3304	return true;
3305}
3306
3307/*
3308 * mas_split() - Split data that is too big for one node into two.
3309 * @mas: The maple state
3310 * @b_node: The maple big node
3311 * Return: 1 on success, 0 on failure.
3312 */
3313static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3314{
3315	struct maple_subtree_state mast;
3316	int height = 0;
3317	unsigned char mid_split, split = 0;
3318	struct maple_enode *old;
3319
3320	/*
3321	 * Splitting is handled differently from any other B-tree; the Maple
3322	 * Tree splits upwards.  Splitting up means that the split operation
3323	 * occurs when the walk of the tree hits the leaves and not on the way
3324	 * down.  The reason for splitting up is that it is impossible to know
3325	 * how much space will be needed until the leaf is (or leaves are)
3326	 * reached.  Since overwriting data is allowed and a range could
3327	 * overwrite more than one range or result in changing one entry into 3
3328	 * entries, it is impossible to know if a split is required until the
3329	 * data is examined.
3330	 *
3331	 * Splitting is a balancing act between keeping allocations to a minimum
3332	 * and avoiding a 'jitter' event where a tree is expanded to make room
3333	 * for an entry followed by a contraction when the entry is removed.  To
3334	 * accomplish the balance, there are empty slots remaining in both left
3335	 * and right nodes after a split.
3336	 */
3337	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3338	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3339	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3340	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3341
3342	trace_ma_op(__func__, mas);
3343	mas->depth = mas_mt_height(mas);
3344	/* Allocation failures will happen early. */
3345	mas_node_count(mas, 1 + mas->depth * 2);
3346	if (mas_is_err(mas))
3347		return 0;
3348
3349	mast.l = &l_mas;
3350	mast.r = &r_mas;
3351	mast.orig_l = &prev_l_mas;
3352	mast.orig_r = &prev_r_mas;
3353	mast.bn = b_node;
3354
3355	while (height++ <= mas->depth) {
3356		if (mt_slots[b_node->type] > b_node->b_end) {
3357			mas_split_final_node(&mast, mas, height);
3358			break;
3359		}
3360
3361		l_mas = r_mas = *mas;
3362		l_mas.node = mas_new_ma_node(mas, b_node);
3363		r_mas.node = mas_new_ma_node(mas, b_node);
3364		/*
3365		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3366		 * left or right node has space to spare.  This is referred to as "pushing left"
3367		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3368		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3369		 * is a significant savings.
3370		 */
3371		/* Try to push left. */
3372		if (mas_push_data(mas, height, &mast, true))
3373			break;
3374		/* Try to push right. */
3375		if (mas_push_data(mas, height, &mast, false))
3376			break;
3377
3378		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3379		mast_split_data(&mast, mas, split);
3380		/*
3381		 * Usually correct, mab_mas_cp in the above call overwrites
3382		 * r->max.
3383		 */
3384		mast.r->max = mas->max;
3385		mast_fill_bnode(&mast, mas, 1);
3386		prev_l_mas = *mast.l;
3387		prev_r_mas = *mast.r;
3388	}
3389
3390	/* Set the original node as dead */
3391	old = mas->node;
3392	mas->node = l_mas.node;
3393	mas_wmb_replace(mas, old);
3394	mtree_range_walk(mas);
3395	return 1;
3396}
3397
3398/*
3399 * mas_reuse_node() - Reuse the node to store the data.
3400 * @wr_mas: The maple write state
3401 * @bn: The maple big node
3402 * @end: The end of the data.
3403 *
3404 * Will always return false in RCU mode.
3405 *
3406 * Return: True if node was reused, false otherwise.
3407 */
3408static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3409			  struct maple_big_node *bn, unsigned char end)
3410{
3411	/* Need to be rcu safe. */
3412	if (mt_in_rcu(wr_mas->mas->tree))
3413		return false;
3414
3415	if (end > bn->b_end) {
3416		int clear = mt_slots[wr_mas->type] - bn->b_end;
3417
3418		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3419		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3420	}
3421	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3422	return true;
3423}
3424
3425/*
3426 * mas_commit_b_node() - Commit the big node into the tree.
3427 * @wr_mas: The maple write state
3428 * @b_node: The maple big node
3429 * @end: The end of the data.
3430 */
3431static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3432			    struct maple_big_node *b_node, unsigned char end)
3433{
3434	struct maple_node *node;
3435	struct maple_enode *old_enode;
3436	unsigned char b_end = b_node->b_end;
3437	enum maple_type b_type = b_node->type;
3438
3439	old_enode = wr_mas->mas->node;
3440	if ((b_end < mt_min_slots[b_type]) &&
3441	    (!mte_is_root(old_enode)) &&
3442	    (mas_mt_height(wr_mas->mas) > 1))
3443		return mas_rebalance(wr_mas->mas, b_node);
3444
3445	if (b_end >= mt_slots[b_type])
3446		return mas_split(wr_mas->mas, b_node);
3447
3448	if (mas_reuse_node(wr_mas, b_node, end))
3449		goto reuse_node;
3450
3451	mas_node_count(wr_mas->mas, 1);
3452	if (mas_is_err(wr_mas->mas))
3453		return 0;
3454
3455	node = mas_pop_node(wr_mas->mas);
3456	node->parent = mas_mn(wr_mas->mas)->parent;
3457	wr_mas->mas->node = mt_mk_node(node, b_type);
3458	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3459	mas_replace_node(wr_mas->mas, old_enode);
3460reuse_node:
3461	mas_update_gap(wr_mas->mas);
3462	wr_mas->mas->end = b_end;
3463	return 1;
3464}
3465
3466/*
3467 * mas_root_expand() - Expand a root to a node
3468 * @mas: The maple state
3469 * @entry: The entry to store into the tree
3470 */
3471static inline int mas_root_expand(struct ma_state *mas, void *entry)
3472{
3473	void *contents = mas_root_locked(mas);
3474	enum maple_type type = maple_leaf_64;
3475	struct maple_node *node;
3476	void __rcu **slots;
3477	unsigned long *pivots;
3478	int slot = 0;
3479
3480	mas_node_count(mas, 1);
3481	if (unlikely(mas_is_err(mas)))
3482		return 0;
3483
3484	node = mas_pop_node(mas);
3485	pivots = ma_pivots(node, type);
3486	slots = ma_slots(node, type);
3487	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3488	mas->node = mt_mk_node(node, type);
3489	mas->status = ma_active;
3490
3491	if (mas->index) {
3492		if (contents) {
3493			rcu_assign_pointer(slots[slot], contents);
3494			if (likely(mas->index > 1))
3495				slot++;
3496		}
3497		pivots[slot++] = mas->index - 1;
3498	}
3499
3500	rcu_assign_pointer(slots[slot], entry);
3501	mas->offset = slot;
3502	pivots[slot] = mas->last;
3503	if (mas->last != ULONG_MAX)
3504		pivots[++slot] = ULONG_MAX;
3505
3506	mas->depth = 1;
3507	mas_set_height(mas);
3508	ma_set_meta(node, maple_leaf_64, 0, slot);
3509	/* swap the new root into the tree */
3510	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3511	return slot;
3512}
3513
3514static inline void mas_store_root(struct ma_state *mas, void *entry)
3515{
3516	if (likely((mas->last != 0) || (mas->index != 0)))
3517		mas_root_expand(mas, entry);
3518	else if (((unsigned long) (entry) & 3) == 2)
3519		mas_root_expand(mas, entry);
3520	else {
3521		rcu_assign_pointer(mas->tree->ma_root, entry);
3522		mas->status = ma_start;
3523	}
3524}
3525
3526/*
3527 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3528 * spans the node.
3529 * @mas: The maple state
3530 * @piv: The pivot value being written
3531 * @type: The maple node type
3532 * @entry: The data to write
3533 *
3534 * Spanning writes are writes that start in one node and end in another OR if
3535 * the write of a %NULL will cause the node to end with a %NULL.
3536 *
3537 * Return: True if this is a spanning write, false otherwise.
3538 */
3539static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3540{
3541	unsigned long max = wr_mas->r_max;
3542	unsigned long last = wr_mas->mas->last;
3543	enum maple_type type = wr_mas->type;
3544	void *entry = wr_mas->entry;
3545
3546	/* Contained in this pivot, fast path */
3547	if (last < max)
3548		return false;
3549
3550	if (ma_is_leaf(type)) {
3551		max = wr_mas->mas->max;
3552		if (last < max)
3553			return false;
3554	}
3555
3556	if (last == max) {
3557		/*
3558		 * The last entry of leaf node cannot be NULL unless it is the
3559		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3560		 */
3561		if (entry || last == ULONG_MAX)
3562			return false;
3563	}
3564
3565	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3566	return true;
3567}
3568
3569static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3570{
3571	wr_mas->type = mte_node_type(wr_mas->mas->node);
3572	mas_wr_node_walk(wr_mas);
3573	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3574}
3575
3576static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3577{
3578	wr_mas->mas->max = wr_mas->r_max;
3579	wr_mas->mas->min = wr_mas->r_min;
3580	wr_mas->mas->node = wr_mas->content;
3581	wr_mas->mas->offset = 0;
3582	wr_mas->mas->depth++;
3583}
3584/*
3585 * mas_wr_walk() - Walk the tree for a write.
3586 * @wr_mas: The maple write state
3587 *
3588 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3589 *
3590 * Return: True if it's contained in a node, false on spanning write.
3591 */
3592static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3593{
3594	struct ma_state *mas = wr_mas->mas;
3595
3596	while (true) {
3597		mas_wr_walk_descend(wr_mas);
3598		if (unlikely(mas_is_span_wr(wr_mas)))
3599			return false;
3600
3601		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3602						  mas->offset);
3603		if (ma_is_leaf(wr_mas->type))
3604			return true;
3605
3606		mas_wr_walk_traverse(wr_mas);
3607	}
3608
3609	return true;
3610}
3611
3612static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3613{
3614	struct ma_state *mas = wr_mas->mas;
3615
3616	while (true) {
3617		mas_wr_walk_descend(wr_mas);
3618		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3619						  mas->offset);
3620		if (ma_is_leaf(wr_mas->type))
3621			return true;
3622		mas_wr_walk_traverse(wr_mas);
3623
3624	}
3625	return true;
3626}
3627/*
3628 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3629 * @l_wr_mas: The left maple write state
3630 * @r_wr_mas: The right maple write state
3631 */
3632static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3633					    struct ma_wr_state *r_wr_mas)
3634{
3635	struct ma_state *r_mas = r_wr_mas->mas;
3636	struct ma_state *l_mas = l_wr_mas->mas;
3637	unsigned char l_slot;
3638
3639	l_slot = l_mas->offset;
3640	if (!l_wr_mas->content)
3641		l_mas->index = l_wr_mas->r_min;
3642
3643	if ((l_mas->index == l_wr_mas->r_min) &&
3644		 (l_slot &&
3645		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3646		if (l_slot > 1)
3647			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3648		else
3649			l_mas->index = l_mas->min;
3650
3651		l_mas->offset = l_slot - 1;
3652	}
3653
3654	if (!r_wr_mas->content) {
3655		if (r_mas->last < r_wr_mas->r_max)
3656			r_mas->last = r_wr_mas->r_max;
3657		r_mas->offset++;
3658	} else if ((r_mas->last == r_wr_mas->r_max) &&
3659	    (r_mas->last < r_mas->max) &&
3660	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3661		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3662					     r_wr_mas->type, r_mas->offset + 1);
3663		r_mas->offset++;
3664	}
3665}
3666
3667static inline void *mas_state_walk(struct ma_state *mas)
3668{
3669	void *entry;
3670
3671	entry = mas_start(mas);
3672	if (mas_is_none(mas))
3673		return NULL;
3674
3675	if (mas_is_ptr(mas))
3676		return entry;
3677
3678	return mtree_range_walk(mas);
3679}
3680
3681/*
3682 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3683 * to date.
3684 *
3685 * @mas: The maple state.
3686 *
3687 * Note: Leaves mas in undesirable state.
3688 * Return: The entry for @mas->index or %NULL on dead node.
3689 */
3690static inline void *mtree_lookup_walk(struct ma_state *mas)
3691{
3692	unsigned long *pivots;
3693	unsigned char offset;
3694	struct maple_node *node;
3695	struct maple_enode *next;
3696	enum maple_type type;
3697	void __rcu **slots;
3698	unsigned char end;
3699
3700	next = mas->node;
3701	do {
3702		node = mte_to_node(next);
3703		type = mte_node_type(next);
3704		pivots = ma_pivots(node, type);
3705		end = mt_pivots[type];
3706		offset = 0;
3707		do {
3708			if (pivots[offset] >= mas->index)
3709				break;
3710		} while (++offset < end);
3711
3712		slots = ma_slots(node, type);
3713		next = mt_slot(mas->tree, slots, offset);
3714		if (unlikely(ma_dead_node(node)))
3715			goto dead_node;
3716	} while (!ma_is_leaf(type));
3717
3718	return (void *)next;
3719
3720dead_node:
3721	mas_reset(mas);
3722	return NULL;
3723}
3724
3725static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3726/*
3727 * mas_new_root() - Create a new root node that only contains the entry passed
3728 * in.
3729 * @mas: The maple state
3730 * @entry: The entry to store.
3731 *
3732 * Only valid when the index == 0 and the last == ULONG_MAX
3733 *
3734 * Return 0 on error, 1 on success.
3735 */
3736static inline int mas_new_root(struct ma_state *mas, void *entry)
3737{
3738	struct maple_enode *root = mas_root_locked(mas);
3739	enum maple_type type = maple_leaf_64;
3740	struct maple_node *node;
3741	void __rcu **slots;
3742	unsigned long *pivots;
3743
3744	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3745		mas->depth = 0;
3746		mas_set_height(mas);
3747		rcu_assign_pointer(mas->tree->ma_root, entry);
3748		mas->status = ma_start;
3749		goto done;
3750	}
3751
3752	mas_node_count(mas, 1);
3753	if (mas_is_err(mas))
3754		return 0;
3755
3756	node = mas_pop_node(mas);
3757	pivots = ma_pivots(node, type);
3758	slots = ma_slots(node, type);
3759	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3760	mas->node = mt_mk_node(node, type);
3761	mas->status = ma_active;
3762	rcu_assign_pointer(slots[0], entry);
3763	pivots[0] = mas->last;
3764	mas->depth = 1;
3765	mas_set_height(mas);
3766	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3767
3768done:
3769	if (xa_is_node(root))
3770		mte_destroy_walk(root, mas->tree);
3771
3772	return 1;
3773}
3774/*
3775 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3776 * and new nodes where necessary, then place the sub-tree in the actual tree.
3777 * Note that mas is expected to point to the node which caused the store to
3778 * span.
3779 * @wr_mas: The maple write state
3780 *
3781 * Return: 0 on error, positive on success.
3782 */
3783static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3784{
3785	struct maple_subtree_state mast;
3786	struct maple_big_node b_node;
3787	struct ma_state *mas;
3788	unsigned char height;
3789
3790	/* Left and Right side of spanning store */
3791	MA_STATE(l_mas, NULL, 0, 0);
3792	MA_STATE(r_mas, NULL, 0, 0);
3793	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3794	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3795
3796	/*
3797	 * A store operation that spans multiple nodes is called a spanning
3798	 * store and is handled early in the store call stack by the function
3799	 * mas_is_span_wr().  When a spanning store is identified, the maple
3800	 * state is duplicated.  The first maple state walks the left tree path
3801	 * to ``index``, the duplicate walks the right tree path to ``last``.
3802	 * The data in the two nodes are combined into a single node, two nodes,
3803	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3804	 * written to the last entry of a node is considered a spanning store as
3805	 * a rebalance is required for the operation to complete and an overflow
3806	 * of data may happen.
3807	 */
3808	mas = wr_mas->mas;
3809	trace_ma_op(__func__, mas);
3810
3811	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3812		return mas_new_root(mas, wr_mas->entry);
3813	/*
3814	 * Node rebalancing may occur due to this store, so there may be three new
3815	 * entries per level plus a new root.
3816	 */
3817	height = mas_mt_height(mas);
3818	mas_node_count(mas, 1 + height * 3);
3819	if (mas_is_err(mas))
3820		return 0;
3821
3822	/*
3823	 * Set up right side.  Need to get to the next offset after the spanning
3824	 * store to ensure it's not NULL and to combine both the next node and
3825	 * the node with the start together.
