1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002		Ingo Molnar
6 *
7 *   Derived from the taskqueue/keventd code by:
8 *     David Woodhouse <dwmw2@infradead.org>
9 *     Andrew Morton
10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 *     Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010		SUSE Linux Products GmbH
16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism.  Work items as are
19 * executed in process context.  The worker pool is shared and
20 * automatically managed.  There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28#include <linux/export.h>
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/interrupt.h>
33#include <linux/signal.h>
34#include <linux/completion.h>
35#include <linux/workqueue.h>
36#include <linux/slab.h>
37#include <linux/cpu.h>
38#include <linux/notifier.h>
39#include <linux/kthread.h>
40#include <linux/hardirq.h>
41#include <linux/mempolicy.h>
42#include <linux/freezer.h>
43#include <linux/debug_locks.h>
44#include <linux/lockdep.h>
45#include <linux/idr.h>
46#include <linux/jhash.h>
47#include <linux/hashtable.h>
48#include <linux/rculist.h>
49#include <linux/nodemask.h>
50#include <linux/moduleparam.h>
51#include <linux/uaccess.h>
52#include <linux/sched/isolation.h>
53#include <linux/sched/debug.h>
54#include <linux/nmi.h>
55#include <linux/kvm_para.h>
56#include <linux/delay.h>
57#include <linux/irq_work.h>
58
59#include "workqueue_internal.h"
60
61enum worker_pool_flags {
62	/*
63	 * worker_pool flags
64	 *
65	 * A bound pool is either associated or disassociated with its CPU.
66	 * While associated (!DISASSOCIATED), all workers are bound to the
67	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68	 * is in effect.
69	 *
70	 * While DISASSOCIATED, the cpu may be offline and all workers have
71	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72	 * be executing on any CPU.  The pool behaves as an unbound one.
73	 *
74	 * Note that DISASSOCIATED should be flipped only while holding
75	 * wq_pool_attach_mutex to avoid changing binding state while
76	 * worker_attach_to_pool() is in progress.
77	 *
78	 * As there can only be one concurrent BH execution context per CPU, a
79	 * BH pool is per-CPU and always DISASSOCIATED.
80	 */
81	POOL_BH			= 1 << 0,	/* is a BH pool */
82	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85};
86
87enum worker_flags {
88	/* worker flags */
89	WORKER_DIE		= 1 << 1,	/* die die die */
90	WORKER_IDLE		= 1 << 2,	/* is idle */
91	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95
96	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97				  WORKER_UNBOUND | WORKER_REBOUND,
98};
99
100enum work_cancel_flags {
101	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102};
103
104enum wq_internal_consts {
105	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
106
107	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
108	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
109
110	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
111	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
112
113	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
114						/* call for help after 10ms
115						   (min two ticks) */
116	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
117	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
118
119	/*
120	 * Rescue workers are used only on emergencies and shared by
121	 * all cpus.  Give MIN_NICE.
122	 */
123	RESCUER_NICE_LEVEL	= MIN_NICE,
124	HIGHPRI_NICE_LEVEL	= MIN_NICE,
125
126	WQ_NAME_LEN		= 32,
127};
128
129/*
130 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
131 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
132 * msecs_to_jiffies() can't be an initializer.
133 */
134#define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
135#define BH_WORKER_RESTARTS	10
136
137/*
138 * Structure fields follow one of the following exclusion rules.
139 *
140 * I: Modifiable by initialization/destruction paths and read-only for
141 *    everyone else.
142 *
143 * P: Preemption protected.  Disabling preemption is enough and should
144 *    only be modified and accessed from the local cpu.
145 *
146 * L: pool->lock protected.  Access with pool->lock held.
147 *
148 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
149 *     reads.
150 *
151 * K: Only modified by worker while holding pool->lock. Can be safely read by
152 *    self, while holding pool->lock or from IRQ context if %current is the
153 *    kworker.
154 *
155 * S: Only modified by worker self.
156 *
157 * A: wq_pool_attach_mutex protected.
158 *
159 * PL: wq_pool_mutex protected.
160 *
161 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
162 *
163 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
164 *
165 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
166 *      RCU for reads.
167 *
168 * WQ: wq->mutex protected.
169 *
170 * WR: wq->mutex protected for writes.  RCU protected for reads.
171 *
172 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
173 *     with READ_ONCE() without locking.
174 *
175 * MD: wq_mayday_lock protected.
176 *
177 * WD: Used internally by the watchdog.
178 */
179
180/* struct worker is defined in workqueue_internal.h */
181
182struct worker_pool {
183	raw_spinlock_t		lock;		/* the pool lock */
184	int			cpu;		/* I: the associated cpu */
185	int			node;		/* I: the associated node ID */
186	int			id;		/* I: pool ID */
187	unsigned int		flags;		/* L: flags */
188
189	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
190	bool			cpu_stall;	/* WD: stalled cpu bound pool */
191
192	/*
193	 * The counter is incremented in a process context on the associated CPU
194	 * w/ preemption disabled, and decremented or reset in the same context
195	 * but w/ pool->lock held. The readers grab pool->lock and are
196	 * guaranteed to see if the counter reached zero.
197	 */
198	int			nr_running;
199
200	struct list_head	worklist;	/* L: list of pending works */
201
202	int			nr_workers;	/* L: total number of workers */
203	int			nr_idle;	/* L: currently idle workers */
204
205	struct list_head	idle_list;	/* L: list of idle workers */
206	struct timer_list	idle_timer;	/* L: worker idle timeout */
207	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
208
209	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
210
211	/* a workers is either on busy_hash or idle_list, or the manager */
212	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
213						/* L: hash of busy workers */
214
215	struct worker		*manager;	/* L: purely informational */
216	struct list_head	workers;	/* A: attached workers */
217	struct list_head        dying_workers;  /* A: workers about to die */
218	struct completion	*detach_completion; /* all workers detached */
219
220	struct ida		worker_ida;	/* worker IDs for task name */
221
222	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224	int			refcnt;		/* PL: refcnt for unbound pools */
225
226	/*
227	 * Destruction of pool is RCU protected to allow dereferences
228	 * from get_work_pool().
229	 */
230	struct rcu_head		rcu;
231};
232
233/*
234 * Per-pool_workqueue statistics. These can be monitored using
235 * tools/workqueue/wq_monitor.py.
236 */
237enum pool_workqueue_stats {
238	PWQ_STAT_STARTED,	/* work items started execution */
239	PWQ_STAT_COMPLETED,	/* work items completed execution */
240	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
241	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
242	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
243	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
244	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
245	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
246
247	PWQ_NR_STATS,
248};
249
250/*
251 * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
252 * of work_struct->data are used for flags and the remaining high bits
253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
254 * number of flag bits.
255 */
256struct pool_workqueue {
257	struct worker_pool	*pool;		/* I: the associated pool */
258	struct workqueue_struct *wq;		/* I: the owning workqueue */
259	int			work_color;	/* L: current color */
260	int			flush_color;	/* L: flushing color */
261	int			refcnt;		/* L: reference count */
262	int			nr_in_flight[WORK_NR_COLORS];
263						/* L: nr of in_flight works */
264	bool			plugged;	/* L: execution suspended */
265
266	/*
267	 * nr_active management and WORK_STRUCT_INACTIVE:
268	 *
269	 * When pwq->nr_active >= max_active, new work item is queued to
270	 * pwq->inactive_works instead of pool->worklist and marked with
271	 * WORK_STRUCT_INACTIVE.
272	 *
273	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274	 * nr_active and all work items in pwq->inactive_works are marked with
275	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276	 * in pwq->inactive_works. Some of them are ready to run in
277	 * pool->worklist or worker->scheduled. Those work itmes are only struct
278	 * wq_barrier which is used for flush_work() and should not participate
279	 * in nr_active. For non-barrier work item, it is marked with
280	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281	 */
282	int			nr_active;	/* L: nr of active works */
283	struct list_head	inactive_works;	/* L: inactive works */
284	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
285	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
286	struct list_head	mayday_node;	/* MD: node on wq->maydays */
287
288	u64			stats[PWQ_NR_STATS];
289
290	/*
291	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292	 * and pwq_release_workfn() for details. pool_workqueue itself is also
293	 * RCU protected so that the first pwq can be determined without
294	 * grabbing wq->mutex.
295	 */
296	struct kthread_work	release_work;
297	struct rcu_head		rcu;
298} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299
300/*
301 * Structure used to wait for workqueue flush.
302 */
303struct wq_flusher {
304	struct list_head	list;		/* WQ: list of flushers */
305	int			flush_color;	/* WQ: flush color waiting for */
306	struct completion	done;		/* flush completion */
307};
308
309struct wq_device;
310
311/*
312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314 * As sharing a single nr_active across multiple sockets can be very expensive,
315 * the counting and enforcement is per NUMA node.
316 *
317 * The following struct is used to enforce per-node max_active. When a pwq wants
318 * to start executing a work item, it should increment ->nr using
319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322 * round-robin order.
323 */
324struct wq_node_nr_active {
325	int			max;		/* per-node max_active */
326	atomic_t		nr;		/* per-node nr_active */
327	raw_spinlock_t		lock;		/* nests inside pool locks */
328	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
329};
330
331/*
332 * The externally visible workqueue.  It relays the issued work items to
333 * the appropriate worker_pool through its pool_workqueues.
334 */
335struct workqueue_struct {
336	struct list_head	pwqs;		/* WR: all pwqs of this wq */
337	struct list_head	list;		/* PR: list of all workqueues */
338
339	struct mutex		mutex;		/* protects this wq */
340	int			work_color;	/* WQ: current work color */
341	int			flush_color;	/* WQ: current flush color */
342	atomic_t		nr_pwqs_to_flush; /* flush in progress */
343	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
344	struct list_head	flusher_queue;	/* WQ: flush waiters */
345	struct list_head	flusher_overflow; /* WQ: flush overflow list */
346
347	struct list_head	maydays;	/* MD: pwqs requesting rescue */
348	struct worker		*rescuer;	/* MD: rescue worker */
349
350	int			nr_drainers;	/* WQ: drain in progress */
351
352	/* See alloc_workqueue() function comment for info on min/max_active */
353	int			max_active;	/* WO: max active works */
354	int			min_active;	/* WO: min active works */
355	int			saved_max_active; /* WQ: saved max_active */
356	int			saved_min_active; /* WQ: saved min_active */
357
358	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
359	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
360
361#ifdef CONFIG_SYSFS
362	struct wq_device	*wq_dev;	/* I: for sysfs interface */
363#endif
364#ifdef CONFIG_LOCKDEP
365	char			*lock_name;
366	struct lock_class_key	key;
367	struct lockdep_map	lockdep_map;
368#endif
369	char			name[WQ_NAME_LEN]; /* I: workqueue name */
370
371	/*
372	 * Destruction of workqueue_struct is RCU protected to allow walking
373	 * the workqueues list without grabbing wq_pool_mutex.
374	 * This is used to dump all workqueues from sysrq.
375	 */
376	struct rcu_head		rcu;
377
378	/* hot fields used during command issue, aligned to cacheline */
379	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
380	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
381	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
382};
383
384/*
385 * Each pod type describes how CPUs should be grouped for unbound workqueues.
386 * See the comment above workqueue_attrs->affn_scope.
387 */
388struct wq_pod_type {
389	int			nr_pods;	/* number of pods */
390	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
391	int			*pod_node;	/* pod -> node */
392	int			*cpu_pod;	/* cpu -> pod */
393};
394
395static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
396	[WQ_AFFN_DFL]		= "default",
397	[WQ_AFFN_CPU]		= "cpu",
398	[WQ_AFFN_SMT]		= "smt",
399	[WQ_AFFN_CACHE]		= "cache",
400	[WQ_AFFN_NUMA]		= "numa",
401	[WQ_AFFN_SYSTEM]	= "system",
402};
403
404/*
405 * Per-cpu work items which run for longer than the following threshold are
406 * automatically considered CPU intensive and excluded from concurrency
407 * management to prevent them from noticeably delaying other per-cpu work items.
408 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
409 * The actual value is initialized in wq_cpu_intensive_thresh_init().
410 */
411static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
412module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
413#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
414static unsigned int wq_cpu_intensive_warning_thresh = 4;
415module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
416#endif
417
418/* see the comment above the definition of WQ_POWER_EFFICIENT */
419static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
420module_param_named(power_efficient, wq_power_efficient, bool, 0444);
421
422static bool wq_online;			/* can kworkers be created yet? */
423static bool wq_topo_initialized __read_mostly = false;
424
425static struct kmem_cache *pwq_cache;
426
427static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
428static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
429
430/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
431static struct workqueue_attrs *wq_update_pod_attrs_buf;
432
433static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
434static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
435static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
436/* wait for manager to go away */
437static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
438
439static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
440static bool workqueue_freezing;		/* PL: have wqs started freezing? */
441
442/* PL&A: allowable cpus for unbound wqs and work items */
443static cpumask_var_t wq_unbound_cpumask;
444
445/* PL: user requested unbound cpumask via sysfs */
446static cpumask_var_t wq_requested_unbound_cpumask;
447
448/* PL: isolated cpumask to be excluded from unbound cpumask */
449static cpumask_var_t wq_isolated_cpumask;
450
451/* for further constrain wq_unbound_cpumask by cmdline parameter*/
452static struct cpumask wq_cmdline_cpumask __initdata;
453
454/* CPU where unbound work was last round robin scheduled from this CPU */
455static DEFINE_PER_CPU(int, wq_rr_cpu_last);
456
457/*
458 * Local execution of unbound work items is no longer guaranteed.  The
459 * following always forces round-robin CPU selection on unbound work items
460 * to uncover usages which depend on it.
461 */
462#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
463static bool wq_debug_force_rr_cpu = true;
464#else
465static bool wq_debug_force_rr_cpu = false;
466#endif
467module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
468
469/* to raise softirq for the BH worker pools on other CPUs */
470static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
471				     bh_pool_irq_works);
472
473/* the BH worker pools */
474static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
475				     bh_worker_pools);
476
477/* the per-cpu worker pools */
478static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
479				     cpu_worker_pools);
480
481static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
482
483/* PL: hash of all unbound pools keyed by pool->attrs */
484static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
485
486/* I: attributes used when instantiating standard unbound pools on demand */
487static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
488
489/* I: attributes used when instantiating ordered pools on demand */
490static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
491
492/*
493 * Used to synchronize multiple cancel_sync attempts on the same work item. See
494 * work_grab_pending() and __cancel_work_sync().
495 */
496static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq);
497
498/*
499 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
500 * process context while holding a pool lock. Bounce to a dedicated kthread
501 * worker to avoid A-A deadlocks.
502 */
503static struct kthread_worker *pwq_release_worker __ro_after_init;
504
505struct workqueue_struct *system_wq __ro_after_init;
506EXPORT_SYMBOL(system_wq);
507struct workqueue_struct *system_highpri_wq __ro_after_init;
508EXPORT_SYMBOL_GPL(system_highpri_wq);
509struct workqueue_struct *system_long_wq __ro_after_init;
510EXPORT_SYMBOL_GPL(system_long_wq);
511struct workqueue_struct *system_unbound_wq __ro_after_init;
512EXPORT_SYMBOL_GPL(system_unbound_wq);
513struct workqueue_struct *system_freezable_wq __ro_after_init;
514EXPORT_SYMBOL_GPL(system_freezable_wq);
515struct workqueue_struct *system_power_efficient_wq __ro_after_init;
516EXPORT_SYMBOL_GPL(system_power_efficient_wq);
517struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
518EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
519struct workqueue_struct *system_bh_wq;
520EXPORT_SYMBOL_GPL(system_bh_wq);
521struct workqueue_struct *system_bh_highpri_wq;
522EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
523
524static int worker_thread(void *__worker);
525static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
526static void show_pwq(struct pool_workqueue *pwq);
527static void show_one_worker_pool(struct worker_pool *pool);
528
529#define CREATE_TRACE_POINTS
530#include <trace/events/workqueue.h>
531
532#define assert_rcu_or_pool_mutex()					\
533	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
534			 !lockdep_is_held(&wq_pool_mutex),		\
535			 "RCU or wq_pool_mutex should be held")
536
537#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
538	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
539			 !lockdep_is_held(&wq->mutex) &&		\
540			 !lockdep_is_held(&wq_pool_mutex),		\
541			 "RCU, wq->mutex or wq_pool_mutex should be held")
542
543#define for_each_bh_worker_pool(pool, cpu)				\
544	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
545	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
546	     (pool)++)
547
548#define for_each_cpu_worker_pool(pool, cpu)				\
549	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
550	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
551	     (pool)++)
552
553/**
554 * for_each_pool - iterate through all worker_pools in the system
555 * @pool: iteration cursor
556 * @pi: integer used for iteration
557 *
558 * This must be called either with wq_pool_mutex held or RCU read
559 * locked.  If the pool needs to be used beyond the locking in effect, the
560 * caller is responsible for guaranteeing that the pool stays online.
