1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/bitmap.h>
3#include <linux/bug.h>
4#include <linux/export.h>
5#include <linux/idr.h>
6#include <linux/slab.h>
7#include <linux/spinlock.h>
8#include <linux/xarray.h>
9
10/**
11 * idr_alloc_u32() - Allocate an ID.
12 * @idr: IDR handle.
13 * @ptr: Pointer to be associated with the new ID.
14 * @nextid: Pointer to an ID.
15 * @max: The maximum ID to allocate (inclusive).
16 * @gfp: Memory allocation flags.
17 *
18 * Allocates an unused ID in the range specified by @nextid and @max.
19 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
20 * is exclusive.  The new ID is assigned to @nextid before the pointer
21 * is inserted into the IDR, so if @nextid points into the object pointed
22 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
23 *
24 * The caller should provide their own locking to ensure that two
25 * concurrent modifications to the IDR are not possible.  Read-only
26 * accesses to the IDR may be done under the RCU read lock or may
27 * exclude simultaneous writers.
28 *
29 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
30 * or -ENOSPC if no free IDs could be found.  If an error occurred,
31 * @nextid is unchanged.
32 */
33int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
34			unsigned long max, gfp_t gfp)
35{
36	struct radix_tree_iter iter;
37	void __rcu **slot;
38	unsigned int base = idr->idr_base;
39	unsigned int id = *nextid;
40
41	if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
42		idr->idr_rt.xa_flags |= IDR_RT_MARKER;
43
44	id = (id < base) ? 0 : id - base;
45	radix_tree_iter_init(&iter, id);
46	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
47	if (IS_ERR(slot))
48		return PTR_ERR(slot);
49
50	*nextid = iter.index + base;
51	/* there is a memory barrier inside radix_tree_iter_replace() */
52	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
53	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
54
55	return 0;
56}
57EXPORT_SYMBOL_GPL(idr_alloc_u32);
58
59/**
60 * idr_alloc() - Allocate an ID.
61 * @idr: IDR handle.
62 * @ptr: Pointer to be associated with the new ID.
63 * @start: The minimum ID (inclusive).
64 * @end: The maximum ID (exclusive).
65 * @gfp: Memory allocation flags.
66 *
67 * Allocates an unused ID in the range specified by @start and @end.  If
68 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
69 * callers to use @start + N as @end as long as N is within integer range.
70 *
71 * The caller should provide their own locking to ensure that two
72 * concurrent modifications to the IDR are not possible.  Read-only
73 * accesses to the IDR may be done under the RCU read lock or may
74 * exclude simultaneous writers.
75 *
76 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
77 * or -ENOSPC if no free IDs could be found.
78 */
79int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
80{
81	u32 id = start;
82	int ret;
83
84	if (WARN_ON_ONCE(start < 0))
85		return -EINVAL;
86
87	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
88	if (ret)
89		return ret;
90
91	return id;
92}
93EXPORT_SYMBOL_GPL(idr_alloc);
94
95/**
96 * idr_alloc_cyclic() - Allocate an ID cyclically.
97 * @idr: IDR handle.
98 * @ptr: Pointer to be associated with the new ID.
99 * @start: The minimum ID (inclusive).
100 * @end: The maximum ID (exclusive).
101 * @gfp: Memory allocation flags.
102 *
103 * Allocates an unused ID in the range specified by @start and @end.  If
104 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
105 * callers to use @start + N as @end as long as N is within integer range.
106 * The search for an unused ID will start at the last ID allocated and will
107 * wrap around to @start if no free IDs are found before reaching @end.
108 *
109 * The caller should provide their own locking to ensure that two
110 * concurrent modifications to the IDR are not possible.  Read-only
111 * accesses to the IDR may be done under the RCU read lock or may
112 * exclude simultaneous writers.
113 *
114 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
115 * or -ENOSPC if no free IDs could be found.