3826	 */
3827	r_mas = *mas;
3828	/* Avoid overflow, walk to next slot in the tree. */
3829	if (r_mas.last + 1)
3830		r_mas.last++;
3831
3832	r_mas.index = r_mas.last;
3833	mas_wr_walk_index(&r_wr_mas);
3834	r_mas.last = r_mas.index = mas->last;
3835
3836	/* Set up left side. */
3837	l_mas = *mas;
3838	mas_wr_walk_index(&l_wr_mas);
3839
3840	if (!wr_mas->entry) {
3841		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3842		mas->offset = l_mas.offset;
3843		mas->index = l_mas.index;
3844		mas->last = l_mas.last = r_mas.last;
3845	}
3846
3847	/* expanding NULLs may make this cover the entire range */
3848	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3849		mas_set_range(mas, 0, ULONG_MAX);
3850		return mas_new_root(mas, wr_mas->entry);
3851	}
3852
3853	memset(&b_node, 0, sizeof(struct maple_big_node));
3854	/* Copy l_mas and store the value in b_node. */
3855	mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3856	/* Copy r_mas into b_node. */
3857	if (r_mas.offset <= r_mas.end)
3858		mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3859			   &b_node, b_node.b_end + 1);
3860	else
3861		b_node.b_end++;
3862
3863	/* Stop spanning searches by searching for just index. */
3864	l_mas.index = l_mas.last = mas->index;
3865
3866	mast.bn = &b_node;
3867	mast.orig_l = &l_mas;
3868	mast.orig_r = &r_mas;
3869	/* Combine l_mas and r_mas and split them up evenly again. */
3870	return mas_spanning_rebalance(mas, &mast, height + 1);
3871}
3872
3873/*
3874 * mas_wr_node_store() - Attempt to store the value in a node
3875 * @wr_mas: The maple write state
3876 *
3877 * Attempts to reuse the node, but may allocate.
3878 *
3879 * Return: True if stored, false otherwise
3880 */
3881static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
3882				     unsigned char new_end)
3883{
3884	struct ma_state *mas = wr_mas->mas;
3885	void __rcu **dst_slots;
3886	unsigned long *dst_pivots;
3887	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3888	struct maple_node reuse, *newnode;
3889	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3890	bool in_rcu = mt_in_rcu(mas->tree);
3891
3892	/* Check if there is enough data. The room is enough. */
3893	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
3894	    !(mas->mas_flags & MA_STATE_BULK))
3895		return false;
3896
3897	if (mas->last == wr_mas->end_piv)
3898		offset_end++; /* don't copy this offset */
3899	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3900		mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3901
3902	/* set up node. */
3903	if (in_rcu) {
3904		mas_node_count(mas, 1);
3905		if (mas_is_err(mas))
3906			return false;
3907
3908		newnode = mas_pop_node(mas);
3909	} else {
3910		memset(&reuse, 0, sizeof(struct maple_node));
3911		newnode = &reuse;
3912	}
3913
3914	newnode->parent = mas_mn(mas)->parent;
3915	dst_pivots = ma_pivots(newnode, wr_mas->type);
3916	dst_slots = ma_slots(newnode, wr_mas->type);
3917	/* Copy from start to insert point */
3918	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3919	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3920
3921	/* Handle insert of new range starting after old range */
3922	if (wr_mas->r_min < mas->index) {
3923		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3924		dst_pivots[mas->offset++] = mas->index - 1;
3925	}
3926
3927	/* Store the new entry and range end. */
3928	if (mas->offset < node_pivots)
3929		dst_pivots[mas->offset] = mas->last;
3930	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3931
3932	/*
3933	 * this range wrote to the end of the node or it overwrote the rest of
3934	 * the data
3935	 */
3936	if (offset_end > mas->end)
3937		goto done;
3938
3939	dst_offset = mas->offset + 1;
3940	/* Copy to the end of node if necessary. */
3941	copy_size = mas->end - offset_end + 1;
3942	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3943	       sizeof(void *) * copy_size);
3944	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3945	       sizeof(unsigned long) * (copy_size - 1));
3946
3947	if (new_end < node_pivots)
3948		dst_pivots[new_end] = mas->max;
3949
3950done:
3951	mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3952	if (in_rcu) {
3953		struct maple_enode *old_enode = mas->node;
3954
3955		mas->node = mt_mk_node(newnode, wr_mas->type);
3956		mas_replace_node(mas, old_enode);
3957	} else {
3958		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3959	}
3960	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3961	mas_update_gap(mas);
3962	mas->end = new_end;
3963	return true;
3964}
3965
3966/*
3967 * mas_wr_slot_store: Attempt to store a value in a slot.
3968 * @wr_mas: the maple write state
3969 *
3970 * Return: True if stored, false otherwise
3971 */
3972static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
3973{
3974	struct ma_state *mas = wr_mas->mas;
3975	unsigned char offset = mas->offset;
3976	void __rcu **slots = wr_mas->slots;
3977	bool gap = false;
3978
3979	gap |= !mt_slot_locked(mas->tree, slots, offset);
3980	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3981
3982	if (wr_mas->offset_end - offset == 1) {
3983		if (mas->index == wr_mas->r_min) {
3984			/* Overwriting the range and a part of the next one */
3985			rcu_assign_pointer(slots[offset], wr_mas->entry);
3986			wr_mas->pivots[offset] = mas->last;
3987		} else {
3988			/* Overwriting a part of the range and the next one */
3989			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3990			wr_mas->pivots[offset] = mas->index - 1;
3991			mas->offset++; /* Keep mas accurate. */
3992		}
3993	} else if (!mt_in_rcu(mas->tree)) {
3994		/*
3995		 * Expand the range, only partially overwriting the previous and
3996		 * next ranges
3997		 */
3998		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3999		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4000		wr_mas->pivots[offset] = mas->index - 1;
4001		wr_mas->pivots[offset + 1] = mas->last;
4002		mas->offset++; /* Keep mas accurate. */
4003	} else {
4004		return false;
4005	}
4006
4007	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4008	/*
4009	 * Only update gap when the new entry is empty or there is an empty
4010	 * entry in the original two ranges.
4011	 */
4012	if (!wr_mas->entry || gap)
4013		mas_update_gap(mas);
4014
4015	return true;
4016}
4017
4018static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4019{
4020	struct ma_state *mas = wr_mas->mas;
4021
4022	if (!wr_mas->slots[wr_mas->offset_end]) {
4023		/* If this one is null, the next and prev are not */
4024		mas->last = wr_mas->end_piv;
4025	} else {
4026		/* Check next slot(s) if we are overwriting the end */
4027		if ((mas->last == wr_mas->end_piv) &&
4028		    (mas->end != wr_mas->offset_end) &&
4029		    !wr_mas->slots[wr_mas->offset_end + 1]) {
4030			wr_mas->offset_end++;
4031			if (wr_mas->offset_end == mas->end)
4032				mas->last = mas->max;
4033			else
4034				mas->last = wr_mas->pivots[wr_mas->offset_end];
4035			wr_mas->end_piv = mas->last;
4036		}
4037	}
4038
4039	if (!wr_mas->content) {
4040		/* If this one is null, the next and prev are not */
4041		mas->index = wr_mas->r_min;
4042	} else {
4043		/* Check prev slot if we are overwriting the start */
4044		if (mas->index == wr_mas->r_min && mas->offset &&
4045		    !wr_mas->slots[mas->offset - 1]) {
4046			mas->offset--;
4047			wr_mas->r_min = mas->index =
4048				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4049			wr_mas->r_max = wr_mas->pivots[mas->offset];
4050		}
4051	}
4052}
4053
4054static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4055{
4056	while ((wr_mas->offset_end < wr_mas->mas->end) &&
4057	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4058		wr_mas->offset_end++;
4059
4060	if (wr_mas->offset_end < wr_mas->mas->end)
4061		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4062	else
4063		wr_mas->end_piv = wr_mas->mas->max;
4064
4065	if (!wr_mas->entry)
4066		mas_wr_extend_null(wr_mas);
4067}
4068
4069static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4070{
4071	struct ma_state *mas = wr_mas->mas;
4072	unsigned char new_end = mas->end + 2;
4073
4074	new_end -= wr_mas->offset_end - mas->offset;
4075	if (wr_mas->r_min == mas->index)
4076		new_end--;
4077
4078	if (wr_mas->end_piv == mas->last)
4079		new_end--;
4080
4081	return new_end;
4082}
4083
4084/*
4085 * mas_wr_append: Attempt to append
4086 * @wr_mas: the maple write state
4087 * @new_end: The end of the node after the modification
4088 *
4089 * This is currently unsafe in rcu mode since the end of the node may be cached
4090 * by readers while the node contents may be updated which could result in
4091 * inaccurate information.
4092 *
4093 * Return: True if appended, false otherwise
4094 */
4095static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4096		unsigned char new_end)
4097{
4098	struct ma_state *mas;
4099	void __rcu **slots;
4100	unsigned char end;
4101
4102	mas = wr_mas->mas;
4103	if (mt_in_rcu(mas->tree))
4104		return false;
4105
4106	end = mas->end;
4107	if (mas->offset != end)
4108		return false;
4109
4110	if (new_end < mt_pivots[wr_mas->type]) {
4111		wr_mas->pivots[new_end] = wr_mas->pivots[end];
4112		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4113	}
4114
4115	slots = wr_mas->slots;
4116	if (new_end == end + 1) {
4117		if (mas->last == wr_mas->r_max) {
4118			/* Append to end of range */
4119			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4120			wr_mas->pivots[end] = mas->index - 1;
4121			mas->offset = new_end;
4122		} else {
4123			/* Append to start of range */
4124			rcu_assign_pointer(slots[new_end], wr_mas->content);
4125			wr_mas->pivots[end] = mas->last;
4126			rcu_assign_pointer(slots[end], wr_mas->entry);
4127		}
4128	} else {
4129		/* Append to the range without touching any boundaries. */
4130		rcu_assign_pointer(slots[new_end], wr_mas->content);
4131		wr_mas->pivots[end + 1] = mas->last;
4132		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4133		wr_mas->pivots[end] = mas->index - 1;
4134		mas->offset = end + 1;
4135	}
4136
4137	if (!wr_mas->content || !wr_mas->entry)
4138		mas_update_gap(mas);
4139
4140	mas->end = new_end;
4141	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4142	return  true;
4143}
4144
4145/*
4146 * mas_wr_bnode() - Slow path for a modification.
4147 * @wr_mas: The write maple state
4148 *
4149 * This is where split, rebalance end up.
4150 */
4151static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4152{
4153	struct maple_big_node b_node;
4154
4155	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4156	memset(&b_node, 0, sizeof(struct maple_big_node));
4157	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4158	mas_commit_b_node(wr_mas, &b_node, wr_mas->mas->end);
4159}
4160
4161static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4162{
4163	struct ma_state *mas = wr_mas->mas;
4164	unsigned char new_end;
4165
4166	/* Direct replacement */
4167	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4168		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4169		if (!!wr_mas->entry ^ !!wr_mas->content)
4170			mas_update_gap(mas);
4171		return;
4172	}
4173
4174	/*
4175	 * new_end exceeds the size of the maple node and cannot enter the fast
4176	 * path.
4177	 */
4178	new_end = mas_wr_new_end(wr_mas);
4179	if (new_end >= mt_slots[wr_mas->type])
4180		goto slow_path;
4181
4182	/* Attempt to append */
4183	if (mas_wr_append(wr_mas, new_end))
4184		return;
4185
4186	if (new_end == mas->end && mas_wr_slot_store(wr_mas))
4187		return;
4188
4189	if (mas_wr_node_store(wr_mas, new_end))
4190		return;
4191
4192	if (mas_is_err(mas))
4193		return;
4194
4195slow_path:
4196	mas_wr_bnode(wr_mas);
4197}
4198
4199/*
4200 * mas_wr_store_entry() - Internal call to store a value
4201 * @mas: The maple state
4202 * @entry: The entry to store.
4203 *
4204 * Return: The contents that was stored at the index.
4205 */
4206static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4207{
4208	struct ma_state *mas = wr_mas->mas;
4209
4210	wr_mas->content = mas_start(mas);
4211	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4212		mas_store_root(mas, wr_mas->entry);
4213		return wr_mas->content;
4214	}
4215
4216	if (unlikely(!mas_wr_walk(wr_mas))) {
4217		mas_wr_spanning_store(wr_mas);
4218		return wr_mas->content;
4219	}
4220
4221	/* At this point, we are at the leaf node that needs to be altered. */
4222	mas_wr_end_piv(wr_mas);
4223	/* New root for a single pointer */
4224	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4225		mas_new_root(mas, wr_mas->entry);
4226		return wr_mas->content;
4227	}
4228
4229	mas_wr_modify(wr_mas);
4230	return wr_mas->content;
4231}
4232
4233/**
4234 * mas_insert() - Internal call to insert a value
4235 * @mas: The maple state
4236 * @entry: The entry to store
4237 *
4238 * Return: %NULL or the contents that already exists at the requested index
4239 * otherwise.  The maple state needs to be checked for error conditions.
4240 */
4241static inline void *mas_insert(struct ma_state *mas, void *entry)
4242{
4243	MA_WR_STATE(wr_mas, mas, entry);
4244
4245	/*
4246	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4247	 * tree.  If the insert fits exactly into an existing gap with a value
4248	 * of NULL, then the slot only needs to be written with the new value.
4249	 * If the range being inserted is adjacent to another range, then only a
4250	 * single pivot needs to be inserted (as well as writing the entry).  If
4251	 * the new range is within a gap but does not touch any other ranges,
4252	 * then two pivots need to be inserted: the start - 1, and the end.  As
4253	 * usual, the entry must be written.  Most operations require a new node
4254	 * to be allocated and replace an existing node to ensure RCU safety,
4255	 * when in RCU mode.  The exception to requiring a newly allocated node
4256	 * is when inserting at the end of a node (appending).  When done
4257	 * carefully, appending can reuse the node in place.
4258	 */
4259	wr_mas.content = mas_start(mas);
4260	if (wr_mas.content)
4261		goto exists;
4262
4263	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4264		mas_store_root(mas, entry);
4265		return NULL;
4266	}
4267
4268	/* spanning writes always overwrite something */
4269	if (!mas_wr_walk(&wr_mas))
4270		goto exists;
4271
4272	/* At this point, we are at the leaf node that needs to be altered. */
4273	wr_mas.offset_end = mas->offset;
4274	wr_mas.end_piv = wr_mas.r_max;
4275
4276	if (wr_mas.content || (mas->last > wr_mas.r_max))
4277		goto exists;
4278
4279	if (!entry)
4280		return NULL;
4281
4282	mas_wr_modify(&wr_mas);
4283	return wr_mas.content;
4284
4285exists:
4286	mas_set_err(mas, -EEXIST);
4287	return wr_mas.content;
4288
4289}
4290
4291/**
4292 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4293 * @mas: The maple state.
4294 * @startp: Pointer to ID.
4295 * @range_lo: Lower bound of range to search.
4296 * @range_hi: Upper bound of range to search.
4297 * @entry: The entry to store.
4298 * @next: Pointer to next ID to allocate.
4299 * @gfp: The GFP_FLAGS to use for allocations.
4300 *
4301 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4302 * allocation succeeded after wrapping, or -EBUSY if there are no
4303 * free entries.
4304 */
4305int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4306		void *entry, unsigned long range_lo, unsigned long range_hi,
4307		unsigned long *next, gfp_t gfp)
4308{
4309	unsigned long min = range_lo;
4310	int ret = 0;
4311
4312	range_lo = max(min, *next);
4313	ret = mas_empty_area(mas, range_lo, range_hi, 1);
4314	if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4315		mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4316		ret = 1;
4317	}
4318	if (ret < 0 && range_lo > min) {
4319		ret = mas_empty_area(mas, min, range_hi, 1);
4320		if (ret == 0)
4321			ret = 1;
4322	}
4323	if (ret < 0)
4324		return ret;
4325
4326	do {
4327		mas_insert(mas, entry);
4328	} while (mas_nomem(mas, gfp));
4329	if (mas_is_err(mas))
4330		return xa_err(mas->node);
4331
4332	*startp = mas->index;
4333	*next = *startp + 1;
4334	if (*next == 0)
4335		mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4336
4337	return ret;
4338}
4339EXPORT_SYMBOL(mas_alloc_cyclic);
4340
4341static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4342{
4343retry:
4344	mas_set(mas, index);
4345	mas_state_walk(mas);
4346	if (mas_is_start(mas))
4347		goto retry;
4348}
4349
4350static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4351		struct maple_node *node, const unsigned long index)
4352{
4353	if (unlikely(ma_dead_node(node))) {
4354		mas_rewalk(mas, index);
4355		return true;
4356	}
4357	return false;
4358}
4359
4360/*
4361 * mas_prev_node() - Find the prev non-null entry at the same level in the
4362 * tree.  The prev value will be mas->node[mas->offset] or the status will be
4363 * ma_none.