561 *
562 * The if/else clause exists only for the lockdep assertion and can be
563 * ignored.
564 */
565#define for_each_pool(pool, pi)						\
566	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
567		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
568		else
569
570/**
571 * for_each_pool_worker - iterate through all workers of a worker_pool
572 * @worker: iteration cursor
573 * @pool: worker_pool to iterate workers of
574 *
575 * This must be called with wq_pool_attach_mutex.
576 *
577 * The if/else clause exists only for the lockdep assertion and can be
578 * ignored.
579 */
580#define for_each_pool_worker(worker, pool)				\
581	list_for_each_entry((worker), &(pool)->workers, node)		\
582		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
583		else
584
585/**
586 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
587 * @pwq: iteration cursor
588 * @wq: the target workqueue
589 *
590 * This must be called either with wq->mutex held or RCU read locked.
591 * If the pwq needs to be used beyond the locking in effect, the caller is
592 * responsible for guaranteeing that the pwq stays online.
593 *
594 * The if/else clause exists only for the lockdep assertion and can be
595 * ignored.
596 */
597#define for_each_pwq(pwq, wq)						\
598	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
599				 lockdep_is_held(&(wq->mutex)))
600
601#ifdef CONFIG_DEBUG_OBJECTS_WORK
602
603static const struct debug_obj_descr work_debug_descr;
604
605static void *work_debug_hint(void *addr)
606{
607	return ((struct work_struct *) addr)->func;
608}
609
610static bool work_is_static_object(void *addr)
611{
612	struct work_struct *work = addr;
613
614	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
615}
616
617/*
618 * fixup_init is called when:
619 * - an active object is initialized
620 */
621static bool work_fixup_init(void *addr, enum debug_obj_state state)
622{
623	struct work_struct *work = addr;
624
625	switch (state) {
626	case ODEBUG_STATE_ACTIVE:
627		cancel_work_sync(work);
628		debug_object_init(work, &work_debug_descr);
629		return true;
630	default:
631		return false;
632	}
633}
634
635/*
636 * fixup_free is called when:
637 * - an active object is freed
638 */
639static bool work_fixup_free(void *addr, enum debug_obj_state state)
640{
641	struct work_struct *work = addr;
642
643	switch (state) {
644	case ODEBUG_STATE_ACTIVE:
645		cancel_work_sync(work);
646		debug_object_free(work, &work_debug_descr);
647		return true;
648	default:
649		return false;
650	}
651}
652
653static const struct debug_obj_descr work_debug_descr = {
654	.name		= "work_struct",
655	.debug_hint	= work_debug_hint,
656	.is_static_object = work_is_static_object,
657	.fixup_init	= work_fixup_init,
658	.fixup_free	= work_fixup_free,
659};
660
661static inline void debug_work_activate(struct work_struct *work)
662{
663	debug_object_activate(work, &work_debug_descr);
664}
665
666static inline void debug_work_deactivate(struct work_struct *work)
667{
668	debug_object_deactivate(work, &work_debug_descr);
669}
670
671void __init_work(struct work_struct *work, int onstack)
672{
673	if (onstack)
674		debug_object_init_on_stack(work, &work_debug_descr);
675	else
676		debug_object_init(work, &work_debug_descr);
677}
678EXPORT_SYMBOL_GPL(__init_work);
679
680void destroy_work_on_stack(struct work_struct *work)
681{
682	debug_object_free(work, &work_debug_descr);
683}
684EXPORT_SYMBOL_GPL(destroy_work_on_stack);
685
686void destroy_delayed_work_on_stack(struct delayed_work *work)
687{
688	destroy_timer_on_stack(&work->timer);
689	debug_object_free(&work->work, &work_debug_descr);
690}
691EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
692
693#else
694static inline void debug_work_activate(struct work_struct *work) { }
695static inline void debug_work_deactivate(struct work_struct *work) { }
696#endif
697
698/**
699 * worker_pool_assign_id - allocate ID and assign it to @pool
700 * @pool: the pool pointer of interest
701 *
702 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
703 * successfully, -errno on failure.
704 */
705static int worker_pool_assign_id(struct worker_pool *pool)
706{
707	int ret;
708
709	lockdep_assert_held(&wq_pool_mutex);
710
711	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
712			GFP_KERNEL);
713	if (ret >= 0) {
714		pool->id = ret;
715		return 0;
716	}
717	return ret;
718}
719
720static struct pool_workqueue __rcu **
721unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
722{
723       if (cpu >= 0)
724               return per_cpu_ptr(wq->cpu_pwq, cpu);
725       else
726               return &wq->dfl_pwq;
727}
728
729/* @cpu < 0 for dfl_pwq */
730static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
731{
732	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
733				     lockdep_is_held(&wq_pool_mutex) ||
734				     lockdep_is_held(&wq->mutex));
735}
736
737/**
738 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
739 * @wq: workqueue of interest
740 *
741 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
742 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
743 * default pwq is always mapped to the pool with the current effective cpumask.
744 */
745static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
746{
747	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
748}
749
750static unsigned int work_color_to_flags(int color)
751{
752	return color << WORK_STRUCT_COLOR_SHIFT;
753}
754
755static int get_work_color(unsigned long work_data)
756{
757	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
758		((1 << WORK_STRUCT_COLOR_BITS) - 1);
759}
760
761static int work_next_color(int color)
762{
763	return (color + 1) % WORK_NR_COLORS;
764}
765
766/*
767 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
768 * contain the pointer to the queued pwq.  Once execution starts, the flag
769 * is cleared and the high bits contain OFFQ flags and pool ID.
770 *
771 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
772 * can be used to set the pwq, pool or clear work->data. These functions should
773 * only be called while the work is owned - ie. while the PENDING bit is set.
774 *
775 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
776 * corresponding to a work.  Pool is available once the work has been
777 * queued anywhere after initialization until it is sync canceled.  pwq is
778 * available only while the work item is queued.
779 *
780 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
781 * canceled.  While being canceled, a work item may have its PENDING set
782 * but stay off timer and worklist for arbitrarily long and nobody should
783 * try to steal the PENDING bit.
784 */
785static inline void set_work_data(struct work_struct *work, unsigned long data)
786{
787	WARN_ON_ONCE(!work_pending(work));
788	atomic_long_set(&work->data, data | work_static(work));
789}
790
791static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
792			 unsigned long flags)
793{
794	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
795		      WORK_STRUCT_PWQ | flags);
796}
797
798static void set_work_pool_and_keep_pending(struct work_struct *work,
799					   int pool_id, unsigned long flags)
800{
801	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
802		      WORK_STRUCT_PENDING | flags);
803}
804
805static void set_work_pool_and_clear_pending(struct work_struct *work,
806					    int pool_id, unsigned long flags)
807{
808	/*
809	 * The following wmb is paired with the implied mb in
810	 * test_and_set_bit(PENDING) and ensures all updates to @work made
811	 * here are visible to and precede any updates by the next PENDING
812	 * owner.
813	 */
814	smp_wmb();
815	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
816		      flags);
817	/*
818	 * The following mb guarantees that previous clear of a PENDING bit
819	 * will not be reordered with any speculative LOADS or STORES from
820	 * work->current_func, which is executed afterwards.  This possible
821	 * reordering can lead to a missed execution on attempt to queue
822	 * the same @work.  E.g. consider this case:
823	 *
824	 *   CPU#0                         CPU#1
825	 *   ----------------------------  --------------------------------
826	 *
827	 * 1  STORE event_indicated
828	 * 2  queue_work_on() {
829	 * 3    test_and_set_bit(PENDING)
830	 * 4 }                             set_..._and_clear_pending() {
831	 * 5                                 set_work_data() # clear bit
832	 * 6                                 smp_mb()
833	 * 7                               work->current_func() {
834	 * 8				      LOAD event_indicated
835	 *				   }
836	 *
837	 * Without an explicit full barrier speculative LOAD on line 8 can
838	 * be executed before CPU#0 does STORE on line 1.  If that happens,
839	 * CPU#0 observes the PENDING bit is still set and new execution of
840	 * a @work is not queued in a hope, that CPU#1 will eventually
841	 * finish the queued @work.  Meanwhile CPU#1 does not see
842	 * event_indicated is set, because speculative LOAD was executed
843	 * before actual STORE.
844	 */
845	smp_mb();
846}
847
848static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
849{
850	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
851}
852
853static struct pool_workqueue *get_work_pwq(struct work_struct *work)
854{
855	unsigned long data = atomic_long_read(&work->data);
856
857	if (data & WORK_STRUCT_PWQ)
858		return work_struct_pwq(data);
859	else
860		return NULL;
861}
862
863/**
864 * get_work_pool - return the worker_pool a given work was associated with
865 * @work: the work item of interest
866 *
867 * Pools are created and destroyed under wq_pool_mutex, and allows read
868 * access under RCU read lock.  As such, this function should be
869 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
870 *
871 * All fields of the returned pool are accessible as long as the above
872 * mentioned locking is in effect.  If the returned pool needs to be used
873 * beyond the critical section, the caller is responsible for ensuring the
874 * returned pool is and stays online.
875 *
876 * Return: The worker_pool @work was last associated with.  %NULL if none.
877 */
878static struct worker_pool *get_work_pool(struct work_struct *work)
879{
880	unsigned long data = atomic_long_read(&work->data);
881	int pool_id;
882
883	assert_rcu_or_pool_mutex();
884
885	if (data & WORK_STRUCT_PWQ)
886		return work_struct_pwq(data)->pool;
887
888	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
889	if (pool_id == WORK_OFFQ_POOL_NONE)
890		return NULL;
891
892	return idr_find(&worker_pool_idr, pool_id);
893}
894
895/**
896 * get_work_pool_id - return the worker pool ID a given work is associated with
897 * @work: the work item of interest
898 *
899 * Return: The worker_pool ID @work was last associated with.
900 * %WORK_OFFQ_POOL_NONE if none.
901 */
902static int get_work_pool_id(struct work_struct *work)
903{
904	unsigned long data = atomic_long_read(&work->data);
905
906	if (data & WORK_STRUCT_PWQ)
907		return work_struct_pwq(data)->pool->id;
908
909	return data >> WORK_OFFQ_POOL_SHIFT;
910}
911
912static void mark_work_canceling(struct work_struct *work)
913{
914	unsigned long pool_id = get_work_pool_id(work);
915
916	pool_id <<= WORK_OFFQ_POOL_SHIFT;
917	set_work_data(work, pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING);
918}
919
920static bool work_is_canceling(struct work_struct *work)
921{
922	unsigned long data = atomic_long_read(&work->data);
923
924	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
925}
926
927/*
928 * Policy functions.  These define the policies on how the global worker
929 * pools are managed.  Unless noted otherwise, these functions assume that
930 * they're being called with pool->lock held.
931 */
932
933/*
934 * Need to wake up a worker?  Called from anything but currently
935 * running workers.
936 *
937 * Note that, because unbound workers never contribute to nr_running, this
938 * function will always return %true for unbound pools as long as the
939 * worklist isn't empty.
940 */
941static bool need_more_worker(struct worker_pool *pool)
942{
943	return !list_empty(&pool->worklist) && !pool->nr_running;
944}
945
946/* Can I start working?  Called from busy but !running workers. */
947static bool may_start_working(struct worker_pool *pool)
948{
949	return pool->nr_idle;
950}
951
952/* Do I need to keep working?  Called from currently running workers. */
953static bool keep_working(struct worker_pool *pool)
954{
955	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
956}
957
958/* Do we need a new worker?  Called from manager. */
959static bool need_to_create_worker(struct worker_pool *pool)
960{
961	return need_more_worker(pool) && !may_start_working(pool);
962}
963
964/* Do we have too many workers and should some go away? */
965static bool too_many_workers(struct worker_pool *pool)
966{
967	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
968	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
969	int nr_busy = pool->nr_workers - nr_idle;
970
971	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
972}
973
974/**
975 * worker_set_flags - set worker flags and adjust nr_running accordingly
976 * @worker: self
977 * @flags: flags to set
978 *
979 * Set @flags in @worker->flags and adjust nr_running accordingly.
980 */
981static inline void worker_set_flags(struct worker *worker, unsigned int flags)
982{
983	struct worker_pool *pool = worker->pool;
984
985	lockdep_assert_held(&pool->lock);
986
987	/* If transitioning into NOT_RUNNING, adjust nr_running. */
988	if ((flags & WORKER_NOT_RUNNING) &&
989	    !(worker->flags & WORKER_NOT_RUNNING)) {
990		pool->nr_running--;
991	}
992
993	worker->flags |= flags;
994}
995
996/**
997 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
998 * @worker: self
999 * @flags: flags to clear
1000 *
1001 * Clear @flags in @worker->flags and adjust nr_running accordingly.
1002 */
1003static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1004{
1005	struct worker_pool *pool = worker->pool;
1006	unsigned int oflags = worker->flags;
1007
1008	lockdep_assert_held(&pool->lock);
1009
1010	worker->flags &= ~flags;
1011
1012	/*
1013	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1014	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1015	 * of multiple flags, not a single flag.
1016	 */
1017	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1018		if (!(worker->flags & WORKER_NOT_RUNNING))
1019			pool->nr_running++;
1020}
1021
1022/* Return the first idle worker.  Called with pool->lock held. */
1023static struct worker *first_idle_worker(struct worker_pool *pool)
1024{
1025	if (unlikely(list_empty(&pool->idle_list)))
1026		return NULL;
1027
1028	return list_first_entry(&pool->idle_list, struct worker, entry);
1029}
1030
1031/**
1032 * worker_enter_idle - enter idle state
1033 * @worker: worker which is entering idle state
1034 *
1035 * @worker is entering idle state.  Update stats and idle timer if
1036 * necessary.
1037 *
1038 * LOCKING:
1039 * raw_spin_lock_irq(pool->lock).
1040 */
1041static void worker_enter_idle(struct worker *worker)
1042{
1043	struct worker_pool *pool = worker->pool;
1044
1045	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1046	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1047			 (worker->hentry.next || worker->hentry.pprev)))
1048		return;
1049
1050	/* can't use worker_set_flags(), also called from create_worker() */
1051	worker->flags |= WORKER_IDLE;
1052	pool->nr_idle++;
1053	worker->last_active = jiffies;
1054
1055	/* idle_list is LIFO */
1056	list_add(&worker->entry, &pool->idle_list);
1057
1058	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1059		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1060
1061	/* Sanity check nr_running. */
1062	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1063}
1064
1065/**
1066 * worker_leave_idle - leave idle state
1067 * @worker: worker which is leaving idle state
1068 *
1069 * @worker is leaving idle state.  Update stats.
1070 *
1071 * LOCKING:
1072 * raw_spin_lock_irq(pool->lock).
1073 */
1074static void worker_leave_idle(struct worker *worker)
1075{
1076	struct worker_pool *pool = worker->pool;
1077
1078	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1079		return;
1080	worker_clr_flags(worker, WORKER_IDLE);
1081	pool->nr_idle--;
1082	list_del_init(&worker->entry);
1083}
1084
1085/**
1086 * find_worker_executing_work - find worker which is executing a work
1087 * @pool: pool of interest
1088 * @work: work to find worker for
1089 *
1090 * Find a worker which is executing @work on @pool by searching
1091 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1092 * to match, its current execution should match the address of @work and
1093 * its work function.  This is to avoid unwanted dependency between
1094 * unrelated work executions through a work item being recycled while still
1095 * being executed.