116 */
117int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
118{
119	u32 id = idr->idr_next;
120	int err, max = end > 0 ? end - 1 : INT_MAX;
121
122	if ((int)id < start)
123		id = start;
124
125	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
126	if ((err == -ENOSPC) && (id > start)) {
127		id = start;
128		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129	}
130	if (err)
131		return err;
132
133	idr->idr_next = id + 1;
134	return id;
135}
136EXPORT_SYMBOL(idr_alloc_cyclic);
137
138/**
139 * idr_remove() - Remove an ID from the IDR.
140 * @idr: IDR handle.
141 * @id: Pointer ID.
142 *
143 * Removes this ID from the IDR.  If the ID was not previously in the IDR,
144 * this function returns %NULL.
145 *
146 * Since this function modifies the IDR, the caller should provide their
147 * own locking to ensure that concurrent modification of the same IDR is
148 * not possible.
149 *
150 * Return: The pointer formerly associated with this ID.
151 */
152void *idr_remove(struct idr *idr, unsigned long id)
153{
154	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
155}
156EXPORT_SYMBOL_GPL(idr_remove);
157
158/**
159 * idr_find() - Return pointer for given ID.
160 * @idr: IDR handle.
161 * @id: Pointer ID.
162 *
163 * Looks up the pointer associated with this ID.  A %NULL pointer may
164 * indicate that @id is not allocated or that the %NULL pointer was
165 * associated with this ID.
166 *
167 * This function can be called under rcu_read_lock(), given that the leaf
168 * pointers lifetimes are correctly managed.
169 *
170 * Return: The pointer associated with this ID.
171 */
172void *idr_find(const struct idr *idr, unsigned long id)
173{
174	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
175}
176EXPORT_SYMBOL_GPL(idr_find);
177
178/**
179 * idr_for_each() - Iterate through all stored pointers.
180 * @idr: IDR handle.
181 * @fn: Function to be called for each pointer.
182 * @data: Data passed to callback function.
183 *
184 * The callback function will be called for each entry in @idr, passing
185 * the ID, the entry and @data.
186 *
187 * If @fn returns anything other than %0, the iteration stops and that
188 * value is returned from this function.
189 *
190 * idr_for_each() can be called concurrently with idr_alloc() and
191 * idr_remove() if protected by RCU.  Newly added entries may not be
192 * seen and deleted entries may be seen, but adding and removing entries
193 * will not cause other entries to be skipped, nor spurious ones to be seen.
194 */
195int idr_for_each(const struct idr *idr,
196		int (*fn)(int id, void *p, void *data), void *data)
197{
198	struct radix_tree_iter iter;
199	void __rcu **slot;
200	int base = idr->idr_base;
201
202	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
203		int ret;
204		unsigned long id = iter.index + base;
205
206		if (WARN_ON_ONCE(id > INT_MAX))
207			break;
208		ret = fn(id, rcu_dereference_raw(*slot), data);
209		if (ret)
210			return ret;
211	}
212
213	return 0;
214}
215EXPORT_SYMBOL(idr_for_each);
216
217/**
218 * idr_get_next_ul() - Find next populated entry.
219 * @idr: IDR handle.
220 * @nextid: Pointer to an ID.
221 *
222 * Returns the next populated entry in the tree with an ID greater than
223 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
224 * to the ID of the found value.  To use in a loop, the value pointed to by
225 * nextid must be incremented by the user.
226 */
227void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
228{
229	struct radix_tree_iter iter;
230	void __rcu **slot;
231	void *entry = NULL;
232	unsigned long base = idr->idr_base;
233	unsigned long id = *nextid;
234
235	id = (id < base) ? 0 : id - base;
236	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
237		entry = rcu_dereference_raw(*slot);
238		if (!entry)
239			continue;
240		if (!xa_is_internal(entry))
241			break;
242		if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
243			break;
244		slot = radix_tree_iter_retry(&iter);
245	}
246	if (!slot)
247		return NULL;
248
249	*nextid = iter.index + base;
250	return entry;
251}
252EXPORT_SYMBOL(idr_get_next_ul);
253
254/**
255 * idr_get_next() - Find next populated entry.
