1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Generic associative array implementation.
3 *
4 * See Documentation/core-api/assoc_array.rst for information.
5 *
6 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
7 * Written by David Howells (dhowells@redhat.com)
8 */
9//#define DEBUG
10#include <linux/rcupdate.h>
11#include <linux/slab.h>
12#include <linux/err.h>
13#include <linux/assoc_array_priv.h>
14
15/*
16 * Iterate over an associative array.  The caller must hold the RCU read lock
17 * or better.
18 */
19static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
20				       const struct assoc_array_ptr *stop,
21				       int (*iterator)(const void *leaf,
22						       void *iterator_data),
23				       void *iterator_data)
24{
25	const struct assoc_array_shortcut *shortcut;
26	const struct assoc_array_node *node;
27	const struct assoc_array_ptr *cursor, *ptr, *parent;
28	unsigned long has_meta;
29	int slot, ret;
30
31	cursor = root;
32
33begin_node:
34	if (assoc_array_ptr_is_shortcut(cursor)) {
35		/* Descend through a shortcut */
36		shortcut = assoc_array_ptr_to_shortcut(cursor);
37		cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
38	}
39
40	node = assoc_array_ptr_to_node(cursor);
41	slot = 0;
42
43	/* We perform two passes of each node.
44	 *
45	 * The first pass does all the leaves in this node.  This means we
46	 * don't miss any leaves if the node is split up by insertion whilst
47	 * we're iterating over the branches rooted here (we may, however, see
48	 * some leaves twice).
49	 */
50	has_meta = 0;
51	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
52		ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
53		has_meta |= (unsigned long)ptr;
54		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
55			/* We need a barrier between the read of the pointer,
56			 * which is supplied by the above READ_ONCE().
57			 */
58			/* Invoke the callback */
59			ret = iterator(assoc_array_ptr_to_leaf(ptr),
60				       iterator_data);
61			if (ret)
62				return ret;
63		}
64	}
65
66	/* The second pass attends to all the metadata pointers.  If we follow
67	 * one of these we may find that we don't come back here, but rather go
68	 * back to a replacement node with the leaves in a different layout.
69	 *
70	 * We are guaranteed to make progress, however, as the slot number for
71	 * a particular portion of the key space cannot change - and we
72	 * continue at the back pointer + 1.
73	 */
74	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
75		goto finished_node;
76	slot = 0;
77
78continue_node:
79	node = assoc_array_ptr_to_node(cursor);
80	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
81		ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
82		if (assoc_array_ptr_is_meta(ptr)) {
83			cursor = ptr;
84			goto begin_node;
85		}
86	}
87
88finished_node:
89	/* Move up to the parent (may need to skip back over a shortcut) */
90	parent = READ_ONCE(node->back_pointer); /* Address dependency. */
91	slot = node->parent_slot;
92	if (parent == stop)
93		return 0;
94
95	if (assoc_array_ptr_is_shortcut(parent)) {
96		shortcut = assoc_array_ptr_to_shortcut(parent);
97		cursor = parent;
98		parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */
99		slot = shortcut->parent_slot;
100		if (parent == stop)
101			return 0;
102	}
103
104	/* Ascend to next slot in parent node */
105	cursor = parent;
106	slot++;
107	goto continue_node;
108}
109
110/**
111 * assoc_array_iterate - Pass all objects in the array to a callback
112 * @array: The array to iterate over.
113 * @iterator: The callback function.
114 * @iterator_data: Private data for the callback function.
115 *
116 * Iterate over all the objects in an associative array.  Each one will be
117 * presented to the iterator function.
118 *
119 * If the array is being modified concurrently with the iteration then it is
120 * possible that some objects in the array will be passed to the iterator
121 * callback more than once - though every object should be passed at least
122 * once.  If this is undesirable then the caller must lock against modification
123 * for the duration of this function.
124 *
125 * The function will return 0 if no objects were in the array or else it will
126 * return the result of the last iterator function called.  Iteration stops
127 * immediately if any call to the iteration function results in a non-zero
128 * return.
129 *
130 * The caller should hold the RCU read lock or better if concurrent
131 * modification is possible.
132 */
133int assoc_array_iterate(const struct assoc_array *array,
134			int (*iterator)(const void *object,
135					void *iterator_data),
136			void *iterator_data)
137{
138	struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */
139
140	if (!root)
141		return 0;
142	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
143}
144
145enum assoc_array_walk_status {
146	assoc_array_walk_tree_empty,
147	assoc_array_walk_found_terminal_node,
148	assoc_array_walk_found_wrong_shortcut,
149};
150
151struct assoc_array_walk_result {
152	struct {
153		struct assoc_array_node	*node;	/* Node in which leaf might be found */
154		int		level;
155		int		slot;
156	} terminal_node;
157	struct {
158		struct assoc_array_shortcut *shortcut;
159		int		level;
160		int		sc_level;
161		unsigned long	sc_segments;
162		unsigned long	dissimilarity;
163	} wrong_shortcut;
164};
165
166/*
167 * Navigate through the internal tree looking for the closest node to the key.
168 */
169static enum assoc_array_walk_status
170assoc_array_walk(const struct assoc_array *array,
171		 const struct assoc_array_ops *ops,
172		 const void *index_key,
173		 struct assoc_array_walk_result *result)
174{
175	struct assoc_array_shortcut *shortcut;
176	struct assoc_array_node *node;
177	struct assoc_array_ptr *cursor, *ptr;
178	unsigned long sc_segments, dissimilarity;
179	unsigned long segments;
180	int level, sc_level, next_sc_level;
181	int slot;
182
183	pr_devel("-->%s()\n", __func__);
184
185	cursor = READ_ONCE(array->root);  /* Address dependency. */
186	if (!cursor)
187		return assoc_array_walk_tree_empty;
188
189	level = 0;
190
191	/* Use segments from the key for the new leaf to navigate through the
192	 * internal tree, skipping through nodes and shortcuts that are on
193	 * route to the destination.  Eventually we'll come to a slot that is
194	 * either empty or contains a leaf at which point we've found a node in
195	 * which the leaf we're looking for might be found or into which it
196	 * should be inserted.
197	 */
198jumped:
199	segments = ops->get_key_chunk(index_key, level);
200	pr_devel("segments[%d]: %lx\n", level, segments);
201
202	if (assoc_array_ptr_is_shortcut(cursor))
203		goto follow_shortcut;
204
205consider_node:
206	node = assoc_array_ptr_to_node(cursor);
207	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
208	slot &= ASSOC_ARRAY_FAN_MASK;
209	ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
210
211	pr_devel("consider slot %x [ix=%d type=%lu]\n",
212		 slot, level, (unsigned long)ptr & 3);
213
214	if (!assoc_array_ptr_is_meta(ptr)) {
215		/* The node doesn't have a node/shortcut pointer in the slot
216		 * corresponding to the index key that we have to follow.