1096 *
1097 * This is a bit tricky.  A work item may be freed once its execution
1098 * starts and nothing prevents the freed area from being recycled for
1099 * another work item.  If the same work item address ends up being reused
1100 * before the original execution finishes, workqueue will identify the
1101 * recycled work item as currently executing and make it wait until the
1102 * current execution finishes, introducing an unwanted dependency.
1103 *
1104 * This function checks the work item address and work function to avoid
1105 * false positives.  Note that this isn't complete as one may construct a
1106 * work function which can introduce dependency onto itself through a
1107 * recycled work item.  Well, if somebody wants to shoot oneself in the
1108 * foot that badly, there's only so much we can do, and if such deadlock
1109 * actually occurs, it should be easy to locate the culprit work function.
1110 *
1111 * CONTEXT:
1112 * raw_spin_lock_irq(pool->lock).
1113 *
1114 * Return:
1115 * Pointer to worker which is executing @work if found, %NULL
1116 * otherwise.
1117 */
1118static struct worker *find_worker_executing_work(struct worker_pool *pool,
1119						 struct work_struct *work)
1120{
1121	struct worker *worker;
1122
1123	hash_for_each_possible(pool->busy_hash, worker, hentry,
1124			       (unsigned long)work)
1125		if (worker->current_work == work &&
1126		    worker->current_func == work->func)
1127			return worker;
1128
1129	return NULL;
1130}
1131
1132/**
1133 * move_linked_works - move linked works to a list
1134 * @work: start of series of works to be scheduled
1135 * @head: target list to append @work to
1136 * @nextp: out parameter for nested worklist walking
1137 *
1138 * Schedule linked works starting from @work to @head. Work series to be
1139 * scheduled starts at @work and includes any consecutive work with
1140 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1141 * @nextp.
1142 *
1143 * CONTEXT:
1144 * raw_spin_lock_irq(pool->lock).
1145 */
1146static void move_linked_works(struct work_struct *work, struct list_head *head,
1147			      struct work_struct **nextp)
1148{
1149	struct work_struct *n;
1150
1151	/*
1152	 * Linked worklist will always end before the end of the list,
1153	 * use NULL for list head.
1154	 */
1155	list_for_each_entry_safe_from(work, n, NULL, entry) {
1156		list_move_tail(&work->entry, head);
1157		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1158			break;
1159	}
1160
1161	/*
1162	 * If we're already inside safe list traversal and have moved
1163	 * multiple works to the scheduled queue, the next position
1164	 * needs to be updated.
1165	 */
1166	if (nextp)
1167		*nextp = n;
1168}
1169
1170/**
1171 * assign_work - assign a work item and its linked work items to a worker
1172 * @work: work to assign
1173 * @worker: worker to assign to
1174 * @nextp: out parameter for nested worklist walking
1175 *
1176 * Assign @work and its linked work items to @worker. If @work is already being
1177 * executed by another worker in the same pool, it'll be punted there.
1178 *
1179 * If @nextp is not NULL, it's updated to point to the next work of the last
1180 * scheduled work. This allows assign_work() to be nested inside
1181 * list_for_each_entry_safe().
1182 *
1183 * Returns %true if @work was successfully assigned to @worker. %false if @work
1184 * was punted to another worker already executing it.
1185 */
1186static bool assign_work(struct work_struct *work, struct worker *worker,
1187			struct work_struct **nextp)
1188{
1189	struct worker_pool *pool = worker->pool;
1190	struct worker *collision;
1191
1192	lockdep_assert_held(&pool->lock);
1193
1194	/*
1195	 * A single work shouldn't be executed concurrently by multiple workers.
1196	 * __queue_work() ensures that @work doesn't jump to a different pool
1197	 * while still running in the previous pool. Here, we should ensure that
1198	 * @work is not executed concurrently by multiple workers from the same
1199	 * pool. Check whether anyone is already processing the work. If so,
1200	 * defer the work to the currently executing one.
1201	 */
1202	collision = find_worker_executing_work(pool, work);
1203	if (unlikely(collision)) {
1204		move_linked_works(work, &collision->scheduled, nextp);
1205		return false;
1206	}
1207
1208	move_linked_works(work, &worker->scheduled, nextp);
1209	return true;
1210}
1211
1212static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1213{
1214	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1215
1216	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1217}
1218
1219static void kick_bh_pool(struct worker_pool *pool)
1220{
1221#ifdef CONFIG_SMP
1222	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1223	if (unlikely(pool->cpu != smp_processor_id() &&
1224		     !(pool->flags & POOL_BH_DRAINING))) {
1225		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1226		return;
1227	}
1228#endif
1229	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1230		raise_softirq_irqoff(HI_SOFTIRQ);
1231	else
1232		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1233}
1234
1235/**
1236 * kick_pool - wake up an idle worker if necessary
1237 * @pool: pool to kick
1238 *
1239 * @pool may have pending work items. Wake up worker if necessary. Returns
1240 * whether a worker was woken up.
1241 */
1242static bool kick_pool(struct worker_pool *pool)
1243{
1244	struct worker *worker = first_idle_worker(pool);
1245	struct task_struct *p;
1246
1247	lockdep_assert_held(&pool->lock);
1248
1249	if (!need_more_worker(pool) || !worker)
1250		return false;
1251
1252	if (pool->flags & POOL_BH) {
1253		kick_bh_pool(pool);
1254		return true;
1255	}
1256
1257	p = worker->task;
1258
1259#ifdef CONFIG_SMP
1260	/*
1261	 * Idle @worker is about to execute @work and waking up provides an
1262	 * opportunity to migrate @worker at a lower cost by setting the task's
1263	 * wake_cpu field. Let's see if we want to move @worker to improve
1264	 * execution locality.
1265	 *
1266	 * We're waking the worker that went idle the latest and there's some
1267	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1268	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1269	 * optimization and the race window is narrow, let's leave as-is for
1270	 * now. If this becomes pronounced, we can skip over workers which are
1271	 * still on cpu when picking an idle worker.
1272	 *
1273	 * If @pool has non-strict affinity, @worker might have ended up outside
1274	 * its affinity scope. Repatriate.
1275	 */
1276	if (!pool->attrs->affn_strict &&
1277	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1278		struct work_struct *work = list_first_entry(&pool->worklist,
1279						struct work_struct, entry);
1280		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1281		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1282	}
1283#endif
1284	wake_up_process(p);
1285	return true;
1286}
1287
1288#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1289
1290/*
1291 * Concurrency-managed per-cpu work items that hog CPU for longer than
1292 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1293 * which prevents them from stalling other concurrency-managed work items. If a
1294 * work function keeps triggering this mechanism, it's likely that the work item
1295 * should be using an unbound workqueue instead.
1296 *
1297 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1298 * and report them so that they can be examined and converted to use unbound
1299 * workqueues as appropriate. To avoid flooding the console, each violating work
1300 * function is tracked and reported with exponential backoff.
1301 */
1302#define WCI_MAX_ENTS 128
1303
1304struct wci_ent {
1305	work_func_t		func;
1306	atomic64_t		cnt;
1307	struct hlist_node	hash_node;
1308};
1309
1310static struct wci_ent wci_ents[WCI_MAX_ENTS];
1311static int wci_nr_ents;
1312static DEFINE_RAW_SPINLOCK(wci_lock);
1313static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1314
1315static struct wci_ent *wci_find_ent(work_func_t func)
1316{
1317	struct wci_ent *ent;
1318
1319	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1320				   (unsigned long)func) {
1321		if (ent->func == func)
1322			return ent;
1323	}
1324	return NULL;
1325}
1326
1327static void wq_cpu_intensive_report(work_func_t func)
1328{
1329	struct wci_ent *ent;
1330
1331restart:
1332	ent = wci_find_ent(func);
1333	if (ent) {
1334		u64 cnt;
1335
1336		/*
1337		 * Start reporting from the warning_thresh and back off
1338		 * exponentially.
1339		 */
1340		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1341		if (wq_cpu_intensive_warning_thresh &&
1342		    cnt >= wq_cpu_intensive_warning_thresh &&
1343		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1344			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1345					ent->func, wq_cpu_intensive_thresh_us,
1346					atomic64_read(&ent->cnt));
1347		return;
1348	}
1349
1350	/*
1351	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1352	 * is exhausted, something went really wrong and we probably made enough
1353	 * noise already.
1354	 */
1355	if (wci_nr_ents >= WCI_MAX_ENTS)
1356		return;
1357
1358	raw_spin_lock(&wci_lock);
1359
1360	if (wci_nr_ents >= WCI_MAX_ENTS) {
1361		raw_spin_unlock(&wci_lock);
1362		return;
1363	}
1364
1365	if (wci_find_ent(func)) {
1366		raw_spin_unlock(&wci_lock);
1367		goto restart;
1368	}
1369
1370	ent = &wci_ents[wci_nr_ents++];
1371	ent->func = func;
1372	atomic64_set(&ent->cnt, 0);
1373	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1374
1375	raw_spin_unlock(&wci_lock);
1376
1377	goto restart;
1378}
1379
1380#else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1381static void wq_cpu_intensive_report(work_func_t func) {}
1382#endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1383
1384/**
1385 * wq_worker_running - a worker is running again
1386 * @task: task waking up
1387 *
1388 * This function is called when a worker returns from schedule()
1389 */
1390void wq_worker_running(struct task_struct *task)
1391{
1392	struct worker *worker = kthread_data(task);
1393
1394	if (!READ_ONCE(worker->sleeping))
1395		return;
1396
1397	/*
1398	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1399	 * and the nr_running increment below, we may ruin the nr_running reset
1400	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1401	 * pool. Protect against such race.
1402	 */
1403	preempt_disable();
1404	if (!(worker->flags & WORKER_NOT_RUNNING))
1405		worker->pool->nr_running++;
1406	preempt_enable();
1407
1408	/*
1409	 * CPU intensive auto-detection cares about how long a work item hogged
1410	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1411	 */
1412	worker->current_at = worker->task->se.sum_exec_runtime;
1413
1414	WRITE_ONCE(worker->sleeping, 0);
1415}
1416
1417/**
1418 * wq_worker_sleeping - a worker is going to sleep
1419 * @task: task going to sleep
1420 *
1421 * This function is called from schedule() when a busy worker is
1422 * going to sleep.
1423 */
1424void wq_worker_sleeping(struct task_struct *task)
1425{
1426	struct worker *worker = kthread_data(task);
1427	struct worker_pool *pool;
1428
1429	/*
1430	 * Rescuers, which may not have all the fields set up like normal
1431	 * workers, also reach here, let's not access anything before
1432	 * checking NOT_RUNNING.
1433	 */
1434	if (worker->flags & WORKER_NOT_RUNNING)
1435		return;
1436
1437	pool = worker->pool;
1438
1439	/* Return if preempted before wq_worker_running() was reached */
1440	if (READ_ONCE(worker->sleeping))
1441		return;
1442
1443	WRITE_ONCE(worker->sleeping, 1);
1444	raw_spin_lock_irq(&pool->lock);
1445
1446	/*
1447	 * Recheck in case unbind_workers() preempted us. We don't
1448	 * want to decrement nr_running after the worker is unbound
1449	 * and nr_running has been reset.
1450	 */
1451	if (worker->flags & WORKER_NOT_RUNNING) {
1452		raw_spin_unlock_irq(&pool->lock);
1453		return;
1454	}
1455
1456	pool->nr_running--;
1457	if (kick_pool(pool))
1458		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1459
1460	raw_spin_unlock_irq(&pool->lock);
1461}
1462
1463/**
1464 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1465 * @task: task currently running
1466 *
1467 * Called from scheduler_tick(). We're in the IRQ context and the current
1468 * worker's fields which follow the 'K' locking rule can be accessed safely.
1469 */
1470void wq_worker_tick(struct task_struct *task)
1471{
1472	struct worker *worker = kthread_data(task);
1473	struct pool_workqueue *pwq = worker->current_pwq;
1474	struct worker_pool *pool = worker->pool;
1475
1476	if (!pwq)
1477		return;
1478
1479	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1480
1481	if (!wq_cpu_intensive_thresh_us)
1482		return;
1483
1484	/*
1485	 * If the current worker is concurrency managed and hogged the CPU for
1486	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1487	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1488	 *
1489	 * Set @worker->sleeping means that @worker is in the process of
1490	 * switching out voluntarily and won't be contributing to
1491	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1492	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1493	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1494	 * We probably want to make this prettier in the future.
1495	 */
1496	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1497	    worker->task->se.sum_exec_runtime - worker->current_at <
1498	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1499		return;
1500
1501	raw_spin_lock(&pool->lock);
1502
1503	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1504	wq_cpu_intensive_report(worker->current_func);
1505	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1506
1507	if (kick_pool(pool))
1508		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1509
1510	raw_spin_unlock(&pool->lock);
1511}
1512
1513/**
1514 * wq_worker_last_func - retrieve worker's last work function
1515 * @task: Task to retrieve last work function of.
1516 *
1517 * Determine the last function a worker executed. This is called from
1518 * the scheduler to get a worker's last known identity.
1519 *
1520 * CONTEXT:
1521 * raw_spin_lock_irq(rq->lock)
1522 *
1523 * This function is called during schedule() when a kworker is going
1524 * to sleep. It's used by psi to identify aggregation workers during
1525 * dequeuing, to allow periodic aggregation to shut-off when that
1526 * worker is the last task in the system or cgroup to go to sleep.
1527 *
1528 * As this function doesn't involve any workqueue-related locking, it
1529 * only returns stable values when called from inside the scheduler's
1530 * queuing and dequeuing paths, when @task, which must be a kworker,
1531 * is guaranteed to not be processing any works.
1532 *
1533 * Return:
1534 * The last work function %current executed as a worker, NULL if it
1535 * hasn't executed any work yet.
1536 */
1537work_func_t wq_worker_last_func(struct task_struct *task)
1538{
1539	struct worker *worker = kthread_data(task);
1540
1541	return worker->last_func;
1542}
1543
1544/**
1545 * wq_node_nr_active - Determine wq_node_nr_active to use
1546 * @wq: workqueue of interest
1547 * @node: NUMA node, can be %NUMA_NO_NODE
1548 *
1549 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1550 *
1551 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1552 *
1553 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1554 *
1555 * - Otherwise, node_nr_active[@node].
1556 */
1557static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1558						   int node)
1559{
1560	if (!(wq->flags & WQ_UNBOUND))
1561		return NULL;
1562
1563	if (node == NUMA_NO_NODE)
1564		node = nr_node_ids;
1565
1566	return wq->node_nr_active[node];
1567}
1568
1569/**
1570 * wq_update_node_max_active - Update per-node max_actives to use
1571 * @wq: workqueue to update
1572 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1573 *
1574 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1575 * distributed among nodes according to the proportions of numbers of online
1576 * cpus. The result is always between @wq->min_active and max_active.
1577 */
1578static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1579{
1580	struct cpumask *effective = unbound_effective_cpumask(wq);
1581	int min_active = READ_ONCE(wq->min_active);
1582	int max_active = READ_ONCE(wq->max_active);
1583	int total_cpus, node;
1584
1585	lockdep_assert_held(&wq->mutex);
1586
1587	if (!wq_topo_initialized)
1588		return;
1589
1590	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1591		off_cpu = -1;
1592
1593	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1594	if (off_cpu >= 0)
1595		total_cpus--;
1596
1597	for_each_node(node) {
1598		int node_cpus;
1599
1600		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1601		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1602			node_cpus--;
1603
1604		wq_node_nr_active(wq, node)->max =
1605			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1606			      min_active, max_active);
1607	}
1608
1609	wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1610}
1611
1612/**
1613 * get_pwq - get an extra reference on the specified pool_workqueue
1614 * @pwq: pool_workqueue to get
1615 *
1616 * Obtain an extra reference on @pwq.  The caller should guarantee that
1617 * @pwq has positive refcnt and be holding the matching pool->lock.
