1/*
2 * Generic binary BCH encoding/decoding library
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 51
15 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Copyright �� 2011 Parrot S.A.
18 *
19 * Author: Ivan Djelic <ivan.djelic@parrot.com>
20 *
21 * Description:
22 *
23 * This library provides runtime configurable encoding/decoding of binary
24 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
25 *
26 * Call bch_init to get a pointer to a newly allocated bch_control structure for
27 * the given m (Galois field order), t (error correction capability) and
28 * (optional) primitive polynomial parameters.
29 *
30 * Call bch_encode to compute and store ecc parity bytes to a given buffer.
31 * Call bch_decode to detect and locate errors in received data.
32 *
33 * On systems supporting hw BCH features, intermediate results may be provided
34 * to bch_decode in order to skip certain steps. See bch_decode() documentation
35 * for details.
36 *
37 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
38 * parameters m and t; thus allowing extra compiler optimizations and providing
39 * better (up to 2x) encoding performance. Using this option makes sense when
40 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
41 * on a particular NAND flash device.
42 *
43 * Algorithmic details:
44 *
45 * Encoding is performed by processing 32 input bits in parallel, using 4
46 * remainder lookup tables.
47 *
48 * The final stage of decoding involves the following internal steps:
49 * a. Syndrome computation
50 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
51 * c. Error locator root finding (by far the most expensive step)
52 *
53 * In this implementation, step c is not performed using the usual Chien search.
54 * Instead, an alternative approach described in [1] is used. It consists in
55 * factoring the error locator polynomial using the Berlekamp Trace algorithm
56 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
57 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
58 * much better performance than Chien search for usual (m,t) values (typically
59 * m >= 13, t < 32, see [1]).
60 *
61 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
62 * of characteristic 2, in: Western European Workshop on Research in Cryptology
63 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
64 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
65 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
66 */
67
68#include <linux/kernel.h>
69#include <linux/errno.h>
70#include <linux/init.h>
71#include <linux/module.h>
72#include <linux/slab.h>
73#include <linux/bitops.h>
74#include <linux/bitrev.h>
75#include <asm/byteorder.h>
76#include <linux/bch.h>
77
78#if defined(CONFIG_BCH_CONST_PARAMS)
79#define GF_M(_p)               (CONFIG_BCH_CONST_M)
80#define GF_T(_p)               (CONFIG_BCH_CONST_T)
81#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
82#define BCH_MAX_M              (CONFIG_BCH_CONST_M)
83#define BCH_MAX_T	       (CONFIG_BCH_CONST_T)
84#else
85#define GF_M(_p)               ((_p)->m)
86#define GF_T(_p)               ((_p)->t)
87#define GF_N(_p)               ((_p)->n)
88#define BCH_MAX_M              15 /* 2KB */
89#define BCH_MAX_T              64 /* 64 bit correction */
90#endif
91
92#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
93#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
94
95#define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
96
97#ifndef dbg
98#define dbg(_fmt, args...)     do {} while (0)
99#endif
100
101/*
102 * represent a polynomial over GF(2^m)
103 */
104struct gf_poly {
105	unsigned int deg;    /* polynomial degree */
106	unsigned int c[];   /* polynomial terms */
107};
108
109/* given its degree, compute a polynomial size in bytes */
110#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
111
112/* polynomial of degree 1 */
113struct gf_poly_deg1 {
114	struct gf_poly poly;
115	unsigned int   c[2];
116};
117
118static u8 swap_bits(struct bch_control *bch, u8 in)
119{
120	if (!bch->swap_bits)
121		return in;
122
123	return bitrev8(in);
124}
125
126/*
127 * same as bch_encode(), but process input data one byte at a time
128 */
129static void bch_encode_unaligned(struct bch_control *bch,
130				 const unsigned char *data, unsigned int len,
131				 uint32_t *ecc)
132{
133	int i;
134	const uint32_t *p;
135	const int l = BCH_ECC_WORDS(bch)-1;
136
137	while (len--) {
138		u8 tmp = swap_bits(bch, *data++);
139
140		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff);
141
142		for (i = 0; i < l; i++)
143			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
144
145		ecc[l] = (ecc[l] << 8)^(*p);
146	}
147}
148
149/*
150 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
151 */
152static void load_ecc8(struct bch_control *bch, uint32_t *dst,
153		      const uint8_t *src)
154{
155	uint8_t pad[4] = {0, 0, 0, 0};
156	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
157
158	for (i = 0; i < nwords; i++, src += 4)
159		dst[i] = ((u32)swap_bits(bch, src[0]) << 24) |
160			((u32)swap_bits(bch, src[1]) << 16) |
161			((u32)swap_bits(bch, src[2]) << 8) |
162			swap_bits(bch, src[3]);
163
164	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
165	dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) |
166		((u32)swap_bits(bch, pad[1]) << 16) |
167		((u32)swap_bits(bch, pad[2]) << 8) |
168		swap_bits(bch, pad[3]);
169}
170
171/*
172 * convert 32-bit ecc words to ecc bytes
173 */
174static void store_ecc8(struct bch_control *bch, uint8_t *dst,
175		       const uint32_t *src)
176{
177	uint8_t pad[4];
178	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
179
180	for (i = 0; i < nwords; i++) {
181		*dst++ = swap_bits(bch, src[i] >> 24);
182		*dst++ = swap_bits(bch, src[i] >> 16);
183		*dst++ = swap_bits(bch, src[i] >> 8);
184		*dst++ = swap_bits(bch, src[i]);
185	}
186	pad[0] = swap_bits(bch, src[nwords] >> 24);
187	pad[1] = swap_bits(bch, src[nwords] >> 16);
188	pad[2] = swap_bits(bch, src[nwords] >> 8);
189	pad[3] = swap_bits(bch, src[nwords]);
190	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
191}
192
193/**
194 * bch_encode - calculate BCH ecc parity of data
195 * @bch:   BCH control structure
196 * @data:  data to encode
197 * @len:   data length in bytes
198 * @ecc:   ecc parity data, must be initialized by caller
199 *
200 * The @ecc parity array is used both as input and output parameter, in order to
201 * allow incremental computations. It should be of the size indicated by member
202 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
203 *
204 * The exact number of computed ecc parity bits is given by member @ecc_bits of
205 * @bch; it may be less than m*t for large values of t.