217		 */
218		result->terminal_node.node = node;
219		result->terminal_node.level = level;
220		result->terminal_node.slot = slot;
221		pr_devel("<--%s() = terminal_node\n", __func__);
222		return assoc_array_walk_found_terminal_node;
223	}
224
225	if (assoc_array_ptr_is_node(ptr)) {
226		/* There is a pointer to a node in the slot corresponding to
227		 * this index key segment, so we need to follow it.
228		 */
229		cursor = ptr;
230		level += ASSOC_ARRAY_LEVEL_STEP;
231		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
232			goto consider_node;
233		goto jumped;
234	}
235
236	/* There is a shortcut in the slot corresponding to the index key
237	 * segment.  We follow the shortcut if its partial index key matches
238	 * this leaf's.  Otherwise we need to split the shortcut.
239	 */
240	cursor = ptr;
241follow_shortcut:
242	shortcut = assoc_array_ptr_to_shortcut(cursor);
243	pr_devel("shortcut to %d\n", shortcut->skip_to_level);
244	sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
245	BUG_ON(sc_level > shortcut->skip_to_level);
246
247	do {
248		/* Check the leaf against the shortcut's index key a word at a
249		 * time, trimming the final word (the shortcut stores the index
250		 * key completely from the root to the shortcut's target).
251		 */
252		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
253			segments = ops->get_key_chunk(index_key, sc_level);
254
255		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
256		dissimilarity = segments ^ sc_segments;
257
258		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
259			/* Trim segments that are beyond the shortcut */
260			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
261			dissimilarity &= ~(ULONG_MAX << shift);
262			next_sc_level = shortcut->skip_to_level;
263		} else {
264			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
265			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
266		}
267
268		if (dissimilarity != 0) {
269			/* This shortcut points elsewhere */
270			result->wrong_shortcut.shortcut = shortcut;
271			result->wrong_shortcut.level = level;
272			result->wrong_shortcut.sc_level = sc_level;
273			result->wrong_shortcut.sc_segments = sc_segments;
274			result->wrong_shortcut.dissimilarity = dissimilarity;
275			return assoc_array_walk_found_wrong_shortcut;
276		}
277
278		sc_level = next_sc_level;
279	} while (sc_level < shortcut->skip_to_level);
280
281	/* The shortcut matches the leaf's index to this point. */
282	cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
283	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
284		level = sc_level;
285		goto jumped;
286	} else {
287		level = sc_level;
288		goto consider_node;
289	}
290}
291
292/**
293 * assoc_array_find - Find an object by index key
294 * @array: The associative array to search.
295 * @ops: The operations to use.
296 * @index_key: The key to the object.
297 *
298 * Find an object in an associative array by walking through the internal tree
299 * to the node that should contain the object and then searching the leaves
300 * there.  NULL is returned if the requested object was not found in the array.
301 *
302 * The caller must hold the RCU read lock or better.
303 */
304void *assoc_array_find(const struct assoc_array *array,
305		       const struct assoc_array_ops *ops,
306		       const void *index_key)
307{
308	struct assoc_array_walk_result result;
309	const struct assoc_array_node *node;
310	const struct assoc_array_ptr *ptr;
311	const void *leaf;
312	int slot;
313
314	if (assoc_array_walk(array, ops, index_key, &result) !=
315	    assoc_array_walk_found_terminal_node)
316		return NULL;
317
318	node = result.terminal_node.node;
319
320	/* If the target key is available to us, it's has to be pointed to by
321	 * the terminal node.
322	 */
323	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
324		ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
325		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
326			/* We need a barrier between the read of the pointer
327			 * and dereferencing the pointer - but only if we are
328			 * actually going to dereference it.
329			 */
330			leaf = assoc_array_ptr_to_leaf(ptr);
331			if (ops->compare_object(leaf, index_key))
332				return (void *)leaf;
333		}
334	}
335
336	return NULL;
337}
338
339/*
340 * Destructively iterate over an associative array.  The caller must prevent
341 * other simultaneous accesses.
342 */
343static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
344					const struct assoc_array_ops *ops)
345{
346	struct assoc_array_shortcut *shortcut;
347	struct assoc_array_node *node;
348	struct assoc_array_ptr *cursor, *parent = NULL;
349	int slot = -1;
350
351	pr_devel("-->%s()\n", __func__);
352
353	cursor = root;
354	if (!cursor) {
355		pr_devel("empty\n");
356		return;
357	}
358
359move_to_meta:
360	if (assoc_array_ptr_is_shortcut(cursor)) {
361		/* Descend through a shortcut */
362		pr_devel("[%d] shortcut\n", slot);
363		BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
364		shortcut = assoc_array_ptr_to_shortcut(cursor);
365		BUG_ON(shortcut->back_pointer != parent);
366		BUG_ON(slot != -1 && shortcut->parent_slot != slot);
367		parent = cursor;
368		cursor = shortcut->next_node;
369		slot = -1;
370		BUG_ON(!assoc_array_ptr_is_node(cursor));
371	}
372
373	pr_devel("[%d] node\n", slot);
374	node = assoc_array_ptr_to_node(cursor);
375	BUG_ON(node->back_pointer != parent);
376	BUG_ON(slot != -1 && node->parent_slot != slot);
377	slot = 0;
378
379continue_node:
380	pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
381	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
382		struct assoc_array_ptr *ptr = node->slots[slot];
383		if (!ptr)
384			continue;
385		if (assoc_array_ptr_is_meta(ptr)) {
386			parent = cursor;
387			cursor = ptr;
388			goto move_to_meta;
389		}
390
391		if (ops) {
392			pr_devel("[%d] free leaf\n", slot);
393			ops->free_object(assoc_array_ptr_to_leaf(ptr));
394		}
395	}
396
397	parent = node->back_pointer;
398	slot = node->parent_slot;
399	pr_devel("free node\n");
400	kfree(node);
401	if (!parent)
402		return; /* Done */
403
404	/* Move back up to the parent (may need to free a shortcut on
405	 * the way up) */
406	if (assoc_array_ptr_is_shortcut(parent)) {
407		shortcut = assoc_array_ptr_to_shortcut(parent);
408		BUG_ON(shortcut->next_node != cursor);
409		cursor = parent;
410		parent = shortcut->back_pointer;
411		slot = shortcut->parent_slot;
412		pr_devel("free shortcut\n");
413		kfree(shortcut);
414		if (!parent)
415			return;
416
417		BUG_ON(!assoc_array_ptr_is_node(parent));
418	}
419
420	/* Ascend to next slot in parent node */
421	pr_devel("ascend to %p[%d]\n", parent, slot);
422	cursor = parent;
423	node = assoc_array_ptr_to_node(cursor);
424	slot++;
425	goto continue_node;
426}
427
428/**
429 * assoc_array_destroy - Destroy an associative array
430 * @array: The array to destroy.
431 * @ops: The operations to use.
432 *
433 * Discard all metadata and free all objects in an associative array.  The
434 * array will be empty and ready to use again upon completion.  This function
435 * cannot fail.
436 *
437 * The caller must prevent all other accesses whilst this takes place as no
438 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
439 * accesses to continue.  On the other hand, no memory allocation is required.