1618 */
1619static void get_pwq(struct pool_workqueue *pwq)
1620{
1621	lockdep_assert_held(&pwq->pool->lock);
1622	WARN_ON_ONCE(pwq->refcnt <= 0);
1623	pwq->refcnt++;
1624}
1625
1626/**
1627 * put_pwq - put a pool_workqueue reference
1628 * @pwq: pool_workqueue to put
1629 *
1630 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1631 * destruction.  The caller should be holding the matching pool->lock.
1632 */
1633static void put_pwq(struct pool_workqueue *pwq)
1634{
1635	lockdep_assert_held(&pwq->pool->lock);
1636	if (likely(--pwq->refcnt))
1637		return;
1638	/*
1639	 * @pwq can't be released under pool->lock, bounce to a dedicated
1640	 * kthread_worker to avoid A-A deadlocks.
1641	 */
1642	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1643}
1644
1645/**
1646 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1647 * @pwq: pool_workqueue to put (can be %NULL)
1648 *
1649 * put_pwq() with locking.  This function also allows %NULL @pwq.
1650 */
1651static void put_pwq_unlocked(struct pool_workqueue *pwq)
1652{
1653	if (pwq) {
1654		/*
1655		 * As both pwqs and pools are RCU protected, the
1656		 * following lock operations are safe.
1657		 */
1658		raw_spin_lock_irq(&pwq->pool->lock);
1659		put_pwq(pwq);
1660		raw_spin_unlock_irq(&pwq->pool->lock);
1661	}
1662}
1663
1664static bool pwq_is_empty(struct pool_workqueue *pwq)
1665{
1666	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1667}
1668
1669static void __pwq_activate_work(struct pool_workqueue *pwq,
1670				struct work_struct *work)
1671{
1672	unsigned long *wdb = work_data_bits(work);
1673
1674	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1675	trace_workqueue_activate_work(work);
1676	if (list_empty(&pwq->pool->worklist))
1677		pwq->pool->watchdog_ts = jiffies;
1678	move_linked_works(work, &pwq->pool->worklist, NULL);
1679	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1680}
1681
1682/**
1683 * pwq_activate_work - Activate a work item if inactive
1684 * @pwq: pool_workqueue @work belongs to
1685 * @work: work item to activate
1686 *
1687 * Returns %true if activated. %false if already active.
1688 */
1689static bool pwq_activate_work(struct pool_workqueue *pwq,
1690			      struct work_struct *work)
1691{
1692	struct worker_pool *pool = pwq->pool;
1693	struct wq_node_nr_active *nna;
1694
1695	lockdep_assert_held(&pool->lock);
1696
1697	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1698		return false;
1699
1700	nna = wq_node_nr_active(pwq->wq, pool->node);
1701	if (nna)
1702		atomic_inc(&nna->nr);
1703
1704	pwq->nr_active++;
1705	__pwq_activate_work(pwq, work);
1706	return true;
1707}
1708
1709static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1710{
1711	int max = READ_ONCE(nna->max);
1712
1713	while (true) {
1714		int old, tmp;
1715
1716		old = atomic_read(&nna->nr);
1717		if (old >= max)
1718			return false;
1719		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1720		if (tmp == old)
1721			return true;
1722	}
1723}
1724
1725/**
1726 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1727 * @pwq: pool_workqueue of interest
1728 * @fill: max_active may have increased, try to increase concurrency level
1729 *
1730 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1731 * successfully obtained. %false otherwise.
1732 */
1733static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1734{
1735	struct workqueue_struct *wq = pwq->wq;
1736	struct worker_pool *pool = pwq->pool;
1737	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1738	bool obtained = false;
1739
1740	lockdep_assert_held(&pool->lock);
1741
1742	if (!nna) {
1743		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1744		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1745		goto out;
1746	}
1747
1748	if (unlikely(pwq->plugged))
1749		return false;
1750
1751	/*
1752	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1753	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1754	 * concurrency level. Don't jump the line.
1755	 *
1756	 * We need to ignore the pending test after max_active has increased as
1757	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1758	 * increase it. This is indicated by @fill.
1759	 */
1760	if (!list_empty(&pwq->pending_node) && likely(!fill))
1761		goto out;
1762
1763	obtained = tryinc_node_nr_active(nna);
1764	if (obtained)
1765		goto out;
1766
1767	/*
1768	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1769	 * and try again. The smp_mb() is paired with the implied memory barrier
1770	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1771	 * we see the decremented $nna->nr or they see non-empty
1772	 * $nna->pending_pwqs.
1773	 */
1774	raw_spin_lock(&nna->lock);
1775
1776	if (list_empty(&pwq->pending_node))
1777		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1778	else if (likely(!fill))
1779		goto out_unlock;
1780
1781	smp_mb();
1782
1783	obtained = tryinc_node_nr_active(nna);
1784
1785	/*
1786	 * If @fill, @pwq might have already been pending. Being spuriously
1787	 * pending in cold paths doesn't affect anything. Let's leave it be.
1788	 */
1789	if (obtained && likely(!fill))
1790		list_del_init(&pwq->pending_node);
1791
1792out_unlock:
1793	raw_spin_unlock(&nna->lock);
1794out:
1795	if (obtained)
1796		pwq->nr_active++;
1797	return obtained;
1798}
1799
1800/**
1801 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1802 * @pwq: pool_workqueue of interest
1803 * @fill: max_active may have increased, try to increase concurrency level
1804 *
1805 * Activate the first inactive work item of @pwq if available and allowed by
1806 * max_active limit.
1807 *
1808 * Returns %true if an inactive work item has been activated. %false if no
1809 * inactive work item is found or max_active limit is reached.
1810 */
1811static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1812{
1813	struct work_struct *work =
1814		list_first_entry_or_null(&pwq->inactive_works,
1815					 struct work_struct, entry);
1816
1817	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1818		__pwq_activate_work(pwq, work);
1819		return true;
1820	} else {
1821		return false;
1822	}
1823}
1824
1825/**
1826 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1827 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1828 *
1829 * This function should only be called for ordered workqueues where only the
1830 * oldest pwq is unplugged, the others are plugged to suspend execution to
1831 * ensure proper work item ordering::
1832 *
1833 *    dfl_pwq --------------+     [P] - plugged
1834 *                          |
1835 *                          v
1836 *    pwqs -> A -> B [P] -> C [P] (newest)
1837 *            |    |        |
1838 *            1    3        5
1839 *            |    |        |
1840 *            2    4        6
1841 *
1842 * When the oldest pwq is drained and removed, this function should be called
1843 * to unplug the next oldest one to start its work item execution. Note that
1844 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1845 * the list is the oldest.
1846 */
1847static void unplug_oldest_pwq(struct workqueue_struct *wq)
1848{
1849	struct pool_workqueue *pwq;
1850
1851	lockdep_assert_held(&wq->mutex);
1852
1853	/* Caller should make sure that pwqs isn't empty before calling */
1854	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1855				       pwqs_node);
1856	raw_spin_lock_irq(&pwq->pool->lock);
1857	if (pwq->plugged) {
1858		pwq->plugged = false;
1859		if (pwq_activate_first_inactive(pwq, true))
1860			kick_pool(pwq->pool);
1861	}
1862	raw_spin_unlock_irq(&pwq->pool->lock);
1863}
1864
1865/**
1866 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1867 * @nna: wq_node_nr_active to activate a pending pwq for
1868 * @caller_pool: worker_pool the caller is locking
1869 *
1870 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1871 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1872 */
1873static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1874				      struct worker_pool *caller_pool)
1875{
1876	struct worker_pool *locked_pool = caller_pool;
1877	struct pool_workqueue *pwq;
1878	struct work_struct *work;
1879
1880	lockdep_assert_held(&caller_pool->lock);
1881
1882	raw_spin_lock(&nna->lock);
1883retry:
1884	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1885				       struct pool_workqueue, pending_node);
1886	if (!pwq)
1887		goto out_unlock;
1888
1889	/*
1890	 * If @pwq is for a different pool than @locked_pool, we need to lock
1891	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1892	 * / lock dance. For that, we also need to release @nna->lock as it's
1893	 * nested inside pool locks.
1894	 */
1895	if (pwq->pool != locked_pool) {
1896		raw_spin_unlock(&locked_pool->lock);
1897		locked_pool = pwq->pool;
1898		if (!raw_spin_trylock(&locked_pool->lock)) {
1899			raw_spin_unlock(&nna->lock);
1900			raw_spin_lock(&locked_pool->lock);
1901			raw_spin_lock(&nna->lock);
1902			goto retry;
1903		}
1904	}
1905
1906	/*
1907	 * $pwq may not have any inactive work items due to e.g. cancellations.
1908	 * Drop it from pending_pwqs and see if there's another one.
1909	 */
1910	work = list_first_entry_or_null(&pwq->inactive_works,
1911					struct work_struct, entry);
1912	if (!work) {
1913		list_del_init(&pwq->pending_node);
1914		goto retry;
1915	}
1916
1917	/*
1918	 * Acquire an nr_active count and activate the inactive work item. If
1919	 * $pwq still has inactive work items, rotate it to the end of the
1920	 * pending_pwqs so that we round-robin through them. This means that
1921	 * inactive work items are not activated in queueing order which is fine
1922	 * given that there has never been any ordering across different pwqs.
1923	 */
1924	if (likely(tryinc_node_nr_active(nna))) {
1925		pwq->nr_active++;
1926		__pwq_activate_work(pwq, work);
1927
1928		if (list_empty(&pwq->inactive_works))
1929			list_del_init(&pwq->pending_node);
1930		else
1931			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1932
1933		/* if activating a foreign pool, make sure it's running */
1934		if (pwq->pool != caller_pool)
1935			kick_pool(pwq->pool);
1936	}
1937
1938out_unlock:
1939	raw_spin_unlock(&nna->lock);
1940	if (locked_pool != caller_pool) {
1941		raw_spin_unlock(&locked_pool->lock);
1942		raw_spin_lock(&caller_pool->lock);
1943	}
1944}
1945
1946/**
1947 * pwq_dec_nr_active - Retire an active count
1948 * @pwq: pool_workqueue of interest
1949 *
1950 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1951 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1952 */
1953static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1954{
1955	struct worker_pool *pool = pwq->pool;
1956	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1957
1958	lockdep_assert_held(&pool->lock);
1959
1960	/*
1961	 * @pwq->nr_active should be decremented for both percpu and unbound
1962	 * workqueues.
1963	 */
1964	pwq->nr_active--;
1965
1966	/*
1967	 * For a percpu workqueue, it's simple. Just need to kick the first
1968	 * inactive work item on @pwq itself.
1969	 */
1970	if (!nna) {
1971		pwq_activate_first_inactive(pwq, false);
1972		return;
1973	}
1974
1975	/*
1976	 * If @pwq is for an unbound workqueue, it's more complicated because
1977	 * multiple pwqs and pools may be sharing the nr_active count. When a
1978	 * pwq needs to wait for an nr_active count, it puts itself on
1979	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1980	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1981	 * guarantee that either we see non-empty pending_pwqs or they see
1982	 * decremented $nna->nr.
1983	 *
1984	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1985	 * max_active gets updated. However, it is guaranteed to be equal to or
1986	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1987	 * This maintains the forward progress guarantee.
1988	 */
1989	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1990		return;
1991
1992	if (!list_empty(&nna->pending_pwqs))
1993		node_activate_pending_pwq(nna, pool);
1994}
1995
1996/**
1997 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1998 * @pwq: pwq of interest
1999 * @work_data: work_data of work which left the queue
2000 *
2001 * A work either has completed or is removed from pending queue,
2002 * decrement nr_in_flight of its pwq and handle workqueue flushing.
2003 *
2004 * NOTE:
2005 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
2006 * and thus should be called after all other state updates for the in-flight
2007 * work item is complete.
2008 *
2009 * CONTEXT:
2010 * raw_spin_lock_irq(pool->lock).
2011 */
2012static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
2013{
2014	int color = get_work_color(work_data);
2015
2016	if (!(work_data & WORK_STRUCT_INACTIVE))
2017		pwq_dec_nr_active(pwq);
2018
2019	pwq->nr_in_flight[color]--;
2020
2021	/* is flush in progress and are we at the flushing tip? */
2022	if (likely(pwq->flush_color != color))
2023		goto out_put;
2024
2025	/* are there still in-flight works? */
2026	if (pwq->nr_in_flight[color])
2027		goto out_put;
2028
2029	/* this pwq is done, clear flush_color */
2030	pwq->flush_color = -1;
2031
2032	/*
2033	 * If this was the last pwq, wake up the first flusher.  It
2034	 * will handle the rest.
2035	 */
2036	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2037		complete(&pwq->wq->first_flusher->done);
2038out_put:
2039	put_pwq(pwq);
2040}
2041
2042/**
2043 * try_to_grab_pending - steal work item from worklist and disable irq
2044 * @work: work item to steal
2045 * @cflags: %WORK_CANCEL_ flags
2046 * @irq_flags: place to store irq state
2047 *
2048 * Try to grab PENDING bit of @work.  This function can handle @work in any
2049 * stable state - idle, on timer or on worklist.
2050 *
2051 * Return:
2052 *
2053 *  ========	================================================================
2054 *  1		if @work was pending and we successfully stole PENDING
2055 *  0		if @work was idle and we claimed PENDING
2056 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2057 *  -ENOENT	if someone else is canceling @work, this state may persist
2058 *		for arbitrarily long
2059 *  ========	================================================================
2060 *
2061 * Note:
2062 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2063 * interrupted while holding PENDING and @work off queue, irq must be
2064 * disabled on entry.  This, combined with delayed_work->timer being
2065 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2066 *
2067 * On successful return, >= 0, irq is disabled and the caller is
2068 * responsible for releasing it using local_irq_restore(*@irq_flags).
2069 *
2070 * This function is safe to call from any context including IRQ handler.
2071 */
2072static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2073			       unsigned long *irq_flags)
2074{
2075	struct worker_pool *pool;
2076	struct pool_workqueue *pwq;
2077
2078	local_irq_save(*irq_flags);
2079
2080	/* try to steal the timer if it exists */
2081	if (cflags & WORK_CANCEL_DELAYED) {
2082		struct delayed_work *dwork = to_delayed_work(work);
2083
2084		/*
2085		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2086		 * guaranteed that the timer is not queued anywhere and not
2087		 * running on the local CPU.
2088		 */
2089		if (likely(del_timer(&dwork->timer)))
2090			return 1;
2091	}
2092
2093	/* try to claim PENDING the normal way */
2094	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2095		return 0;
2096
2097	rcu_read_lock();
2098	/*
2099	 * The queueing is in progress, or it is already queued. Try to
2100	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2101	 */
2102	pool = get_work_pool(work);
2103	if (!pool)
2104		goto fail;
2105
2106	raw_spin_lock(&pool->lock);
2107	/*
2108	 * work->data is guaranteed to point to pwq only while the work
2109	 * item is queued on pwq->wq, and both updating work->data to point
2110	 * to pwq on queueing and to pool on dequeueing are done under
2111	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2112	 * points to pwq which is associated with a locked pool, the work
2113	 * item is currently queued on that pool.
2114	 */
2115	pwq = get_work_pwq(work);
2116	if (pwq && pwq->pool == pool) {
2117		unsigned long work_data;
2118
2119		debug_work_deactivate(work);
2120
2121		/*
2122		 * A cancelable inactive work item must be in the
2123		 * pwq->inactive_works since a queued barrier can't be
2124		 * canceled (see the comments in insert_wq_barrier()).
2125		 *
2126		 * An inactive work item cannot be grabbed directly because
2127		 * it might have linked barrier work items which, if left
2128		 * on the inactive_works list, will confuse pwq->nr_active
2129		 * management later on and cause stall.  Make sure the work
2130		 * item is activated before grabbing.
2131		 */
2132		pwq_activate_work(pwq, work);
2133
2134		list_del_init(&work->entry);
2135
2136		/*
2137		 * work->data points to pwq iff queued. Let's point to pool. As
2138		 * this destroys work->data needed by the next step, stash it.