206 */
207void bch_encode(struct bch_control *bch, const uint8_t *data,
208		unsigned int len, uint8_t *ecc)
209{
210	const unsigned int l = BCH_ECC_WORDS(bch)-1;
211	unsigned int i, mlen;
212	unsigned long m;
213	uint32_t w, r[BCH_ECC_MAX_WORDS];
214	const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
215	const uint32_t * const tab0 = bch->mod8_tab;
216	const uint32_t * const tab1 = tab0 + 256*(l+1);
217	const uint32_t * const tab2 = tab1 + 256*(l+1);
218	const uint32_t * const tab3 = tab2 + 256*(l+1);
219	const uint32_t *pdata, *p0, *p1, *p2, *p3;
220
221	if (WARN_ON(r_bytes > sizeof(r)))
222		return;
223
224	if (ecc) {
225		/* load ecc parity bytes into internal 32-bit buffer */
226		load_ecc8(bch, bch->ecc_buf, ecc);
227	} else {
228		memset(bch->ecc_buf, 0, r_bytes);
229	}
230
231	/* process first unaligned data bytes */
232	m = ((unsigned long)data) & 3;
233	if (m) {
234		mlen = (len < (4-m)) ? len : 4-m;
235		bch_encode_unaligned(bch, data, mlen, bch->ecc_buf);
236		data += mlen;
237		len  -= mlen;
238	}
239
240	/* process 32-bit aligned data words */
241	pdata = (uint32_t *)data;
242	mlen  = len/4;
243	data += 4*mlen;
244	len  -= 4*mlen;
245	memcpy(r, bch->ecc_buf, r_bytes);
246
247	/*
248	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
249	 *
250	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
251	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
252	 *                               tttttttt  mod g = r0 (precomputed)
253	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
254	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
255	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
256	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
257	 */
258	while (mlen--) {
259		/* input data is read in big-endian format */
260		w = cpu_to_be32(*pdata++);
261		if (bch->swap_bits)
262			w = (u32)swap_bits(bch, w) |
263			    ((u32)swap_bits(bch, w >> 8) << 8) |
264			    ((u32)swap_bits(bch, w >> 16) << 16) |
265			    ((u32)swap_bits(bch, w >> 24) << 24);
266		w ^= r[0];
267		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
268		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
269		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
270		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
271
272		for (i = 0; i < l; i++)
273			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
274
275		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
276	}
277	memcpy(bch->ecc_buf, r, r_bytes);
278
279	/* process last unaligned bytes */
280	if (len)
281		bch_encode_unaligned(bch, data, len, bch->ecc_buf);
282
283	/* store ecc parity bytes into original parity buffer */
284	if (ecc)
285		store_ecc8(bch, ecc, bch->ecc_buf);
286}
287EXPORT_SYMBOL_GPL(bch_encode);
288
289static inline int modulo(struct bch_control *bch, unsigned int v)
290{
291	const unsigned int n = GF_N(bch);
292	while (v >= n) {
293		v -= n;
294		v = (v & n) + (v >> GF_M(bch));
295	}
296	return v;
297}
298
299/*
300 * shorter and faster modulo function, only works when v < 2N.