4364 * @mas: The maple state
4365 * @min: The lower limit to search
4366 *
4367 * The prev node value will be mas->node[mas->offset] or the status will be
4368 * ma_none.
4369 * Return: 1 if the node is dead, 0 otherwise.
4370 */
4371static int mas_prev_node(struct ma_state *mas, unsigned long min)
4372{
4373	enum maple_type mt;
4374	int offset, level;
4375	void __rcu **slots;
4376	struct maple_node *node;
4377	unsigned long *pivots;
4378	unsigned long max;
4379
4380	node = mas_mn(mas);
4381	if (!mas->min)
4382		goto no_entry;
4383
4384	max = mas->min - 1;
4385	if (max < min)
4386		goto no_entry;
4387
4388	level = 0;
4389	do {
4390		if (ma_is_root(node))
4391			goto no_entry;
4392
4393		/* Walk up. */
4394		if (unlikely(mas_ascend(mas)))
4395			return 1;
4396		offset = mas->offset;
4397		level++;
4398		node = mas_mn(mas);
4399	} while (!offset);
4400
4401	offset--;
4402	mt = mte_node_type(mas->node);
4403	while (level > 1) {
4404		level--;
4405		slots = ma_slots(node, mt);
4406		mas->node = mas_slot(mas, slots, offset);
4407		if (unlikely(ma_dead_node(node)))
4408			return 1;
4409
4410		mt = mte_node_type(mas->node);
4411		node = mas_mn(mas);
4412		pivots = ma_pivots(node, mt);
4413		offset = ma_data_end(node, mt, pivots, max);
4414		if (unlikely(ma_dead_node(node)))
4415			return 1;
4416	}
4417
4418	slots = ma_slots(node, mt);
4419	mas->node = mas_slot(mas, slots, offset);
4420	pivots = ma_pivots(node, mt);
4421	if (unlikely(ma_dead_node(node)))
4422		return 1;
4423
4424	if (likely(offset))
4425		mas->min = pivots[offset - 1] + 1;
4426	mas->max = max;
4427	mas->offset = mas_data_end(mas);
4428	if (unlikely(mte_dead_node(mas->node)))
4429		return 1;
4430
4431	mas->end = mas->offset;
4432	return 0;
4433
4434no_entry:
4435	if (unlikely(ma_dead_node(node)))
4436		return 1;
4437
4438	mas->status = ma_underflow;
4439	return 0;
4440}
4441
4442/*
4443 * mas_prev_slot() - Get the entry in the previous slot
4444 *
4445 * @mas: The maple state
4446 * @max: The minimum starting range
4447 * @empty: Can be empty
4448 * @set_underflow: Set the @mas->node to underflow state on limit.
4449 *
4450 * Return: The entry in the previous slot which is possibly NULL
4451 */
4452static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4453{
4454	void *entry;
4455	void __rcu **slots;
4456	unsigned long pivot;
4457	enum maple_type type;
4458	unsigned long *pivots;
4459	struct maple_node *node;
4460	unsigned long save_point = mas->index;
4461
4462retry:
4463	node = mas_mn(mas);
4464	type = mte_node_type(mas->node);
4465	pivots = ma_pivots(node, type);
4466	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4467		goto retry;
4468
4469	if (mas->min <= min) {
4470		pivot = mas_safe_min(mas, pivots, mas->offset);
4471
4472		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4473			goto retry;
4474
4475		if (pivot <= min)
4476			goto underflow;
4477	}
4478
4479again:
4480	if (likely(mas->offset)) {
4481		mas->offset--;
4482		mas->last = mas->index - 1;
4483		mas->index = mas_safe_min(mas, pivots, mas->offset);
4484	} else  {
4485		if (mas->index <= min)
4486			goto underflow;
4487
4488		if (mas_prev_node(mas, min)) {
4489			mas_rewalk(mas, save_point);
4490			goto retry;
4491		}
4492
4493		if (WARN_ON_ONCE(mas_is_underflow(mas)))
4494			return NULL;
4495
4496		mas->last = mas->max;
4497		node = mas_mn(mas);
4498		type = mte_node_type(mas->node);
4499		pivots = ma_pivots(node, type);
4500		mas->index = pivots[mas->offset - 1] + 1;
4501	}
4502
4503	slots = ma_slots(node, type);
4504	entry = mas_slot(mas, slots, mas->offset);
4505	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4506		goto retry;
4507
4508
4509	if (likely(entry))
4510		return entry;
4511
4512	if (!empty) {
4513		if (mas->index <= min) {
4514			mas->status = ma_underflow;
4515			return NULL;
4516		}
4517
4518		goto again;
4519	}
4520
4521	return entry;
4522
4523underflow:
4524	mas->status = ma_underflow;
4525	return NULL;
4526}
4527
4528/*
4529 * mas_next_node() - Get the next node at the same level in the tree.
4530 * @mas: The maple state
4531 * @max: The maximum pivot value to check.
4532 *
4533 * The next value will be mas->node[mas->offset] or the status will have
4534 * overflowed.
4535 * Return: 1 on dead node, 0 otherwise.
4536 */
4537static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4538		unsigned long max)
4539{
4540	unsigned long min;
4541	unsigned long *pivots;
4542	struct maple_enode *enode;
4543	struct maple_node *tmp;
4544	int level = 0;
4545	unsigned char node_end;
4546	enum maple_type mt;
4547	void __rcu **slots;
4548
4549	if (mas->max >= max)
4550		goto overflow;
4551
4552	min = mas->max + 1;
4553	level = 0;
4554	do {
4555		if (ma_is_root(node))
4556			goto overflow;
4557
4558		/* Walk up. */
4559		if (unlikely(mas_ascend(mas)))
4560			return 1;
4561
4562		level++;
4563		node = mas_mn(mas);
4564		mt = mte_node_type(mas->node);
4565		pivots = ma_pivots(node, mt);
4566		node_end = ma_data_end(node, mt, pivots, mas->max);
4567		if (unlikely(ma_dead_node(node)))
4568			return 1;
4569
4570	} while (unlikely(mas->offset == node_end));
4571
4572	slots = ma_slots(node, mt);
4573	mas->offset++;
4574	enode = mas_slot(mas, slots, mas->offset);
4575	if (unlikely(ma_dead_node(node)))
4576		return 1;
4577
4578	if (level > 1)
4579		mas->offset = 0;
4580
4581	while (unlikely(level > 1)) {
4582		level--;
4583		mas->node = enode;
4584		node = mas_mn(mas);
4585		mt = mte_node_type(mas->node);
4586		slots = ma_slots(node, mt);
4587		enode = mas_slot(mas, slots, 0);
4588		if (unlikely(ma_dead_node(node)))
4589			return 1;
4590	}
4591
4592	if (!mas->offset)
4593		pivots = ma_pivots(node, mt);
4594
4595	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4596	tmp = mte_to_node(enode);
4597	mt = mte_node_type(enode);
4598	pivots = ma_pivots(tmp, mt);
4599	mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4600	if (unlikely(ma_dead_node(node)))
4601		return 1;
4602
4603	mas->node = enode;
4604	mas->min = min;
4605	return 0;
4606
4607overflow:
4608	if (unlikely(ma_dead_node(node)))
4609		return 1;
4610
4611	mas->status = ma_overflow;
4612	return 0;
4613}
4614
4615/*
4616 * mas_next_slot() - Get the entry in the next slot
4617 *
4618 * @mas: The maple state
4619 * @max: The maximum starting range
4620 * @empty: Can be empty
4621 * @set_overflow: Should @mas->node be set to overflow when the limit is
4622 * reached.
4623 *
4624 * Return: The entry in the next slot which is possibly NULL
4625 */
4626static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4627{
4628	void __rcu **slots;
4629	unsigned long *pivots;
4630	unsigned long pivot;
4631	enum maple_type type;
4632	struct maple_node *node;
4633	unsigned long save_point = mas->last;
4634	void *entry;
4635
4636retry:
4637	node = mas_mn(mas);
4638	type = mte_node_type(mas->node);
4639	pivots = ma_pivots(node, type);
4640	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4641		goto retry;
4642
4643	if (mas->max >= max) {
4644		if (likely(mas->offset < mas->end))
4645			pivot = pivots[mas->offset];
4646		else
4647			pivot = mas->max;
4648
4649		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4650			goto retry;
4651
4652		if (pivot >= max) { /* Was at the limit, next will extend beyond */
4653			mas->status = ma_overflow;
4654			return NULL;
4655		}
4656	}
4657
4658	if (likely(mas->offset < mas->end)) {
4659		mas->index = pivots[mas->offset] + 1;
4660again:
4661		mas->offset++;
4662		if (likely(mas->offset < mas->end))
4663			mas->last = pivots[mas->offset];
4664		else
4665			mas->last = mas->max;
4666	} else  {
4667		if (mas->last >= max) {
4668			mas->status = ma_overflow;
4669			return NULL;
4670		}
4671
4672		if (mas_next_node(mas, node, max)) {
4673			mas_rewalk(mas, save_point);
4674			goto retry;
4675		}
4676
4677		if (WARN_ON_ONCE(mas_is_overflow(mas)))
4678			return NULL;
4679
4680		mas->offset = 0;
4681		mas->index = mas->min;
4682		node = mas_mn(mas);
4683		type = mte_node_type(mas->node);
4684		pivots = ma_pivots(node, type);
4685		mas->last = pivots[0];
4686	}
4687
4688	slots = ma_slots(node, type);
4689	entry = mt_slot(mas->tree, slots, mas->offset);
4690	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4691		goto retry;
4692
4693	if (entry)
4694		return entry;
4695
4696
4697	if (!empty) {
4698		if (mas->last >= max) {
4699			mas->status = ma_overflow;
4700			return NULL;
4701		}
4702
4703		mas->index = mas->last + 1;
4704		goto again;
4705	}
4706
4707	return entry;
4708}
4709
4710/*
4711 * mas_next_entry() - Internal function to get the next entry.
4712 * @mas: The maple state
4713 * @limit: The maximum range start.
4714 *
4715 * Set the @mas->node to the next entry and the range_start to
4716 * the beginning value for the entry.  Does not check beyond @limit.
4717 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4718 * @mas->last on overflow.
4719 * Restarts on dead nodes.
4720 *
4721 * Return: the next entry or %NULL.
4722 */
4723static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4724{
4725	if (mas->last >= limit) {
4726		mas->status = ma_overflow;
4727		return NULL;
4728	}
4729
4730	return mas_next_slot(mas, limit, false);
4731}
4732
4733/*
4734 * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4735 * highest gap address of a given size in a given node and descend.
4736 * @mas: The maple state
4737 * @size: The needed size.
4738 *
4739 * Return: True if found in a leaf, false otherwise.
4740 *
4741 */
4742static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4743		unsigned long *gap_min, unsigned long *gap_max)
4744{
4745	enum maple_type type = mte_node_type(mas->node);
4746	struct maple_node *node = mas_mn(mas);
4747	unsigned long *pivots, *gaps;
4748	void __rcu **slots;
4749	unsigned long gap = 0;
4750	unsigned long max, min;
4751	unsigned char offset;
4752
4753	if (unlikely(mas_is_err(mas)))
4754		return true;
4755
4756	if (ma_is_dense(type)) {
4757		/* dense nodes. */
4758		mas->offset = (unsigned char)(mas->index - mas->min);
4759		return true;
4760	}
4761
4762	pivots = ma_pivots(node, type);
4763	slots = ma_slots(node, type);
4764	gaps = ma_gaps(node, type);
4765	offset = mas->offset;
4766	min = mas_safe_min(mas, pivots, offset);
4767	/* Skip out of bounds. */
4768	while (mas->last < min)
4769		min = mas_safe_min(mas, pivots, --offset);
4770
4771	max = mas_safe_pivot(mas, pivots, offset, type);
4772	while (mas->index <= max) {
4773		gap = 0;
4774		if (gaps)
4775			gap = gaps[offset];
4776		else if (!mas_slot(mas, slots, offset))
4777			gap = max - min + 1;
4778
4779		if (gap) {
4780			if ((size <= gap) && (size <= mas->last - min + 1))
4781				break;
4782
4783			if (!gaps) {
4784				/* Skip the next slot, it cannot be a gap. */
4785				if (offset < 2)
4786					goto ascend;
4787
4788				offset -= 2;
4789				max = pivots[offset];
4790				min = mas_safe_min(mas, pivots, offset);
4791				continue;
4792			}
4793		}
4794
4795		if (!offset)
4796			goto ascend;
4797
4798		offset--;
4799		max = min - 1;
4800		min = mas_safe_min(mas, pivots, offset);
4801	}
4802
4803	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4804		goto no_space;
4805
4806	if (unlikely(ma_is_leaf(type))) {
4807		mas->offset = offset;
4808		*gap_min = min;
4809		*gap_max = min + gap - 1;
4810		return true;
4811	}
4812
4813	/* descend, only happens under lock. */
4814	mas->node = mas_slot(mas, slots, offset);
4815	mas->min = min;
4816	mas->max = max;
4817	mas->offset = mas_data_end(mas);
4818	return false;
4819
4820ascend:
4821	if (!mte_is_root(mas->node))
4822		return false;
4823
4824no_space:
4825	mas_set_err(mas, -EBUSY);
4826	return false;
4827}
4828
4829static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4830{
4831	enum maple_type type = mte_node_type(mas->node);
4832	unsigned long pivot, min, gap = 0;
4833	unsigned char offset, data_end;
4834	unsigned long *gaps, *pivots;
4835	void __rcu **slots;
4836	struct maple_node *node;
4837	bool found = false;
4838
4839	if (ma_is_dense(type)) {
4840		mas->offset = (unsigned char)(mas->index - mas->min);
4841		return true;
4842	}
4843
4844	node = mas_mn(mas);
4845	pivots = ma_pivots(node, type);
4846	slots = ma_slots(node, type);
4847	gaps = ma_gaps(node, type);
4848	offset = mas->offset;
4849	min = mas_safe_min(mas, pivots, offset);
4850	data_end = ma_data_end(node, type, pivots, mas->max);
4851	for (; offset <= data_end; offset++) {
4852		pivot = mas_safe_pivot(mas, pivots, offset, type);
4853
4854		/* Not within lower bounds */
4855		if (mas->index > pivot)
4856			goto next_slot;
4857
4858		if (gaps)
4859			gap = gaps[offset];
4860		else if (!mas_slot(mas, slots, offset))
4861			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4862		else
4863			goto next_slot;
4864
4865		if (gap >= size) {
4866			if (ma_is_leaf(type)) {
4867				found = true;
4868				goto done;
4869			}
4870			if (mas->index <= pivot) {
4871				mas->node = mas_slot(mas, slots, offset);
4872				mas->min = min;
4873				mas->max = pivot;
4874				offset = 0;
4875				break;
4876			}
4877		}
4878next_slot:
4879		min = pivot + 1;
4880		if (mas->last <= pivot) {
4881			mas_set_err(mas, -EBUSY);
4882			return true;
4883		}
4884	}
4885
4886	if (mte_is_root(mas->node))
4887		found = true;
4888done:
4889	mas->offset = offset;
4890	return found;
4891}
4892
4893/**
4894 * mas_walk() - Search for @mas->index in the tree.
4895 * @mas: The maple state.
4896 *
4897 * mas->index and mas->last will be set to the range if there is a value.  If
4898 * mas->status is ma_none, reset to ma_start
4899 *
4900 * Return: the entry at the location or %NULL.