2139		 */
2140		work_data = *work_data_bits(work);
2141		set_work_pool_and_keep_pending(work, pool->id, 0);
2142
2143		/* must be the last step, see the function comment */
2144		pwq_dec_nr_in_flight(pwq, work_data);
2145
2146		raw_spin_unlock(&pool->lock);
2147		rcu_read_unlock();
2148		return 1;
2149	}
2150	raw_spin_unlock(&pool->lock);
2151fail:
2152	rcu_read_unlock();
2153	local_irq_restore(*irq_flags);
2154	if (work_is_canceling(work))
2155		return -ENOENT;
2156	cpu_relax();
2157	return -EAGAIN;
2158}
2159
2160struct cwt_wait {
2161	wait_queue_entry_t	wait;
2162	struct work_struct	*work;
2163};
2164
2165static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2166{
2167	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2168
2169	if (cwait->work != key)
2170		return 0;
2171	return autoremove_wake_function(wait, mode, sync, key);
2172}
2173
2174/**
2175 * work_grab_pending - steal work item from worklist and disable irq
2176 * @work: work item to steal
2177 * @cflags: %WORK_CANCEL_ flags
2178 * @irq_flags: place to store IRQ state
2179 *
2180 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2181 * or on worklist.
2182 *
2183 * Must be called in process context. IRQ is disabled on return with IRQ state
2184 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2185 * local_irq_restore().
2186 *
2187 * Returns %true if @work was pending. %false if idle.
2188 */
2189static bool work_grab_pending(struct work_struct *work, u32 cflags,
2190			      unsigned long *irq_flags)
2191{
2192	struct cwt_wait cwait;
2193	int ret;
2194
2195	might_sleep();
2196repeat:
2197	ret = try_to_grab_pending(work, cflags, irq_flags);
2198	if (likely(ret >= 0))
2199		return ret;
2200	if (ret != -ENOENT)
2201		goto repeat;
2202
2203	/*
2204	 * Someone is already canceling. Wait for it to finish. flush_work()
2205	 * doesn't work for PREEMPT_NONE because we may get woken up between
2206	 * @work's completion and the other canceling task resuming and clearing
2207	 * CANCELING - flush_work() will return false immediately as @work is no
2208	 * longer busy, try_to_grab_pending() will return -ENOENT as @work is
2209	 * still being canceled and the other canceling task won't be able to
2210	 * clear CANCELING as we're hogging the CPU.
2211	 *
2212	 * Let's wait for completion using a waitqueue. As this may lead to the
2213	 * thundering herd problem, use a custom wake function which matches
2214	 * @work along with exclusive wait and wakeup.
2215	 */
2216	init_wait(&cwait.wait);
2217	cwait.wait.func = cwt_wakefn;
2218	cwait.work = work;
2219
2220	prepare_to_wait_exclusive(&wq_cancel_waitq, &cwait.wait,
2221				  TASK_UNINTERRUPTIBLE);
2222	if (work_is_canceling(work))
2223		schedule();
2224	finish_wait(&wq_cancel_waitq, &cwait.wait);
2225
2226	goto repeat;
2227}
2228
2229/**
2230 * insert_work - insert a work into a pool
2231 * @pwq: pwq @work belongs to
2232 * @work: work to insert
2233 * @head: insertion point
2234 * @extra_flags: extra WORK_STRUCT_* flags to set
2235 *
2236 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2237 * work_struct flags.
2238 *
2239 * CONTEXT:
2240 * raw_spin_lock_irq(pool->lock).
2241 */
2242static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2243			struct list_head *head, unsigned int extra_flags)
2244{
2245	debug_work_activate(work);
2246
2247	/* record the work call stack in order to print it in KASAN reports */
2248	kasan_record_aux_stack_noalloc(work);
2249
2250	/* we own @work, set data and link */
2251	set_work_pwq(work, pwq, extra_flags);
2252	list_add_tail(&work->entry, head);
2253	get_pwq(pwq);
2254}
2255
2256/*
2257 * Test whether @work is being queued from another work executing on the
2258 * same workqueue.
2259 */
2260static bool is_chained_work(struct workqueue_struct *wq)
2261{
2262	struct worker *worker;
2263
2264	worker = current_wq_worker();
2265	/*
2266	 * Return %true iff I'm a worker executing a work item on @wq.  If
2267	 * I'm @worker, it's safe to dereference it without locking.
2268	 */
2269	return worker && worker->current_pwq->wq == wq;
2270}
2271
2272/*
2273 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2274 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2275 * avoid perturbing sensitive tasks.
2276 */
2277static int wq_select_unbound_cpu(int cpu)
2278{
2279	int new_cpu;
2280
2281	if (likely(!wq_debug_force_rr_cpu)) {
2282		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2283			return cpu;
2284	} else {
2285		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2286	}
2287
2288	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2289	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2290	if (unlikely(new_cpu >= nr_cpu_ids)) {
2291		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2292		if (unlikely(new_cpu >= nr_cpu_ids))
2293			return cpu;
2294	}
2295	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2296
2297	return new_cpu;
2298}
2299
2300static void __queue_work(int cpu, struct workqueue_struct *wq,
2301			 struct work_struct *work)
2302{
2303	struct pool_workqueue *pwq;
2304	struct worker_pool *last_pool, *pool;
2305	unsigned int work_flags;
2306	unsigned int req_cpu = cpu;
2307
2308	/*
2309	 * While a work item is PENDING && off queue, a task trying to
2310	 * steal the PENDING will busy-loop waiting for it to either get
2311	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2312	 * happen with IRQ disabled.
2313	 */
2314	lockdep_assert_irqs_disabled();
2315
2316	/*
2317	 * For a draining wq, only works from the same workqueue are
2318	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2319	 * queues a new work item to a wq after destroy_workqueue(wq).
2320	 */
2321	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2322		     WARN_ON_ONCE(!is_chained_work(wq))))
2323		return;
2324	rcu_read_lock();
2325retry:
2326	/* pwq which will be used unless @work is executing elsewhere */
2327	if (req_cpu == WORK_CPU_UNBOUND) {
2328		if (wq->flags & WQ_UNBOUND)
2329			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2330		else
2331			cpu = raw_smp_processor_id();
2332	}
2333
2334	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2335	pool = pwq->pool;
2336
2337	/*
2338	 * If @work was previously on a different pool, it might still be
2339	 * running there, in which case the work needs to be queued on that
2340	 * pool to guarantee non-reentrancy.
2341	 */
2342	last_pool = get_work_pool(work);
2343	if (last_pool && last_pool != pool) {
2344		struct worker *worker;
2345
2346		raw_spin_lock(&last_pool->lock);
2347
2348		worker = find_worker_executing_work(last_pool, work);
2349
2350		if (worker && worker->current_pwq->wq == wq) {
2351			pwq = worker->current_pwq;
2352			pool = pwq->pool;
2353			WARN_ON_ONCE(pool != last_pool);
2354		} else {
2355			/* meh... not running there, queue here */
2356			raw_spin_unlock(&last_pool->lock);
2357			raw_spin_lock(&pool->lock);
2358		}
2359	} else {
2360		raw_spin_lock(&pool->lock);
2361	}
2362
2363	/*
2364	 * pwq is determined and locked. For unbound pools, we could have raced
2365	 * with pwq release and it could already be dead. If its refcnt is zero,
2366	 * repeat pwq selection. Note that unbound pwqs never die without
2367	 * another pwq replacing it in cpu_pwq or while work items are executing
2368	 * on it, so the retrying is guaranteed to make forward-progress.
2369	 */
2370	if (unlikely(!pwq->refcnt)) {
2371		if (wq->flags & WQ_UNBOUND) {
2372			raw_spin_unlock(&pool->lock);
2373			cpu_relax();
2374			goto retry;
2375		}
2376		/* oops */
2377		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2378			  wq->name, cpu);
2379	}
2380
2381	/* pwq determined, queue */
2382	trace_workqueue_queue_work(req_cpu, pwq, work);
2383
2384	if (WARN_ON(!list_empty(&work->entry)))
2385		goto out;
2386
2387	pwq->nr_in_flight[pwq->work_color]++;
2388	work_flags = work_color_to_flags(pwq->work_color);
2389
2390	/*
2391	 * Limit the number of concurrently active work items to max_active.
2392	 * @work must also queue behind existing inactive work items to maintain
2393	 * ordering when max_active changes. See wq_adjust_max_active().
2394	 */
2395	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2396		if (list_empty(&pool->worklist))
2397			pool->watchdog_ts = jiffies;
2398
2399		trace_workqueue_activate_work(work);
2400		insert_work(pwq, work, &pool->worklist, work_flags);
2401		kick_pool(pool);
2402	} else {
2403		work_flags |= WORK_STRUCT_INACTIVE;
2404		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2405	}
2406
2407out:
2408	raw_spin_unlock(&pool->lock);
2409	rcu_read_unlock();
2410}
2411
2412/**
2413 * queue_work_on - queue work on specific cpu
2414 * @cpu: CPU number to execute work on
2415 * @wq: workqueue to use
2416 * @work: work to queue
2417 *
2418 * We queue the work to a specific CPU, the caller must ensure it
2419 * can't go away.  Callers that fail to ensure that the specified
2420 * CPU cannot go away will execute on a randomly chosen CPU.
2421 * But note well that callers specifying a CPU that never has been
2422 * online will get a splat.
2423 *
2424 * Return: %false if @work was already on a queue, %true otherwise.
2425 */
2426bool queue_work_on(int cpu, struct workqueue_struct *wq,
2427		   struct work_struct *work)
2428{
2429	bool ret = false;
2430	unsigned long irq_flags;
2431
2432	local_irq_save(irq_flags);
2433
2434	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2435		__queue_work(cpu, wq, work);
2436		ret = true;
2437	}
2438
2439	local_irq_restore(irq_flags);
2440	return ret;
2441}
2442EXPORT_SYMBOL(queue_work_on);
2443
2444/**
2445 * select_numa_node_cpu - Select a CPU based on NUMA node
2446 * @node: NUMA node ID that we want to select a CPU from
2447 *
2448 * This function will attempt to find a "random" cpu available on a given
2449 * node. If there are no CPUs available on the given node it will return
2450 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2451 * available CPU if we need to schedule this work.
2452 */
2453static int select_numa_node_cpu(int node)
2454{
2455	int cpu;
2456
2457	/* Delay binding to CPU if node is not valid or online */
2458	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2459		return WORK_CPU_UNBOUND;
2460
2461	/* Use local node/cpu if we are already there */
2462	cpu = raw_smp_processor_id();
2463	if (node == cpu_to_node(cpu))
2464		return cpu;
2465
2466	/* Use "random" otherwise know as "first" online CPU of node */
2467	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2468
2469	/* If CPU is valid return that, otherwise just defer */
2470	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2471}
2472
2473/**
2474 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2475 * @node: NUMA node that we are targeting the work for
2476 * @wq: workqueue to use
2477 * @work: work to queue
2478 *
2479 * We queue the work to a "random" CPU within a given NUMA node. The basic
2480 * idea here is to provide a way to somehow associate work with a given
2481 * NUMA node.
2482 *
2483 * This function will only make a best effort attempt at getting this onto
2484 * the right NUMA node. If no node is requested or the requested node is
2485 * offline then we just fall back to standard queue_work behavior.
2486 *
2487 * Currently the "random" CPU ends up being the first available CPU in the
2488 * intersection of cpu_online_mask and the cpumask of the node, unless we
2489 * are running on the node. In that case we just use the current CPU.
2490 *
2491 * Return: %false if @work was already on a queue, %true otherwise.
2492 */
2493bool queue_work_node(int node, struct workqueue_struct *wq,
2494		     struct work_struct *work)
2495{
2496	unsigned long irq_flags;
2497	bool ret = false;
2498
2499	/*
2500	 * This current implementation is specific to unbound workqueues.
2501	 * Specifically we only return the first available CPU for a given
2502	 * node instead of cycling through individual CPUs within the node.
2503	 *
2504	 * If this is used with a per-cpu workqueue then the logic in
2505	 * workqueue_select_cpu_near would need to be updated to allow for
2506	 * some round robin type logic.
2507	 */
2508	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2509
2510	local_irq_save(irq_flags);
2511
2512	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2513		int cpu = select_numa_node_cpu(node);
2514
2515		__queue_work(cpu, wq, work);
2516		ret = true;
2517	}
2518
2519	local_irq_restore(irq_flags);
2520	return ret;
2521}
2522EXPORT_SYMBOL_GPL(queue_work_node);
2523
2524void delayed_work_timer_fn(struct timer_list *t)
2525{
2526	struct delayed_work *dwork = from_timer(dwork, t, timer);
2527
2528	/* should have been called from irqsafe timer with irq already off */
2529	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2530}
2531EXPORT_SYMBOL(delayed_work_timer_fn);
2532
2533static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2534				struct delayed_work *dwork, unsigned long delay)
2535{
2536	struct timer_list *timer = &dwork->timer;
2537	struct work_struct *work = &dwork->work;
2538
2539	WARN_ON_ONCE(!wq);
2540	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2541	WARN_ON_ONCE(timer_pending(timer));
2542	WARN_ON_ONCE(!list_empty(&work->entry));
2543
2544	/*
2545	 * If @delay is 0, queue @dwork->work immediately.  This is for
2546	 * both optimization and correctness.  The earliest @timer can
2547	 * expire is on the closest next tick and delayed_work users depend
2548	 * on that there's no such delay when @delay is 0.
2549	 */
2550	if (!delay) {
2551		__queue_work(cpu, wq, &dwork->work);
2552		return;
2553	}
2554
2555	dwork->wq = wq;
2556	dwork->cpu = cpu;
2557	timer->expires = jiffies + delay;
2558
2559	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2560		/* If the current cpu is a housekeeping cpu, use it. */
2561		cpu = smp_processor_id();
2562		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2563			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2564		add_timer_on(timer, cpu);
2565	} else {
2566		if (likely(cpu == WORK_CPU_UNBOUND))
2567			add_timer_global(timer);
2568		else
2569			add_timer_on(timer, cpu);
2570	}
2571}
2572
2573/**
2574 * queue_delayed_work_on - queue work on specific CPU after delay
2575 * @cpu: CPU number to execute work on
2576 * @wq: workqueue to use
2577 * @dwork: work to queue
2578 * @delay: number of jiffies to wait before queueing
2579 *
2580 * Return: %false if @work was already on a queue, %true otherwise.  If
2581 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2582 * execution.
2583 */
2584bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2585			   struct delayed_work *dwork, unsigned long delay)
2586{
2587	struct work_struct *work = &dwork->work;
2588	bool ret = false;
2589	unsigned long irq_flags;
2590
2591	/* read the comment in __queue_work() */
2592	local_irq_save(irq_flags);
2593
2594	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2595		__queue_delayed_work(cpu, wq, dwork, delay);
2596		ret = true;
2597	}
2598
2599	local_irq_restore(irq_flags);
2600	return ret;
2601}
2602EXPORT_SYMBOL(queue_delayed_work_on);
2603
2604/**
2605 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2606 * @cpu: CPU number to execute work on
2607 * @wq: workqueue to use
2608 * @dwork: work to queue
2609 * @delay: number of jiffies to wait before queueing
2610 *
2611 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2612 * modify @dwork's timer so that it expires after @delay.  If @delay is
2613 * zero, @work is guaranteed to be scheduled immediately regardless of its
2614 * current state.
2615 *
2616 * Return: %false if @dwork was idle and queued, %true if @dwork was
2617 * pending and its timer was modified.
2618 *
2619 * This function is safe to call from any context including IRQ handler.
2620 * See try_to_grab_pending() for details.