256 * @idr: IDR handle.
257 * @nextid: Pointer to an ID.
258 *
259 * Returns the next populated entry in the tree with an ID greater than
260 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
261 * to the ID of the found value.  To use in a loop, the value pointed to by
262 * nextid must be incremented by the user.
263 */
264void *idr_get_next(struct idr *idr, int *nextid)
265{
266	unsigned long id = *nextid;
267	void *entry = idr_get_next_ul(idr, &id);
268
269	if (WARN_ON_ONCE(id > INT_MAX))
270		return NULL;
271	*nextid = id;
272	return entry;
273}
274EXPORT_SYMBOL(idr_get_next);
275
276/**
277 * idr_replace() - replace pointer for given ID.
278 * @idr: IDR handle.
279 * @ptr: New pointer to associate with the ID.
280 * @id: ID to change.
281 *
282 * Replace the pointer registered with an ID and return the old value.
283 * This function can be called under the RCU read lock concurrently with
284 * idr_alloc() and idr_remove() (as long as the ID being removed is not
285 * the one being replaced!).
286 *
287 * Returns: the old value on success.  %-ENOENT indicates that @id was not
288 * found.  %-EINVAL indicates that @ptr was not valid.
289 */
290void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
291{
292	struct radix_tree_node *node;
293	void __rcu **slot = NULL;
294	void *entry;
295
296	id -= idr->idr_base;
297
298	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
299	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
300		return ERR_PTR(-ENOENT);
301
302	__radix_tree_replace(&idr->idr_rt, node, slot, ptr);
303
304	return entry;
305}
306EXPORT_SYMBOL(idr_replace);
307
308/**
309 * DOC: IDA description
310 *
311 * The IDA is an ID allocator which does not provide the ability to
312 * associate an ID with a pointer.  As such, it only needs to store one
313 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
314 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
315 * then initialise it using ida_init()).  To allocate a new ID, call
316 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
317 * To free an ID, call ida_free().
318 *
319 * ida_destroy() can be used to dispose of an IDA without needing to
320 * free the individual IDs in it.  You can use ida_is_empty() to find
321 * out whether the IDA has any IDs currently allocated.
322 *
323 * The IDA handles its own locking.  It is safe to call any of the IDA
324 * functions without synchronisation in your code.
325 *
326 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
327 * limitation, it should be quite straightforward to raise the maximum.
328 */
329
330/*
331 * Developer's notes:
332 *
333 * The IDA uses the functionality provided by the XArray to store bitmaps in
334 * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap
335 * have been set.
336 *
337 * I considered telling the XArray that each slot is an order-10 node
338 * and indexing by bit number, but the XArray can't allow a single multi-index
339 * entry in the head, which would significantly increase memory consumption
340 * for the IDA.  So instead we divide the index by the number of bits in the
341 * leaf bitmap before doing a radix tree lookup.
342 *
343 * As an optimisation, if there are only a few low bits set in any given
344 * leaf, instead of allocating a 128-byte bitmap, we store the bits
345 * as a value entry.  Value entries never have the XA_FREE_MARK cleared
346 * because we can always convert them into a bitmap entry.
347 *
348 * It would be possible to optimise further; once we've run out of a
349 * single 128-byte bitmap, we currently switch to a 576-byte node, put
350 * the 128-byte bitmap in the first entry and then start allocating extra
351 * 128-byte entries.  We could instead use the 512 bytes of the node's
352 * data as a bitmap before moving to that scheme.  I do not believe this
353 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
354 * users of the IDA and almost none of them use more than 1024 entries.
355 * Those that do use more than the 8192 IDs that the 512 bytes would
356 * provide.