301 */
302static inline int mod_s(struct bch_control *bch, unsigned int v)
303{
304	const unsigned int n = GF_N(bch);
305	return (v < n) ? v : v-n;
306}
307
308static inline int deg(unsigned int poly)
309{
310	/* polynomial degree is the most-significant bit index */
311	return fls(poly)-1;
312}
313
314static inline int parity(unsigned int x)
315{
316	/*
317	 * public domain code snippet, lifted from
318	 * http://www-graphics.stanford.edu/~seander/bithacks.html
319	 */
320	x ^= x >> 1;
321	x ^= x >> 2;
322	x = (x & 0x11111111U) * 0x11111111U;
323	return (x >> 28) & 1;
324}
325
326/* Galois field basic operations: multiply, divide, inverse, etc. */
327
328static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
329				  unsigned int b)
330{
331	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
332					       bch->a_log_tab[b])] : 0;
333}
334
335static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
336{
337	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
338}
339
340static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
341				  unsigned int b)
342{
343	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
344					GF_N(bch)-bch->a_log_tab[b])] : 0;
345}
346
347static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
348{
349	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
350}
351
352static inline unsigned int a_pow(struct bch_control *bch, int i)
353{
354	return bch->a_pow_tab[modulo(bch, i)];
355}
356
357static inline int a_log(struct bch_control *bch, unsigned int x)
358{
359	return bch->a_log_tab[x];
360}
361
362static inline int a_ilog(struct bch_control *bch, unsigned int x)
363{
364	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
365}
366
367/*
368 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
369 */
370static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
371			      unsigned int *syn)
372{
373	int i, j, s;
374	unsigned int m;
375	uint32_t poly;
376	const int t = GF_T(bch);
377
378	s = bch->ecc_bits;
379
380	/* make sure extra bits in last ecc word are cleared */
381	m = ((unsigned int)s) & 31;
382	if (m)
383		ecc[s/32] &= ~((1u << (32-m))-1);
384	memset(syn, 0, 2*t*sizeof(*syn));
385
386	/* compute v(a^j) for j=1 .. 2t-1 */
387	do {
388		poly = *ecc++;
389		s -= 32;
390		while (poly) {
391			i = deg(poly);
392			for (j = 0; j < 2*t; j += 2)
393				syn[j] ^= a_pow(bch, (j+1)*(i+s));
394
395			poly ^= (1 << i);
396		}
397	} while (s > 0);
398
399	/* v(a^(2j)) = v(a^j)^2 */
400	for (j = 0; j < t; j++)
401		syn[2*j+1] = gf_sqr(bch, syn[j]);
402}
403
404static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
405{
406	memcpy(dst, src, GF_POLY_SZ(src->deg));
407}
408
409static int compute_error_locator_polynomial(struct bch_control *bch,
410					    const unsigned int *syn)
411{
412	const unsigned int t = GF_T(bch);
413	const unsigned int n = GF_N(bch);
414	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
415	struct gf_poly *elp = bch->elp;
416	struct gf_poly *pelp = bch->poly_2t[0];
417	struct gf_poly *elp_copy = bch->poly_2t[1];
418	int k, pp = -1;
419
420	memset(pelp, 0, GF_POLY_SZ(2*t));
421	memset(elp, 0, GF_POLY_SZ(2*t));
422
423	pelp->deg = 0;
424	pelp->c[0] = 1;
425	elp->deg = 0;
426	elp->c[0] = 1;
427
428	/* use simplified binary Berlekamp-Massey algorithm */
429	for (i = 0; (i < t) && (elp->deg <= t); i++) {
430		if (d) {
431			k = 2*i-pp;
432			gf_poly_copy(elp_copy, elp);
433			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
434			tmp = a_log(bch, d)+n-a_log(bch, pd);
435			for (j = 0; j <= pelp->deg; j++) {
436				if (pelp->c[j]) {
437					l = a_log(bch, pelp->c[j]);
438					elp->c[j+k] ^= a_pow(bch, tmp+l);
439				}
440			}
441			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
442			tmp = pelp->deg+k;
443			if (tmp > elp->deg) {
444				elp->deg = tmp;
445				gf_poly_copy(pelp, elp_copy);
446				pd = d;
447				pp = 2*i;
448			}
449		}
450		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
451		if (i < t-1) {
452			d = syn[2*i+2];
453			for (j = 1; j <= elp->deg; j++)
454				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
455		}
456	}
457	dbg("elp=%s\n", gf_poly_str(elp));
458	return (elp->deg > t) ? -1 : (int)elp->deg;
459}
460
461/*
462 * solve a m x m linear system in GF(2) with an expected number of solutions,
463 * and return the number of found solutions
464 */
465static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
466			       unsigned int *sol, int nsol)
467{
468	const int m = GF_M(bch);
469	unsigned int tmp, mask;
470	int rem, c, r, p, k, param[BCH_MAX_M];
471
472	k = 0;
473	mask = 1 << m;
474
475	/* Gaussian elimination */
476	for (c = 0; c < m; c++) {
477		rem = 0;
478		p = c-k;
479		/* find suitable row for elimination */
480		for (r = p; r < m; r++) {
481			if (rows[r] & mask) {
482				if (r != p) {
483					tmp = rows[r];
484					rows[r] = rows[p];
485					rows[p] = tmp;
486				}
487				rem = r+1;
488				break;
489			}
490		}
491		if (rem) {
492			/* perform elimination on remaining rows */
493			tmp = rows[p];
494			for (r = rem; r < m; r++) {
495				if (rows[r] & mask)
496					rows[r] ^= tmp;
497			}
498		} else {
499			/* elimination not needed, store defective row index */
500			param[k++] = c;
501		}
502		mask >>= 1;
503	}
504	/* rewrite system, inserting fake parameter rows */
505	if (k > 0) {
506		p = k;
507		for (r = m-1; r >= 0; r--) {
508			if ((r > m-1-k) && rows[r])
509				/* system has no solution */
510				return 0;
511
512			rows[r] = (p && (r == param[p-1])) ?
