1/* Lzma decompressor for Linux kernel. Shamelessly snarfed
2 *from busybox 1.1.1
3 *
4 *Linux kernel adaptation
5 *Copyright (C) 2006  Alain < alain@knaff.lu >
6 *
7 *Based on small lzma deflate implementation/Small range coder
8 *implementation for lzma.
9 *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
10 *
11 *Based on LzmaDecode.c from the LZMA SDK 4.22 (https://www.7-zip.org/)
12 *Copyright (C) 1999-2005  Igor Pavlov
13 *
14 *Copyrights of the parts, see headers below.
15 *
16 *
17 *This program is free software; you can redistribute it and/or
18 *modify it under the terms of the GNU Lesser General Public
19 *License as published by the Free Software Foundation; either
20 *version 2.1 of the License, or (at your option) any later version.
21 *
22 *This program is distributed in the hope that it will be useful,
23 *but WITHOUT ANY WARRANTY; without even the implied warranty of
24 *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25 *Lesser General Public License for more details.
26 *
27 *You should have received a copy of the GNU Lesser General Public
28 *License along with this library; if not, write to the Free Software
29 *Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
30 */
31
32#ifdef STATIC
33#define PREBOOT
34#else
35#include <linux/decompress/unlzma.h>
36#endif /* STATIC */
37
38#include <linux/decompress/mm.h>
39
40#define	MIN(a, b) (((a) < (b)) ? (a) : (b))
41
42static long long INIT read_int(unsigned char *ptr, int size)
43{
44	int i;
45	long long ret = 0;
46
47	for (i = 0; i < size; i++)
48		ret = (ret << 8) | ptr[size-i-1];
49	return ret;
50}
51
52#define ENDIAN_CONVERT(x) \
53  x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
54
55
56/* Small range coder implementation for lzma.
57 *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
58 *
59 *Based on LzmaDecode.c from the LZMA SDK 4.22 (https://www.7-zip.org/)
60 *Copyright (c) 1999-2005  Igor Pavlov
61 */
62
63#include <linux/compiler.h>
64
65#define LZMA_IOBUF_SIZE	0x10000
66
67struct rc {
68	long (*fill)(void*, unsigned long);
69	uint8_t *ptr;
70	uint8_t *buffer;
71	uint8_t *buffer_end;
72	long buffer_size;
73	uint32_t code;
74	uint32_t range;
75	uint32_t bound;
76	void (*error)(char *);
77};
78
79
80#define RC_TOP_BITS 24
81#define RC_MOVE_BITS 5
82#define RC_MODEL_TOTAL_BITS 11
83
84
85static long INIT nofill(void *buffer, unsigned long len)
86{
87	return -1;
88}
89
90/* Called twice: once at startup and once in rc_normalize() */
91static void INIT rc_read(struct rc *rc)
92{
93	rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
94	if (rc->buffer_size <= 0)
95		rc->error("unexpected EOF");
96	rc->ptr = rc->buffer;
97	rc->buffer_end = rc->buffer + rc->buffer_size;
98}
99
100/* Called once */
101static inline void INIT rc_init(struct rc *rc,
102				       long (*fill)(void*, unsigned long),
103				       char *buffer, long buffer_size)
104{
105	if (fill)
106		rc->fill = fill;
107	else
108		rc->fill = nofill;
109	rc->buffer = (uint8_t *)buffer;
110	rc->buffer_size = buffer_size;
111	rc->buffer_end = rc->buffer + rc->buffer_size;
112	rc->ptr = rc->buffer;
113
114	rc->code = 0;
115	rc->range = 0xFFFFFFFF;
116}
117
118static inline void INIT rc_init_code(struct rc *rc)
119{
120	int i;
121
122	for (i = 0; i < 5; i++) {
123		if (rc->ptr >= rc->buffer_end)
124			rc_read(rc);
125		rc->code = (rc->code << 8) | *rc->ptr++;
126	}
127}
128
129
130/* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
131static void INIT rc_do_normalize(struct rc *rc)
132{
133	if (rc->ptr >= rc->buffer_end)
134		rc_read(rc);
135	rc->range <<= 8;
136	rc->code = (rc->code << 8) | *rc->ptr++;
137}
138static inline void INIT rc_normalize(struct rc *rc)
139{
140	if (rc->range < (1 << RC_TOP_BITS))
141		rc_do_normalize(rc);
142}
143
144/* Called 9 times */
145/* Why rc_is_bit_0_helper exists?