357 *
358 * The IDA always uses a lock to alloc/free.  If we add a 'test_bit'
359 * equivalent, it will still need locking.  Going to RCU lookup would require
360 * using RCU to free bitmaps, and that's not trivial without embedding an
361 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
362 * bitmap, which is excessive.
363 */
364
365/**
366 * ida_alloc_range() - Allocate an unused ID.
367 * @ida: IDA handle.
368 * @min: Lowest ID to allocate.
369 * @max: Highest ID to allocate.
370 * @gfp: Memory allocation flags.
371 *
372 * Allocate an ID between @min and @max, inclusive.  The allocated ID will
373 * not exceed %INT_MAX, even if @max is larger.
374 *
375 * Context: Any context. It is safe to call this function without
376 * locking in your code.
377 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
378 * or %-ENOSPC if there are no free IDs.
379 */
380int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
381			gfp_t gfp)
382{
383	XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
384	unsigned bit = min % IDA_BITMAP_BITS;
385	unsigned long flags;
386	struct ida_bitmap *bitmap, *alloc = NULL;
387
388	if ((int)min < 0)
389		return -ENOSPC;
390
391	if ((int)max < 0)
392		max = INT_MAX;
393
394retry:
395	xas_lock_irqsave(&xas, flags);
396next:
397	bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
398	if (xas.xa_index > min / IDA_BITMAP_BITS)
399		bit = 0;
400	if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
401		goto nospc;
402
403	if (xa_is_value(bitmap)) {
404		unsigned long tmp = xa_to_value(bitmap);
405
406		if (bit < BITS_PER_XA_VALUE) {
407			bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
408			if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
409				goto nospc;
410			if (bit < BITS_PER_XA_VALUE) {
411				tmp |= 1UL << bit;
412				xas_store(&xas, xa_mk_value(tmp));
413				goto out;
414			}
415		}
416		bitmap = alloc;
417		if (!bitmap)
418			bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
419		if (!bitmap)
420			goto alloc;
421		bitmap->bitmap[0] = tmp;
422		xas_store(&xas, bitmap);
423		if (xas_error(&xas)) {
424			bitmap->bitmap[0] = 0;
425			goto out;
426		}
427	}
428
429	if (bitmap) {
430		bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
431		if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
432			goto nospc;
433		if (bit == IDA_BITMAP_BITS)
434			goto next;
435
436		__set_bit(bit, bitmap->bitmap);
437		if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
438			xas_clear_mark(&xas, XA_FREE_MARK);
439	} else {
440		if (bit < BITS_PER_XA_VALUE) {
441			bitmap = xa_mk_value(1UL << bit);
442		} else {
443			bitmap = alloc;
444			if (!bitmap)
445				bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
446			if (!bitmap)
447				goto alloc;
448			__set_bit(bit, bitmap->bitmap);
449		}
450		xas_store(&xas, bitmap);
451	}
452out:
453	xas_unlock_irqrestore(&xas, flags);
454	if (xas_nomem(&xas, gfp)) {
455		xas.xa_index = min / IDA_BITMAP_BITS;
456		bit = min % IDA_BITMAP_BITS;
457		goto retry;
458	}
459	if (bitmap != alloc)
460		kfree(alloc);
461	if (xas_error(&xas))
462		return xas_error(&xas);
463	return xas.xa_index * IDA_BITMAP_BITS + bit;
464alloc:
465	xas_unlock_irqrestore(&xas, flags);
466	alloc = kzalloc(sizeof(*bitmap), gfp);
467	if (!alloc)
468		return -ENOMEM;
469	xas_set(&xas, min / IDA_BITMAP_BITS);
470	bit = min % IDA_BITMAP_BITS;
471	goto retry;
472nospc:
473	xas_unlock_irqrestore(&xas, flags);
474	kfree(alloc);
475	return -ENOSPC;
476}
477EXPORT_SYMBOL(ida_alloc_range);
478
479/**
480 * ida_free() - Release an allocated ID.