4901 */
4902void *mas_walk(struct ma_state *mas)
4903{
4904	void *entry;
4905
4906	if (!mas_is_active(mas) || !mas_is_start(mas))
4907		mas->status = ma_start;
4908retry:
4909	entry = mas_state_walk(mas);
4910	if (mas_is_start(mas)) {
4911		goto retry;
4912	} else if (mas_is_none(mas)) {
4913		mas->index = 0;
4914		mas->last = ULONG_MAX;
4915	} else if (mas_is_ptr(mas)) {
4916		if (!mas->index) {
4917			mas->last = 0;
4918			return entry;
4919		}
4920
4921		mas->index = 1;
4922		mas->last = ULONG_MAX;
4923		mas->status = ma_none;
4924		return NULL;
4925	}
4926
4927	return entry;
4928}
4929EXPORT_SYMBOL_GPL(mas_walk);
4930
4931static inline bool mas_rewind_node(struct ma_state *mas)
4932{
4933	unsigned char slot;
4934
4935	do {
4936		if (mte_is_root(mas->node)) {
4937			slot = mas->offset;
4938			if (!slot)
4939				return false;
4940		} else {
4941			mas_ascend(mas);
4942			slot = mas->offset;
4943		}
4944	} while (!slot);
4945
4946	mas->offset = --slot;
4947	return true;
4948}
4949
4950/*
4951 * mas_skip_node() - Internal function.  Skip over a node.
4952 * @mas: The maple state.
4953 *
4954 * Return: true if there is another node, false otherwise.
4955 */
4956static inline bool mas_skip_node(struct ma_state *mas)
4957{
4958	if (mas_is_err(mas))
4959		return false;
4960
4961	do {
4962		if (mte_is_root(mas->node)) {
4963			if (mas->offset >= mas_data_end(mas)) {
4964				mas_set_err(mas, -EBUSY);
4965				return false;
4966			}
4967		} else {
4968			mas_ascend(mas);
4969		}
4970	} while (mas->offset >= mas_data_end(mas));
4971
4972	mas->offset++;
4973	return true;
4974}
4975
4976/*
4977 * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
4978 * @size
4979 * @mas: The maple state
4980 * @size: The size of the gap required
4981 *
4982 * Search between @mas->index and @mas->last for a gap of @size.
4983 */
4984static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4985{
4986	struct maple_enode *last = NULL;
4987
4988	/*
4989	 * There are 4 options:
4990	 * go to child (descend)
4991	 * go back to parent (ascend)
4992	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
4993	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
4994	 */
4995	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4996		if (last == mas->node)
4997			mas_skip_node(mas);
4998		else
4999			last = mas->node;
5000	}
5001}
5002
5003/*
5004 * mas_sparse_area() - Internal function.  Return upper or lower limit when
5005 * searching for a gap in an empty tree.
5006 * @mas: The maple state
5007 * @min: the minimum range
5008 * @max: The maximum range
5009 * @size: The size of the gap
5010 * @fwd: Searching forward or back
5011 */
5012static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5013				unsigned long max, unsigned long size, bool fwd)
5014{
5015	if (!unlikely(mas_is_none(mas)) && min == 0) {
5016		min++;
5017		/*
5018		 * At this time, min is increased, we need to recheck whether
5019		 * the size is satisfied.
5020		 */
5021		if (min > max || max - min + 1 < size)
5022			return -EBUSY;
5023	}
5024	/* mas_is_ptr */
5025
5026	if (fwd) {
5027		mas->index = min;
5028		mas->last = min + size - 1;
5029	} else {
5030		mas->last = max;
5031		mas->index = max - size + 1;
5032	}
5033	return 0;
5034}
5035
5036/*
5037 * mas_empty_area() - Get the lowest address within the range that is
5038 * sufficient for the size requested.
5039 * @mas: The maple state
5040 * @min: The lowest value of the range
5041 * @max: The highest value of the range
5042 * @size: The size needed
5043 */
5044int mas_empty_area(struct ma_state *mas, unsigned long min,
5045		unsigned long max, unsigned long size)
5046{
5047	unsigned char offset;
5048	unsigned long *pivots;
5049	enum maple_type mt;
5050	struct maple_node *node;
5051
5052	if (min > max)
5053		return -EINVAL;
5054
5055	if (size == 0 || max - min < size - 1)
5056		return -EINVAL;
5057
5058	if (mas_is_start(mas))
5059		mas_start(mas);
5060	else if (mas->offset >= 2)
5061		mas->offset -= 2;
5062	else if (!mas_skip_node(mas))
5063		return -EBUSY;
5064
5065	/* Empty set */
5066	if (mas_is_none(mas) || mas_is_ptr(mas))
5067		return mas_sparse_area(mas, min, max, size, true);
5068
5069	/* The start of the window can only be within these values */
5070	mas->index = min;
5071	mas->last = max;
5072	mas_awalk(mas, size);
5073
5074	if (unlikely(mas_is_err(mas)))
5075		return xa_err(mas->node);
5076
5077	offset = mas->offset;
5078	if (unlikely(offset == MAPLE_NODE_SLOTS))
5079		return -EBUSY;
5080
5081	node = mas_mn(mas);
5082	mt = mte_node_type(mas->node);
5083	pivots = ma_pivots(node, mt);
5084	min = mas_safe_min(mas, pivots, offset);
5085	if (mas->index < min)
5086		mas->index = min;
5087	mas->last = mas->index + size - 1;
5088	mas->end = ma_data_end(node, mt, pivots, mas->max);
5089	return 0;
5090}
5091EXPORT_SYMBOL_GPL(mas_empty_area);
5092
5093/*
5094 * mas_empty_area_rev() - Get the highest address within the range that is
5095 * sufficient for the size requested.
5096 * @mas: The maple state
5097 * @min: The lowest value of the range
5098 * @max: The highest value of the range
5099 * @size: The size needed
5100 */
5101int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5102		unsigned long max, unsigned long size)
5103{
5104	struct maple_enode *last = mas->node;
5105
5106	if (min > max)
5107		return -EINVAL;
5108
5109	if (size == 0 || max - min < size - 1)
5110		return -EINVAL;
5111
5112	if (mas_is_start(mas)) {
5113		mas_start(mas);
5114		mas->offset = mas_data_end(mas);
5115	} else if (mas->offset >= 2) {
5116		mas->offset -= 2;
5117	} else if (!mas_rewind_node(mas)) {
5118		return -EBUSY;
5119	}
5120
5121	/* Empty set. */
5122	if (mas_is_none(mas) || mas_is_ptr(mas))
5123		return mas_sparse_area(mas, min, max, size, false);
5124
5125	/* The start of the window can only be within these values. */
5126	mas->index = min;
5127	mas->last = max;
5128
5129	while (!mas_rev_awalk(mas, size, &min, &max)) {
5130		if (last == mas->node) {
5131			if (!mas_rewind_node(mas))
5132				return -EBUSY;
5133		} else {
5134			last = mas->node;
5135		}
5136	}
5137
5138	if (mas_is_err(mas))
5139		return xa_err(mas->node);
5140
5141	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5142		return -EBUSY;
5143
5144	/* Trim the upper limit to the max. */
5145	if (max < mas->last)
5146		mas->last = max;
5147
5148	mas->index = mas->last - size + 1;
5149	mas->end = mas_data_end(mas);
5150	return 0;
5151}
5152EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5153
5154/*
5155 * mte_dead_leaves() - Mark all leaves of a node as dead.
5156 * @mas: The maple state
5157 * @slots: Pointer to the slot array
5158 * @type: The maple node type
5159 *
5160 * Must hold the write lock.
5161 *
5162 * Return: The number of leaves marked as dead.
5163 */
5164static inline
5165unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5166			      void __rcu **slots)
5167{
5168	struct maple_node *node;
5169	enum maple_type type;
5170	void *entry;
5171	int offset;
5172
5173	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5174		entry = mt_slot(mt, slots, offset);
5175		type = mte_node_type(entry);
5176		node = mte_to_node(entry);
5177		/* Use both node and type to catch LE & BE metadata */
5178		if (!node || !type)
5179			break;
5180
5181		mte_set_node_dead(entry);
5182		node->type = type;
5183		rcu_assign_pointer(slots[offset], node);
5184	}
5185
5186	return offset;
5187}
5188
5189/**
5190 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5191 * @enode: The maple encoded node
5192 * @offset: The starting offset
5193 *
5194 * Note: This can only be used from the RCU callback context.
5195 */
5196static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5197{
5198	struct maple_node *node, *next;
5199	void __rcu **slots = NULL;
5200
5201	next = mte_to_node(*enode);
5202	do {
5203		*enode = ma_enode_ptr(next);
5204		node = mte_to_node(*enode);
5205		slots = ma_slots(node, node->type);
5206		next = rcu_dereference_protected(slots[offset],
5207					lock_is_held(&rcu_callback_map));
5208		offset = 0;
5209	} while (!ma_is_leaf(next->type));
5210
5211	return slots;
5212}
5213
5214/**
5215 * mt_free_walk() - Walk & free a tree in the RCU callback context
5216 * @head: The RCU head that's within the node.
5217 *
5218 * Note: This can only be used from the RCU callback context.
5219 */
5220static void mt_free_walk(struct rcu_head *head)
5221{
5222	void __rcu **slots;
5223	struct maple_node *node, *start;
5224	struct maple_enode *enode;
5225	unsigned char offset;
5226	enum maple_type type;
5227
5228	node = container_of(head, struct maple_node, rcu);
5229
5230	if (ma_is_leaf(node->type))
5231		goto free_leaf;
5232
5233	start = node;
5234	enode = mt_mk_node(node, node->type);
5235	slots = mte_dead_walk(&enode, 0);
5236	node = mte_to_node(enode);
5237	do {
5238		mt_free_bulk(node->slot_len, slots);
5239		offset = node->parent_slot + 1;
5240		enode = node->piv_parent;
5241		if (mte_to_node(enode) == node)
5242			goto free_leaf;
5243
5244		type = mte_node_type(enode);
5245		slots = ma_slots(mte_to_node(enode), type);
5246		if ((offset < mt_slots[type]) &&
5247		    rcu_dereference_protected(slots[offset],
5248					      lock_is_held(&rcu_callback_map)))
5249			slots = mte_dead_walk(&enode, offset);
5250		node = mte_to_node(enode);
5251	} while ((node != start) || (node->slot_len < offset));
5252
5253	slots = ma_slots(node, node->type);
5254	mt_free_bulk(node->slot_len, slots);
5255
5256free_leaf:
5257	mt_free_rcu(&node->rcu);
5258}
5259
5260static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5261	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5262{
5263	struct maple_node *node;
5264	struct maple_enode *next = *enode;
5265	void __rcu **slots = NULL;
5266	enum maple_type type;
5267	unsigned char next_offset = 0;
5268
5269	do {
5270		*enode = next;
5271		node = mte_to_node(*enode);
5272		type = mte_node_type(*enode);
5273		slots = ma_slots(node, type);
5274		next = mt_slot_locked(mt, slots, next_offset);
5275		if ((mte_dead_node(next)))
5276			next = mt_slot_locked(mt, slots, ++next_offset);
5277
5278		mte_set_node_dead(*enode);
5279		node->type = type;
5280		node->piv_parent = prev;
5281		node->parent_slot = offset;
5282		offset = next_offset;
5283		next_offset = 0;
5284		prev = *enode;
5285	} while (!mte_is_leaf(next));
5286
5287	return slots;
5288}
5289
5290static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5291			    bool free)
5292{
5293	void __rcu **slots;
5294	struct maple_node *node = mte_to_node(enode);
5295	struct maple_enode *start;
5296
5297	if (mte_is_leaf(enode)) {
5298		node->type = mte_node_type(enode);
5299		goto free_leaf;
5300	}
5301
5302	start = enode;
5303	slots = mte_destroy_descend(&enode, mt, start, 0);
5304	node = mte_to_node(enode); // Updated in the above call.
5305	do {
5306		enum maple_type type;
5307		unsigned char offset;
5308		struct maple_enode *parent, *tmp;
5309
5310		node->slot_len = mte_dead_leaves(enode, mt, slots);
5311		if (free)
5312			mt_free_bulk(node->slot_len, slots);
5313		offset = node->parent_slot + 1;
5314		enode = node->piv_parent;
5315		if (mte_to_node(enode) == node)
5316			goto free_leaf;
5317
5318		type = mte_node_type(enode);
5319		slots = ma_slots(mte_to_node(enode), type);
5320		if (offset >= mt_slots[type])
5321			goto next;
5322
5323		tmp = mt_slot_locked(mt, slots, offset);
5324		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5325			parent = enode;
5326			enode = tmp;
5327			slots = mte_destroy_descend(&enode, mt, parent, offset);
5328		}
5329next:
5330		node = mte_to_node(enode);
5331	} while (start != enode);
5332
5333	node = mte_to_node(enode);
5334	node->slot_len = mte_dead_leaves(enode, mt, slots);
5335	if (free)
5336		mt_free_bulk(node->slot_len, slots);
5337
5338free_leaf:
5339	if (free)
5340		mt_free_rcu(&node->rcu);
5341	else
5342		mt_clear_meta(mt, node, node->type);
5343}
5344
5345/*
5346 * mte_destroy_walk() - Free a tree or sub-tree.
5347 * @enode: the encoded maple node (maple_enode) to start
5348 * @mt: the tree to free - needed for node types.
5349 *
5350 * Must hold the write lock.
5351 */
5352static inline void mte_destroy_walk(struct maple_enode *enode,
5353				    struct maple_tree *mt)
5354{
5355	struct maple_node *node = mte_to_node(enode);
5356
5357	if (mt_in_rcu(mt)) {
5358		mt_destroy_walk(enode, mt, false);
5359		call_rcu(&node->rcu, mt_free_walk);
5360	} else {
5361		mt_destroy_walk(enode, mt, true);
5362	}
5363}
5364
5365static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5366{
5367	if (!mas_is_active(wr_mas->mas)) {
5368		if (mas_is_start(wr_mas->mas))
5369			return;
5370
5371		if (unlikely(mas_is_paused(wr_mas->mas)))
5372			goto reset;
5373
5374		if (unlikely(mas_is_none(wr_mas->mas)))
5375			goto reset;
5376
5377		if (unlikely(mas_is_overflow(wr_mas->mas)))
5378			goto reset;
5379
5380		if (unlikely(mas_is_underflow(wr_mas->mas)))
5381			goto reset;
5382	}
5383
5384	/*
5385	 * A less strict version of mas_is_span_wr() where we allow spanning
5386	 * writes within this node.  This is to stop partial walks in
5387	 * mas_prealloc() from being reset.
5388	 */
5389	if (wr_mas->mas->last > wr_mas->mas->max)
5390		goto reset;
5391
5392	if (wr_mas->entry)
5393		return;
5394
5395	if (mte_is_leaf(wr_mas->mas->node) &&
5396	    wr_mas->mas->last == wr_mas->mas->max)
5397		goto reset;
5398
5399	return;
5400
5401reset:
5402	mas_reset(wr_mas->mas);
5403}
5404
5405/* Interface */
5406
5407/**
5408 * mas_store() - Store an @entry.
5409 * @mas: The maple state.
5410 * @entry: The entry to store.
5411 *
5412 * The @mas->index and @mas->last is used to set the range for the @entry.
5413 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5414 * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5415 *
5416 * Return: the first entry between mas->index and mas->last or %NULL.
5417 */
5418void *mas_store(struct ma_state *mas, void *entry)
5419{
5420	MA_WR_STATE(wr_mas, mas, entry);
5421
5422	trace_ma_write(__func__, mas, 0, entry);
5423#ifdef CONFIG_DEBUG_MAPLE_TREE
5424	if (MAS_WARN_ON(mas, mas->index > mas->last))
5425		pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5426
5427	if (mas->index > mas->last) {
5428		mas_set_err(mas, -EINVAL);
5429		return NULL;
5430	}
5431
5432#endif
5433
5434	/*
5435	 * Storing is the same operation as insert with the added caveat that it
5436	 * can overwrite entries.  Although this seems simple enough, one may
5437	 * want to examine what happens if a single store operation was to
5438	 * overwrite multiple entries within a self-balancing B-Tree.
5439	 */
5440	mas_wr_store_setup(&wr_mas);
5441	mas_wr_store_entry(&wr_mas);
5442	return wr_mas.content;
5443}
5444EXPORT_SYMBOL_GPL(mas_store);
5445
5446/**
5447 * mas_store_gfp() - Store a value into the tree.
5448 * @mas: The maple state
5449 * @entry: The entry to store
5450 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5451 *
5452 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5453 * be allocated.
5454 */
5455int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5456{
5457	MA_WR_STATE(wr_mas, mas, entry);
5458
5459	mas_wr_store_setup(&wr_mas);
5460	trace_ma_write(__func__, mas, 0, entry);
5461retry:
5462	mas_wr_store_entry(&wr_mas);
5463	if (unlikely(mas_nomem(mas, gfp)))
5464		goto retry;
5465
5466	if (unlikely(mas_is_err(mas)))
5467		return xa_err(mas->node);
5468
5469	return 0;
5470}
5471EXPORT_SYMBOL_GPL(mas_store_gfp);
5472
5473/**
5474 * mas_store_prealloc() - Store a value into the tree using memory
5475 * preallocated in the maple state.