2621 */
2622bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2623			 struct delayed_work *dwork, unsigned long delay)
2624{
2625	unsigned long irq_flags;
2626	int ret;
2627
2628	do {
2629		ret = try_to_grab_pending(&dwork->work, WORK_CANCEL_DELAYED,
2630					  &irq_flags);
2631	} while (unlikely(ret == -EAGAIN));
2632
2633	if (likely(ret >= 0)) {
2634		__queue_delayed_work(cpu, wq, dwork, delay);
2635		local_irq_restore(irq_flags);
2636	}
2637
2638	/* -ENOENT from try_to_grab_pending() becomes %true */
2639	return ret;
2640}
2641EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2642
2643static void rcu_work_rcufn(struct rcu_head *rcu)
2644{
2645	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2646
2647	/* read the comment in __queue_work() */
2648	local_irq_disable();
2649	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2650	local_irq_enable();
2651}
2652
2653/**
2654 * queue_rcu_work - queue work after a RCU grace period
2655 * @wq: workqueue to use
2656 * @rwork: work to queue
2657 *
2658 * Return: %false if @rwork was already pending, %true otherwise.  Note
2659 * that a full RCU grace period is guaranteed only after a %true return.
2660 * While @rwork is guaranteed to be executed after a %false return, the
2661 * execution may happen before a full RCU grace period has passed.
2662 */
2663bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2664{
2665	struct work_struct *work = &rwork->work;
2666
2667	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2668		rwork->wq = wq;
2669		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2670		return true;
2671	}
2672
2673	return false;
2674}
2675EXPORT_SYMBOL(queue_rcu_work);
2676
2677static struct worker *alloc_worker(int node)
2678{
2679	struct worker *worker;
2680
2681	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2682	if (worker) {
2683		INIT_LIST_HEAD(&worker->entry);
2684		INIT_LIST_HEAD(&worker->scheduled);
2685		INIT_LIST_HEAD(&worker->node);
2686		/* on creation a worker is in !idle && prep state */
2687		worker->flags = WORKER_PREP;
2688	}
2689	return worker;
2690}
2691
2692static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2693{
2694	if (pool->cpu < 0 && pool->attrs->affn_strict)
2695		return pool->attrs->__pod_cpumask;
2696	else
2697		return pool->attrs->cpumask;
2698}
2699
2700/**
2701 * worker_attach_to_pool() - attach a worker to a pool
2702 * @worker: worker to be attached
2703 * @pool: the target pool
2704 *
2705 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2706 * cpu-binding of @worker are kept coordinated with the pool across
2707 * cpu-[un]hotplugs.
2708 */
2709static void worker_attach_to_pool(struct worker *worker,
2710				  struct worker_pool *pool)
2711{
2712	mutex_lock(&wq_pool_attach_mutex);
2713
2714	/*
2715	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2716	 * across this function. See the comments above the flag definition for
2717	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2718	 */
2719	if (pool->flags & POOL_DISASSOCIATED) {
2720		worker->flags |= WORKER_UNBOUND;
2721	} else {
2722		WARN_ON_ONCE(pool->flags & POOL_BH);
2723		kthread_set_per_cpu(worker->task, pool->cpu);
2724	}
2725
2726	if (worker->rescue_wq)
2727		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2728
2729	list_add_tail(&worker->node, &pool->workers);
2730	worker->pool = pool;
2731
2732	mutex_unlock(&wq_pool_attach_mutex);
2733}
2734
2735/**
2736 * worker_detach_from_pool() - detach a worker from its pool
2737 * @worker: worker which is attached to its pool
2738 *
2739 * Undo the attaching which had been done in worker_attach_to_pool().  The
2740 * caller worker shouldn't access to the pool after detached except it has
2741 * other reference to the pool.
2742 */
2743static void worker_detach_from_pool(struct worker *worker)
2744{
2745	struct worker_pool *pool = worker->pool;
2746	struct completion *detach_completion = NULL;
2747
2748	/* there is one permanent BH worker per CPU which should never detach */
2749	WARN_ON_ONCE(pool->flags & POOL_BH);
2750
2751	mutex_lock(&wq_pool_attach_mutex);
2752
2753	kthread_set_per_cpu(worker->task, -1);
2754	list_del(&worker->node);
2755	worker->pool = NULL;
2756
2757	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2758		detach_completion = pool->detach_completion;
2759	mutex_unlock(&wq_pool_attach_mutex);
2760
2761	/* clear leftover flags without pool->lock after it is detached */
2762	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2763
2764	if (detach_completion)
2765		complete(detach_completion);
2766}
2767
2768/**
2769 * create_worker - create a new workqueue worker
2770 * @pool: pool the new worker will belong to
2771 *
2772 * Create and start a new worker which is attached to @pool.
2773 *
2774 * CONTEXT:
2775 * Might sleep.  Does GFP_KERNEL allocations.
2776 *
2777 * Return:
2778 * Pointer to the newly created worker.
2779 */
2780static struct worker *create_worker(struct worker_pool *pool)
2781{
2782	struct worker *worker;
2783	int id;
2784	char id_buf[23];
2785
2786	/* ID is needed to determine kthread name */
2787	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2788	if (id < 0) {
2789		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2790			    ERR_PTR(id));
2791		return NULL;
2792	}
2793
2794	worker = alloc_worker(pool->node);
2795	if (!worker) {
2796		pr_err_once("workqueue: Failed to allocate a worker\n");
2797		goto fail;
2798	}
2799
2800	worker->id = id;
2801
2802	if (!(pool->flags & POOL_BH)) {
2803		if (pool->cpu >= 0)
2804			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2805				 pool->attrs->nice < 0  ? "H" : "");
2806		else
2807			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2808
2809		worker->task = kthread_create_on_node(worker_thread, worker,
2810					pool->node, "kworker/%s", id_buf);
2811		if (IS_ERR(worker->task)) {
2812			if (PTR_ERR(worker->task) == -EINTR) {
2813				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2814				       id_buf);
2815			} else {
2816				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2817					    worker->task);
2818			}
2819			goto fail;
2820		}
2821
2822		set_user_nice(worker->task, pool->attrs->nice);
2823		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2824	}
2825
2826	/* successful, attach the worker to the pool */
2827	worker_attach_to_pool(worker, pool);
2828
2829	/* start the newly created worker */
2830	raw_spin_lock_irq(&pool->lock);
2831
2832	worker->pool->nr_workers++;
2833	worker_enter_idle(worker);
2834
2835	/*
2836	 * @worker is waiting on a completion in kthread() and will trigger hung
2837	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2838	 * wake it up explicitly.
2839	 */
2840	if (worker->task)
2841		wake_up_process(worker->task);
2842
2843	raw_spin_unlock_irq(&pool->lock);
2844
2845	return worker;
2846
2847fail:
2848	ida_free(&pool->worker_ida, id);
2849	kfree(worker);
2850	return NULL;
2851}
2852
2853static void unbind_worker(struct worker *worker)
2854{
2855	lockdep_assert_held(&wq_pool_attach_mutex);
2856
2857	kthread_set_per_cpu(worker->task, -1);
2858	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2859		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2860	else
2861		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2862}
2863
2864static void wake_dying_workers(struct list_head *cull_list)
2865{
2866	struct worker *worker, *tmp;
2867
2868	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2869		list_del_init(&worker->entry);
2870		unbind_worker(worker);
2871		/*
2872		 * If the worker was somehow already running, then it had to be
2873		 * in pool->idle_list when set_worker_dying() happened or we
2874		 * wouldn't have gotten here.
2875		 *
2876		 * Thus, the worker must either have observed the WORKER_DIE
2877		 * flag, or have set its state to TASK_IDLE. Either way, the
2878		 * below will be observed by the worker and is safe to do
2879		 * outside of pool->lock.
2880		 */
2881		wake_up_process(worker->task);
2882	}
2883}
2884
2885/**
2886 * set_worker_dying - Tag a worker for destruction
2887 * @worker: worker to be destroyed
2888 * @list: transfer worker away from its pool->idle_list and into list
2889 *
2890 * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2891 * should be idle.
2892 *
2893 * CONTEXT:
2894 * raw_spin_lock_irq(pool->lock).
2895 */
2896static void set_worker_dying(struct worker *worker, struct list_head *list)
2897{
2898	struct worker_pool *pool = worker->pool;
2899
2900	lockdep_assert_held(&pool->lock);
2901	lockdep_assert_held(&wq_pool_attach_mutex);
2902
2903	/* sanity check frenzy */
2904	if (WARN_ON(worker->current_work) ||
2905	    WARN_ON(!list_empty(&worker->scheduled)) ||
2906	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2907		return;
2908
2909	pool->nr_workers--;
2910	pool->nr_idle--;
2911
2912	worker->flags |= WORKER_DIE;
2913
2914	list_move(&worker->entry, list);
2915	list_move(&worker->node, &pool->dying_workers);
2916}
2917
2918/**
2919 * idle_worker_timeout - check if some idle workers can now be deleted.
2920 * @t: The pool's idle_timer that just expired
2921 *
2922 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2923 * worker_leave_idle(), as a worker flicking between idle and active while its
2924 * pool is at the too_many_workers() tipping point would cause too much timer
2925 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2926 * it expire and re-evaluate things from there.
2927 */
2928static void idle_worker_timeout(struct timer_list *t)
2929{
2930	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2931	bool do_cull = false;
2932
2933	if (work_pending(&pool->idle_cull_work))
2934		return;
2935
2936	raw_spin_lock_irq(&pool->lock);
2937
2938	if (too_many_workers(pool)) {
2939		struct worker *worker;
2940		unsigned long expires;
2941
2942		/* idle_list is kept in LIFO order, check the last one */
2943		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2944		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2945		do_cull = !time_before(jiffies, expires);
2946
2947		if (!do_cull)
2948			mod_timer(&pool->idle_timer, expires);
2949	}
2950	raw_spin_unlock_irq(&pool->lock);
2951
2952	if (do_cull)
2953		queue_work(system_unbound_wq, &pool->idle_cull_work);
2954}
2955
2956/**
2957 * idle_cull_fn - cull workers that have been idle for too long.
2958 * @work: the pool's work for handling these idle workers
2959 *
2960 * This goes through a pool's idle workers and gets rid of those that have been
2961 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2962 *
2963 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2964 * culled, so this also resets worker affinity. This requires a sleepable
2965 * context, hence the split between timer callback and work item.
2966 */
2967static void idle_cull_fn(struct work_struct *work)
2968{
2969	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2970	LIST_HEAD(cull_list);
2971
2972	/*
2973	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2974	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2975	 * path. This is required as a previously-preempted worker could run after
2976	 * set_worker_dying() has happened but before wake_dying_workers() did.
2977	 */
2978	mutex_lock(&wq_pool_attach_mutex);
2979	raw_spin_lock_irq(&pool->lock);
2980
2981	while (too_many_workers(pool)) {
2982		struct worker *worker;
2983		unsigned long expires;
2984
2985		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2986		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2987
2988		if (time_before(jiffies, expires)) {
2989			mod_timer(&pool->idle_timer, expires);
2990			break;
2991		}
2992
2993		set_worker_dying(worker, &cull_list);
2994	}
2995
2996	raw_spin_unlock_irq(&pool->lock);
2997	wake_dying_workers(&cull_list);
2998	mutex_unlock(&wq_pool_attach_mutex);
2999}
3000
3001static void send_mayday(struct work_struct *work)
3002{
3003	struct pool_workqueue *pwq = get_work_pwq(work);
3004	struct workqueue_struct *wq = pwq->wq;
3005
3006	lockdep_assert_held(&wq_mayday_lock);
3007
3008	if (!wq->rescuer)
3009		return;
3010
3011	/* mayday mayday mayday */
3012	if (list_empty(&pwq->mayday_node)) {
3013		/*
3014		 * If @pwq is for an unbound wq, its base ref may be put at
3015		 * any time due to an attribute change.  Pin @pwq until the
3016		 * rescuer is done with it.
3017		 */
3018		get_pwq(pwq);
3019		list_add_tail(&pwq->mayday_node, &wq->maydays);
3020		wake_up_process(wq->rescuer->task);
3021		pwq->stats[PWQ_STAT_MAYDAY]++;
3022	}
3023}
3024
3025static void pool_mayday_timeout(struct timer_list *t)
3026{
3027	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3028	struct work_struct *work;
3029
3030	raw_spin_lock_irq(&pool->lock);
3031	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3032
3033	if (need_to_create_worker(pool)) {
3034		/*
3035		 * We've been trying to create a new worker but
3036		 * haven't been successful.  We might be hitting an
3037		 * allocation deadlock.  Send distress signals to
3038		 * rescuers.
3039		 */
3040		list_for_each_entry(work, &pool->worklist, entry)
3041			send_mayday(work);
3042	}
3043
3044	raw_spin_unlock(&wq_mayday_lock);
3045	raw_spin_unlock_irq(&pool->lock);
3046
3047	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3048}
3049
3050/**
3051 * maybe_create_worker - create a new worker if necessary
3052 * @pool: pool to create a new worker for
3053 *
3054 * Create a new worker for @pool if necessary.  @pool is guaranteed to
3055 * have at least one idle worker on return from this function.  If
3056 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3057 * sent to all rescuers with works scheduled on @pool to resolve
3058 * possible allocation deadlock.
3059 *
3060 * On return, need_to_create_worker() is guaranteed to be %false and
3061 * may_start_working() %true.
3062 *
3063 * LOCKING:
3064 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3065 * multiple times.  Does GFP_KERNEL allocations.  Called only from
3066 * manager.
3067 */
3068static void maybe_create_worker(struct worker_pool *pool)
3069__releases(&pool->lock)
3070__acquires(&pool->lock)
3071{
3072restart:
3073	raw_spin_unlock_irq(&pool->lock);
3074
3075	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3076	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3077
3078	while (true) {
3079		if (create_worker(pool) || !need_to_create_worker(pool))
3080			break;
3081
3082		schedule_timeout_interruptible(CREATE_COOLDOWN);
3083
3084		if (!need_to_create_worker(pool))
3085			break;
3086	}
3087
3088	del_timer_sync(&pool->mayday_timer);
3089	raw_spin_lock_irq(&pool->lock);
3090	/*
3091	 * This is necessary even after a new worker was just successfully
3092	 * created as @pool->lock was dropped and the new worker might have
3093	 * already become busy.
3094	 */
3095	if (need_to_create_worker(pool))
3096		goto restart;
3097}
3098
3099/**
3100 * manage_workers - manage worker pool
3101 * @worker: self
3102 *
3103 * Assume the manager role and manage the worker pool @worker belongs
3104 * to.  At any given time, there can be only zero or one manager per
3105 * pool.  The exclusion is handled automatically by this function.
3106 *
3107 * The caller can safely start processing works on false return.  On
3108 * true return, it's guaranteed that need_to_create_worker() is false
3109 * and may_start_working() is true.
3110 *
3111 * CONTEXT:
3112 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3113 * multiple times.  Does GFP_KERNEL allocations.
3114 *
3115 * Return:
3116 * %false if the pool doesn't need management and the caller can safely
3117 * start processing works, %true if management function was performed and
3118 * the conditions that the caller verified before calling the function may
3119 * no longer be true.
3120 */
3121static bool manage_workers(struct worker *worker)
3122{
3123	struct worker_pool *pool = worker->pool;
3124
3125	if (pool->flags & POOL_MANAGER_ACTIVE)
3126		return false;
3127
3128	pool->flags |= POOL_MANAGER_ACTIVE;
3129	pool->manager = worker;
3130
3131	maybe_create_worker(pool);
3132
3133	pool->manager = NULL;
3134	pool->flags &= ~POOL_MANAGER_ACTIVE;
3135	rcuwait_wake_up(&manager_wait);
3136	return true;
3137}
3138
3139/**
3140 * process_one_work - process single work
3141 * @worker: self
3142 * @work: work to process
3143 *
3144 * Process @work.  This function contains all the logics necessary to
3145 * process a single work including synchronization against and
3146 * interaction with other workers on the same cpu, queueing and
3147 * flushing.  As long as context requirement is met, any worker can
3148 * call this function to process a work.