440 */
441void assoc_array_destroy(struct assoc_array *array,
442			 const struct assoc_array_ops *ops)
443{
444	assoc_array_destroy_subtree(array->root, ops);
445	array->root = NULL;
446}
447
448/*
449 * Handle insertion into an empty tree.
450 */
451static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
452{
453	struct assoc_array_node *new_n0;
454
455	pr_devel("-->%s()\n", __func__);
456
457	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
458	if (!new_n0)
459		return false;
460
461	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
462	edit->leaf_p = &new_n0->slots[0];
463	edit->adjust_count_on = new_n0;
464	edit->set[0].ptr = &edit->array->root;
465	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
466
467	pr_devel("<--%s() = ok [no root]\n", __func__);
468	return true;
469}
470
471/*
472 * Handle insertion into a terminal node.
473 */
474static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
475						  const struct assoc_array_ops *ops,
476						  const void *index_key,
477						  struct assoc_array_walk_result *result)
478{
479	struct assoc_array_shortcut *shortcut, *new_s0;
480	struct assoc_array_node *node, *new_n0, *new_n1, *side;
481	struct assoc_array_ptr *ptr;
482	unsigned long dissimilarity, base_seg, blank;
483	size_t keylen;
484	bool have_meta;
485	int level, diff;
486	int slot, next_slot, free_slot, i, j;
487
488	node	= result->terminal_node.node;
489	level	= result->terminal_node.level;
490	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
491
492	pr_devel("-->%s()\n", __func__);
493
494	/* We arrived at a node which doesn't have an onward node or shortcut
495	 * pointer that we have to follow.  This means that (a) the leaf we
496	 * want must go here (either by insertion or replacement) or (b) we
497	 * need to split this node and insert in one of the fragments.
498	 */
499	free_slot = -1;
500
501	/* Firstly, we have to check the leaves in this node to see if there's
502	 * a matching one we should replace in place.
503	 */
504	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
505		ptr = node->slots[i];
506		if (!ptr) {
507			free_slot = i;
508			continue;
509		}
510		if (assoc_array_ptr_is_leaf(ptr) &&
511		    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
512					index_key)) {
513			pr_devel("replace in slot %d\n", i);
514			edit->leaf_p = &node->slots[i];
515			edit->dead_leaf = node->slots[i];
516			pr_devel("<--%s() = ok [replace]\n", __func__);
517			return true;
518		}
519	}
520
521	/* If there is a free slot in this node then we can just insert the
522	 * leaf here.
523	 */
524	if (free_slot >= 0) {
525		pr_devel("insert in free slot %d\n", free_slot);
526		edit->leaf_p = &node->slots[free_slot];
527		edit->adjust_count_on = node;
528		pr_devel("<--%s() = ok [insert]\n", __func__);
529		return true;
530	}
531
532	/* The node has no spare slots - so we're either going to have to split
533	 * it or insert another node before it.
534	 *
535	 * Whatever, we're going to need at least two new nodes - so allocate
536	 * those now.  We may also need a new shortcut, but we deal with that
537	 * when we need it.
538	 */
539	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
540	if (!new_n0)
541		return false;
542	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
543	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
544	if (!new_n1)
545		return false;
546	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
547
548	/* We need to find out how similar the leaves are. */
549	pr_devel("no spare slots\n");
550	have_meta = false;
551	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
552		ptr = node->slots[i];
553		if (assoc_array_ptr_is_meta(ptr)) {
554			edit->segment_cache[i] = 0xff;
555			have_meta = true;
556			continue;
557		}
558		base_seg = ops->get_object_key_chunk(
559			assoc_array_ptr_to_leaf(ptr), level);
560		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
561		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
562	}
563
564	if (have_meta) {
565		pr_devel("have meta\n");
566		goto split_node;
567	}
568
569	/* The node contains only leaves */
570	dissimilarity = 0;
571	base_seg = edit->segment_cache[0];
572	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
573		dissimilarity |= edit->segment_cache[i] ^ base_seg;
574
575	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
576
577	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
578		/* The old leaves all cluster in the same slot.  We will need
579		 * to insert a shortcut if the new node wants to cluster with them.
580		 */
581		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
582			goto all_leaves_cluster_together;
583
584		/* Otherwise all the old leaves cluster in the same slot, but
585		 * the new leaf wants to go into a different slot - so we
586		 * create a new node (n0) to hold the new leaf and a pointer to
587		 * a new node (n1) holding all the old leaves.
588		 *
589		 * This can be done by falling through to the node splitting
590		 * path.
591		 */
592		pr_devel("present leaves cluster but not new leaf\n");
593	}
594
595split_node:
596	pr_devel("split node\n");
597
598	/* We need to split the current node.  The node must contain anything
599	 * from a single leaf (in the one leaf case, this leaf will cluster
600	 * with the new leaf) and the rest meta-pointers, to all leaves, some
601	 * of which may cluster.
602	 *
603	 * It won't contain the case in which all the current leaves plus the
604	 * new leaves want to cluster in the same slot.
605	 *
606	 * We need to expel at least two leaves out of a set consisting of the
607	 * leaves in the node and the new leaf.  The current meta pointers can
608	 * just be copied as they shouldn't cluster with any of the leaves.
609	 *
610	 * We need a new node (n0) to replace the current one and a new node to
611	 * take the expelled nodes (n1).
612	 */
613	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
614	new_n0->back_pointer = node->back_pointer;
615	new_n0->parent_slot = node->parent_slot;
616	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
617	new_n1->parent_slot = -1; /* Need to calculate this */
618
619do_split_node:
620	pr_devel("do_split_node\n");
621
622	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
623	new_n1->nr_leaves_on_branch = 0;
624
625	/* Begin by finding two matching leaves.  There have to be at least two
626	 * that match - even if there are meta pointers - because any leaf that
627	 * would match a slot with a meta pointer in it must be somewhere
628	 * behind that meta pointer and cannot be here.  Further, given N
629	 * remaining leaf slots, we now have N+1 leaves to go in them.