5476 * @mas: The maple state
5477 * @entry: The entry to store.
5478 */
5479void mas_store_prealloc(struct ma_state *mas, void *entry)
5480{
5481	MA_WR_STATE(wr_mas, mas, entry);
5482
5483	mas_wr_store_setup(&wr_mas);
5484	trace_ma_write(__func__, mas, 0, entry);
5485	mas_wr_store_entry(&wr_mas);
5486	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5487	mas_destroy(mas);
5488}
5489EXPORT_SYMBOL_GPL(mas_store_prealloc);
5490
5491/**
5492 * mas_preallocate() - Preallocate enough nodes for a store operation
5493 * @mas: The maple state
5494 * @entry: The entry that will be stored
5495 * @gfp: The GFP_FLAGS to use for allocations.
5496 *
5497 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5498 */
5499int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5500{
5501	MA_WR_STATE(wr_mas, mas, entry);
5502	unsigned char node_size;
5503	int request = 1;
5504	int ret;
5505
5506
5507	if (unlikely(!mas->index && mas->last == ULONG_MAX))
5508		goto ask_now;
5509
5510	mas_wr_store_setup(&wr_mas);
5511	wr_mas.content = mas_start(mas);
5512	/* Root expand */
5513	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5514		goto ask_now;
5515
5516	if (unlikely(!mas_wr_walk(&wr_mas))) {
5517		/* Spanning store, use worst case for now */
5518		request = 1 + mas_mt_height(mas) * 3;
5519		goto ask_now;
5520	}
5521
5522	/* At this point, we are at the leaf node that needs to be altered. */
5523	/* Exact fit, no nodes needed. */
5524	if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5525		return 0;
5526
5527	mas_wr_end_piv(&wr_mas);
5528	node_size = mas_wr_new_end(&wr_mas);
5529
5530	/* Slot store, does not require additional nodes */
5531	if (node_size == mas->end) {
5532		/* reuse node */
5533		if (!mt_in_rcu(mas->tree))
5534			return 0;
5535		/* shifting boundary */
5536		if (wr_mas.offset_end - mas->offset == 1)
5537			return 0;
5538	}
5539
5540	if (node_size >= mt_slots[wr_mas.type]) {
5541		/* Split, worst case for now. */
5542		request = 1 + mas_mt_height(mas) * 2;
5543		goto ask_now;
5544	}
5545
5546	/* New root needs a single node */
5547	if (unlikely(mte_is_root(mas->node)))
5548		goto ask_now;
5549
5550	/* Potential spanning rebalance collapsing a node, use worst-case */
5551	if (node_size  - 1 <= mt_min_slots[wr_mas.type])
5552		request = mas_mt_height(mas) * 2 - 1;
5553
5554	/* node store, slot store needs one node */
5555ask_now:
5556	mas_node_count_gfp(mas, request, gfp);
5557	mas->mas_flags |= MA_STATE_PREALLOC;
5558	if (likely(!mas_is_err(mas)))
5559		return 0;
5560
5561	mas_set_alloc_req(mas, 0);
5562	ret = xa_err(mas->node);
5563	mas_reset(mas);
5564	mas_destroy(mas);
5565	mas_reset(mas);
5566	return ret;
5567}
5568EXPORT_SYMBOL_GPL(mas_preallocate);
5569
5570/*
5571 * mas_destroy() - destroy a maple state.
5572 * @mas: The maple state
5573 *
5574 * Upon completion, check the left-most node and rebalance against the node to
5575 * the right if necessary.  Frees any allocated nodes associated with this maple
5576 * state.
5577 */
5578void mas_destroy(struct ma_state *mas)
5579{
5580	struct maple_alloc *node;
5581	unsigned long total;
5582
5583	/*
5584	 * When using mas_for_each() to insert an expected number of elements,
5585	 * it is possible that the number inserted is less than the expected
5586	 * number.  To fix an invalid final node, a check is performed here to
5587	 * rebalance the previous node with the final node.
5588	 */
5589	if (mas->mas_flags & MA_STATE_REBALANCE) {
5590		unsigned char end;
5591
5592		mas_start(mas);
5593		mtree_range_walk(mas);
5594		end = mas->end + 1;
5595		if (end < mt_min_slot_count(mas->node) - 1)
5596			mas_destroy_rebalance(mas, end);
5597
5598		mas->mas_flags &= ~MA_STATE_REBALANCE;
5599	}
5600	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5601
5602	total = mas_allocated(mas);
5603	while (total) {
5604		node = mas->alloc;
5605		mas->alloc = node->slot[0];
5606		if (node->node_count > 1) {
5607			size_t count = node->node_count - 1;
5608
5609			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5610			total -= count;
5611		}
5612		mt_free_one(ma_mnode_ptr(node));
5613		total--;
5614	}
5615
5616	mas->alloc = NULL;
5617}
5618EXPORT_SYMBOL_GPL(mas_destroy);
5619
5620/*
5621 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5622 * @mas: The maple state
5623 * @nr_entries: The number of expected entries.
5624 *
5625 * This will attempt to pre-allocate enough nodes to store the expected number
5626 * of entries.  The allocations will occur using the bulk allocator interface
5627 * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5628 * to ensure any unused nodes are freed.
5629 *
5630 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5631 */
5632int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5633{
5634	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5635	struct maple_enode *enode = mas->node;
5636	int nr_nodes;
5637	int ret;
5638
5639	/*
5640	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5641	 * forking a process and duplicating the VMAs from one tree to a new
5642	 * tree.  When such a situation arises, it is known that the new tree is
5643	 * not going to be used until the entire tree is populated.  For
5644	 * performance reasons, it is best to use a bulk load with RCU disabled.
5645	 * This allows for optimistic splitting that favours the left and reuse
5646	 * of nodes during the operation.
5647	 */
5648
5649	/* Optimize splitting for bulk insert in-order */
5650	mas->mas_flags |= MA_STATE_BULK;
5651
5652	/*
5653	 * Avoid overflow, assume a gap between each entry and a trailing null.
5654	 * If this is wrong, it just means allocation can happen during
5655	 * insertion of entries.
5656	 */
5657	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5658	if (!mt_is_alloc(mas->tree))
5659		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5660
5661	/* Leaves; reduce slots to keep space for expansion */
5662	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5663	/* Internal nodes */
5664	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5665	/* Add working room for split (2 nodes) + new parents */
5666	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5667
5668	/* Detect if allocations run out */
5669	mas->mas_flags |= MA_STATE_PREALLOC;
5670
5671	if (!mas_is_err(mas))
5672		return 0;
5673
5674	ret = xa_err(mas->node);
5675	mas->node = enode;
5676	mas_destroy(mas);
5677	return ret;
5678
5679}
5680EXPORT_SYMBOL_GPL(mas_expected_entries);
5681
5682static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5683		void **entry)
5684{
5685	bool was_none = mas_is_none(mas);
5686
5687	if (unlikely(mas->last >= max)) {
5688		mas->status = ma_overflow;
5689		return true;
5690	}
5691
5692	switch (mas->status) {
5693	case ma_active:
5694		return false;
5695	case ma_none:
5696		fallthrough;
5697	case ma_pause:
5698		mas->status = ma_start;
5699		fallthrough;
5700	case ma_start:
5701		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5702		break;
5703	case ma_overflow:
5704		/* Overflowed before, but the max changed */
5705		mas->status = ma_active;
5706		break;
5707	case ma_underflow:
5708		/* The user expects the mas to be one before where it is */
5709		mas->status = ma_active;
5710		*entry = mas_walk(mas);
5711		if (*entry)
5712			return true;
5713		break;
5714	case ma_root:
5715		break;
5716	case ma_error:
5717		return true;
5718	}
5719
5720	if (likely(mas_is_active(mas))) /* Fast path */
5721		return false;
5722
5723	if (mas_is_ptr(mas)) {
5724		*entry = NULL;
5725		if (was_none && mas->index == 0) {
5726			mas->index = mas->last = 0;
5727			return true;
5728		}
5729		mas->index = 1;
5730		mas->last = ULONG_MAX;
5731		mas->status = ma_none;
5732		return true;
5733	}
5734
5735	if (mas_is_none(mas))
5736		return true;
5737
5738	return false;
5739}
5740
5741/**
5742 * mas_next() - Get the next entry.
5743 * @mas: The maple state
5744 * @max: The maximum index to check.
5745 *
5746 * Returns the next entry after @mas->index.
5747 * Must hold rcu_read_lock or the write lock.
5748 * Can return the zero entry.
5749 *
5750 * Return: The next entry or %NULL
5751 */
5752void *mas_next(struct ma_state *mas, unsigned long max)
5753{
5754	void *entry = NULL;
5755
5756	if (mas_next_setup(mas, max, &entry))
5757		return entry;
5758
5759	/* Retries on dead nodes handled by mas_next_slot */
5760	return mas_next_slot(mas, max, false);
5761}
5762EXPORT_SYMBOL_GPL(mas_next);
5763
5764/**
5765 * mas_next_range() - Advance the maple state to the next range
5766 * @mas: The maple state
5767 * @max: The maximum index to check.
5768 *
5769 * Sets @mas->index and @mas->last to the range.
5770 * Must hold rcu_read_lock or the write lock.
5771 * Can return the zero entry.
5772 *
5773 * Return: The next entry or %NULL
5774 */
5775void *mas_next_range(struct ma_state *mas, unsigned long max)
5776{
5777	void *entry = NULL;
5778
5779	if (mas_next_setup(mas, max, &entry))
5780		return entry;
5781
5782	/* Retries on dead nodes handled by mas_next_slot */
5783	return mas_next_slot(mas, max, true);
5784}
5785EXPORT_SYMBOL_GPL(mas_next_range);
5786
5787/**
5788 * mt_next() - get the next value in the maple tree
5789 * @mt: The maple tree
5790 * @index: The start index
5791 * @max: The maximum index to check
5792 *
5793 * Takes RCU read lock internally to protect the search, which does not
5794 * protect the returned pointer after dropping RCU read lock.
5795 * See also: Documentation/core-api/maple_tree.rst
5796 *
5797 * Return: The entry higher than @index or %NULL if nothing is found.
5798 */
5799void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5800{
5801	void *entry = NULL;
5802	MA_STATE(mas, mt, index, index);
5803
5804	rcu_read_lock();
5805	entry = mas_next(&mas, max);
5806	rcu_read_unlock();
5807	return entry;
5808}
5809EXPORT_SYMBOL_GPL(mt_next);
5810
5811static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5812{
5813	if (unlikely(mas->index <= min)) {
5814		mas->status = ma_underflow;
5815		return true;
5816	}
5817
5818	switch (mas->status) {
5819	case ma_active:
5820		return false;
5821	case ma_start:
5822		break;
5823	case ma_none:
5824		fallthrough;
5825	case ma_pause:
5826		mas->status = ma_start;
5827		break;
5828	case ma_underflow:
5829		/* underflowed before but the min changed */
5830		mas->status = ma_active;
5831		break;
5832	case ma_overflow:
5833		/* User expects mas to be one after where it is */
5834		mas->status = ma_active;
5835		*entry = mas_walk(mas);
5836		if (*entry)
5837			return true;
5838		break;
5839	case ma_root:
5840		break;
5841	case ma_error:
5842		return true;
5843	}
5844
5845	if (mas_is_start(mas))
5846		mas_walk(mas);
5847
5848	if (unlikely(mas_is_ptr(mas))) {
5849		if (!mas->index) {
5850			mas->status = ma_none;
5851			return true;
5852		}
5853		mas->index = mas->last = 0;
5854		*entry = mas_root(mas);
5855		return true;
5856	}
5857
5858	if (mas_is_none(mas)) {
5859		if (mas->index) {
5860			/* Walked to out-of-range pointer? */
5861			mas->index = mas->last = 0;
5862			mas->status = ma_root;
5863			*entry = mas_root(mas);
5864			return true;
5865		}
5866		return true;
5867	}
5868
5869	return false;
5870}
5871
5872/**
5873 * mas_prev() - Get the previous entry
5874 * @mas: The maple state
5875 * @min: The minimum value to check.
5876 *
5877 * Must hold rcu_read_lock or the write lock.
5878 * Will reset mas to ma_start if the status is ma_none.  Will stop on not
5879 * searchable nodes.
5880 *
5881 * Return: the previous value or %NULL.
5882 */
5883void *mas_prev(struct ma_state *mas, unsigned long min)
5884{
5885	void *entry = NULL;
5886
5887	if (mas_prev_setup(mas, min, &entry))
5888		return entry;
5889
5890	return mas_prev_slot(mas, min, false);
5891}
5892EXPORT_SYMBOL_GPL(mas_prev);
5893
5894/**
5895 * mas_prev_range() - Advance to the previous range
5896 * @mas: The maple state
5897 * @min: The minimum value to check.
5898 *
5899 * Sets @mas->index and @mas->last to the range.
5900 * Must hold rcu_read_lock or the write lock.
5901 * Will reset mas to ma_start if the node is ma_none.  Will stop on not
5902 * searchable nodes.
5903 *
5904 * Return: the previous value or %NULL.
5905 */
5906void *mas_prev_range(struct ma_state *mas, unsigned long min)
5907{
5908	void *entry = NULL;
5909
5910	if (mas_prev_setup(mas, min, &entry))
5911		return entry;
5912
5913	return mas_prev_slot(mas, min, true);
5914}
5915EXPORT_SYMBOL_GPL(mas_prev_range);
5916
5917/**
5918 * mt_prev() - get the previous value in the maple tree
5919 * @mt: The maple tree
5920 * @index: The start index
5921 * @min: The minimum index to check
5922 *
5923 * Takes RCU read lock internally to protect the search, which does not
5924 * protect the returned pointer after dropping RCU read lock.
5925 * See also: Documentation/core-api/maple_tree.rst
5926 *
5927 * Return: The entry before @index or %NULL if nothing is found.
5928 */
5929void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5930{
5931	void *entry = NULL;
5932	MA_STATE(mas, mt, index, index);
5933
5934	rcu_read_lock();
5935	entry = mas_prev(&mas, min);
5936	rcu_read_unlock();
5937	return entry;
5938}
5939EXPORT_SYMBOL_GPL(mt_prev);
5940
5941/**
5942 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5943 * @mas: The maple state to pause
5944 *
5945 * Some users need to pause a walk and drop the lock they're holding in
5946 * order to yield to a higher priority thread or carry out an operation
5947 * on an entry.  Those users should call this function before they drop
5948 * the lock.  It resets the @mas to be suitable for the next iteration
5949 * of the loop after the user has reacquired the lock.  If most entries
5950 * found during a walk require you to call mas_pause(), the mt_for_each()
5951 * iterator may be more appropriate.
5952 *
5953 */
5954void mas_pause(struct ma_state *mas)
5955{
5956	mas->status = ma_pause;
5957	mas->node = NULL;
5958}
5959EXPORT_SYMBOL_GPL(mas_pause);
5960
5961/**
5962 * mas_find_setup() - Internal function to set up mas_find*().
5963 * @mas: The maple state
5964 * @max: The maximum index
5965 * @entry: Pointer to the entry
5966 *
5967 * Returns: True if entry is the answer, false otherwise.
5968 */
5969static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5970{
5971	switch (mas->status) {
5972	case ma_active:
5973		if (mas->last < max)
5974			return false;
5975		return true;
5976	case ma_start:
5977		break;
5978	case ma_pause:
5979		if (unlikely(mas->last >= max))
5980			return true;
5981
5982		mas->index = ++mas->last;
5983		mas->status = ma_start;
5984		break;
5985	case ma_none:
5986		if (unlikely(mas->last >= max))
5987			return true;
5988
5989		mas->index = mas->last;
5990		mas->status = ma_start;
5991		break;
5992	case ma_underflow:
5993		/* mas is pointing at entry before unable to go lower */
5994		if (unlikely(mas->index >= max)) {
5995			mas->status = ma_overflow;
5996			return true;
5997		}
5998
5999		mas->status = ma_active;
6000		*entry = mas_walk(mas);
6001		if (*entry)
6002			return true;
6003		break;
6004	case ma_overflow:
6005		if (unlikely(mas->last >= max))
6006			return true;
6007
6008		mas->status = ma_active;
6009		*entry = mas_walk(mas);
6010		if (*entry)
6011			return true;
6012		break;
6013	case ma_root:
6014		break;
6015	case ma_error:
6016		return true;
6017	}
6018
6019	if (mas_is_start(mas)) {
6020		/* First run or continue */
6021		if (mas->index > max)
6022			return true;
6023
6024		*entry = mas_walk(mas);
6025		if (*entry)
6026			return true;
6027
6028	}
6029
6030	if (unlikely(mas_is_ptr(mas)))
6031		goto ptr_out_of_range;
6032
6033	if (unlikely(mas_is_none(mas)))
6034		return true;
6035
6036	if (mas->index == max)
6037		return true;
6038
6039	return false;
6040
6041ptr_out_of_range:
6042	mas->status = ma_none;
6043	mas->index = 1;
6044	mas->last = ULONG_MAX;
6045	return true;
6046}
6047
6048/**
6049 * mas_find() - On the first call, find the entry at or after mas->index up to
6050 * %max.  Otherwise, find the entry after mas->index.