3149 *
3150 * CONTEXT:
3151 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3152 */
3153static void process_one_work(struct worker *worker, struct work_struct *work)
3154__releases(&pool->lock)
3155__acquires(&pool->lock)
3156{
3157	struct pool_workqueue *pwq = get_work_pwq(work);
3158	struct worker_pool *pool = worker->pool;
3159	unsigned long work_data;
3160	int lockdep_start_depth, rcu_start_depth;
3161	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3162#ifdef CONFIG_LOCKDEP
3163	/*
3164	 * It is permissible to free the struct work_struct from
3165	 * inside the function that is called from it, this we need to
3166	 * take into account for lockdep too.  To avoid bogus "held
3167	 * lock freed" warnings as well as problems when looking into
3168	 * work->lockdep_map, make a copy and use that here.
3169	 */
3170	struct lockdep_map lockdep_map;
3171
3172	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3173#endif
3174	/* ensure we're on the correct CPU */
3175	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3176		     raw_smp_processor_id() != pool->cpu);
3177
3178	/* claim and dequeue */
3179	debug_work_deactivate(work);
3180	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3181	worker->current_work = work;
3182	worker->current_func = work->func;
3183	worker->current_pwq = pwq;
3184	if (worker->task)
3185		worker->current_at = worker->task->se.sum_exec_runtime;
3186	work_data = *work_data_bits(work);
3187	worker->current_color = get_work_color(work_data);
3188
3189	/*
3190	 * Record wq name for cmdline and debug reporting, may get
3191	 * overridden through set_worker_desc().
3192	 */
3193	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3194
3195	list_del_init(&work->entry);
3196
3197	/*
3198	 * CPU intensive works don't participate in concurrency management.
3199	 * They're the scheduler's responsibility.  This takes @worker out
3200	 * of concurrency management and the next code block will chain
3201	 * execution of the pending work items.
3202	 */
3203	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3204		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3205
3206	/*
3207	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3208	 * since nr_running would always be >= 1 at this point. This is used to
3209	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3210	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3211	 */
3212	kick_pool(pool);
3213
3214	/*
3215	 * Record the last pool and clear PENDING which should be the last
3216	 * update to @work.  Also, do this inside @pool->lock so that
3217	 * PENDING and queued state changes happen together while IRQ is
3218	 * disabled.
3219	 */
3220	set_work_pool_and_clear_pending(work, pool->id, 0);
3221
3222	pwq->stats[PWQ_STAT_STARTED]++;
3223	raw_spin_unlock_irq(&pool->lock);
3224
3225	rcu_start_depth = rcu_preempt_depth();
3226	lockdep_start_depth = lockdep_depth(current);
3227	/* see drain_dead_softirq_workfn() */
3228	if (!bh_draining)
3229		lock_map_acquire(&pwq->wq->lockdep_map);
3230	lock_map_acquire(&lockdep_map);
3231	/*
3232	 * Strictly speaking we should mark the invariant state without holding
3233	 * any locks, that is, before these two lock_map_acquire()'s.
3234	 *
3235	 * However, that would result in:
3236	 *
3237	 *   A(W1)
3238	 *   WFC(C)
3239	 *		A(W1)
3240	 *		C(C)
3241	 *
3242	 * Which would create W1->C->W1 dependencies, even though there is no
3243	 * actual deadlock possible. There are two solutions, using a
3244	 * read-recursive acquire on the work(queue) 'locks', but this will then
3245	 * hit the lockdep limitation on recursive locks, or simply discard
3246	 * these locks.
3247	 *
3248	 * AFAICT there is no possible deadlock scenario between the
3249	 * flush_work() and complete() primitives (except for single-threaded
3250	 * workqueues), so hiding them isn't a problem.
3251	 */
3252	lockdep_invariant_state(true);
3253	trace_workqueue_execute_start(work);
3254	worker->current_func(work);
3255	/*
3256	 * While we must be careful to not use "work" after this, the trace
3257	 * point will only record its address.
3258	 */
3259	trace_workqueue_execute_end(work, worker->current_func);
3260	pwq->stats[PWQ_STAT_COMPLETED]++;
3261	lock_map_release(&lockdep_map);
3262	if (!bh_draining)
3263		lock_map_release(&pwq->wq->lockdep_map);
3264
3265	if (unlikely((worker->task && in_atomic()) ||
3266		     lockdep_depth(current) != lockdep_start_depth ||
3267		     rcu_preempt_depth() != rcu_start_depth)) {
3268		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3269		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3270		       current->comm, task_pid_nr(current), preempt_count(),
3271		       lockdep_start_depth, lockdep_depth(current),
3272		       rcu_start_depth, rcu_preempt_depth(),
3273		       worker->current_func);
3274		debug_show_held_locks(current);
3275		dump_stack();
3276	}
3277
3278	/*
3279	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3280	 * kernels, where a requeueing work item waiting for something to
3281	 * happen could deadlock with stop_machine as such work item could
3282	 * indefinitely requeue itself while all other CPUs are trapped in
3283	 * stop_machine. At the same time, report a quiescent RCU state so
3284	 * the same condition doesn't freeze RCU.
3285	 */
3286	if (worker->task)
3287		cond_resched();
3288
3289	raw_spin_lock_irq(&pool->lock);
3290
3291	/*
3292	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3293	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3294	 * wq_cpu_intensive_thresh_us. Clear it.
3295	 */
3296	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3297
3298	/* tag the worker for identification in schedule() */
3299	worker->last_func = worker->current_func;
3300
3301	/* we're done with it, release */
3302	hash_del(&worker->hentry);
3303	worker->current_work = NULL;
3304	worker->current_func = NULL;
3305	worker->current_pwq = NULL;
3306	worker->current_color = INT_MAX;
3307
3308	/* must be the last step, see the function comment */
3309	pwq_dec_nr_in_flight(pwq, work_data);
3310}
3311
3312/**
3313 * process_scheduled_works - process scheduled works
3314 * @worker: self
3315 *
3316 * Process all scheduled works.  Please note that the scheduled list
3317 * may change while processing a work, so this function repeatedly
3318 * fetches a work from the top and executes it.
3319 *
3320 * CONTEXT:
3321 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3322 * multiple times.
3323 */
3324static void process_scheduled_works(struct worker *worker)
3325{
3326	struct work_struct *work;
3327	bool first = true;
3328
3329	while ((work = list_first_entry_or_null(&worker->scheduled,
3330						struct work_struct, entry))) {
3331		if (first) {
3332			worker->pool->watchdog_ts = jiffies;
3333			first = false;
3334		}
3335		process_one_work(worker, work);
3336	}
3337}
3338
3339static void set_pf_worker(bool val)
3340{
3341	mutex_lock(&wq_pool_attach_mutex);
3342	if (val)
3343		current->flags |= PF_WQ_WORKER;
3344	else
3345		current->flags &= ~PF_WQ_WORKER;
3346	mutex_unlock(&wq_pool_attach_mutex);
3347}
3348
3349/**
3350 * worker_thread - the worker thread function
3351 * @__worker: self
3352 *
3353 * The worker thread function.  All workers belong to a worker_pool -
3354 * either a per-cpu one or dynamic unbound one.  These workers process all
3355 * work items regardless of their specific target workqueue.  The only
3356 * exception is work items which belong to workqueues with a rescuer which
3357 * will be explained in rescuer_thread().
3358 *
3359 * Return: 0
3360 */
3361static int worker_thread(void *__worker)
3362{
3363	struct worker *worker = __worker;
3364	struct worker_pool *pool = worker->pool;
3365
3366	/* tell the scheduler that this is a workqueue worker */
3367	set_pf_worker(true);
3368woke_up:
3369	raw_spin_lock_irq(&pool->lock);
3370
3371	/* am I supposed to die? */
3372	if (unlikely(worker->flags & WORKER_DIE)) {
3373		raw_spin_unlock_irq(&pool->lock);
3374		set_pf_worker(false);
3375
3376		set_task_comm(worker->task, "kworker/dying");
3377		ida_free(&pool->worker_ida, worker->id);
3378		worker_detach_from_pool(worker);
3379		WARN_ON_ONCE(!list_empty(&worker->entry));
3380		kfree(worker);
3381		return 0;
3382	}
3383
3384	worker_leave_idle(worker);
3385recheck:
3386	/* no more worker necessary? */
3387	if (!need_more_worker(pool))
3388		goto sleep;
3389
3390	/* do we need to manage? */
3391	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3392		goto recheck;
3393
3394	/*
3395	 * ->scheduled list can only be filled while a worker is
3396	 * preparing to process a work or actually processing it.
3397	 * Make sure nobody diddled with it while I was sleeping.
3398	 */
3399	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3400
3401	/*
3402	 * Finish PREP stage.  We're guaranteed to have at least one idle
3403	 * worker or that someone else has already assumed the manager
3404	 * role.  This is where @worker starts participating in concurrency
3405	 * management if applicable and concurrency management is restored
3406	 * after being rebound.  See rebind_workers() for details.
3407	 */
3408	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3409
3410	do {
3411		struct work_struct *work =
3412			list_first_entry(&pool->worklist,
3413					 struct work_struct, entry);
3414
3415		if (assign_work(work, worker, NULL))
3416			process_scheduled_works(worker);
3417	} while (keep_working(pool));
3418
3419	worker_set_flags(worker, WORKER_PREP);
3420sleep:
3421	/*
3422	 * pool->lock is held and there's no work to process and no need to
3423	 * manage, sleep.  Workers are woken up only while holding
3424	 * pool->lock or from local cpu, so setting the current state
3425	 * before releasing pool->lock is enough to prevent losing any
3426	 * event.
3427	 */
3428	worker_enter_idle(worker);
3429	__set_current_state(TASK_IDLE);
3430	raw_spin_unlock_irq(&pool->lock);
3431	schedule();
3432	goto woke_up;
3433}
3434
3435/**
3436 * rescuer_thread - the rescuer thread function
3437 * @__rescuer: self
3438 *
3439 * Workqueue rescuer thread function.  There's one rescuer for each
3440 * workqueue which has WQ_MEM_RECLAIM set.
3441 *
3442 * Regular work processing on a pool may block trying to create a new
3443 * worker which uses GFP_KERNEL allocation which has slight chance of
3444 * developing into deadlock if some works currently on the same queue
3445 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3446 * the problem rescuer solves.
3447 *
3448 * When such condition is possible, the pool summons rescuers of all
3449 * workqueues which have works queued on the pool and let them process
3450 * those works so that forward progress can be guaranteed.
3451 *
3452 * This should happen rarely.
3453 *
3454 * Return: 0
3455 */
3456static int rescuer_thread(void *__rescuer)
3457{
3458	struct worker *rescuer = __rescuer;
3459	struct workqueue_struct *wq = rescuer->rescue_wq;
3460	bool should_stop;
3461
3462	set_user_nice(current, RESCUER_NICE_LEVEL);
3463
3464	/*
3465	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3466	 * doesn't participate in concurrency management.
3467	 */
3468	set_pf_worker(true);
3469repeat:
3470	set_current_state(TASK_IDLE);
3471
3472	/*
3473	 * By the time the rescuer is requested to stop, the workqueue
3474	 * shouldn't have any work pending, but @wq->maydays may still have
3475	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3476	 * all the work items before the rescuer got to them.  Go through
3477	 * @wq->maydays processing before acting on should_stop so that the
3478	 * list is always empty on exit.
3479	 */
3480	should_stop = kthread_should_stop();
3481
3482	/* see whether any pwq is asking for help */
3483	raw_spin_lock_irq(&wq_mayday_lock);
3484
3485	while (!list_empty(&wq->maydays)) {
3486		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3487					struct pool_workqueue, mayday_node);
3488		struct worker_pool *pool = pwq->pool;
3489		struct work_struct *work, *n;
3490
3491		__set_current_state(TASK_RUNNING);
3492		list_del_init(&pwq->mayday_node);
3493
3494		raw_spin_unlock_irq(&wq_mayday_lock);
3495
3496		worker_attach_to_pool(rescuer, pool);
3497
3498		raw_spin_lock_irq(&pool->lock);
3499
3500		/*
3501		 * Slurp in all works issued via this workqueue and
3502		 * process'em.
3503		 */
3504		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3505		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3506			if (get_work_pwq(work) == pwq &&
3507			    assign_work(work, rescuer, &n))
3508				pwq->stats[PWQ_STAT_RESCUED]++;
3509		}
3510
3511		if (!list_empty(&rescuer->scheduled)) {
3512			process_scheduled_works(rescuer);
3513
3514			/*
3515			 * The above execution of rescued work items could
3516			 * have created more to rescue through
3517			 * pwq_activate_first_inactive() or chained
3518			 * queueing.  Let's put @pwq back on mayday list so
3519			 * that such back-to-back work items, which may be
3520			 * being used to relieve memory pressure, don't
3521			 * incur MAYDAY_INTERVAL delay inbetween.
3522			 */
3523			if (pwq->nr_active && need_to_create_worker(pool)) {
3524				raw_spin_lock(&wq_mayday_lock);
3525				/*
3526				 * Queue iff we aren't racing destruction
3527				 * and somebody else hasn't queued it already.
3528				 */
3529				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3530					get_pwq(pwq);
3531					list_add_tail(&pwq->mayday_node, &wq->maydays);
3532				}
3533				raw_spin_unlock(&wq_mayday_lock);
3534			}
3535		}
3536
3537		/*
3538		 * Put the reference grabbed by send_mayday().  @pool won't
3539		 * go away while we're still attached to it.
3540		 */
3541		put_pwq(pwq);
3542
3543		/*
3544		 * Leave this pool. Notify regular workers; otherwise, we end up
3545		 * with 0 concurrency and stalling the execution.
3546		 */
3547		kick_pool(pool);
3548
3549		raw_spin_unlock_irq(&pool->lock);
3550
3551		worker_detach_from_pool(rescuer);
3552
3553		raw_spin_lock_irq(&wq_mayday_lock);
3554	}
3555
3556	raw_spin_unlock_irq(&wq_mayday_lock);
3557
3558	if (should_stop) {
3559		__set_current_state(TASK_RUNNING);
3560		set_pf_worker(false);
3561		return 0;
3562	}
3563
3564	/* rescuers should never participate in concurrency management */
3565	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3566	schedule();
3567	goto repeat;
3568}
3569
3570static void bh_worker(struct worker *worker)
3571{
3572	struct worker_pool *pool = worker->pool;
3573	int nr_restarts = BH_WORKER_RESTARTS;
3574	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3575
3576	raw_spin_lock_irq(&pool->lock);
3577	worker_leave_idle(worker);
3578
3579	/*
3580	 * This function follows the structure of worker_thread(). See there for
3581	 * explanations on each step.
3582	 */
3583	if (!need_more_worker(pool))
3584		goto done;
3585
3586	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3587	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3588
3589	do {
3590		struct work_struct *work =
3591			list_first_entry(&pool->worklist,
3592					 struct work_struct, entry);
3593
3594		if (assign_work(work, worker, NULL))
3595			process_scheduled_works(worker);
3596	} while (keep_working(pool) &&
3597		 --nr_restarts && time_before(jiffies, end));
3598
3599	worker_set_flags(worker, WORKER_PREP);
3600done:
3601	worker_enter_idle(worker);
3602	kick_pool(pool);
3603	raw_spin_unlock_irq(&pool->lock);
3604}
3605
3606/*
3607 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3608 *
3609 * This is currently called from tasklet[_hi]action() and thus is also called
3610 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3611 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3612 * can be dropped.
3613 *
3614 * After full conversion, we'll add worker->softirq_action, directly use the
3615 * softirq action and obtain the worker pointer from the softirq_action pointer.
3616 */
3617void workqueue_softirq_action(bool highpri)
3618{
3619	struct worker_pool *pool =
3620		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3621	if (need_more_worker(pool))
3622		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3623}
3624
3625struct wq_drain_dead_softirq_work {
3626	struct work_struct	work;
3627	struct worker_pool	*pool;
3628	struct completion	done;
3629};
3630
3631static void drain_dead_softirq_workfn(struct work_struct *work)
3632{
3633	struct wq_drain_dead_softirq_work *dead_work =
3634		container_of(work, struct wq_drain_dead_softirq_work, work);
3635	struct worker_pool *pool = dead_work->pool;
3636	bool repeat;
3637
3638	/*
3639	 * @pool's CPU is dead and we want to execute its still pending work
3640	 * items from this BH work item which is running on a different CPU. As
3641	 * its CPU is dead, @pool can't be kicked and, as work execution path
3642	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3643	 * @pool with %POOL_BH_DRAINING for the special treatments.