146 *Because we want to always expose (rc->code < rc->bound) to optimizer
147 */
148static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
149{
150	rc_normalize(rc);
151	rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
152	return rc->bound;
153}
154static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
155{
156	uint32_t t = rc_is_bit_0_helper(rc, p);
157	return rc->code < t;
158}
159
160/* Called ~10 times, but very small, thus inlined */
161static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
162{
163	rc->range = rc->bound;
164	*p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
165}
166static inline void INIT rc_update_bit_1(struct rc *rc, uint16_t *p)
167{
168	rc->range -= rc->bound;
169	rc->code -= rc->bound;
170	*p -= *p >> RC_MOVE_BITS;
171}
172
173/* Called 4 times in unlzma loop */
174static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
175{
176	if (rc_is_bit_0(rc, p)) {
177		rc_update_bit_0(rc, p);
178		*symbol *= 2;
179		return 0;
180	} else {
181		rc_update_bit_1(rc, p);
182		*symbol = *symbol * 2 + 1;
183		return 1;
184	}
185}
186
187/* Called once */
188static inline int INIT rc_direct_bit(struct rc *rc)
189{
190	rc_normalize(rc);
191	rc->range >>= 1;
192	if (rc->code >= rc->range) {
193		rc->code -= rc->range;
194		return 1;
195	}
196	return 0;
197}
198
199/* Called twice */
200static inline void INIT
201rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
202{
203	int i = num_levels;
204
205	*symbol = 1;
206	while (i--)
207		rc_get_bit(rc, p + *symbol, symbol);
208	*symbol -= 1 << num_levels;
209}
210
211
212/*
213 * Small lzma deflate implementation.
214 * Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
215 *
216 * Based on LzmaDecode.c from the LZMA SDK 4.22 (https://www.7-zip.org/)
217 * Copyright (C) 1999-2005  Igor Pavlov
218 */
219
220
221struct lzma_header {
222	uint8_t pos;
223	uint32_t dict_size;
224	uint64_t dst_size;
225} __attribute__ ((packed)) ;
226
227
228#define LZMA_BASE_SIZE 1846
229#define LZMA_LIT_SIZE 768
230
231#define LZMA_NUM_POS_BITS_MAX 4
232
233#define LZMA_LEN_NUM_LOW_BITS 3
234#define LZMA_LEN_NUM_MID_BITS 3
235#define LZMA_LEN_NUM_HIGH_BITS 8
236
237#define LZMA_LEN_CHOICE 0
238#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
239#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
240#define LZMA_LEN_MID (LZMA_LEN_LOW \
241		      + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
242#define LZMA_LEN_HIGH (LZMA_LEN_MID \
243		       +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
244#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
245
246#define LZMA_NUM_STATES 12
247#define LZMA_NUM_LIT_STATES 7
248
249#define LZMA_START_POS_MODEL_INDEX 4
250#define LZMA_END_POS_MODEL_INDEX 14
251#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
252
253#define LZMA_NUM_POS_SLOT_BITS 6
254#define LZMA_NUM_LEN_TO_POS_STATES 4
255
256#define LZMA_NUM_ALIGN_BITS 4
257
258#define LZMA_MATCH_MIN_LEN 2
259
260#define LZMA_IS_MATCH 0
261#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
262#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
263#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
264#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
265#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
266#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
267		       + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
268#define LZMA_SPEC_POS (LZMA_POS_SLOT \
269		       +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
270#define LZMA_ALIGN (LZMA_SPEC_POS \
271		    + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
272#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
273#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
274#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