6051 * @mas: The maple state
6052 * @max: The maximum value to check.
6053 *
6054 * Must hold rcu_read_lock or the write lock.
6055 * If an entry exists, last and index are updated accordingly.
6056 * May set @mas->status to ma_overflow.
6057 *
6058 * Return: The entry or %NULL.
6059 */
6060void *mas_find(struct ma_state *mas, unsigned long max)
6061{
6062	void *entry = NULL;
6063
6064	if (mas_find_setup(mas, max, &entry))
6065		return entry;
6066
6067	/* Retries on dead nodes handled by mas_next_slot */
6068	entry = mas_next_slot(mas, max, false);
6069	/* Ignore overflow */
6070	mas->status = ma_active;
6071	return entry;
6072}
6073EXPORT_SYMBOL_GPL(mas_find);
6074
6075/**
6076 * mas_find_range() - On the first call, find the entry at or after
6077 * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6078 * @mas: The maple state
6079 * @max: The maximum value to check.
6080 *
6081 * Must hold rcu_read_lock or the write lock.
6082 * If an entry exists, last and index are updated accordingly.
6083 * May set @mas->status to ma_overflow.
6084 *
6085 * Return: The entry or %NULL.
6086 */
6087void *mas_find_range(struct ma_state *mas, unsigned long max)
6088{
6089	void *entry = NULL;
6090
6091	if (mas_find_setup(mas, max, &entry))
6092		return entry;
6093
6094	/* Retries on dead nodes handled by mas_next_slot */
6095	return mas_next_slot(mas, max, true);
6096}
6097EXPORT_SYMBOL_GPL(mas_find_range);
6098
6099/**
6100 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6101 * @mas: The maple state
6102 * @min: The minimum index
6103 * @entry: Pointer to the entry
6104 *
6105 * Returns: True if entry is the answer, false otherwise.
6106 */
6107static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6108		void **entry)
6109{
6110
6111	switch (mas->status) {
6112	case ma_active:
6113		goto active;
6114	case ma_start:
6115		break;
6116	case ma_pause:
6117		if (unlikely(mas->index <= min)) {
6118			mas->status = ma_underflow;
6119			return true;
6120		}
6121		mas->last = --mas->index;
6122		mas->status = ma_start;
6123		break;
6124	case ma_none:
6125		if (mas->index <= min)
6126			goto none;
6127
6128		mas->last = mas->index;
6129		mas->status = ma_start;
6130		break;
6131	case ma_overflow: /* user expects the mas to be one after where it is */
6132		if (unlikely(mas->index <= min)) {
6133			mas->status = ma_underflow;
6134			return true;
6135		}
6136
6137		mas->status = ma_active;
6138		break;
6139	case ma_underflow: /* user expects the mas to be one before where it is */
6140		if (unlikely(mas->index <= min))
6141			return true;
6142
6143		mas->status = ma_active;
6144		break;
6145	case ma_root:
6146		break;
6147	case ma_error:
6148		return true;
6149	}
6150
6151	if (mas_is_start(mas)) {
6152		/* First run or continue */
6153		if (mas->index < min)
6154			return true;
6155
6156		*entry = mas_walk(mas);
6157		if (*entry)
6158			return true;
6159	}
6160
6161	if (unlikely(mas_is_ptr(mas)))
6162		goto none;
6163
6164	if (unlikely(mas_is_none(mas))) {
6165		/*
6166		 * Walked to the location, and there was nothing so the previous
6167		 * location is 0.
6168		 */
6169		mas->last = mas->index = 0;
6170		mas->status = ma_root;
6171		*entry = mas_root(mas);
6172		return true;
6173	}
6174
6175active:
6176	if (mas->index < min)
6177		return true;
6178
6179	return false;
6180
6181none:
6182	mas->status = ma_none;
6183	return true;
6184}
6185
6186/**
6187 * mas_find_rev: On the first call, find the first non-null entry at or below
6188 * mas->index down to %min.  Otherwise find the first non-null entry below
6189 * mas->index down to %min.
6190 * @mas: The maple state
6191 * @min: The minimum value to check.
6192 *
6193 * Must hold rcu_read_lock or the write lock.
6194 * If an entry exists, last and index are updated accordingly.
6195 * May set @mas->status to ma_underflow.
6196 *
6197 * Return: The entry or %NULL.
6198 */
6199void *mas_find_rev(struct ma_state *mas, unsigned long min)
6200{
6201	void *entry = NULL;
6202
6203	if (mas_find_rev_setup(mas, min, &entry))
6204		return entry;
6205
6206	/* Retries on dead nodes handled by mas_prev_slot */
6207	return mas_prev_slot(mas, min, false);
6208
6209}
6210EXPORT_SYMBOL_GPL(mas_find_rev);
6211
6212/**
6213 * mas_find_range_rev: On the first call, find the first non-null entry at or
6214 * below mas->index down to %min.  Otherwise advance to the previous slot after
6215 * mas->index down to %min.
6216 * @mas: The maple state
6217 * @min: The minimum value to check.
6218 *
6219 * Must hold rcu_read_lock or the write lock.
6220 * If an entry exists, last and index are updated accordingly.
6221 * May set @mas->status to ma_underflow.
6222 *
6223 * Return: The entry or %NULL.
6224 */
6225void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6226{
6227	void *entry = NULL;
6228
6229	if (mas_find_rev_setup(mas, min, &entry))
6230		return entry;
6231
6232	/* Retries on dead nodes handled by mas_prev_slot */
6233	return mas_prev_slot(mas, min, true);
6234}
6235EXPORT_SYMBOL_GPL(mas_find_range_rev);
6236
6237/**
6238 * mas_erase() - Find the range in which index resides and erase the entire
6239 * range.
6240 * @mas: The maple state
6241 *
6242 * Must hold the write lock.
6243 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6244 * erases that range.
6245 *
6246 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6247 */
6248void *mas_erase(struct ma_state *mas)
6249{
6250	void *entry;
6251	MA_WR_STATE(wr_mas, mas, NULL);
6252
6253	if (!mas_is_active(mas) || !mas_is_start(mas))
6254		mas->status = ma_start;
6255
6256	/* Retry unnecessary when holding the write lock. */
6257	entry = mas_state_walk(mas);
6258	if (!entry)
6259		return NULL;
6260
6261write_retry:
6262	/* Must reset to ensure spanning writes of last slot are detected */
6263	mas_reset(mas);
6264	mas_wr_store_setup(&wr_mas);
6265	mas_wr_store_entry(&wr_mas);
6266	if (mas_nomem(mas, GFP_KERNEL))
6267		goto write_retry;
6268
6269	return entry;
6270}
6271EXPORT_SYMBOL_GPL(mas_erase);
6272
6273/**
6274 * mas_nomem() - Check if there was an error allocating and do the allocation
6275 * if necessary If there are allocations, then free them.
6276 * @mas: The maple state
6277 * @gfp: The GFP_FLAGS to use for allocations
6278 * Return: true on allocation, false otherwise.
6279 */
6280bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6281	__must_hold(mas->tree->ma_lock)
6282{
6283	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6284		mas_destroy(mas);
6285		return false;
6286	}
6287
6288	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6289		mtree_unlock(mas->tree);
6290		mas_alloc_nodes(mas, gfp);
6291		mtree_lock(mas->tree);
6292	} else {
6293		mas_alloc_nodes(mas, gfp);
6294	}
6295
6296	if (!mas_allocated(mas))
6297		return false;
6298
6299	mas->status = ma_start;
6300	return true;
6301}
6302
6303void __init maple_tree_init(void)
6304{
6305	maple_node_cache = kmem_cache_create("maple_node",
6306			sizeof(struct maple_node), sizeof(struct maple_node),
6307			SLAB_PANIC, NULL);
6308}
6309
6310/**
6311 * mtree_load() - Load a value stored in a maple tree
6312 * @mt: The maple tree
6313 * @index: The index to load
6314 *
6315 * Return: the entry or %NULL
6316 */
6317void *mtree_load(struct maple_tree *mt, unsigned long index)
6318{
6319	MA_STATE(mas, mt, index, index);
6320	void *entry;
6321
6322	trace_ma_read(__func__, &mas);
6323	rcu_read_lock();
6324retry:
6325	entry = mas_start(&mas);
6326	if (unlikely(mas_is_none(&mas)))
6327		goto unlock;
6328
6329	if (unlikely(mas_is_ptr(&mas))) {
6330		if (index)
6331			entry = NULL;
6332
6333		goto unlock;
6334	}
6335
6336	entry = mtree_lookup_walk(&mas);
6337	if (!entry && unlikely(mas_is_start(&mas)))
6338		goto retry;
6339unlock:
6340	rcu_read_unlock();
6341	if (xa_is_zero(entry))
6342		return NULL;
6343
6344	return entry;
6345}
6346EXPORT_SYMBOL(mtree_load);
6347
6348/**
6349 * mtree_store_range() - Store an entry at a given range.
6350 * @mt: The maple tree
6351 * @index: The start of the range
6352 * @last: The end of the range
6353 * @entry: The entry to store
6354 * @gfp: The GFP_FLAGS to use for allocations
6355 *
6356 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6357 * be allocated.
6358 */
6359int mtree_store_range(struct maple_tree *mt, unsigned long index,
6360		unsigned long last, void *entry, gfp_t gfp)
6361{
6362	MA_STATE(mas, mt, index, last);
6363	MA_WR_STATE(wr_mas, &mas, entry);
6364
6365	trace_ma_write(__func__, &mas, 0, entry);
6366	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6367		return -EINVAL;
6368
6369	if (index > last)
6370		return -EINVAL;
6371
6372	mtree_lock(mt);
6373retry:
6374	mas_wr_store_entry(&wr_mas);
6375	if (mas_nomem(&mas, gfp))
6376		goto retry;
6377
6378	mtree_unlock(mt);
6379	if (mas_is_err(&mas))
6380		return xa_err(mas.node);
6381
6382	return 0;
6383}
6384EXPORT_SYMBOL(mtree_store_range);
6385
6386/**
6387 * mtree_store() - Store an entry at a given index.
6388 * @mt: The maple tree
6389 * @index: The index to store the value
6390 * @entry: The entry to store
6391 * @gfp: The GFP_FLAGS to use for allocations
6392 *
6393 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6394 * be allocated.
6395 */
6396int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6397		 gfp_t gfp)
6398{
6399	return mtree_store_range(mt, index, index, entry, gfp);
6400}
6401EXPORT_SYMBOL(mtree_store);
6402
6403/**
6404 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6405 * @mt: The maple tree
6406 * @first: The start of the range
6407 * @last: The end of the range
6408 * @entry: The entry to store
6409 * @gfp: The GFP_FLAGS to use for allocations.
6410 *
6411 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6412 * request, -ENOMEM if memory could not be allocated.
6413 */
6414int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6415		unsigned long last, void *entry, gfp_t gfp)
6416{
6417	MA_STATE(ms, mt, first, last);
6418
6419	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6420		return -EINVAL;
6421
6422	if (first > last)
6423		return -EINVAL;
6424
6425	mtree_lock(mt);
6426retry:
6427	mas_insert(&ms, entry);
6428	if (mas_nomem(&ms, gfp))
6429		goto retry;
6430
6431	mtree_unlock(mt);
6432	if (mas_is_err(&ms))
6433		return xa_err(ms.node);
6434
6435	return 0;
6436}
6437EXPORT_SYMBOL(mtree_insert_range);
6438
6439/**
6440 * mtree_insert() - Insert an entry at a given index if there is no value.
6441 * @mt: The maple tree
6442 * @index : The index to store the value
6443 * @entry: The entry to store
6444 * @gfp: The GFP_FLAGS to use for allocations.
6445 *
6446 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6447 * request, -ENOMEM if memory could not be allocated.
6448 */
6449int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6450		 gfp_t gfp)
6451{
6452	return mtree_insert_range(mt, index, index, entry, gfp);
6453}
6454EXPORT_SYMBOL(mtree_insert);
6455
6456int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6457		void *entry, unsigned long size, unsigned long min,
6458		unsigned long max, gfp_t gfp)
6459{
6460	int ret = 0;
6461
6462	MA_STATE(mas, mt, 0, 0);
6463	if (!mt_is_alloc(mt))
6464		return -EINVAL;
6465
6466	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6467		return -EINVAL;
6468
6469	mtree_lock(mt);
6470retry:
6471	ret = mas_empty_area(&mas, min, max, size);
6472	if (ret)
6473		goto unlock;
6474
6475	mas_insert(&mas, entry);
6476	/*
6477	 * mas_nomem() may release the lock, causing the allocated area
6478	 * to be unavailable, so try to allocate a free area again.
6479	 */
6480	if (mas_nomem(&mas, gfp))
6481		goto retry;
6482
6483	if (mas_is_err(&mas))
6484		ret = xa_err(mas.node);
6485	else
6486		*startp = mas.index;
6487
6488unlock:
6489	mtree_unlock(mt);
6490	return ret;
6491}
6492EXPORT_SYMBOL(mtree_alloc_range);
6493
6494/**
6495 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6496 * @mt: The maple tree.
6497 * @startp: Pointer to ID.
6498 * @range_lo: Lower bound of range to search.
6499 * @range_hi: Upper bound of range to search.
6500 * @entry: The entry to store.
6501 * @next: Pointer to next ID to allocate.
6502 * @gfp: The GFP_FLAGS to use for allocations.
6503 *
6504 * Finds an empty entry in @mt after @next, stores the new index into
6505 * the @id pointer, stores the entry at that index, then updates @next.
6506 *
6507 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6508 *
6509 * Context: Any context.  Takes and releases the mt.lock.  May sleep if
6510 * the @gfp flags permit.
6511 *
6512 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6513 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6514 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6515 * free entries.
6516 */
6517int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6518		void *entry, unsigned long range_lo, unsigned long range_hi,
6519		unsigned long *next, gfp_t gfp)
6520{
6521	int ret;
6522
6523	MA_STATE(mas, mt, 0, 0);
6524
6525	if (!mt_is_alloc(mt))
6526		return -EINVAL;
6527	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6528		return -EINVAL;
6529	mtree_lock(mt);
6530	ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6531			       next, gfp);
6532	mtree_unlock(mt);
6533	return ret;
6534}
6535EXPORT_SYMBOL(mtree_alloc_cyclic);
6536
6537int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6538		void *entry, unsigned long size, unsigned long min,
6539		unsigned long max, gfp_t gfp)
6540{
6541	int ret = 0;
6542
6543	MA_STATE(mas, mt, 0, 0);
6544	if (!mt_is_alloc(mt))
6545		return -EINVAL;
6546
6547	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6548		return -EINVAL;
6549
6550	mtree_lock(mt);
6551retry:
6552	ret = mas_empty_area_rev(&mas, min, max, size);
6553	if (ret)
6554		goto unlock;
6555
6556	mas_insert(&mas, entry);
6557	/*
6558	 * mas_nomem() may release the lock, causing the allocated area
6559	 * to be unavailable, so try to allocate a free area again.
6560	 */
6561	if (mas_nomem(&mas, gfp))
6562		goto retry;
6563
6564	if (mas_is_err(&mas))
6565		ret = xa_err(mas.node);
6566	else
6567		*startp = mas.index;
6568
6569unlock:
6570	mtree_unlock(mt);
6571	return ret;
6572}
6573EXPORT_SYMBOL(mtree_alloc_rrange);
6574
6575/**
6576 * mtree_erase() - Find an index and erase the entire range.