630	 */
631	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
632		slot = edit->segment_cache[i];
633		if (slot != 0xff)
634			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
635				if (edit->segment_cache[j] == slot)
636					goto found_slot_for_multiple_occupancy;
637	}
638found_slot_for_multiple_occupancy:
639	pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
640	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
641	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
642	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
643
644	new_n1->parent_slot = slot;
645
646	/* Metadata pointers cannot change slot */
647	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
648		if (assoc_array_ptr_is_meta(node->slots[i]))
649			new_n0->slots[i] = node->slots[i];
650		else
651			new_n0->slots[i] = NULL;
652	BUG_ON(new_n0->slots[slot] != NULL);
653	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
654
655	/* Filter the leaf pointers between the new nodes */
656	free_slot = -1;
657	next_slot = 0;
658	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
659		if (assoc_array_ptr_is_meta(node->slots[i]))
660			continue;
661		if (edit->segment_cache[i] == slot) {
662			new_n1->slots[next_slot++] = node->slots[i];
663			new_n1->nr_leaves_on_branch++;
664		} else {
665			do {
666				free_slot++;
667			} while (new_n0->slots[free_slot] != NULL);
668			new_n0->slots[free_slot] = node->slots[i];
669		}
670	}
671
672	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
673
674	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
675		do {
676			free_slot++;
677		} while (new_n0->slots[free_slot] != NULL);
678		edit->leaf_p = &new_n0->slots[free_slot];
679		edit->adjust_count_on = new_n0;
680	} else {
681		edit->leaf_p = &new_n1->slots[next_slot++];
682		edit->adjust_count_on = new_n1;
683	}
684
685	BUG_ON(next_slot <= 1);
686
687	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
688	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
689		if (edit->segment_cache[i] == 0xff) {
690			ptr = node->slots[i];
691			BUG_ON(assoc_array_ptr_is_leaf(ptr));
692			if (assoc_array_ptr_is_node(ptr)) {
693				side = assoc_array_ptr_to_node(ptr);
694				edit->set_backpointers[i] = &side->back_pointer;
695			} else {
696				shortcut = assoc_array_ptr_to_shortcut(ptr);
697				edit->set_backpointers[i] = &shortcut->back_pointer;
698			}
699		}
700	}
701
702	ptr = node->back_pointer;
703	if (!ptr)
704		edit->set[0].ptr = &edit->array->root;
705	else if (assoc_array_ptr_is_node(ptr))
706		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
707	else
708		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
709	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
710	pr_devel("<--%s() = ok [split node]\n", __func__);
711	return true;
712
713all_leaves_cluster_together:
714	/* All the leaves, new and old, want to cluster together in this node
715	 * in the same slot, so we have to replace this node with a shortcut to
716	 * skip over the identical parts of the key and then place a pair of
717	 * nodes, one inside the other, at the end of the shortcut and
718	 * distribute the keys between them.
719	 *
720	 * Firstly we need to work out where the leaves start diverging as a
721	 * bit position into their keys so that we know how big the shortcut
722	 * needs to be.
723	 *
724	 * We only need to make a single pass of N of the N+1 leaves because if
725	 * any keys differ between themselves at bit X then at least one of
726	 * them must also differ with the base key at bit X or before.
727	 */
728	pr_devel("all leaves cluster together\n");
729	diff = INT_MAX;
730	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
731		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
732					  index_key);
733		if (x < diff) {
734			BUG_ON(x < 0);
735			diff = x;
736		}
737	}
738	BUG_ON(diff == INT_MAX);
739	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
740
741	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
742	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
743
744	new_s0 = kzalloc(struct_size(new_s0, index_key, keylen), GFP_KERNEL);
745	if (!new_s0)
746		return false;
747	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
748
749	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
750	new_s0->back_pointer = node->back_pointer;
751	new_s0->parent_slot = node->parent_slot;
752	new_s0->next_node = assoc_array_node_to_ptr(new_n0);
753	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
754	new_n0->parent_slot = 0;
755	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
756	new_n1->parent_slot = -1; /* Need to calculate this */
757
758	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
759	pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
760	BUG_ON(level <= 0);
761
762	for (i = 0; i < keylen; i++)
763		new_s0->index_key[i] =
764			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
765
766	if (level & ASSOC_ARRAY_KEY_CHUNK_MASK) {
767		blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
768		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
769		new_s0->index_key[keylen - 1] &= ~blank;
770	}
771
772	/* This now reduces to a node splitting exercise for which we'll need
773	 * to regenerate the disparity table.
774	 */
775	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
776		ptr = node->slots[i];
777		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
778						     level);
779		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
780		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
781	}
782
783	base_seg = ops->get_key_chunk(index_key, level);
784	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
785	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
786	goto do_split_node;
787}
788
789/*
790 * Handle insertion into the middle of a shortcut.
791 */
792static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
793					    const struct assoc_array_ops *ops,
794					    struct assoc_array_walk_result *result)
795{
796	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
797	struct assoc_array_node *node, *new_n0, *side;
798	unsigned long sc_segments, dissimilarity, blank;
799	size_t keylen;
800	int level, sc_level, diff;
801	int sc_slot;
802
803	shortcut	= result->wrong_shortcut.shortcut;
804	level		= result->wrong_shortcut.level;
805	sc_level	= result->wrong_shortcut.sc_level;
806	sc_segments	= result->wrong_shortcut.sc_segments;
807	dissimilarity	= result->wrong_shortcut.dissimilarity;
808
809	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
810		 __func__, level, dissimilarity, sc_level);
811
812	/* We need to split a shortcut and insert a node between the two
813	 * pieces.  Zero-length pieces will be dispensed with entirely.
814	 *
815	 * First of all, we need to find out in which level the first
816	 * difference was.
817	 */
818	diff = __ffs(dissimilarity);
819	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
820	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
821	pr_devel("diff=%d\n", diff);
822
823	if (!shortcut->back_pointer) {
824		edit->set[0].ptr = &edit->array->root;
825	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
826		node = assoc_array_ptr_to_node(shortcut->back_pointer);
827		edit->set[0].ptr = &node->slots[shortcut->parent_slot];
828	} else {
829		BUG();
830	}
831
832	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
833
834	/* Create a new node now since we're going to need it anyway */
835	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
836	if (!new_n0)
837		return false;
838	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
839	edit->adjust_count_on = new_n0;
840
841	/* Insert a new shortcut before the new node if this segment isn't of
842	 * zero length - otherwise we just connect the new node directly to the
843	 * parent.
844	 */
845	level += ASSOC_ARRAY_LEVEL_STEP;
846	if (diff > level) {
847		pr_devel("pre-shortcut %d...%d\n", level, diff);
848		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
849		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
850
851		new_s0 = kzalloc(struct_size(new_s0, index_key, keylen),
852				 GFP_KERNEL);
853		if (!new_s0)
854			return false;
855		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
856		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
857		new_s0->back_pointer = shortcut->back_pointer;
858		new_s0->parent_slot = shortcut->parent_slot;
859		new_s0->next_node = assoc_array_node_to_ptr(new_n0);
860		new_s0->skip_to_level = diff;
861
862		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
863		new_n0->parent_slot = 0;
864
865		memcpy(new_s0->index_key, shortcut->index_key,
866		       flex_array_size(new_s0, index_key, keylen));
867
868		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
869		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
870		new_s0->index_key[keylen - 1] &= ~blank;
871	} else {
872		pr_devel("no pre-shortcut\n");
873		edit->set[0].to = assoc_array_node_to_ptr(new_n0);
874		new_n0->back_pointer = shortcut->back_pointer;
875		new_n0->parent_slot = shortcut->parent_slot;
876	}
877
878	side = assoc_array_ptr_to_node(shortcut->next_node);
879	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
880
881	/* We need to know which slot in the new node is going to take a
882	 * metadata pointer.