275
276
277struct writer {
278	uint8_t *buffer;
279	uint8_t previous_byte;
280	size_t buffer_pos;
281	int bufsize;
282	size_t global_pos;
283	long (*flush)(void*, unsigned long);
284	struct lzma_header *header;
285};
286
287struct cstate {
288	int state;
289	uint32_t rep0, rep1, rep2, rep3;
290};
291
292static inline size_t INIT get_pos(struct writer *wr)
293{
294	return
295		wr->global_pos + wr->buffer_pos;
296}
297
298static inline uint8_t INIT peek_old_byte(struct writer *wr,
299						uint32_t offs)
300{
301	if (!wr->flush) {
302		int32_t pos;
303		while (offs > wr->header->dict_size)
304			offs -= wr->header->dict_size;
305		pos = wr->buffer_pos - offs;
306		return wr->buffer[pos];
307	} else {
308		uint32_t pos = wr->buffer_pos - offs;
309		while (pos >= wr->header->dict_size)
310			pos += wr->header->dict_size;
311		return wr->buffer[pos];
312	}
313
314}
315
316static inline int INIT write_byte(struct writer *wr, uint8_t byte)
317{
318	wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
319	if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
320		wr->buffer_pos = 0;
321		wr->global_pos += wr->header->dict_size;
322		if (wr->flush((char *)wr->buffer, wr->header->dict_size)
323				!= wr->header->dict_size)
324			return -1;
325	}
326	return 0;
327}
328
329
330static inline int INIT copy_byte(struct writer *wr, uint32_t offs)
331{
332	return write_byte(wr, peek_old_byte(wr, offs));
333}
334
335static inline int INIT copy_bytes(struct writer *wr,
336					 uint32_t rep0, int len)
337{
338	do {
339		if (copy_byte(wr, rep0))
340			return -1;
341		len--;
342	} while (len != 0 && wr->buffer_pos < wr->header->dst_size);
343
344	return len;
345}
346
347static inline int INIT process_bit0(struct writer *wr, struct rc *rc,
348				     struct cstate *cst, uint16_t *p,
349				     int pos_state, uint16_t *prob,
350				     int lc, uint32_t literal_pos_mask) {
351	int mi = 1;
352	rc_update_bit_0(rc, prob);
353	prob = (p + LZMA_LITERAL +
354		(LZMA_LIT_SIZE
355		 * (((get_pos(wr) & literal_pos_mask) << lc)
356		    + (wr->previous_byte >> (8 - lc))))
357		);
358
359	if (cst->state >= LZMA_NUM_LIT_STATES) {
360		int match_byte = peek_old_byte(wr, cst->rep0);
361		do {
362			int bit;
363			uint16_t *prob_lit;
364
365			match_byte <<= 1;
366			bit = match_byte & 0x100;
367			prob_lit = prob + 0x100 + bit + mi;
368			if (rc_get_bit(rc, prob_lit, &mi)) {
369				if (!bit)
370					break;
371			} else {
372				if (bit)
373					break;
374			}
375		} while (mi < 0x100);
376	}
377	while (mi < 0x100) {
378		uint16_t *prob_lit = prob + mi;
379		rc_get_bit(rc, prob_lit, &mi);
380	}
381	if (cst->state < 4)
382		cst->state = 0;
383	else if (cst->state < 10)
384		cst->state -= 3;
385	else
386		cst->state -= 6;
387
388	return write_byte(wr, mi);
389}
390
391static inline int INIT process_bit1(struct writer *wr, struct rc *rc,
392					    struct cstate *cst, uint16_t *p,
393					    int pos_state, uint16_t *prob) {
394	int offset;
395	uint16_t *prob_len;
396	int num_bits;
397	int len;
398
399	rc_update_bit_1(rc, prob);
400	prob = p + LZMA_IS_REP + cst->state;
401	if (rc_is_bit_0(rc, prob)) {
402		rc_update_bit_0(rc, prob);
403		cst->rep3 = cst->rep2;
404		cst->rep2 = cst->rep1;
405		cst->rep1 = cst->rep0;
406		cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
407		prob = p + LZMA_LEN_CODER;
408	} else {
409		rc_update_bit_1(rc, prob);
410		prob = p + LZMA_IS_REP_G0 + cst->state;
411		if (rc_is_bit_0(rc, prob)) {
412			rc_update_bit_0(rc, prob);
413			prob = (p + LZMA_IS_REP_0_LONG
414				+ (cst->state <<
415				   LZMA_NUM_POS_BITS_MAX) +
416				pos_state);
417			if (rc_is_bit_0(rc, prob)) {
418				rc_update_bit_0(rc, prob);
419
420				cst->state = cst->state < LZMA_NUM_LIT_STATES ?