6577 * @mt: The maple tree
6578 * @index: The index to erase
6579 *
6580 * Erasing is the same as a walk to an entry then a store of a NULL to that
6581 * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6582 *
6583 * Return: The entry stored at the @index or %NULL
6584 */
6585void *mtree_erase(struct maple_tree *mt, unsigned long index)
6586{
6587	void *entry = NULL;
6588
6589	MA_STATE(mas, mt, index, index);
6590	trace_ma_op(__func__, &mas);
6591
6592	mtree_lock(mt);
6593	entry = mas_erase(&mas);
6594	mtree_unlock(mt);
6595
6596	return entry;
6597}
6598EXPORT_SYMBOL(mtree_erase);
6599
6600/*
6601 * mas_dup_free() - Free an incomplete duplication of a tree.
6602 * @mas: The maple state of a incomplete tree.
6603 *
6604 * The parameter @mas->node passed in indicates that the allocation failed on
6605 * this node. This function frees all nodes starting from @mas->node in the
6606 * reverse order of mas_dup_build(). There is no need to hold the source tree
6607 * lock at this time.
6608 */
6609static void mas_dup_free(struct ma_state *mas)
6610{
6611	struct maple_node *node;
6612	enum maple_type type;
6613	void __rcu **slots;
6614	unsigned char count, i;
6615
6616	/* Maybe the first node allocation failed. */
6617	if (mas_is_none(mas))
6618		return;
6619
6620	while (!mte_is_root(mas->node)) {
6621		mas_ascend(mas);
6622		if (mas->offset) {
6623			mas->offset--;
6624			do {
6625				mas_descend(mas);
6626				mas->offset = mas_data_end(mas);
6627			} while (!mte_is_leaf(mas->node));
6628
6629			mas_ascend(mas);
6630		}
6631
6632		node = mte_to_node(mas->node);
6633		type = mte_node_type(mas->node);
6634		slots = ma_slots(node, type);
6635		count = mas_data_end(mas) + 1;
6636		for (i = 0; i < count; i++)
6637			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6638		mt_free_bulk(count, slots);
6639	}
6640
6641	node = mte_to_node(mas->node);
6642	mt_free_one(node);
6643}
6644
6645/*
6646 * mas_copy_node() - Copy a maple node and replace the parent.
6647 * @mas: The maple state of source tree.
6648 * @new_mas: The maple state of new tree.
6649 * @parent: The parent of the new node.
6650 *
6651 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6652 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6653 */
6654static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6655		struct maple_pnode *parent)
6656{
6657	struct maple_node *node = mte_to_node(mas->node);
6658	struct maple_node *new_node = mte_to_node(new_mas->node);
6659	unsigned long val;
6660
6661	/* Copy the node completely. */
6662	memcpy(new_node, node, sizeof(struct maple_node));
6663	/* Update the parent node pointer. */
6664	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6665	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6666}
6667
6668/*
6669 * mas_dup_alloc() - Allocate child nodes for a maple node.
6670 * @mas: The maple state of source tree.
6671 * @new_mas: The maple state of new tree.
6672 * @gfp: The GFP_FLAGS to use for allocations.
6673 *
6674 * This function allocates child nodes for @new_mas->node during the duplication
6675 * process. If memory allocation fails, @mas is set to -ENOMEM.
6676 */
6677static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6678		gfp_t gfp)
6679{
6680	struct maple_node *node = mte_to_node(mas->node);
6681	struct maple_node *new_node = mte_to_node(new_mas->node);
6682	enum maple_type type;
6683	unsigned char request, count, i;
6684	void __rcu **slots;
6685	void __rcu **new_slots;
6686	unsigned long val;
6687
6688	/* Allocate memory for child nodes. */
6689	type = mte_node_type(mas->node);
6690	new_slots = ma_slots(new_node, type);
6691	request = mas_data_end(mas) + 1;
6692	count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6693	if (unlikely(count < request)) {
6694		memset(new_slots, 0, request * sizeof(void *));
6695		mas_set_err(mas, -ENOMEM);
6696		return;
6697	}
6698
6699	/* Restore node type information in slots. */
6700	slots = ma_slots(node, type);
6701	for (i = 0; i < count; i++) {
6702		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6703		val &= MAPLE_NODE_MASK;
6704		((unsigned long *)new_slots)[i] |= val;
6705	}
6706}
6707
6708/*
6709 * mas_dup_build() - Build a new maple tree from a source tree
6710 * @mas: The maple state of source tree, need to be in MAS_START state.
6711 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6712 * @gfp: The GFP_FLAGS to use for allocations.
6713 *
6714 * This function builds a new tree in DFS preorder. If the memory allocation
6715 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6716 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6717 *
6718 * Note that the attributes of the two trees need to be exactly the same, and the
6719 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6720 */
6721static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6722		gfp_t gfp)
6723{
6724	struct maple_node *node;
6725	struct maple_pnode *parent = NULL;
6726	struct maple_enode *root;
6727	enum maple_type type;
6728
6729	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6730	    unlikely(!mtree_empty(new_mas->tree))) {
6731		mas_set_err(mas, -EINVAL);
6732		return;
6733	}
6734
6735	root = mas_start(mas);
6736	if (mas_is_ptr(mas) || mas_is_none(mas))
6737		goto set_new_tree;
6738
6739	node = mt_alloc_one(gfp);
6740	if (!node) {
6741		new_mas->status = ma_none;
6742		mas_set_err(mas, -ENOMEM);
6743		return;
6744	}
6745
6746	type = mte_node_type(mas->node);
6747	root = mt_mk_node(node, type);
6748	new_mas->node = root;
6749	new_mas->min = 0;
6750	new_mas->max = ULONG_MAX;
6751	root = mte_mk_root(root);
6752	while (1) {
6753		mas_copy_node(mas, new_mas, parent);
6754		if (!mte_is_leaf(mas->node)) {
6755			/* Only allocate child nodes for non-leaf nodes. */
6756			mas_dup_alloc(mas, new_mas, gfp);
6757			if (unlikely(mas_is_err(mas)))
6758				return;
6759		} else {
6760			/*
6761			 * This is the last leaf node and duplication is
6762			 * completed.
6763			 */
6764			if (mas->max == ULONG_MAX)
6765				goto done;
6766
6767			/* This is not the last leaf node and needs to go up. */
6768			do {
6769				mas_ascend(mas);
6770				mas_ascend(new_mas);
6771			} while (mas->offset == mas_data_end(mas));
6772
6773			/* Move to the next subtree. */
6774			mas->offset++;
6775			new_mas->offset++;
6776		}
6777
6778		mas_descend(mas);
6779		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6780		mas_descend(new_mas);
6781		mas->offset = 0;
6782		new_mas->offset = 0;
6783	}
6784done:
6785	/* Specially handle the parent of the root node. */
6786	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6787set_new_tree:
6788	/* Make them the same height */
6789	new_mas->tree->ma_flags = mas->tree->ma_flags;
6790	rcu_assign_pointer(new_mas->tree->ma_root, root);
6791}
6792
6793/**
6794 * __mt_dup(): Duplicate an entire maple tree
6795 * @mt: The source maple tree
6796 * @new: The new maple tree
6797 * @gfp: The GFP_FLAGS to use for allocations
6798 *
6799 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6800 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6801 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6802 * source node except for all the addresses stored in it. It will be faster than
6803 * traversing all elements in the source tree and inserting them one by one into
6804 * the new tree.
6805 * The user needs to ensure that the attributes of the source tree and the new
6806 * tree are the same, and the new tree needs to be an empty tree, otherwise
6807 * -EINVAL will be returned.
6808 * Note that the user needs to manually lock the source tree and the new tree.
6809 *
6810 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6811 * the attributes of the two trees are different or the new tree is not an empty
6812 * tree.
6813 */
6814int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6815{
6816	int ret = 0;
6817	MA_STATE(mas, mt, 0, 0);
6818	MA_STATE(new_mas, new, 0, 0);
6819
6820	mas_dup_build(&mas, &new_mas, gfp);
6821	if (unlikely(mas_is_err(&mas))) {
6822		ret = xa_err(mas.node);
6823		if (ret == -ENOMEM)
6824			mas_dup_free(&new_mas);
6825	}
6826
6827	return ret;
6828}
6829EXPORT_SYMBOL(__mt_dup);
6830
6831/**
6832 * mtree_dup(): Duplicate an entire maple tree
6833 * @mt: The source maple tree
6834 * @new: The new maple tree
6835 * @gfp: The GFP_FLAGS to use for allocations
6836 *
6837 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6838 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6839 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6840 * source node except for all the addresses stored in it. It will be faster than
6841 * traversing all elements in the source tree and inserting them one by one into
6842 * the new tree.
6843 * The user needs to ensure that the attributes of the source tree and the new
6844 * tree are the same, and the new tree needs to be an empty tree, otherwise
6845 * -EINVAL will be returned.
6846 *
6847 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6848 * the attributes of the two trees are different or the new tree is not an empty
6849 * tree.
6850 */
6851int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6852{
6853	int ret = 0;
6854	MA_STATE(mas, mt, 0, 0);
6855	MA_STATE(new_mas, new, 0, 0);
6856
6857	mas_lock(&new_mas);
6858	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6859	mas_dup_build(&mas, &new_mas, gfp);
6860	mas_unlock(&mas);
6861	if (unlikely(mas_is_err(&mas))) {
6862		ret = xa_err(mas.node);
6863		if (ret == -ENOMEM)
6864			mas_dup_free(&new_mas);
6865	}
6866
6867	mas_unlock(&new_mas);
6868	return ret;
6869}
6870EXPORT_SYMBOL(mtree_dup);
6871
6872/**
6873 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6874 * @mt: The maple tree
6875 *
6876 * Note: Does not handle locking.
6877 */
6878void __mt_destroy(struct maple_tree *mt)
6879{
6880	void *root = mt_root_locked(mt);
6881
6882	rcu_assign_pointer(mt->ma_root, NULL);
6883	if (xa_is_node(root))
6884		mte_destroy_walk(root, mt);
6885
6886	mt->ma_flags = mt_attr(mt);
6887}
6888EXPORT_SYMBOL_GPL(__mt_destroy);
6889
6890/**
6891 * mtree_destroy() - Destroy a maple tree
6892 * @mt: The maple tree
6893 *
6894 * Frees all resources used by the tree.  Handles locking.
6895 */
6896void mtree_destroy(struct maple_tree *mt)
6897{
6898	mtree_lock(mt);
6899	__mt_destroy(mt);
6900	mtree_unlock(mt);
6901}
6902EXPORT_SYMBOL(mtree_destroy);
6903
6904/**
6905 * mt_find() - Search from the start up until an entry is found.
6906 * @mt: The maple tree
6907 * @index: Pointer which contains the start location of the search
6908 * @max: The maximum value of the search range
6909 *
6910 * Takes RCU read lock internally to protect the search, which does not
6911 * protect the returned pointer after dropping RCU read lock.
6912 * See also: Documentation/core-api/maple_tree.rst
6913 *
6914 * In case that an entry is found @index is updated to point to the next
6915 * possible entry independent whether the found entry is occupying a
6916 * single index or a range if indices.
6917 *
6918 * Return: The entry at or after the @index or %NULL
6919 */
6920void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6921{
6922	MA_STATE(mas, mt, *index, *index);
6923	void *entry;
6924#ifdef CONFIG_DEBUG_MAPLE_TREE
6925	unsigned long copy = *index;
6926#endif
6927
6928	trace_ma_read(__func__, &mas);
6929
6930	if ((*index) > max)
6931		return NULL;
6932
6933	rcu_read_lock();
6934retry:
6935	entry = mas_state_walk(&mas);
6936	if (mas_is_start(&mas))
6937		goto retry;
6938
6939	if (unlikely(xa_is_zero(entry)))
6940		entry = NULL;
6941
6942	if (entry)
6943		goto unlock;
6944
6945	while (mas_is_active(&mas) && (mas.last < max)) {
6946		entry = mas_next_entry(&mas, max);
6947		if (likely(entry && !xa_is_zero(entry)))
6948			break;
6949	}
6950
6951	if (unlikely(xa_is_zero(entry)))
6952		entry = NULL;
6953unlock:
6954	rcu_read_unlock();
6955	if (likely(entry)) {
6956		*index = mas.last + 1;
6957#ifdef CONFIG_DEBUG_MAPLE_TREE
6958		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6959			pr_err("index not increased! %lx <= %lx\n",
6960			       *index, copy);
6961#endif
6962	}
6963
6964	return entry;
6965}
6966EXPORT_SYMBOL(mt_find);
6967
6968/**
6969 * mt_find_after() - Search from the start up until an entry is found.
6970 * @mt: The maple tree
6971 * @index: Pointer which contains the start location of the search
6972 * @max: The maximum value to check
6973 *
6974 * Same as mt_find() except that it checks @index for 0 before
6975 * searching. If @index == 0, the search is aborted. This covers a wrap
6976 * around of @index to 0 in an iterator loop.
6977 *
6978 * Return: The entry at or after the @index or %NULL
6979 */
6980void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6981		    unsigned long max)
6982{
6983	if (!(*index))
6984		return NULL;
6985
6986	return mt_find(mt, index, max);
6987}
6988EXPORT_SYMBOL(mt_find_after);
6989
6990#ifdef CONFIG_DEBUG_MAPLE_TREE
6991atomic_t maple_tree_tests_run;
6992EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6993atomic_t maple_tree_tests_passed;
6994EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6995
6996#ifndef __KERNEL__
6997extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6998void mt_set_non_kernel(unsigned int val)
6999{
7000	kmem_cache_set_non_kernel(maple_node_cache, val);
7001}
7002
7003extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
7004unsigned long mt_get_alloc_size(void)
7005{
7006	return kmem_cache_get_alloc(maple_node_cache);
7007}
7008
7009extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7010void mt_zero_nr_tallocated(void)
7011{
7012	kmem_cache_zero_nr_tallocated(maple_node_cache);
7013}
7014
7015extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7016unsigned int mt_nr_tallocated(void)
7017{
7018	return kmem_cache_nr_tallocated(maple_node_cache);
7019}
7020
7021extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7022unsigned int mt_nr_allocated(void)
7023{
7024	return kmem_cache_nr_allocated(maple_node_cache);
7025}
7026
7027void mt_cache_shrink(void)
7028{
7029}
7030#else
7031/*
7032 * mt_cache_shrink() - For testing, don't use this.
7033 *
7034 * Certain testcases can trigger an OOM when combined with other memory
7035 * debugging configuration options.  This function is used to reduce the
7036 * possibility of an out of memory even due to kmem_cache objects remaining
7037 * around for longer than usual.
7038 */
7039void mt_cache_shrink(void)
7040{
7041	kmem_cache_shrink(maple_node_cache);
7042
7043}
7044EXPORT_SYMBOL_GPL(mt_cache_shrink);
7045
7046#endif /* not defined __KERNEL__ */
7047/*
7048 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7049 * @mas: The maple state
7050 * @offset: The offset into the slot array to fetch.
7051 *
7052 * Return: The entry stored at @offset.
