1// SPDX-License-Identifier: GPL-2.0-or-later
2/* bit search implementation
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 *
7 * Copyright (C) 2008 IBM Corporation
8 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
9 * (Inspired by David Howell's find_next_bit implementation)
10 *
11 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
12 * size and improve performance, 2015.
13 */
14
15#include <linux/bitops.h>
16#include <linux/bitmap.h>
17#include <linux/export.h>
18#include <linux/math.h>
19#include <linux/minmax.h>
20#include <linux/swab.h>
21
22/*
23 * Common helper for find_bit() function family
24 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
25 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
26 * @size: The bitmap size in bits
27 */
28#define FIND_FIRST_BIT(FETCH, MUNGE, size)					\
29({										\
30	unsigned long idx, val, sz = (size);					\
31										\
32	for (idx = 0; idx * BITS_PER_LONG < sz; idx++) {			\
33		val = (FETCH);							\
34		if (val) {							\
35			sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(val)), sz);	\
36			break;							\
37		}								\
38	}									\
39										\
40	sz;									\
41})
42
43/*
44 * Common helper for find_next_bit() function family
45 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
46 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
47 * @size: The bitmap size in bits
48 * @start: The bitnumber to start searching at
49 */
50#define FIND_NEXT_BIT(FETCH, MUNGE, size, start)				\
51({										\
52	unsigned long mask, idx, tmp, sz = (size), __start = (start);		\
53										\
54	if (unlikely(__start >= sz))						\
55		goto out;							\
56										\
57	mask = MUNGE(BITMAP_FIRST_WORD_MASK(__start));				\
58	idx = __start / BITS_PER_LONG;						\
59										\
60	for (tmp = (FETCH) & mask; !tmp; tmp = (FETCH)) {			\
61		if ((idx + 1) * BITS_PER_LONG >= sz)				\
62			goto out;						\
63		idx++;								\
64	}									\
65										\
66	sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(tmp)), sz);			\
67out:										\
68	sz;									\
69})
70
71#define FIND_NTH_BIT(FETCH, size, num)						\
72({										\
73	unsigned long sz = (size), nr = (num), idx, w, tmp;			\
74										\
75	for (idx = 0; (idx + 1) * BITS_PER_LONG <= sz; idx++) {			\
76		if (idx * BITS_PER_LONG + nr >= sz)				\
77			goto out;						\
78										\
79		tmp = (FETCH);							\
80		w = hweight_long(tmp);						\
81		if (w > nr)							\
82			goto found;						\
83										\
84		nr -= w;							\
85	}									\
86										\
87	if (sz % BITS_PER_LONG)							\
88		tmp = (FETCH) & BITMAP_LAST_WORD_MASK(sz);			\
89found:										\
90	sz = min(idx * BITS_PER_LONG + fns(tmp, nr), sz);			\
91out:										\
92	sz;									\
93})
94
95#ifndef find_first_bit
96/*
97 * Find the first set bit in a memory region.
98 */
99unsigned long _find_first_bit(const unsigned long *addr, unsigned long size)
100{
101	return FIND_FIRST_BIT(addr[idx], /* nop */, size);
102}
103EXPORT_SYMBOL(_find_first_bit);
104#endif
105
106#ifndef find_first_and_bit
107/*
108 * Find the first set bit in two memory regions.
109 */
110unsigned long _find_first_and_bit(const unsigned long *addr1,
111				  const unsigned long *addr2,
112				  unsigned long size)
113{
114	return FIND_FIRST_BIT(addr1[idx] & addr2[idx], /* nop */, size);
115}
116EXPORT_SYMBOL(_find_first_and_bit);
117#endif
118
119#ifndef find_first_zero_bit
120/*
121 * Find the first cleared bit in a memory region.