883	 */
884	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
885	sc_slot &= ASSOC_ARRAY_FAN_MASK;
886
887	pr_devel("new slot %lx >> %d -> %d\n",
888		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
889
890	/* Determine whether we need to follow the new node with a replacement
891	 * for the current shortcut.  We could in theory reuse the current
892	 * shortcut if its parent slot number doesn't change - but that's a
893	 * 1-in-16 chance so not worth expending the code upon.
894	 */
895	level = diff + ASSOC_ARRAY_LEVEL_STEP;
896	if (level < shortcut->skip_to_level) {
897		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
898		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
899		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
900
901		new_s1 = kzalloc(struct_size(new_s1, index_key, keylen),
902				 GFP_KERNEL);
903		if (!new_s1)
904			return false;
905		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
906
907		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
908		new_s1->parent_slot = sc_slot;
909		new_s1->next_node = shortcut->next_node;
910		new_s1->skip_to_level = shortcut->skip_to_level;
911
912		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
913
914		memcpy(new_s1->index_key, shortcut->index_key,
915		       flex_array_size(new_s1, index_key, keylen));
916
917		edit->set[1].ptr = &side->back_pointer;
918		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
919	} else {
920		pr_devel("no post-shortcut\n");
921
922		/* We don't have to replace the pointed-to node as long as we
923		 * use memory barriers to make sure the parent slot number is
924		 * changed before the back pointer (the parent slot number is
925		 * irrelevant to the old parent shortcut).
926		 */
927		new_n0->slots[sc_slot] = shortcut->next_node;
928		edit->set_parent_slot[0].p = &side->parent_slot;
929		edit->set_parent_slot[0].to = sc_slot;
930		edit->set[1].ptr = &side->back_pointer;
931		edit->set[1].to = assoc_array_node_to_ptr(new_n0);
932	}
933
934	/* Install the new leaf in a spare slot in the new node. */
935	if (sc_slot == 0)
936		edit->leaf_p = &new_n0->slots[1];
937	else
938		edit->leaf_p = &new_n0->slots[0];
939
940	pr_devel("<--%s() = ok [split shortcut]\n", __func__);
941	return true;
942}
943
944/**
945 * assoc_array_insert - Script insertion of an object into an associative array
946 * @array: The array to insert into.
947 * @ops: The operations to use.
948 * @index_key: The key to insert at.
949 * @object: The object to insert.
950 *
951 * Precalculate and preallocate a script for the insertion or replacement of an
952 * object in an associative array.  This results in an edit script that can
953 * either be applied or cancelled.
954 *
955 * The function returns a pointer to an edit script or -ENOMEM.
956 *
957 * The caller should lock against other modifications and must continue to hold
958 * the lock until assoc_array_apply_edit() has been called.
959 *
960 * Accesses to the tree may take place concurrently with this function,
961 * provided they hold the RCU read lock.
962 */
963struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
964					    const struct assoc_array_ops *ops,
965					    const void *index_key,
966					    void *object)
967{
968	struct assoc_array_walk_result result;
969	struct assoc_array_edit *edit;
970
971	pr_devel("-->%s()\n", __func__);
972
973	/* The leaf pointer we're given must not have the bottom bit set as we
974	 * use those for type-marking the pointer.  NULL pointers are also not
975	 * allowed as they indicate an empty slot but we have to allow them
976	 * here as they can be updated later.
977	 */
978	BUG_ON(assoc_array_ptr_is_meta(object));
979
980	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
981	if (!edit)
982		return ERR_PTR(-ENOMEM);
983	edit->array = array;
984	edit->ops = ops;
985	edit->leaf = assoc_array_leaf_to_ptr(object);
986	edit->adjust_count_by = 1;
987
988	switch (assoc_array_walk(array, ops, index_key, &result)) {
989	case assoc_array_walk_tree_empty:
990		/* Allocate a root node if there isn't one yet */
991		if (!assoc_array_insert_in_empty_tree(edit))
992			goto enomem;
993		return edit;
994
995	case assoc_array_walk_found_terminal_node:
996		/* We found a node that doesn't have a node/shortcut pointer in
997		 * the slot corresponding to the index key that we have to
998		 * follow.
999		 */
1000		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1001							   &result))
1002			goto enomem;
1003		return edit;
1004
1005	case assoc_array_walk_found_wrong_shortcut:
1006		/* We found a shortcut that didn't match our key in a slot we
1007		 * needed to follow.
1008		 */
1009		if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1010			goto enomem;
1011		return edit;
1012	}
1013
1014enomem:
1015	/* Clean up after an out of memory error */
1016	pr_devel("enomem\n");
1017	assoc_array_cancel_edit(edit);
1018	return ERR_PTR(-ENOMEM);
1019}
1020
1021/**
1022 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1023 * @edit: The edit script to modify.
1024 * @object: The object pointer to set.
1025 *
1026 * Change the object to be inserted in an edit script.  The object pointed to
1027 * by the old object is not freed.  This must be done prior to applying the
1028 * script.
1029 */
1030void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1031{
1032	BUG_ON(!object);
1033	edit->leaf = assoc_array_leaf_to_ptr(object);
1034}
1035
1036struct assoc_array_delete_collapse_context {
1037	struct assoc_array_node	*node;
1038	const void		*skip_leaf;
1039	int			slot;
1040};
1041
1042/*
1043 * Subtree collapse to node iterator.
1044 */
1045static int assoc_array_delete_collapse_iterator(const void *leaf,
1046						void *iterator_data)
1047{
1048	struct assoc_array_delete_collapse_context *collapse = iterator_data;
1049
1050	if (leaf == collapse->skip_leaf)
1051		return 0;
1052
1053	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1054
1055	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1056	return 0;
1057}
1058
1059/**
1060 * assoc_array_delete - Script deletion of an object from an associative array
1061 * @array: The array to search.
1062 * @ops: The operations to use.
1063 * @index_key: The key to the object.
1064 *
1065 * Precalculate and preallocate a script for the deletion of an object from an
1066 * associative array.  This results in an edit script that can either be
1067 * applied or cancelled.
1068 *
1069 * The function returns a pointer to an edit script if the object was found,
1070 * NULL if the object was not found or -ENOMEM.
1071 *
1072 * The caller should lock against other modifications and must continue to hold
1073 * the lock until assoc_array_apply_edit() has been called.
1074 *
1075 * Accesses to the tree may take place concurrently with this function,
1076 * provided they hold the RCU read lock.
1077 */
1078struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1079					    const struct assoc_array_ops *ops,
1080					    const void *index_key)
1081{
1082	struct assoc_array_delete_collapse_context collapse;
1083	struct assoc_array_walk_result result;
1084	struct assoc_array_node *node, *new_n0;
1085	struct assoc_array_edit *edit;
1086	struct assoc_array_ptr *ptr;
1087	bool has_meta;
1088	int slot, i;
1089
1090	pr_devel("-->%s()\n", __func__);
1091
1092	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1093	if (!edit)
1094		return ERR_PTR(-ENOMEM);
1095	edit->array = array;
1096	edit->ops = ops;
1097	edit->adjust_count_by = -1;
1098
1099	switch (assoc_array_walk(array, ops, index_key, &result)) {
1100	case assoc_array_walk_found_terminal_node:
1101		/* We found a node that should contain the leaf we've been
1102		 * asked to remove - *if* it's in the tree.