513				p--, 1u << (m-r) : rows[r-p];
514		}
515	}
516
517	if (nsol != (1 << k))
518		/* unexpected number of solutions */
519		return 0;
520
521	for (p = 0; p < nsol; p++) {
522		/* set parameters for p-th solution */
523		for (c = 0; c < k; c++)
524			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
525
526		/* compute unique solution */
527		tmp = 0;
528		for (r = m-1; r >= 0; r--) {
529			mask = rows[r] & (tmp|1);
530			tmp |= parity(mask) << (m-r);
531		}
532		sol[p] = tmp >> 1;
533	}
534	return nsol;
535}
536
537/*
538 * this function builds and solves a linear system for finding roots of a degree
539 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
540 */
541static int find_affine4_roots(struct bch_control *bch, unsigned int a,
542			      unsigned int b, unsigned int c,
543			      unsigned int *roots)
544{
545	int i, j, k;
546	const int m = GF_M(bch);
547	unsigned int mask = 0xff, t, rows[16] = {0,};
548
549	j = a_log(bch, b);
550	k = a_log(bch, a);
551	rows[0] = c;
552
553	/* build linear system to solve X^4+aX^2+bX+c = 0 */
554	for (i = 0; i < m; i++) {
555		rows[i+1] = bch->a_pow_tab[4*i]^
556			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
557			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
558		j++;
559		k += 2;
560	}
561	/*
562	 * transpose 16x16 matrix before passing it to linear solver
563	 * warning: this code assumes m < 16
564	 */
565	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
566		for (k = 0; k < 16; k = (k+j+1) & ~j) {
567			t = ((rows[k] >> j)^rows[k+j]) & mask;
568			rows[k] ^= (t << j);
569			rows[k+j] ^= t;
570		}
571	}
572	return solve_linear_system(bch, rows, roots, 4);
573}
574
575/*
576 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
577 */
578static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
579				unsigned int *roots)
580{
581	int n = 0;
582
583	if (poly->c[0])
584		/* poly[X] = bX+c with c!=0, root=c/b */
585		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
586				   bch->a_log_tab[poly->c[1]]);
587	return n;
588}
589
590/*
591 * compute roots of a degree 2 polynomial over GF(2^m)
592 */
593static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
594				unsigned int *roots)
595{
596	int n = 0, i, l0, l1, l2;
597	unsigned int u, v, r;
598
599	if (poly->c[0] && poly->c[1]) {
600
601		l0 = bch->a_log_tab[poly->c[0]];
602		l1 = bch->a_log_tab[poly->c[1]];
603		l2 = bch->a_log_tab[poly->c[2]];
604
605		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
606		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
607		/*
608		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
609		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
610		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
611		 * i.e. r and r+1 are roots iff Tr(u)=0
612		 */
613		r = 0;
614		v = u;
615		while (v) {
616			i = deg(v);
617			r ^= bch->xi_tab[i];
618			v ^= (1 << i);
619		}
620		/* verify root */
621		if ((gf_sqr(bch, r)^r) == u) {
622			/* reverse z=a/bX transformation and compute log(1/r) */
623			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
624					    bch->a_log_tab[r]+l2);
625			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
626					    bch->a_log_tab[r^1]+l2);
627		}
628	}
629	return n;
630}
631
632/*
633 * compute roots of a degree 3 polynomial over GF(2^m)
634 */
635static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
636				unsigned int *roots)
637{
638	int i, n = 0;
639	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
640
641	if (poly->c[0]) {
642		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
643		e3 = poly->c[3];
644		c2 = gf_div(bch, poly->c[0], e3);
645		b2 = gf_div(bch, poly->c[1], e3);
646		a2 = gf_div(bch, poly->c[2], e3);
647
648		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
649		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
650		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
651		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
652
653		/* find the 4 roots of this affine polynomial */
654		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
655			/* remove a2 from final list of roots */
656			for (i = 0; i < 4; i++) {
657				if (tmp[i] != a2)
658					roots[n++] = a_ilog(bch, tmp[i]);
659			}
660		}
661	}
662	return n;
663}
664
665/*
666 * compute roots of a degree 4 polynomial over GF(2^m)
667 */
668static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
669				unsigned int *roots)
670{
671	int i, l, n = 0;
672	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
673
674	if (poly->c[0] == 0)
675		return 0;
676
677	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
678	e4 = poly->c[4];
679	d = gf_div(bch, poly->c[0], e4);
680	c = gf_div(bch, poly->c[1], e4);
681	b = gf_div(bch, poly->c[2], e4);
682	a = gf_div(bch, poly->c[3], e4);
683