421					9 : 11;
422				return copy_byte(wr, cst->rep0);
423			} else {
424				rc_update_bit_1(rc, prob);
425			}
426		} else {
427			uint32_t distance;
428
429			rc_update_bit_1(rc, prob);
430			prob = p + LZMA_IS_REP_G1 + cst->state;
431			if (rc_is_bit_0(rc, prob)) {
432				rc_update_bit_0(rc, prob);
433				distance = cst->rep1;
434			} else {
435				rc_update_bit_1(rc, prob);
436				prob = p + LZMA_IS_REP_G2 + cst->state;
437				if (rc_is_bit_0(rc, prob)) {
438					rc_update_bit_0(rc, prob);
439					distance = cst->rep2;
440				} else {
441					rc_update_bit_1(rc, prob);
442					distance = cst->rep3;
443					cst->rep3 = cst->rep2;
444				}
445				cst->rep2 = cst->rep1;
446			}
447			cst->rep1 = cst->rep0;
448			cst->rep0 = distance;
449		}
450		cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
451		prob = p + LZMA_REP_LEN_CODER;
452	}
453
454	prob_len = prob + LZMA_LEN_CHOICE;
455	if (rc_is_bit_0(rc, prob_len)) {
456		rc_update_bit_0(rc, prob_len);
457		prob_len = (prob + LZMA_LEN_LOW
458			    + (pos_state <<
459			       LZMA_LEN_NUM_LOW_BITS));
460		offset = 0;
461		num_bits = LZMA_LEN_NUM_LOW_BITS;
462	} else {
463		rc_update_bit_1(rc, prob_len);
464		prob_len = prob + LZMA_LEN_CHOICE_2;
465		if (rc_is_bit_0(rc, prob_len)) {
466			rc_update_bit_0(rc, prob_len);
467			prob_len = (prob + LZMA_LEN_MID
468				    + (pos_state <<
469				       LZMA_LEN_NUM_MID_BITS));
470			offset = 1 << LZMA_LEN_NUM_LOW_BITS;
471			num_bits = LZMA_LEN_NUM_MID_BITS;
472		} else {
473			rc_update_bit_1(rc, prob_len);
474			prob_len = prob + LZMA_LEN_HIGH;
475			offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
476				  + (1 << LZMA_LEN_NUM_MID_BITS));
477			num_bits = LZMA_LEN_NUM_HIGH_BITS;
478		}
479	}
480
481	rc_bit_tree_decode(rc, prob_len, num_bits, &len);
482	len += offset;
483
484	if (cst->state < 4) {
485		int pos_slot;
486
487		cst->state += LZMA_NUM_LIT_STATES;
488		prob =
489			p + LZMA_POS_SLOT +
490			((len <
491			  LZMA_NUM_LEN_TO_POS_STATES ? len :
492			  LZMA_NUM_LEN_TO_POS_STATES - 1)
493			 << LZMA_NUM_POS_SLOT_BITS);
494		rc_bit_tree_decode(rc, prob,
495				   LZMA_NUM_POS_SLOT_BITS,
496				   &pos_slot);
497		if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
498			int i, mi;
499			num_bits = (pos_slot >> 1) - 1;
500			cst->rep0 = 2 | (pos_slot & 1);
501			if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
502				cst->rep0 <<= num_bits;
503				prob = p + LZMA_SPEC_POS +
504					cst->rep0 - pos_slot - 1;
505			} else {
506				num_bits -= LZMA_NUM_ALIGN_BITS;
507				while (num_bits--)
508					cst->rep0 = (cst->rep0 << 1) |
509						rc_direct_bit(rc);
510				prob = p + LZMA_ALIGN;
511				cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
512				num_bits = LZMA_NUM_ALIGN_BITS;
513			}
514			i = 1;
515			mi = 1;
516			while (num_bits--) {
517				if (rc_get_bit(rc, prob + mi, &mi))
518					cst->rep0 |= i;
519				i <<= 1;
520			}
521		} else
522			cst->rep0 = pos_slot;
523		if (++(cst->rep0) == 0)
524			return 0;
525		if (cst->rep0 > wr->header->dict_size
526				|| cst->rep0 > get_pos(wr))
527			return -1;
528	}
529
530	len += LZMA_MATCH_MIN_LEN;
531
532	return copy_bytes(wr, cst->rep0, len);
533}
534
535
536
537STATIC inline int INIT unlzma(unsigned char *buf, long in_len,
538			      long (*fill)(void*, unsigned long),
539			      long (*flush)(void*, unsigned long),