1103		 */
1104		pr_devel("terminal_node\n");
1105		node = result.terminal_node.node;
1106
1107		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1108			ptr = node->slots[slot];
1109			if (ptr &&
1110			    assoc_array_ptr_is_leaf(ptr) &&
1111			    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1112						index_key))
1113				goto found_leaf;
1114		}
1115		fallthrough;
1116	case assoc_array_walk_tree_empty:
1117	case assoc_array_walk_found_wrong_shortcut:
1118	default:
1119		assoc_array_cancel_edit(edit);
1120		pr_devel("not found\n");
1121		return NULL;
1122	}
1123
1124found_leaf:
1125	BUG_ON(array->nr_leaves_on_tree <= 0);
1126
1127	/* In the simplest form of deletion we just clear the slot and release
1128	 * the leaf after a suitable interval.
1129	 */
1130	edit->dead_leaf = node->slots[slot];
1131	edit->set[0].ptr = &node->slots[slot];
1132	edit->set[0].to = NULL;
1133	edit->adjust_count_on = node;
1134
1135	/* If that concludes erasure of the last leaf, then delete the entire
1136	 * internal array.
1137	 */
1138	if (array->nr_leaves_on_tree == 1) {
1139		edit->set[1].ptr = &array->root;
1140		edit->set[1].to = NULL;
1141		edit->adjust_count_on = NULL;
1142		edit->excised_subtree = array->root;
1143		pr_devel("all gone\n");
1144		return edit;
1145	}
1146
1147	/* However, we'd also like to clear up some metadata blocks if we
1148	 * possibly can.
1149	 *
1150	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1151	 * leaves in it, then attempt to collapse it - and attempt to
1152	 * recursively collapse up the tree.
1153	 *
1154	 * We could also try and collapse in partially filled subtrees to take
1155	 * up space in this node.
1156	 */
1157	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1158		struct assoc_array_node *parent, *grandparent;
1159		struct assoc_array_ptr *ptr;
1160
1161		/* First of all, we need to know if this node has metadata so
1162		 * that we don't try collapsing if all the leaves are already
1163		 * here.
1164		 */
1165		has_meta = false;
1166		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1167			ptr = node->slots[i];
1168			if (assoc_array_ptr_is_meta(ptr)) {
1169				has_meta = true;
1170				break;
1171			}
1172		}
1173
1174		pr_devel("leaves: %ld [m=%d]\n",
1175			 node->nr_leaves_on_branch - 1, has_meta);
1176
1177		/* Look further up the tree to see if we can collapse this node
1178		 * into a more proximal node too.
1179		 */
1180		parent = node;
1181	collapse_up:
1182		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1183
1184		ptr = parent->back_pointer;
1185		if (!ptr)
1186			goto do_collapse;
1187		if (assoc_array_ptr_is_shortcut(ptr)) {
1188			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1189			ptr = s->back_pointer;
1190			if (!ptr)
1191				goto do_collapse;
1192		}
1193
1194		grandparent = assoc_array_ptr_to_node(ptr);
1195		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1196			parent = grandparent;
1197			goto collapse_up;
1198		}
1199
1200	do_collapse:
1201		/* There's no point collapsing if the original node has no meta
1202		 * pointers to discard and if we didn't merge into one of that
1203		 * node's ancestry.
1204		 */
1205		if (has_meta || parent != node) {
1206			node = parent;
1207
1208			/* Create a new node to collapse into */
1209			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1210			if (!new_n0)
1211				goto enomem;
1212			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1213
1214			new_n0->back_pointer = node->back_pointer;
1215			new_n0->parent_slot = node->parent_slot;
1216			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1217			edit->adjust_count_on = new_n0;
1218
1219			collapse.node = new_n0;
1220			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1221			collapse.slot = 0;
1222			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1223						    node->back_pointer,
1224						    assoc_array_delete_collapse_iterator,
1225						    &collapse);
1226			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1227			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1228
1229			if (!node->back_pointer) {
1230				edit->set[1].ptr = &array->root;
1231			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1232				BUG();
1233			} else if (assoc_array_ptr_is_node(node->back_pointer)) {
1234				struct assoc_array_node *p =
1235					assoc_array_ptr_to_node(node->back_pointer);
1236				edit->set[1].ptr = &p->slots[node->parent_slot];
1237			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1238				struct assoc_array_shortcut *s =
1239					assoc_array_ptr_to_shortcut(node->back_pointer);
1240				edit->set[1].ptr = &s->next_node;
1241			}
1242			edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1243			edit->excised_subtree = assoc_array_node_to_ptr(node);
1244		}
1245	}
1246
1247	return edit;
1248
1249enomem:
1250	/* Clean up after an out of memory error */
1251	pr_devel("enomem\n");
1252	assoc_array_cancel_edit(edit);
1253	return ERR_PTR(-ENOMEM);
1254}
1255
1256/**
1257 * assoc_array_clear - Script deletion of all objects from an associative array
1258 * @array: The array to clear.
1259 * @ops: The operations to use.
1260 *
1261 * Precalculate and preallocate a script for the deletion of all the objects
1262 * from an associative array.  This results in an edit script that can either
1263 * be applied or cancelled.
1264 *
1265 * The function returns a pointer to an edit script if there are objects to be
1266 * deleted, NULL if there are no objects in the array or -ENOMEM.
1267 *
1268 * The caller should lock against other modifications and must continue to hold
1269 * the lock until assoc_array_apply_edit() has been called.
1270 *
1271 * Accesses to the tree may take place concurrently with this function,
1272 * provided they hold the RCU read lock.
1273 */
1274struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1275					   const struct assoc_array_ops *ops)
1276{
1277	struct assoc_array_edit *edit;
1278
1279	pr_devel("-->%s()\n", __func__);
1280
1281	if (!array->root)
1282		return NULL;
1283
1284	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1285	if (!edit)
1286		return ERR_PTR(-ENOMEM);
1287	edit->array = array;
1288	edit->ops = ops;
1289	edit->set[1].ptr = &array->root;
1290	edit->set[1].to = NULL;
1291	edit->excised_subtree = array->root;
1292	edit->ops_for_excised_subtree = ops;
1293	pr_devel("all gone\n");
1294	return edit;
1295}
1296
1297/*
1298 * Handle the deferred destruction after an applied edit.