684	/* use Y=1/X transformation to get an affine polynomial */
685	if (a) {
686		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
687		if (c) {
688			/* compute e such that e^2 = c/a */
689			f = gf_div(bch, c, a);
690			l = a_log(bch, f);
691			l += (l & 1) ? GF_N(bch) : 0;
692			e = a_pow(bch, l/2);
693			/*
694			 * use transformation z=X+e:
695			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
696			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
697			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
698			 * z^4 + az^3 +     b'z^2 + d'
699			 */
700			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
701			b = gf_mul(bch, a, e)^b;
702		}
703		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
704		if (d == 0)
705			/* assume all roots have multiplicity 1 */
706			return 0;
707
708		c2 = gf_inv(bch, d);
709		b2 = gf_div(bch, a, d);
710		a2 = gf_div(bch, b, d);
711	} else {
712		/* polynomial is already affine */
713		c2 = d;
714		b2 = c;
715		a2 = b;
716	}
717	/* find the 4 roots of this affine polynomial */
718	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
719		for (i = 0; i < 4; i++) {
720			/* post-process roots (reverse transformations) */
721			f = a ? gf_inv(bch, roots[i]) : roots[i];
722			roots[i] = a_ilog(bch, f^e);
723		}
724		n = 4;
725	}
726	return n;
727}
728
729/*
730 * build monic, log-based representation of a polynomial
731 */
732static void gf_poly_logrep(struct bch_control *bch,
733			   const struct gf_poly *a, int *rep)
734{
735	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
736
737	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
738	for (i = 0; i < d; i++)
739		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
740}
741
742/*
743 * compute polynomial Euclidean division remainder in GF(2^m)[X]
744 */
745static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
746			const struct gf_poly *b, int *rep)
747{
748	int la, p, m;
749	unsigned int i, j, *c = a->c;
750	const unsigned int d = b->deg;
751
752	if (a->deg < d)
753		return;
754
755	/* reuse or compute log representation of denominator */
756	if (!rep) {
757		rep = bch->cache;
758		gf_poly_logrep(bch, b, rep);
759	}
760
761	for (j = a->deg; j >= d; j--) {
762		if (c[j]) {
763			la = a_log(bch, c[j]);
764			p = j-d;
765			for (i = 0; i < d; i++, p++) {
766				m = rep[i];
767				if (m >= 0)
768					c[p] ^= bch->a_pow_tab[mod_s(bch,
769								     m+la)];
770			}
771		}
772	}
773	a->deg = d-1;
774	while (!c[a->deg] && a->deg)
775		a->deg--;
776}
777
778/*
779 * compute polynomial Euclidean division quotient in GF(2^m)[X]
780 */
781static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
782			const struct gf_poly *b, struct gf_poly *q)
783{
784	if (a->deg >= b->deg) {
785		q->deg = a->deg-b->deg;
786		/* compute a mod b (modifies a) */
787		gf_poly_mod(bch, a, b, NULL);
788		/* quotient is stored in upper part of polynomial a */
789		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
790	} else {
791		q->deg = 0;
792		q->c[0] = 0;
793	}
794}
795
796/*
797 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
798 */
799static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
800				   struct gf_poly *b)
801{
802	struct gf_poly *tmp;
803
804	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
805
806	if (a->deg < b->deg) {
807		tmp = b;
808		b = a;
809		a = tmp;
810	}
811
812	while (b->deg > 0) {
813		gf_poly_mod(bch, a, b, NULL);
814		tmp = b;
815		b = a;
816		a = tmp;
817	}
818
819	dbg("%s\n", gf_poly_str(a));
820
821	return a;
822}
823
824/*
825 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
826 * This is used in Berlekamp Trace algorithm for splitting polynomials
827 */
828static void compute_trace_bk_mod(struct bch_control *bch, int k,
829				 const struct gf_poly *f, struct gf_poly *z,
830				 struct gf_poly *out)
831{
832	const int m = GF_M(bch);
833	int i, j;
834
835	/* z contains z^2j mod f */
836	z->deg = 1;
837	z->c[0] = 0;
838	z->c[1] = bch->a_pow_tab[k];
839
840	out->deg = 0;
841	memset(out, 0, GF_POLY_SZ(f->deg));
842
843	/* compute f log representation only once */
844	gf_poly_logrep(bch, f, bch->cache);
845
846	for (i = 0; i < m; i++) {
847		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
848		for (j = z->deg; j >= 0; j--) {
849			out->c[j] ^= z->c[j];
850			z->c[2*j] = gf_sqr(bch, z->c[j]);
851			z->c[2*j+1] = 0;
852		}
853		if (z->deg > out->deg)
854			out->deg = z->deg;
855
856		if (i < m-1) {
857			z->deg *= 2;
858			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
859			gf_poly_mod(bch, z, f, bch->cache);
860		}
861	}
862	while (!out->c[out->deg] && out->deg)
863		out->deg--;
864
865	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
866}
867
868/*
869 * factor a polynomial using Berlekamp Trace algorithm (BTA)
870 */