481 * @ida: IDA handle.
482 * @id: Previously allocated ID.
483 *
484 * Context: Any context. It is safe to call this function without
485 * locking in your code.
486 */
487void ida_free(struct ida *ida, unsigned int id)
488{
489	XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
490	unsigned bit = id % IDA_BITMAP_BITS;
491	struct ida_bitmap *bitmap;
492	unsigned long flags;
493
494	if ((int)id < 0)
495		return;
496
497	xas_lock_irqsave(&xas, flags);
498	bitmap = xas_load(&xas);
499
500	if (xa_is_value(bitmap)) {
501		unsigned long v = xa_to_value(bitmap);
502		if (bit >= BITS_PER_XA_VALUE)
503			goto err;
504		if (!(v & (1UL << bit)))
505			goto err;
506		v &= ~(1UL << bit);
507		if (!v)
508			goto delete;
509		xas_store(&xas, xa_mk_value(v));
510	} else {
511		if (!bitmap || !test_bit(bit, bitmap->bitmap))
512			goto err;
513		__clear_bit(bit, bitmap->bitmap);
514		xas_set_mark(&xas, XA_FREE_MARK);
515		if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
516			kfree(bitmap);
517delete:
518			xas_store(&xas, NULL);
519		}
520	}
521	xas_unlock_irqrestore(&xas, flags);
522	return;
523 err:
524	xas_unlock_irqrestore(&xas, flags);
525	WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
526}
527EXPORT_SYMBOL(ida_free);
528
529/**
530 * ida_destroy() - Free all IDs.
531 * @ida: IDA handle.
532 *
533 * Calling this function frees all IDs and releases all resources used
534 * by an IDA.  When this call returns, the IDA is empty and can be reused
535 * or freed.  If the IDA is already empty, there is no need to call this
536 * function.
537 *
538 * Context: Any context. It is safe to call this function without
539 * locking in your code.
540 */
541void ida_destroy(struct ida *ida)
542{
543	XA_STATE(xas, &ida->xa, 0);
544	struct ida_bitmap *bitmap;
545	unsigned long flags;
546
547	xas_lock_irqsave(&xas, flags);
548	xas_for_each(&xas, bitmap, ULONG_MAX) {
549		if (!xa_is_value(bitmap))
550			kfree(bitmap);
551		xas_store(&xas, NULL);
552	}
553	xas_unlock_irqrestore(&xas, flags);
554}
555EXPORT_SYMBOL(ida_destroy);
556
557#ifndef __KERNEL__
558extern void xa_dump_index(unsigned long index, unsigned int shift);
559#define IDA_CHUNK_SHIFT		ilog2(IDA_BITMAP_BITS)
560
561static void ida_dump_entry(void *entry, unsigned long index)
562{
563	unsigned long i;
564
565	if (!entry)
566		return;
567
568	if (xa_is_node(entry)) {
569		struct xa_node *node = xa_to_node(entry);
570		unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
571			XA_CHUNK_SHIFT;
572
573		xa_dump_index(index * IDA_BITMAP_BITS, shift);
574		xa_dump_node(node);
575		for (i = 0; i < XA_CHUNK_SIZE; i++)
576			ida_dump_entry(node->slots[i],
577					index | (i << node->shift));
578	} else if (xa_is_value(entry)) {
579		xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
580		pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
581	} else {
582		struct ida_bitmap *bitmap = entry;
583
584		xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
585		pr_cont("bitmap: %p data", bitmap);
586		for (i = 0; i < IDA_BITMAP_LONGS; i++)
587			pr_cont(" %lx", bitmap->bitmap[i]);
588		pr_cont("\n");
589	}
590}
591
592static void ida_dump(struct ida *ida)
593{
594	struct xarray *xa = &ida->xa;
595	pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
596				xa->xa_flags >> ROOT_TAG_SHIFT);
597	ida_dump_entry(xa->xa_head, 0);
598}
599#endif
600