1299 */
1300static void assoc_array_rcu_cleanup(struct rcu_head *head)
1301{
1302	struct assoc_array_edit *edit =
1303		container_of(head, struct assoc_array_edit, rcu);
1304	int i;
1305
1306	pr_devel("-->%s()\n", __func__);
1307
1308	if (edit->dead_leaf)
1309		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1310	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1311		if (edit->excised_meta[i])
1312			kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1313
1314	if (edit->excised_subtree) {
1315		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1316		if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1317			struct assoc_array_node *n =
1318				assoc_array_ptr_to_node(edit->excised_subtree);
1319			n->back_pointer = NULL;
1320		} else {
1321			struct assoc_array_shortcut *s =
1322				assoc_array_ptr_to_shortcut(edit->excised_subtree);
1323			s->back_pointer = NULL;
1324		}
1325		assoc_array_destroy_subtree(edit->excised_subtree,
1326					    edit->ops_for_excised_subtree);
1327	}
1328
1329	kfree(edit);
1330}
1331
1332/**
1333 * assoc_array_apply_edit - Apply an edit script to an associative array
1334 * @edit: The script to apply.
1335 *
1336 * Apply an edit script to an associative array to effect an insertion,
1337 * deletion or clearance.  As the edit script includes preallocated memory,
1338 * this is guaranteed not to fail.
1339 *
1340 * The edit script, dead objects and dead metadata will be scheduled for
1341 * destruction after an RCU grace period to permit those doing read-only
1342 * accesses on the array to continue to do so under the RCU read lock whilst
1343 * the edit is taking place.
1344 */
1345void assoc_array_apply_edit(struct assoc_array_edit *edit)
1346{
1347	struct assoc_array_shortcut *shortcut;
1348	struct assoc_array_node *node;
1349	struct assoc_array_ptr *ptr;
1350	int i;
1351
1352	pr_devel("-->%s()\n", __func__);
1353
1354	smp_wmb();
1355	if (edit->leaf_p)
1356		*edit->leaf_p = edit->leaf;
1357
1358	smp_wmb();
1359	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1360		if (edit->set_parent_slot[i].p)
1361			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1362
1363	smp_wmb();
1364	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1365		if (edit->set_backpointers[i])
1366			*edit->set_backpointers[i] = edit->set_backpointers_to;
1367
1368	smp_wmb();
1369	for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1370		if (edit->set[i].ptr)
1371			*edit->set[i].ptr = edit->set[i].to;
1372
1373	if (edit->array->root == NULL) {
1374		edit->array->nr_leaves_on_tree = 0;
1375	} else if (edit->adjust_count_on) {
1376		node = edit->adjust_count_on;
1377		for (;;) {
1378			node->nr_leaves_on_branch += edit->adjust_count_by;
1379
1380			ptr = node->back_pointer;
1381			if (!ptr)
1382				break;
1383			if (assoc_array_ptr_is_shortcut(ptr)) {
1384				shortcut = assoc_array_ptr_to_shortcut(ptr);
1385				ptr = shortcut->back_pointer;
1386				if (!ptr)
1387					break;
1388			}
1389			BUG_ON(!assoc_array_ptr_is_node(ptr));
1390			node = assoc_array_ptr_to_node(ptr);
1391		}
1392
1393		edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1394	}
1395
1396	call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1397}
1398
1399/**
1400 * assoc_array_cancel_edit - Discard an edit script.
1401 * @edit: The script to discard.
1402 *
1403 * Free an edit script and all the preallocated data it holds without making
1404 * any changes to the associative array it was intended for.
1405 *
1406 * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1407 * that was to be inserted.  That is left to the caller.
1408 */
1409void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1410{
1411	struct assoc_array_ptr *ptr;
1412	int i;
1413
1414	pr_devel("-->%s()\n", __func__);
1415
1416	/* Clean up after an out of memory error */
1417	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1418		ptr = edit->new_meta[i];
1419		if (ptr) {
1420			if (assoc_array_ptr_is_node(ptr))
1421				kfree(assoc_array_ptr_to_node(ptr));
1422			else
1423				kfree(assoc_array_ptr_to_shortcut(ptr));
1424		}
1425	}
1426	kfree(edit);
1427}
1428
1429/**
1430 * assoc_array_gc - Garbage collect an associative array.
1431 * @array: The array to clean.
1432 * @ops: The operations to use.
1433 * @iterator: A callback function to pass judgement on each object.
1434 * @iterator_data: Private data for the callback function.
1435 *
1436 * Collect garbage from an associative array and pack down the internal tree to
1437 * save memory.
1438 *
1439 * The iterator function is asked to pass judgement upon each object in the
1440 * array.  If it returns false, the object is discard and if it returns true,
1441 * the object is kept.  If it returns true, it must increment the object's
1442 * usage count (or whatever it needs to do to retain it) before returning.
1443 *
1444 * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1445 * latter case, the array is not changed.
1446 *
1447 * The caller should lock against other modifications and must continue to hold
1448 * the lock until assoc_array_apply_edit() has been called.
1449 *
1450 * Accesses to the tree may take place concurrently with this function,
1451 * provided they hold the RCU read lock.
1452 */
1453int assoc_array_gc(struct assoc_array *array,
1454		   const struct assoc_array_ops *ops,
1455		   bool (*iterator)(void *object, void *iterator_data),
1456		   void *iterator_data)
1457{
1458	struct assoc_array_shortcut *shortcut, *new_s;
1459	struct assoc_array_node *node, *new_n;
1460	struct assoc_array_edit *edit;
1461	struct assoc_array_ptr *cursor, *ptr;
1462	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1463	unsigned long nr_leaves_on_tree;
1464	bool retained;
1465	int keylen, slot, nr_free, next_slot, i;
1466
1467	pr_devel("-->%s()\n", __func__);
1468
1469	if (!array->root)
1470		return 0;
1471
1472	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1473	if (!edit)
1474		return -ENOMEM;
1475	edit->array = array;
1476	edit->ops = ops;
1477	edit->ops_for_excised_subtree = ops;
1478	edit->set[0].ptr = &array->root;
1479	edit->excised_subtree = array->root;
1480
1481	new_root = new_parent = NULL;
1482	new_ptr_pp = &new_root;
1483	cursor = array->root;
1484
1485descend:
1486	/* If this point is a shortcut, then we need to duplicate it and
1487	 * advance the target cursor.
1488	 */
1489	if (assoc_array_ptr_is_shortcut(cursor)) {
1490		shortcut = assoc_array_ptr_to_shortcut(cursor);
1491		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1492		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1493		new_s = kmalloc(struct_size(new_s, index_key, keylen),
1494				GFP_KERNEL);
1495		if (!new_s)
1496			goto enomem;
1497		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1498		memcpy(new_s, shortcut, struct_size(new_s, index_key, keylen));
1499		new_s->back_pointer = new_parent;
1500		new_s->parent_slot = shortcut->parent_slot;
1501		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1502		new_ptr_pp = &new_s->next_node;
1503		cursor = shortcut->next_node;
1504	}
1505
1506	/* Duplicate the node at this position */
1507	node = assoc_array_ptr_to_node(cursor);
1508	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1509	if (!new_n)
1510		goto enomem;
1511	pr_devel("dup node %p -> %p\n", node, new_n);
1512	new_n->back_pointer = new_parent;
1513	new_n->parent_slot = node->parent_slot;
1514	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1515	new_ptr_pp = NULL;
1516	slot = 0;
1517
1518continue_node:
1519	/* Filter across any leaves and gc any subtrees */
1520	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1521		ptr = node->slots[slot];
1522		if (!ptr)
1523			continue;
1524
1525		if (assoc_array_ptr_is_leaf(ptr)) {
1526			if (iterator(assoc_array_ptr_to_leaf(ptr),
1527				     iterator_data))
1528				/* The iterator will have done any reference
1529				 * counting on the object for us.