7053 */
7054static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7055		unsigned char offset)
7056{
7057	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7058			offset);
7059}
7060
7061/* Depth first search, post-order */
7062static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7063{
7064
7065	struct maple_enode *p, *mn = mas->node;
7066	unsigned long p_min, p_max;
7067
7068	mas_next_node(mas, mas_mn(mas), max);
7069	if (!mas_is_overflow(mas))
7070		return;
7071
7072	if (mte_is_root(mn))
7073		return;
7074
7075	mas->node = mn;
7076	mas_ascend(mas);
7077	do {
7078		p = mas->node;
7079		p_min = mas->min;
7080		p_max = mas->max;
7081		mas_prev_node(mas, 0);
7082	} while (!mas_is_underflow(mas));
7083
7084	mas->node = p;
7085	mas->max = p_max;
7086	mas->min = p_min;
7087}
7088
7089/* Tree validations */
7090static void mt_dump_node(const struct maple_tree *mt, void *entry,
7091		unsigned long min, unsigned long max, unsigned int depth,
7092		enum mt_dump_format format);
7093static void mt_dump_range(unsigned long min, unsigned long max,
7094			  unsigned int depth, enum mt_dump_format format)
7095{
7096	static const char spaces[] = "                                ";
7097
7098	switch(format) {
7099	case mt_dump_hex:
7100		if (min == max)
7101			pr_info("%.*s%lx: ", depth * 2, spaces, min);
7102		else
7103			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7104		break;
7105	case mt_dump_dec:
7106		if (min == max)
7107			pr_info("%.*s%lu: ", depth * 2, spaces, min);
7108		else
7109			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7110	}
7111}
7112
7113static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7114			  unsigned int depth, enum mt_dump_format format)
7115{
7116	mt_dump_range(min, max, depth, format);
7117
7118	if (xa_is_value(entry))
7119		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
7120				xa_to_value(entry), entry);
7121	else if (xa_is_zero(entry))
7122		pr_cont("zero (%ld)\n", xa_to_internal(entry));
7123	else if (mt_is_reserved(entry))
7124		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
7125	else
7126		pr_cont("%p\n", entry);
7127}
7128
7129static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7130		unsigned long min, unsigned long max, unsigned int depth,
7131		enum mt_dump_format format)
7132{
7133	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7134	bool leaf = mte_is_leaf(entry);
7135	unsigned long first = min;
7136	int i;
7137
7138	pr_cont(" contents: ");
7139	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7140		switch(format) {
7141		case mt_dump_hex:
7142			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7143			break;
7144		case mt_dump_dec:
7145			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7146		}
7147	}
7148	pr_cont("%p\n", node->slot[i]);
7149	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7150		unsigned long last = max;
7151
7152		if (i < (MAPLE_RANGE64_SLOTS - 1))
7153			last = node->pivot[i];
7154		else if (!node->slot[i] && max != mt_node_max(entry))
7155			break;
7156		if (last == 0 && i > 0)
7157			break;
7158		if (leaf)
7159			mt_dump_entry(mt_slot(mt, node->slot, i),
7160					first, last, depth + 1, format);
7161		else if (node->slot[i])
7162			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7163					first, last, depth + 1, format);
7164
7165		if (last == max)
7166			break;
7167		if (last > max) {
7168			switch(format) {
7169			case mt_dump_hex:
7170				pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7171					node, last, max, i);
7172				break;
7173			case mt_dump_dec:
7174				pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7175					node, last, max, i);
7176			}
7177		}
7178		first = last + 1;
7179	}
7180}
7181
7182static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7183	unsigned long min, unsigned long max, unsigned int depth,
7184	enum mt_dump_format format)
7185{
7186	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7187	bool leaf = mte_is_leaf(entry);
7188	unsigned long first = min;
7189	int i;
7190
7191	pr_cont(" contents: ");
7192	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7193		switch (format) {
7194		case mt_dump_hex:
7195			pr_cont("%lx ", node->gap[i]);
7196			break;
7197		case mt_dump_dec:
7198			pr_cont("%lu ", node->gap[i]);
7199		}
7200	}
7201	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7202	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7203		switch (format) {
7204		case mt_dump_hex:
7205			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7206			break;
7207		case mt_dump_dec:
7208			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7209		}
7210	}
7211	pr_cont("%p\n", node->slot[i]);
7212	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7213		unsigned long last = max;
7214
7215		if (i < (MAPLE_ARANGE64_SLOTS - 1))
7216			last = node->pivot[i];
7217		else if (!node->slot[i])
7218			break;
7219		if (last == 0 && i > 0)
7220			break;
7221		if (leaf)
7222			mt_dump_entry(mt_slot(mt, node->slot, i),
7223					first, last, depth + 1, format);
7224		else if (node->slot[i])
7225			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7226					first, last, depth + 1, format);
7227
7228		if (last == max)
7229			break;
7230		if (last > max) {
7231			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7232					node, last, max, i);
7233			break;
7234		}
7235		first = last + 1;
7236	}
7237}
7238
7239static void mt_dump_node(const struct maple_tree *mt, void *entry,
7240		unsigned long min, unsigned long max, unsigned int depth,
7241		enum mt_dump_format format)
7242{
7243	struct maple_node *node = mte_to_node(entry);
7244	unsigned int type = mte_node_type(entry);
7245	unsigned int i;
7246
7247	mt_dump_range(min, max, depth, format);
7248
7249	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
7250			node ? node->parent : NULL);
7251	switch (type) {
7252	case maple_dense:
7253		pr_cont("\n");
7254		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7255			if (min + i > max)
7256				pr_cont("OUT OF RANGE: ");
7257			mt_dump_entry(mt_slot(mt, node->slot, i),
7258					min + i, min + i, depth, format);
7259		}
7260		break;
7261	case maple_leaf_64:
7262	case maple_range_64:
7263		mt_dump_range64(mt, entry, min, max, depth, format);
7264		break;
7265	case maple_arange_64:
7266		mt_dump_arange64(mt, entry, min, max, depth, format);
7267		break;
7268
7269	default:
7270		pr_cont(" UNKNOWN TYPE\n");
7271	}
7272}
7273
7274void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7275{
7276	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7277
7278	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
7279		 mt, mt->ma_flags, mt_height(mt), entry);
7280	if (!xa_is_node(entry))
7281		mt_dump_entry(entry, 0, 0, 0, format);
7282	else if (entry)
7283		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7284}
7285EXPORT_SYMBOL_GPL(mt_dump);
7286
7287/*
7288 * Calculate the maximum gap in a node and check if that's what is reported in
7289 * the parent (unless root).
7290 */
7291static void mas_validate_gaps(struct ma_state *mas)
7292{
7293	struct maple_enode *mte = mas->node;
7294	struct maple_node *p_mn, *node = mte_to_node(mte);
7295	enum maple_type mt = mte_node_type(mas->node);
7296	unsigned long gap = 0, max_gap = 0;
7297	unsigned long p_end, p_start = mas->min;
7298	unsigned char p_slot, offset;
7299	unsigned long *gaps = NULL;
7300	unsigned long *pivots = ma_pivots(node, mt);
7301	unsigned int i;
7302
7303	if (ma_is_dense(mt)) {
7304		for (i = 0; i < mt_slot_count(mte); i++) {
7305			if (mas_get_slot(mas, i)) {
7306				if (gap > max_gap)
7307					max_gap = gap;
7308				gap = 0;
7309				continue;
7310			}
7311			gap++;
7312		}
7313		goto counted;
7314	}
7315
7316	gaps = ma_gaps(node, mt);
7317	for (i = 0; i < mt_slot_count(mte); i++) {
7318		p_end = mas_safe_pivot(mas, pivots, i, mt);
7319
7320		if (!gaps) {
7321			if (!mas_get_slot(mas, i))
7322				gap = p_end - p_start + 1;
7323		} else {
7324			void *entry = mas_get_slot(mas, i);
7325
7326			gap = gaps[i];
7327			MT_BUG_ON(mas->tree, !entry);
7328
7329			if (gap > p_end - p_start + 1) {
7330				pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7331				       mas_mn(mas), i, gap, p_end, p_start,
7332				       p_end - p_start + 1);
7333				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7334			}
7335		}
7336
7337		if (gap > max_gap)
7338			max_gap = gap;
7339
7340		p_start = p_end + 1;
7341		if (p_end >= mas->max)
7342			break;
7343	}
7344
7345counted:
7346	if (mt == maple_arange_64) {
7347		MT_BUG_ON(mas->tree, !gaps);
7348		offset = ma_meta_gap(node);
7349		if (offset > i) {
7350			pr_err("gap offset %p[%u] is invalid\n", node, offset);
7351			MT_BUG_ON(mas->tree, 1);
7352		}
7353
7354		if (gaps[offset] != max_gap) {
7355			pr_err("gap %p[%u] is not the largest gap %lu\n",
7356			       node, offset, max_gap);
7357			MT_BUG_ON(mas->tree, 1);
7358		}
7359
7360		for (i++ ; i < mt_slot_count(mte); i++) {
7361			if (gaps[i] != 0) {
7362				pr_err("gap %p[%u] beyond node limit != 0\n",
7363				       node, i);
7364				MT_BUG_ON(mas->tree, 1);
7365			}
7366		}
7367	}
7368
7369	if (mte_is_root(mte))
7370		return;
7371
7372	p_slot = mte_parent_slot(mas->node);
7373	p_mn = mte_parent(mte);
7374	MT_BUG_ON(mas->tree, max_gap > mas->max);
7375	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7376		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7377		mt_dump(mas->tree, mt_dump_hex);
7378		MT_BUG_ON(mas->tree, 1);
7379	}
7380}
7381
7382static void mas_validate_parent_slot(struct ma_state *mas)
7383{
7384	struct maple_node *parent;
7385	struct maple_enode *node;
7386	enum maple_type p_type;
7387	unsigned char p_slot;
7388	void __rcu **slots;
7389	int i;
7390
7391	if (mte_is_root(mas->node))
7392		return;
7393
7394	p_slot = mte_parent_slot(mas->node);
7395	p_type = mas_parent_type(mas, mas->node);
7396	parent = mte_parent(mas->node);
7397	slots = ma_slots(parent, p_type);
7398	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7399
7400	/* Check prev/next parent slot for duplicate node entry */
7401
7402	for (i = 0; i < mt_slots[p_type]; i++) {
7403		node = mas_slot(mas, slots, i);
7404		if (i == p_slot) {
7405			if (node != mas->node)
7406				pr_err("parent %p[%u] does not have %p\n",
7407					parent, i, mas_mn(mas));
7408			MT_BUG_ON(mas->tree, node != mas->node);
7409		} else if (node == mas->node) {
7410			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7411			       mas_mn(mas), parent, i, p_slot);
7412			MT_BUG_ON(mas->tree, node == mas->node);
7413		}
7414	}
7415}
7416
7417static void mas_validate_child_slot(struct ma_state *mas)
7418{
7419	enum maple_type type = mte_node_type(mas->node);
7420	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7421	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7422	struct maple_enode *child;
7423	unsigned char i;
7424
7425	if (mte_is_leaf(mas->node))
7426		return;
7427
7428	for (i = 0; i < mt_slots[type]; i++) {
7429		child = mas_slot(mas, slots, i);
7430
7431		if (!child) {
7432			pr_err("Non-leaf node lacks child at %p[%u]\n",
7433			       mas_mn(mas), i);
7434			MT_BUG_ON(mas->tree, 1);
7435		}
7436
7437		if (mte_parent_slot(child) != i) {
7438			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7439			       mas_mn(mas), i, mte_to_node(child),
7440			       mte_parent_slot(child));
7441			MT_BUG_ON(mas->tree, 1);
7442		}
7443
7444		if (mte_parent(child) != mte_to_node(mas->node)) {
7445			pr_err("child %p has parent %p not %p\n",
7446			       mte_to_node(child), mte_parent(child),
7447			       mte_to_node(mas->node));
7448			MT_BUG_ON(mas->tree, 1);
7449		}
7450
7451		if (i < mt_pivots[type] && pivots[i] == mas->max)
7452			break;
7453	}
7454}
7455
7456/*
7457 * Validate all pivots are within mas->min and mas->max, check metadata ends
7458 * where the maximum ends and ensure there is no slots or pivots set outside of
7459 * the end of the data.
7460 */
7461static void mas_validate_limits(struct ma_state *mas)
7462{
7463	int i;
7464	unsigned long prev_piv = 0;
7465	enum maple_type type = mte_node_type(mas->node);
7466	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7467	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7468
7469	for (i = 0; i < mt_slots[type]; i++) {
7470		unsigned long piv;
7471
7472		piv = mas_safe_pivot(mas, pivots, i, type);
7473
7474		if (!piv && (i != 0)) {
7475			pr_err("Missing node limit pivot at %p[%u]",
7476			       mas_mn(mas), i);
7477			MAS_WARN_ON(mas, 1);
7478		}
7479
7480		if (prev_piv > piv) {
7481			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7482				mas_mn(mas), i, piv, prev_piv);
7483			MAS_WARN_ON(mas, piv < prev_piv);
7484		}
7485
7486		if (piv < mas->min) {
7487			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7488				piv, mas->min);
7489			MAS_WARN_ON(mas, piv < mas->min);
7490		}
7491		if (piv > mas->max) {
7492			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7493				piv, mas->max);
7494			MAS_WARN_ON(mas, piv > mas->max);
7495		}
7496		prev_piv = piv;
7497		if (piv == mas->max)
7498			break;
7499	}
7500
7501	if (mas_data_end(mas) != i) {
7502		pr_err("node%p: data_end %u != the last slot offset %u\n",
7503		       mas_mn(mas), mas_data_end(mas), i);
7504		MT_BUG_ON(mas->tree, 1);
7505	}
7506
7507	for (i += 1; i < mt_slots[type]; i++) {
7508		void *entry = mas_slot(mas, slots, i);
7509
7510		if (entry && (i != mt_slots[type] - 1)) {
7511			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7512			       i, entry);
7513			MT_BUG_ON(mas->tree, entry != NULL);
7514		}
7515
7516		if (i < mt_pivots[type]) {
7517			unsigned long piv = pivots[i];
7518
7519			if (!piv)
7520				continue;
7521
7522			pr_err("%p[%u] should not have piv %lu\n",
7523			       mas_mn(mas), i, piv);
7524			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7525		}
7526	}
7527}
7528
7529static void mt_validate_nulls(struct maple_tree *mt)
7530{
7531	void *entry, *last = (void *)1;
7532	unsigned char offset = 0;
7533	void __rcu **slots;
7534	MA_STATE(mas, mt, 0, 0);
7535
7536	mas_start(&mas);
7537	if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7538		return;
7539
7540	while (!mte_is_leaf(mas.node))
7541		mas_descend(&mas);
7542
7543	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7544	do {
7545		entry = mas_slot(&mas, slots, offset);
7546		if (!last && !entry) {
7547			pr_err("Sequential nulls end at %p[%u]\n",
7548				mas_mn(&mas), offset);
7549		}
7550		MT_BUG_ON(mt, !last && !entry);
7551		last = entry;
7552		if (offset == mas_data_end(&mas)) {
7553			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7554			if (mas_is_overflow(&mas))
7555				return;
7556			offset = 0;
7557			slots = ma_slots(mte_to_node(mas.node),
7558					 mte_node_type(mas.node));
7559		} else {
7560			offset++;
7561		}
7562
7563	} while (!mas_is_overflow(&mas));
7564}
7565
7566/*
7567 * validate a maple tree by checking:
7568 * 1. The limits (pivots are within mas->min to mas->max)
7569 * 2. The gap is correctly set in the parents
7570 */
7571void mt_validate(struct maple_tree *mt)
7572{
7573	unsigned char end;
7574
7575	MA_STATE(mas, mt, 0, 0);
7576	rcu_read_lock();
7577	mas_start(&mas);
7578	if (!mas_is_active(&mas))
7579		goto done;
7580
7581	while (!mte_is_leaf(mas.node))
7582		mas_descend(&mas);
7583
7584	while (!mas_is_overflow(&mas)) {
7585		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7586		end = mas_data_end(&mas);
7587		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7588				(mas.max != ULONG_MAX))) {
7589			pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7590		}
7591
7592		mas_validate_parent_slot(&mas);
7593		mas_validate_limits(&mas);
7594		mas_validate_child_slot(&mas);
7595		if (mt_is_alloc(mt))
7596			mas_validate_gaps(&mas);
7597		mas_dfs_postorder(&mas, ULONG_MAX);
7598	}
7599	mt_validate_nulls(mt);
7600done:
7601	rcu_read_unlock();
7602
7603}
7604EXPORT_SYMBOL_GPL(mt_validate);
7605
7606void mas_dump(const struct ma_state *mas)
7607{
7608	pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7609	switch (mas->status) {
7610	case ma_active:
7611		pr_err("(ma_active)");
7612		break;
7613	case ma_none:
7614		pr_err("(ma_none)");
7615		break;
7616	case ma_root:
7617		pr_err("(ma_root)");
7618		break;
7619	case ma_start:
7620		pr_err("(ma_start) ");
7621		break;
7622	case ma_pause:
7623		pr_err("(ma_pause) ");
7624		break;
7625	case ma_overflow:
7626		pr_err("(ma_overflow) ");
7627		break;
7628	case ma_underflow:
7629		pr_err("(ma_underflow) ");
7630		break;
7631	case ma_error:
7632		pr_err("(ma_error) ");
7633		break;
7634	}
7635
7636	pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7637	       mas->index, mas->last);
7638	pr_err("     min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7639	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7640	if (mas->index > mas->last)
7641		pr_err("Check index & last\n");
7642}
7643EXPORT_SYMBOL_GPL(mas_dump);
7644
7645void mas_wr_dump(const struct ma_wr_state *wr_mas)
7646{
7647	pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7648	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7649	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7650	       wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7651	       wr_mas->end_piv);
7652}
7653EXPORT_SYMBOL_GPL(mas_wr_dump);
7654
7655#endif /* CONFIG_DEBUG_MAPLE_TREE */
7656