871static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
872			      struct gf_poly **g, struct gf_poly **h)
873{
874	struct gf_poly *f2 = bch->poly_2t[0];
875	struct gf_poly *q  = bch->poly_2t[1];
876	struct gf_poly *tk = bch->poly_2t[2];
877	struct gf_poly *z  = bch->poly_2t[3];
878	struct gf_poly *gcd;
879
880	dbg("factoring %s...\n", gf_poly_str(f));
881
882	*g = f;
883	*h = NULL;
884
885	/* tk = Tr(a^k.X) mod f */
886	compute_trace_bk_mod(bch, k, f, z, tk);
887
888	if (tk->deg > 0) {
889		/* compute g = gcd(f, tk) (destructive operation) */
890		gf_poly_copy(f2, f);
891		gcd = gf_poly_gcd(bch, f2, tk);
892		if (gcd->deg < f->deg) {
893			/* compute h=f/gcd(f,tk); this will modify f and q */
894			gf_poly_div(bch, f, gcd, q);
895			/* store g and h in-place (clobbering f) */
896			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
897			gf_poly_copy(*g, gcd);
898			gf_poly_copy(*h, q);
899		}
900	}
901}
902
903/*
904 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
905 * file for details
906 */
907static int find_poly_roots(struct bch_control *bch, unsigned int k,
908			   struct gf_poly *poly, unsigned int *roots)
909{
910	int cnt;
911	struct gf_poly *f1, *f2;
912
913	switch (poly->deg) {
914		/* handle low degree polynomials with ad hoc techniques */
915	case 1:
916		cnt = find_poly_deg1_roots(bch, poly, roots);
917		break;
918	case 2:
919		cnt = find_poly_deg2_roots(bch, poly, roots);
920		break;
921	case 3:
922		cnt = find_poly_deg3_roots(bch, poly, roots);
923		break;
924	case 4:
925		cnt = find_poly_deg4_roots(bch, poly, roots);
926		break;
927	default:
928		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
929		cnt = 0;
930		if (poly->deg && (k <= GF_M(bch))) {
931			factor_polynomial(bch, k, poly, &f1, &f2);
932			if (f1)
933				cnt += find_poly_roots(bch, k+1, f1, roots);
934			if (f2)
935				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
936		}
937		break;
938	}
939	return cnt;
940}
941
942#if defined(USE_CHIEN_SEARCH)
943/*
944 * exhaustive root search (Chien) implementation - not used, included only for
945 * reference/comparison tests
946 */
947static int chien_search(struct bch_control *bch, unsigned int len,
948			struct gf_poly *p, unsigned int *roots)
949{
950	int m;
951	unsigned int i, j, syn, syn0, count = 0;
952	const unsigned int k = 8*len+bch->ecc_bits;
953
954	/* use a log-based representation of polynomial */
955	gf_poly_logrep(bch, p, bch->cache);
956	bch->cache[p->deg] = 0;
957	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
958
959	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
960		/* compute elp(a^i) */
961		for (j = 1, syn = syn0; j <= p->deg; j++) {
962			m = bch->cache[j];
963			if (m >= 0)
964				syn ^= a_pow(bch, m+j*i);
965		}
966		if (syn == 0) {
967			roots[count++] = GF_N(bch)-i;
968			if (count == p->deg)
969				break;
970		}
971	}
972	return (count == p->deg) ? count : 0;
973}
974#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
975#endif /* USE_CHIEN_SEARCH */
976
977/**
978 * bch_decode - decode received codeword and find bit error locations
979 * @bch:      BCH control structure
980 * @data:     received data, ignored if @calc_ecc is provided
981 * @len:      data length in bytes, must always be provided
982 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
983 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
984 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
985 * @errloc:   output array of error locations
986 *
987 * Returns:
988 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
989 *  invalid parameters were provided
990 *
991 * Depending on the available hw BCH support and the need to compute @calc_ecc
992 * separately (using bch_encode()), this function should be called with one of
993 * the following parameter configurations -
994 *
995 * by providing @data and @recv_ecc only:
996 *   bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
997 *
998 * by providing @recv_ecc and @calc_ecc:
999 *   bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1000 *
1001 * by providing ecc = recv_ecc XOR calc_ecc:
1002 *   bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1003 *
1004 * by providing syndrome results @syn:
1005 *   bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1006 *
1007 * Once bch_decode() has successfully returned with a positive value, error
1008 * locations returned in array @errloc should be interpreted as follows -
1009 *
1010 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1011 * data correction)
1012 *
1013 * if (errloc[n] < 8*len), then n-th error is located in data and can be
1014 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1015 *
1016 * Note that this function does not perform any data correction by itself, it
1017 * merely indicates error locations.