1530				 */
1531				new_n->slots[slot] = ptr;
1532			continue;
1533		}
1534
1535		new_ptr_pp = &new_n->slots[slot];
1536		cursor = ptr;
1537		goto descend;
1538	}
1539
1540retry_compress:
1541	pr_devel("-- compress node %p --\n", new_n);
1542
1543	/* Count up the number of empty slots in this node and work out the
1544	 * subtree leaf count.
1545	 */
1546	new_n->nr_leaves_on_branch = 0;
1547	nr_free = 0;
1548	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1549		ptr = new_n->slots[slot];
1550		if (!ptr)
1551			nr_free++;
1552		else if (assoc_array_ptr_is_leaf(ptr))
1553			new_n->nr_leaves_on_branch++;
1554	}
1555	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1556
1557	/* See what we can fold in */
1558	retained = false;
1559	next_slot = 0;
1560	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1561		struct assoc_array_shortcut *s;
1562		struct assoc_array_node *child;
1563
1564		ptr = new_n->slots[slot];
1565		if (!ptr || assoc_array_ptr_is_leaf(ptr))
1566			continue;
1567
1568		s = NULL;
1569		if (assoc_array_ptr_is_shortcut(ptr)) {
1570			s = assoc_array_ptr_to_shortcut(ptr);
1571			ptr = s->next_node;
1572		}
1573
1574		child = assoc_array_ptr_to_node(ptr);
1575		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1576
1577		if (child->nr_leaves_on_branch <= nr_free + 1) {
1578			/* Fold the child node into this one */
1579			pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1580				 slot, child->nr_leaves_on_branch, nr_free + 1,
1581				 next_slot);
1582
1583			/* We would already have reaped an intervening shortcut
1584			 * on the way back up the tree.
1585			 */
1586			BUG_ON(s);
1587
1588			new_n->slots[slot] = NULL;
1589			nr_free++;
1590			if (slot < next_slot)
1591				next_slot = slot;
1592			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1593				struct assoc_array_ptr *p = child->slots[i];
1594				if (!p)
1595					continue;
1596				BUG_ON(assoc_array_ptr_is_meta(p));
1597				while (new_n->slots[next_slot])
1598					next_slot++;
1599				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1600				new_n->slots[next_slot++] = p;
1601				nr_free--;
1602			}
1603			kfree(child);
1604		} else {
1605			pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1606				 slot, child->nr_leaves_on_branch, nr_free + 1,
1607				 next_slot);
1608			retained = true;
1609		}
1610	}
1611
1612	if (retained && new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1613		pr_devel("internal nodes remain despite enough space, retrying\n");
1614		goto retry_compress;
1615	}
1616	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1617
1618	nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1619
1620	/* Excise this node if it is singly occupied by a shortcut */
1621	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1622		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1623			if ((ptr = new_n->slots[slot]))
1624				break;
1625
1626		if (assoc_array_ptr_is_meta(ptr) &&
1627		    assoc_array_ptr_is_shortcut(ptr)) {
1628			pr_devel("excise node %p with 1 shortcut\n", new_n);
1629			new_s = assoc_array_ptr_to_shortcut(ptr);
1630			new_parent = new_n->back_pointer;
1631			slot = new_n->parent_slot;
1632			kfree(new_n);
1633			if (!new_parent) {
1634				new_s->back_pointer = NULL;
1635				new_s->parent_slot = 0;
1636				new_root = ptr;
1637				goto gc_complete;
1638			}
1639
1640			if (assoc_array_ptr_is_shortcut(new_parent)) {
1641				/* We can discard any preceding shortcut also */
1642				struct assoc_array_shortcut *s =
1643					assoc_array_ptr_to_shortcut(new_parent);
1644
1645				pr_devel("excise preceding shortcut\n");
1646
1647				new_parent = new_s->back_pointer = s->back_pointer;
1648				slot = new_s->parent_slot = s->parent_slot;
1649				kfree(s);
1650				if (!new_parent) {
1651					new_s->back_pointer = NULL;
1652					new_s->parent_slot = 0;
1653					new_root = ptr;
1654					goto gc_complete;
1655				}
1656			}
1657
1658			new_s->back_pointer = new_parent;
1659			new_s->parent_slot = slot;
1660			new_n = assoc_array_ptr_to_node(new_parent);
1661			new_n->slots[slot] = ptr;
1662			goto ascend_old_tree;
1663		}
1664	}
1665
1666	/* Excise any shortcuts we might encounter that point to nodes that
1667	 * only contain leaves.
1668	 */
1669	ptr = new_n->back_pointer;
1670	if (!ptr)
1671		goto gc_complete;
1672
1673	if (assoc_array_ptr_is_shortcut(ptr)) {
1674		new_s = assoc_array_ptr_to_shortcut(ptr);
1675		new_parent = new_s->back_pointer;
1676		slot = new_s->parent_slot;
1677
1678		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1679			struct assoc_array_node *n;
1680
1681			pr_devel("excise shortcut\n");
1682			new_n->back_pointer = new_parent;
1683			new_n->parent_slot = slot;
1684			kfree(new_s);
1685			if (!new_parent) {
1686				new_root = assoc_array_node_to_ptr(new_n);
1687				goto gc_complete;
1688			}
1689
1690			n = assoc_array_ptr_to_node(new_parent);
1691			n->slots[slot] = assoc_array_node_to_ptr(new_n);
1692		}
1693	} else {
1694		new_parent = ptr;
1695	}
1696	new_n = assoc_array_ptr_to_node(new_parent);
1697
1698ascend_old_tree:
1699	ptr = node->back_pointer;
1700	if (assoc_array_ptr_is_shortcut(ptr)) {
1701		shortcut = assoc_array_ptr_to_shortcut(ptr);
1702		slot = shortcut->parent_slot;
1703		cursor = shortcut->back_pointer;
1704		if (!cursor)
1705			goto gc_complete;
1706	} else {
1707		slot = node->parent_slot;
1708		cursor = ptr;
1709	}
1710	BUG_ON(!cursor);
1711	node = assoc_array_ptr_to_node(cursor);
1712	slot++;
1713	goto continue_node;
1714
1715gc_complete:
1716	edit->set[0].to = new_root;
1717	assoc_array_apply_edit(edit);
1718	array->nr_leaves_on_tree = nr_leaves_on_tree;
1719	return 0;
1720
1721enomem:
1722	pr_devel("enomem\n");
1723	assoc_array_destroy_subtree(new_root, edit->ops);
1724	kfree(edit);
1725	return -ENOMEM;
1726}
1727