540			      unsigned char *output,
541			      long *posp,
542			      void(*error)(char *x)
543	)
544{
545	struct lzma_header header;
546	int lc, pb, lp;
547	uint32_t pos_state_mask;
548	uint32_t literal_pos_mask;
549	uint16_t *p;
550	int num_probs;
551	struct rc rc;
552	int i, mi;
553	struct writer wr;
554	struct cstate cst;
555	unsigned char *inbuf;
556	int ret = -1;
557
558	rc.error = error;
559
560	if (buf)
561		inbuf = buf;
562	else
563		inbuf = malloc(LZMA_IOBUF_SIZE);
564	if (!inbuf) {
565		error("Could not allocate input buffer");
566		goto exit_0;
567	}
568
569	cst.state = 0;
570	cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
571
572	wr.header = &header;
573	wr.flush = flush;
574	wr.global_pos = 0;
575	wr.previous_byte = 0;
576	wr.buffer_pos = 0;
577
578	rc_init(&rc, fill, inbuf, in_len);
579
580	for (i = 0; i < sizeof(header); i++) {
581		if (rc.ptr >= rc.buffer_end)
582			rc_read(&rc);
583		((unsigned char *)&header)[i] = *rc.ptr++;
584	}
585
586	if (header.pos >= (9 * 5 * 5)) {
587		error("bad header");
588		goto exit_1;
589	}
590
591	mi = 0;
592	lc = header.pos;
593	while (lc >= 9) {
594		mi++;
595		lc -= 9;
596	}
597	pb = 0;
598	lp = mi;
599	while (lp >= 5) {
600		pb++;
601		lp -= 5;
602	}
603	pos_state_mask = (1 << pb) - 1;
604	literal_pos_mask = (1 << lp) - 1;
605
606	ENDIAN_CONVERT(header.dict_size);
607	ENDIAN_CONVERT(header.dst_size);
608
609	if (header.dict_size == 0)
610		header.dict_size = 1;
611
612	if (output)
613		wr.buffer = output;
614	else {
615		wr.bufsize = MIN(header.dst_size, header.dict_size);
616		wr.buffer = large_malloc(wr.bufsize);
617	}
618	if (wr.buffer == NULL)
619		goto exit_1;
620
621	num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
622	p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
623	if (p == NULL)
624		goto exit_2;
625	num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
626	for (i = 0; i < num_probs; i++)
627		p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
628
629	rc_init_code(&rc);
630
631	while (get_pos(&wr) < header.dst_size) {
632		int pos_state =	get_pos(&wr) & pos_state_mask;
633		uint16_t *prob = p + LZMA_IS_MATCH +
634			(cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
635		if (rc_is_bit_0(&rc, prob)) {
636			if (process_bit0(&wr, &rc, &cst, p, pos_state, prob,
637					lc, literal_pos_mask)) {
638				error("LZMA data is corrupt");
639				goto exit_3;
640			}
641		} else {
642			if (process_bit1(&wr, &rc, &cst, p, pos_state, prob)) {
643				error("LZMA data is corrupt");
644				goto exit_3;
645			}
646			if (cst.rep0 == 0)
647				break;
648		}
649		if (rc.buffer_size <= 0)
650			goto exit_3;
651	}
652
653	if (posp)
654		*posp = rc.ptr-rc.buffer;
655	if (!wr.flush || wr.flush(wr.buffer, wr.buffer_pos) == wr.buffer_pos)
656		ret = 0;
657exit_3:
658	large_free(p);
659exit_2:
660	if (!output)
661		large_free(wr.buffer);
662exit_1:
663	if (!buf)
664		free(inbuf);
665exit_0:
666	return ret;
667}
668
669#ifdef PREBOOT
670STATIC int INIT __decompress(unsigned char *buf, long in_len,
671			      long (*fill)(void*, unsigned long),
672			      long (*flush)(void*, unsigned long),
673			      unsigned char *output, long out_len,
674			      long *posp,
675			      void (*error)(char *x))
676{
677	return unlzma(buf, in_len - 4, fill, flush, output, posp, error);
678}
679#endif
680