1018 */
1019int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len,
1020	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1021	       const unsigned int *syn, unsigned int *errloc)
1022{
1023	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1024	unsigned int nbits;
1025	int i, err, nroots;
1026	uint32_t sum;
1027
1028	/* sanity check: make sure data length can be handled */
1029	if (8*len > (bch->n-bch->ecc_bits))
1030		return -EINVAL;
1031
1032	/* if caller does not provide syndromes, compute them */
1033	if (!syn) {
1034		if (!calc_ecc) {
1035			/* compute received data ecc into an internal buffer */
1036			if (!data || !recv_ecc)
1037				return -EINVAL;
1038			bch_encode(bch, data, len, NULL);
1039		} else {
1040			/* load provided calculated ecc */
1041			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1042		}
1043		/* load received ecc or assume it was XORed in calc_ecc */
1044		if (recv_ecc) {
1045			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1046			/* XOR received and calculated ecc */
1047			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1048				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1049				sum |= bch->ecc_buf[i];
1050			}
1051			if (!sum)
1052				/* no error found */
1053				return 0;
1054		}
1055		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1056		syn = bch->syn;
1057	}
1058
1059	err = compute_error_locator_polynomial(bch, syn);
1060	if (err > 0) {
1061		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1062		if (err != nroots)
1063			err = -1;
1064	}
1065	if (err > 0) {
1066		/* post-process raw error locations for easier correction */
1067		nbits = (len*8)+bch->ecc_bits;
1068		for (i = 0; i < err; i++) {
1069			if (errloc[i] >= nbits) {
1070				err = -1;
1071				break;
1072			}
1073			errloc[i] = nbits-1-errloc[i];
1074			if (!bch->swap_bits)
1075				errloc[i] = (errloc[i] & ~7) |
1076					    (7-(errloc[i] & 7));
1077		}
1078	}
1079	return (err >= 0) ? err : -EBADMSG;
1080}
1081EXPORT_SYMBOL_GPL(bch_decode);
1082
1083/*
1084 * generate Galois field lookup tables
1085 */
1086static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1087{
1088	unsigned int i, x = 1;
1089	const unsigned int k = 1 << deg(poly);
1090
1091	/* primitive polynomial must be of degree m */
1092	if (k != (1u << GF_M(bch)))
1093		return -1;
1094
1095	for (i = 0; i < GF_N(bch); i++) {
1096		bch->a_pow_tab[i] = x;
1097		bch->a_log_tab[x] = i;
1098		if (i && (x == 1))
1099			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1100			return -1;
1101		x <<= 1;
1102		if (x & k)
1103			x ^= poly;
1104	}
1105	bch->a_pow_tab[GF_N(bch)] = 1;
1106	bch->a_log_tab[0] = 0;
1107
1108	return 0;
1109}
1110
1111/*
1112 * compute generator polynomial remainder tables for fast encoding
1113 */
1114static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1115{
1116	int i, j, b, d;
1117	uint32_t data, hi, lo, *tab;
1118	const int l = BCH_ECC_WORDS(bch);
1119	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1120	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1121
1122	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1123
1124	for (i = 0; i < 256; i++) {
1125		/* p(X)=i is a small polynomial of weight <= 8 */
1126		for (b = 0; b < 4; b++) {
1127			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1128			tab = bch->mod8_tab + (b*256+i)*l;
1129			data = i << (8*b);
1130			while (data) {
1131				d = deg(data);
1132				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1133				data ^= g[0] >> (31-d);
1134				for (j = 0; j < ecclen; j++) {
1135					hi = (d < 31) ? g[j] << (d+1) : 0;
1136					lo = (j+1 < plen) ?
1137						g[j+1] >> (31-d) : 0;
1138					tab[j] ^= hi|lo;
1139				}
1140			}
1141		}
1142	}
1143}
1144
1145/*
1146 * build a base for factoring degree 2 polynomials
1147 */
1148static int build_deg2_base(struct bch_control *bch)
1149{
1150	const int m = GF_M(bch);
1151	int i, j, r;
1152	unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
1153
1154	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1155	for (i = 0; i < m; i++) {
1156		for (j = 0, sum = 0; j < m; j++)
1157			sum ^= a_pow(bch, i*(1 << j));
1158
1159		if (sum) {
1160			ak = bch->a_pow_tab[i];
1161			break;
1162		}
1163	}
1164	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1165	remaining = m;
1166	memset(xi, 0, sizeof(xi));
1167
1168	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1169		y = gf_sqr(bch, x)^x;
1170		for (i = 0; i < 2; i++) {
1171			r = a_log(bch, y);
1172			if (y && (r < m) && !xi[r]) {
1173				bch->xi_tab[r] = x;
1174				xi[r] = 1;
1175				remaining--;
1176				dbg("x%d = %x\n", r, x);
1177				break;
1178			}
1179			y ^= ak;
1180		}
1181	}
1182	/* should not happen but check anyway */
1183	return remaining ? -1 : 0;
1184}
1185
1186static void *bch_alloc(size_t size, int *err)
1187{
1188	void *ptr;
1189
1190	ptr = kmalloc(size, GFP_KERNEL);
1191	if (ptr == NULL)
1192		*err = 1;
1193	return ptr;
1194}
1195
1196/*
1197 * compute generator polynomial for given (m,t) parameters.
1198 */
1199static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1200{
1201	const unsigned int m = GF_M(bch);
1202	const unsigned int t = GF_T(bch);
1203	int n, err = 0;
1204	unsigned int i, j, nbits, r, word, *roots;
1205	struct gf_poly *g;
1206	uint32_t *genpoly;
1207
1208	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1209	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1210	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1211
1212	if (err) {
1213		kfree(genpoly);
1214		genpoly = NULL;
1215		goto finish;
1216	}
1217
1218	/* enumerate all roots of g(X) */
1219	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1220	for (i = 0; i < t; i++) {
1221		for (j = 0, r = 2*i+1; j < m; j++) {
1222			roots[r] = 1;
1223			r = mod_s(bch, 2*r);
1224		}
1225	}
1226	/* build generator polynomial g(X) */
1227	g->deg = 0;
1228	g->c[0] = 1;
1229	for (i = 0; i < GF_N(bch); i++) {
1230		if (roots[i]) {
1231			/* multiply g(X) by (X+root) */
1232			r = bch->a_pow_tab[i];
1233			g->c[g->deg+1] = 1;
1234			for (j = g->deg; j > 0; j--)
1235				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1236
1237			g->c[0] = gf_mul(bch, g->c[0], r);
1238			g->deg++;
1239		}
1240	}
1241	/* store left-justified binary representation of g(X) */
1242	n = g->deg+1;
1243	i = 0;
1244
1245	while (n > 0) {
1246		nbits = (n > 32) ? 32 : n;
1247		for (j = 0, word = 0; j < nbits; j++) {
1248			if (g->c[n-1-j])
1249				word |= 1u << (31-j);
1250		}
1251		genpoly[i++] = word;
1252		n -= nbits;
1253	}
1254	bch->ecc_bits = g->deg;
1255
1256finish:
1257	kfree(g);
1258	kfree(roots);
1259
1260	return genpoly;
1261}
1262
1263/**
1264 * bch_init - initialize a BCH encoder/decoder
1265 * @m:          Galois field order, should be in the range 5-15
1266 * @t:          maximum error correction capability, in bits
1267 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1268 * @swap_bits:  swap bits within data and syndrome bytes
1269 *
1270 * Returns:
1271 *  a newly allocated BCH control structure if successful, NULL otherwise
1272 *
1273 * This initialization can take some time, as lookup tables are built for fast
1274 * encoding/decoding; make sure not to call this function from a time critical
1275 * path. Usually, bch_init() should be called on module/driver init and
1276 * bch_free() should be called to release memory on exit.