122 */
123unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size)
124{
125	return FIND_FIRST_BIT(~addr[idx], /* nop */, size);
126}
127EXPORT_SYMBOL(_find_first_zero_bit);
128#endif
129
130#ifndef find_next_bit
131unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start)
132{
133	return FIND_NEXT_BIT(addr[idx], /* nop */, nbits, start);
134}
135EXPORT_SYMBOL(_find_next_bit);
136#endif
137
138unsigned long __find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n)
139{
140	return FIND_NTH_BIT(addr[idx], size, n);
141}
142EXPORT_SYMBOL(__find_nth_bit);
143
144unsigned long __find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2,
145				 unsigned long size, unsigned long n)
146{
147	return FIND_NTH_BIT(addr1[idx] & addr2[idx], size, n);
148}
149EXPORT_SYMBOL(__find_nth_and_bit);
150
151unsigned long __find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
152				 unsigned long size, unsigned long n)
153{
154	return FIND_NTH_BIT(addr1[idx] & ~addr2[idx], size, n);
155}
156EXPORT_SYMBOL(__find_nth_andnot_bit);
157
158unsigned long __find_nth_and_andnot_bit(const unsigned long *addr1,
159					const unsigned long *addr2,
160					const unsigned long *addr3,
161					unsigned long size, unsigned long n)
162{
163	return FIND_NTH_BIT(addr1[idx] & addr2[idx] & ~addr3[idx], size, n);
164}
165EXPORT_SYMBOL(__find_nth_and_andnot_bit);
166
167#ifndef find_next_and_bit
168unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2,
169					unsigned long nbits, unsigned long start)
170{
171	return FIND_NEXT_BIT(addr1[idx] & addr2[idx], /* nop */, nbits, start);
172}
173EXPORT_SYMBOL(_find_next_and_bit);
174#endif
175
176#ifndef find_next_andnot_bit
177unsigned long _find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
178					unsigned long nbits, unsigned long start)
179{
180	return FIND_NEXT_BIT(addr1[idx] & ~addr2[idx], /* nop */, nbits, start);
181}
182EXPORT_SYMBOL(_find_next_andnot_bit);
183#endif
184
185#ifndef find_next_or_bit
186unsigned long _find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2,
187					unsigned long nbits, unsigned long start)
188{
189	return FIND_NEXT_BIT(addr1[idx] | addr2[idx], /* nop */, nbits, start);
190}
191EXPORT_SYMBOL(_find_next_or_bit);
192#endif
193
194#ifndef find_next_zero_bit
195unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits,
196					 unsigned long start)
197{
198	return FIND_NEXT_BIT(~addr[idx], /* nop */, nbits, start);
199}
200EXPORT_SYMBOL(_find_next_zero_bit);
201#endif
202
203#ifndef find_last_bit
204unsigned long _find_last_bit(const unsigned long *addr, unsigned long size)
205{
206	if (size) {
207		unsigned long val = BITMAP_LAST_WORD_MASK(size);
208		unsigned long idx = (size-1) / BITS_PER_LONG;
209
210		do {
211			val &= addr[idx];
212			if (val)
213				return idx * BITS_PER_LONG + __fls(val);
214
215			val = ~0ul;
216		} while (idx--);
217	}
218	return size;
219}
220EXPORT_SYMBOL(_find_last_bit);
221#endif
222
223unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr,
224			       unsigned long size, unsigned long offset)
225{
226	offset = find_next_bit(addr, size, offset);
227	if (offset == size)
228		return size;
229
230	offset = round_down(offset, 8);
231	*clump = bitmap_get_value8(addr, offset);
232
233	return offset;
234}
235EXPORT_SYMBOL(find_next_clump8);
236
237#ifdef __BIG_ENDIAN
238
239#ifndef find_first_zero_bit_le
240/*
241 * Find the first cleared bit in an LE memory region.
242 */
243unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size)
244{
245	return FIND_FIRST_BIT(~addr[idx], swab, size);
246}
247EXPORT_SYMBOL(_find_first_zero_bit_le);
248
249#endif
250
251#ifndef find_next_zero_bit_le
252unsigned long _find_next_zero_bit_le(const unsigned long *addr,
253					unsigned long size, unsigned long offset)
254{
255	return FIND_NEXT_BIT(~addr[idx], swab, size, offset);
256}
257EXPORT_SYMBOL(_find_next_zero_bit_le);
258#endif
259
260#ifndef find_next_bit_le
261unsigned long _find_next_bit_le(const unsigned long *addr,
262				unsigned long size, unsigned long offset)
263{
264	return FIND_NEXT_BIT(addr[idx], swab, size, offset);
265}
266EXPORT_SYMBOL(_find_next_bit_le);
267
268#endif
269
270#endif /* __BIG_ENDIAN */
271