1277 *
1278 * You may provide your own primitive polynomial of degree @m in argument
1279 * @prim_poly, or let bch_init() use its default polynomial.
1280 *
1281 * Once bch_init() has successfully returned a pointer to a newly allocated
1282 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1283 * the structure.
1284 */
1285struct bch_control *bch_init(int m, int t, unsigned int prim_poly,
1286			     bool swap_bits)
1287{
1288	int err = 0;
1289	unsigned int i, words;
1290	uint32_t *genpoly;
1291	struct bch_control *bch = NULL;
1292
1293	const int min_m = 5;
1294
1295	/* default primitive polynomials */
1296	static const unsigned int prim_poly_tab[] = {
1297		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1298		0x402b, 0x8003,
1299	};
1300
1301#if defined(CONFIG_BCH_CONST_PARAMS)
1302	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1303		printk(KERN_ERR "bch encoder/decoder was configured to support "
1304		       "parameters m=%d, t=%d only!\n",
1305		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1306		goto fail;
1307	}
1308#endif
1309	if ((m < min_m) || (m > BCH_MAX_M))
1310		/*
1311		 * values of m greater than 15 are not currently supported;
1312		 * supporting m > 15 would require changing table base type
1313		 * (uint16_t) and a small patch in matrix transposition
1314		 */
1315		goto fail;
1316
1317	if (t > BCH_MAX_T)
1318		/*
1319		 * we can support larger than 64 bits if necessary, at the
1320		 * cost of higher stack usage.
1321		 */
1322		goto fail;
1323
1324	/* sanity checks */
1325	if ((t < 1) || (m*t >= ((1 << m)-1)))
1326		/* invalid t value */
1327		goto fail;
1328
1329	/* select a primitive polynomial for generating GF(2^m) */
1330	if (prim_poly == 0)
1331		prim_poly = prim_poly_tab[m-min_m];
1332
1333	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1334	if (bch == NULL)
1335		goto fail;
1336
1337	bch->m = m;
1338	bch->t = t;
1339	bch->n = (1 << m)-1;
1340	words  = DIV_ROUND_UP(m*t, 32);
1341	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1342	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1343	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1344	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1345	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1346	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1347	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1348	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1349	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1350	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1351	bch->swap_bits = swap_bits;
1352
1353	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1354		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1355
1356	if (err)
1357		goto fail;
1358
1359	err = build_gf_tables(bch, prim_poly);
1360	if (err)
1361		goto fail;
1362
1363	/* use generator polynomial for computing encoding tables */
1364	genpoly = compute_generator_polynomial(bch);
1365	if (genpoly == NULL)
1366		goto fail;
1367
1368	build_mod8_tables(bch, genpoly);
1369	kfree(genpoly);
1370
1371	err = build_deg2_base(bch);
1372	if (err)
1373		goto fail;
1374
1375	return bch;
1376
1377fail:
1378	bch_free(bch);
1379	return NULL;
1380}
1381EXPORT_SYMBOL_GPL(bch_init);
1382
1383/**
1384 *  bch_free - free the BCH control structure
1385 *  @bch:    BCH control structure to release
1386 */
1387void bch_free(struct bch_control *bch)
1388{
1389	unsigned int i;
1390
1391	if (bch) {
1392		kfree(bch->a_pow_tab);
1393		kfree(bch->a_log_tab);
1394		kfree(bch->mod8_tab);
1395		kfree(bch->ecc_buf);
1396		kfree(bch->ecc_buf2);
1397		kfree(bch->xi_tab);
1398		kfree(bch->syn);
1399		kfree(bch->cache);
1400		kfree(bch->elp);
1401
1402		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1403			kfree(bch->poly_2t[i]);
1404
1405		kfree(bch);
1406	}
1407}
1408EXPORT_SYMBOL_GPL(bch_free);
1409
1410MODULE_LICENSE("GPL");
1411MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1412MODULE_DESCRIPTION("Binary BCH encoder/decoder");
1413