3644	 */
3645	raw_spin_lock_irq(&pool->lock);
3646	pool->flags |= POOL_BH_DRAINING;
3647	raw_spin_unlock_irq(&pool->lock);
3648
3649	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3650
3651	raw_spin_lock_irq(&pool->lock);
3652	pool->flags &= ~POOL_BH_DRAINING;
3653	repeat = need_more_worker(pool);
3654	raw_spin_unlock_irq(&pool->lock);
3655
3656	/*
3657	 * bh_worker() might hit consecutive execution limit and bail. If there
3658	 * still are pending work items, reschedule self and return so that we
3659	 * don't hog this CPU's BH.
3660	 */
3661	if (repeat) {
3662		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3663			queue_work(system_bh_highpri_wq, work);
3664		else
3665			queue_work(system_bh_wq, work);
3666	} else {
3667		complete(&dead_work->done);
3668	}
3669}
3670
3671/*
3672 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3673 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3674 * have to worry about draining overlapping with CPU coming back online or
3675 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3676 * on). Let's keep it simple and drain them synchronously. These are BH work
3677 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3678 */
3679void workqueue_softirq_dead(unsigned int cpu)
3680{
3681	int i;
3682
3683	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3684		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3685		struct wq_drain_dead_softirq_work dead_work;
3686
3687		if (!need_more_worker(pool))
3688			continue;
3689
3690		INIT_WORK(&dead_work.work, drain_dead_softirq_workfn);
3691		dead_work.pool = pool;
3692		init_completion(&dead_work.done);
3693
3694		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3695			queue_work(system_bh_highpri_wq, &dead_work.work);
3696		else
3697			queue_work(system_bh_wq, &dead_work.work);
3698
3699		wait_for_completion(&dead_work.done);
3700	}
3701}
3702
3703/**
3704 * check_flush_dependency - check for flush dependency sanity
3705 * @target_wq: workqueue being flushed
3706 * @target_work: work item being flushed (NULL for workqueue flushes)
3707 *
3708 * %current is trying to flush the whole @target_wq or @target_work on it.
3709 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3710 * reclaiming memory or running on a workqueue which doesn't have
3711 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3712 * a deadlock.
3713 */
3714static void check_flush_dependency(struct workqueue_struct *target_wq,
3715				   struct work_struct *target_work)
3716{
3717	work_func_t target_func = target_work ? target_work->func : NULL;
3718	struct worker *worker;
3719
3720	if (target_wq->flags & WQ_MEM_RECLAIM)
3721		return;
3722
3723	worker = current_wq_worker();
3724
3725	WARN_ONCE(current->flags & PF_MEMALLOC,
3726		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3727		  current->pid, current->comm, target_wq->name, target_func);
3728	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3729			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3730		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3731		  worker->current_pwq->wq->name, worker->current_func,
3732		  target_wq->name, target_func);
3733}
3734
3735struct wq_barrier {
3736	struct work_struct	work;
3737	struct completion	done;
3738	struct task_struct	*task;	/* purely informational */
3739};
3740
3741static void wq_barrier_func(struct work_struct *work)
3742{
3743	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3744	complete(&barr->done);
3745}
3746
3747/**
3748 * insert_wq_barrier - insert a barrier work
3749 * @pwq: pwq to insert barrier into
3750 * @barr: wq_barrier to insert
3751 * @target: target work to attach @barr to
3752 * @worker: worker currently executing @target, NULL if @target is not executing
3753 *
3754 * @barr is linked to @target such that @barr is completed only after
3755 * @target finishes execution.  Please note that the ordering
3756 * guarantee is observed only with respect to @target and on the local
3757 * cpu.
3758 *
3759 * Currently, a queued barrier can't be canceled.  This is because
3760 * try_to_grab_pending() can't determine whether the work to be
3761 * grabbed is at the head of the queue and thus can't clear LINKED
3762 * flag of the previous work while there must be a valid next work
3763 * after a work with LINKED flag set.
3764 *
3765 * Note that when @worker is non-NULL, @target may be modified
3766 * underneath us, so we can't reliably determine pwq from @target.
3767 *
3768 * CONTEXT:
3769 * raw_spin_lock_irq(pool->lock).
3770 */
3771static void insert_wq_barrier(struct pool_workqueue *pwq,
3772			      struct wq_barrier *barr,
3773			      struct work_struct *target, struct worker *worker)
3774{
3775	static __maybe_unused struct lock_class_key bh_key, thr_key;
3776	unsigned int work_flags = 0;
3777	unsigned int work_color;
3778	struct list_head *head;
3779
3780	/*
3781	 * debugobject calls are safe here even with pool->lock locked
3782	 * as we know for sure that this will not trigger any of the
3783	 * checks and call back into the fixup functions where we
3784	 * might deadlock.
3785	 *
3786	 * BH and threaded workqueues need separate lockdep keys to avoid
3787	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3788	 * usage".
3789	 */
3790	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3791			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3792	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3793
3794	init_completion_map(&barr->done, &target->lockdep_map);
3795
3796	barr->task = current;
3797
3798	/* The barrier work item does not participate in nr_active. */
3799	work_flags |= WORK_STRUCT_INACTIVE;
3800
3801	/*
3802	 * If @target is currently being executed, schedule the
3803	 * barrier to the worker; otherwise, put it after @target.
3804	 */
3805	if (worker) {
3806		head = worker->scheduled.next;
3807		work_color = worker->current_color;
3808	} else {
3809		unsigned long *bits = work_data_bits(target);
3810
3811		head = target->entry.next;
3812		/* there can already be other linked works, inherit and set */
3813		work_flags |= *bits & WORK_STRUCT_LINKED;
3814		work_color = get_work_color(*bits);
3815		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3816	}
3817
3818	pwq->nr_in_flight[work_color]++;
3819	work_flags |= work_color_to_flags(work_color);
3820
3821	insert_work(pwq, &barr->work, head, work_flags);
3822}
3823
3824/**
3825 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3826 * @wq: workqueue being flushed
3827 * @flush_color: new flush color, < 0 for no-op
3828 * @work_color: new work color, < 0 for no-op
3829 *
3830 * Prepare pwqs for workqueue flushing.
3831 *
3832 * If @flush_color is non-negative, flush_color on all pwqs should be
3833 * -1.  If no pwq has in-flight commands at the specified color, all
3834 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3835 * has in flight commands, its pwq->flush_color is set to
3836 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3837 * wakeup logic is armed and %true is returned.
3838 *
3839 * The caller should have initialized @wq->first_flusher prior to
3840 * calling this function with non-negative @flush_color.  If
3841 * @flush_color is negative, no flush color update is done and %false
3842 * is returned.
3843 *
3844 * If @work_color is non-negative, all pwqs should have the same
3845 * work_color which is previous to @work_color and all will be
3846 * advanced to @work_color.
3847 *
3848 * CONTEXT:
3849 * mutex_lock(wq->mutex).
3850 *
3851 * Return:
3852 * %true if @flush_color >= 0 and there's something to flush.  %false
3853 * otherwise.
3854 */
3855static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3856				      int flush_color, int work_color)
3857{
3858	bool wait = false;
3859	struct pool_workqueue *pwq;
3860
3861	if (flush_color >= 0) {
3862		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3863		atomic_set(&wq->nr_pwqs_to_flush, 1);
3864	}
3865
3866	for_each_pwq(pwq, wq) {
3867		struct worker_pool *pool = pwq->pool;
3868
3869		raw_spin_lock_irq(&pool->lock);
3870
3871		if (flush_color >= 0) {
3872			WARN_ON_ONCE(pwq->flush_color != -1);
3873
3874			if (pwq->nr_in_flight[flush_color]) {
3875				pwq->flush_color = flush_color;
3876				atomic_inc(&wq->nr_pwqs_to_flush);
3877				wait = true;
3878			}
3879		}
3880
3881		if (work_color >= 0) {
3882			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3883			pwq->work_color = work_color;
3884		}
3885
3886		raw_spin_unlock_irq(&pool->lock);
3887	}
3888
3889	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3890		complete(&wq->first_flusher->done);
3891
3892	return wait;
3893}
3894
3895static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3896{
3897#ifdef CONFIG_LOCKDEP
3898	if (wq->flags & WQ_BH)
3899		local_bh_disable();
3900
3901	lock_map_acquire(&wq->lockdep_map);
3902	lock_map_release(&wq->lockdep_map);
3903
3904	if (wq->flags & WQ_BH)
3905		local_bh_enable();
3906#endif
3907}
3908
3909static void touch_work_lockdep_map(struct work_struct *work,
3910				   struct workqueue_struct *wq)
3911{
3912#ifdef CONFIG_LOCKDEP
3913	if (wq->flags & WQ_BH)
3914		local_bh_disable();
3915
3916	lock_map_acquire(&work->lockdep_map);
3917	lock_map_release(&work->lockdep_map);
3918
3919	if (wq->flags & WQ_BH)
3920		local_bh_enable();
3921#endif
3922}
3923
3924/**
3925 * __flush_workqueue - ensure that any scheduled work has run to completion.
3926 * @wq: workqueue to flush
3927 *
3928 * This function sleeps until all work items which were queued on entry
3929 * have finished execution, but it is not livelocked by new incoming ones.
3930 */
3931void __flush_workqueue(struct workqueue_struct *wq)
3932{
3933	struct wq_flusher this_flusher = {
3934		.list = LIST_HEAD_INIT(this_flusher.list),
3935		.flush_color = -1,
3936		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3937	};
3938	int next_color;
3939
3940	if (WARN_ON(!wq_online))
3941		return;
3942
3943	touch_wq_lockdep_map(wq);
3944
3945	mutex_lock(&wq->mutex);
3946
3947	/*
3948	 * Start-to-wait phase
3949	 */
3950	next_color = work_next_color(wq->work_color);
3951
3952	if (next_color != wq->flush_color) {
3953		/*
3954		 * Color space is not full.  The current work_color
3955		 * becomes our flush_color and work_color is advanced
3956		 * by one.
3957		 */
3958		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3959		this_flusher.flush_color = wq->work_color;
3960		wq->work_color = next_color;
3961
3962		if (!wq->first_flusher) {
3963			/* no flush in progress, become the first flusher */
3964			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3965
3966			wq->first_flusher = &this_flusher;
3967
3968			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3969						       wq->work_color)) {
3970				/* nothing to flush, done */
3971				wq->flush_color = next_color;
3972				wq->first_flusher = NULL;
3973				goto out_unlock;
3974			}
3975		} else {
3976			/* wait in queue */
3977			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3978			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3979			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3980		}
3981	} else {
3982		/*
3983		 * Oops, color space is full, wait on overflow queue.
3984		 * The next flush completion will assign us
3985		 * flush_color and transfer to flusher_queue.
3986		 */
3987		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3988	}
3989
3990	check_flush_dependency(wq, NULL);
3991
3992	mutex_unlock(&wq->mutex);
3993
3994	wait_for_completion(&this_flusher.done);
3995
3996	/*
3997	 * Wake-up-and-cascade phase
3998	 *
3999	 * First flushers are responsible for cascading flushes and
4000	 * handling overflow.  Non-first flushers can simply return.
4001	 */
4002	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4003		return;
4004
4005	mutex_lock(&wq->mutex);
4006
4007	/* we might have raced, check again with mutex held */
4008	if (wq->first_flusher != &this_flusher)
4009		goto out_unlock;
4010
4011	WRITE_ONCE(wq->first_flusher, NULL);
4012
4013	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4014	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4015
4016	while (true) {
4017		struct wq_flusher *next, *tmp;
4018
4019		/* complete all the flushers sharing the current flush color */
4020		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4021			if (next->flush_color != wq->flush_color)
4022				break;
4023			list_del_init(&next->list);
4024			complete(&next->done);
4025		}
4026
4027		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4028			     wq->flush_color != work_next_color(wq->work_color));
4029
4030		/* this flush_color is finished, advance by one */
4031		wq->flush_color = work_next_color(wq->flush_color);
4032
4033		/* one color has been freed, handle overflow queue */
4034		if (!list_empty(&wq->flusher_overflow)) {
4035			/*
4036			 * Assign the same color to all overflowed
4037			 * flushers, advance work_color and append to
4038			 * flusher_queue.  This is the start-to-wait
4039			 * phase for these overflowed flushers.
4040			 */
4041			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4042				tmp->flush_color = wq->work_color;
4043
4044			wq->work_color = work_next_color(wq->work_color);
4045
4046			list_splice_tail_init(&wq->flusher_overflow,
4047					      &wq->flusher_queue);
4048			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4049		}
4050
4051		if (list_empty(&wq->flusher_queue)) {
4052			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4053			break;
4054		}
4055
4056		/*
4057		 * Need to flush more colors.  Make the next flusher
4058		 * the new first flusher and arm pwqs.
4059		 */
4060		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4061		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4062
4063		list_del_init(&next->list);
4064		wq->first_flusher = next;
4065
4066		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4067			break;
4068
4069		/*
4070		 * Meh... this color is already done, clear first
4071		 * flusher and repeat cascading.
4072		 */
4073		wq->first_flusher = NULL;
4074	}
4075
4076out_unlock:
4077	mutex_unlock(&wq->mutex);
4078}
4079EXPORT_SYMBOL(__flush_workqueue);
4080
4081/**
4082 * drain_workqueue - drain a workqueue
4083 * @wq: workqueue to drain
4084 *
4085 * Wait until the workqueue becomes empty.  While draining is in progress,
4086 * only chain queueing is allowed.  IOW, only currently pending or running
4087 * work items on @wq can queue further work items on it.  @wq is flushed
4088 * repeatedly until it becomes empty.  The number of flushing is determined
4089 * by the depth of chaining and should be relatively short.  Whine if it
4090 * takes too long.
4091 */
4092void drain_workqueue(struct workqueue_struct *wq)
4093{
4094	unsigned int flush_cnt = 0;
4095	struct pool_workqueue *pwq;
4096
4097	/*
4098	 * __queue_work() needs to test whether there are drainers, is much
4099	 * hotter than drain_workqueue() and already looks at @wq->flags.
4100	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4101	 */
4102	mutex_lock(&wq->mutex);
4103	if (!wq->nr_drainers++)
4104		wq->flags |= __WQ_DRAINING;
4105	mutex_unlock(&wq->mutex);
4106reflush:
4107	__flush_workqueue(wq);
4108
4109	mutex_lock(&wq->mutex);
4110
4111	for_each_pwq(pwq, wq) {
4112		bool drained;
4113
4114		raw_spin_lock_irq(&pwq->pool->lock);
4115		drained = pwq_is_empty(pwq);
4116		raw_spin_unlock_irq(&pwq->pool->lock);
4117
4118		if (drained)
4119			continue;
4120
4121		if (++flush_cnt == 10 ||
4122		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4123			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4124				wq->name, __func__, flush_cnt);
4125
4126		mutex_unlock(&wq->mutex);
4127		goto reflush;
4128	}
4129
4130	if (!--wq->nr_drainers)
4131		wq->flags &= ~__WQ_DRAINING;
4132	mutex_unlock(&wq->mutex);
4133}
4134EXPORT_SYMBOL_GPL(drain_workqueue);
4135
4136static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4137			     bool from_cancel)
4138{
4139	struct worker *worker = NULL;
4140	struct worker_pool *pool;
4141	struct pool_workqueue *pwq;
4142	struct workqueue_struct *wq;
4143
4144	might_sleep();
4145
4146	rcu_read_lock();
4147	pool = get_work_pool(work);
4148	if (!pool) {
4149		rcu_read_unlock();
4150		return false;
4151	}
4152
4153	raw_spin_lock_irq(&pool->lock);
4154	/* see the comment in try_to_grab_pending() with the same code */
4155	pwq = get_work_pwq(work);
4156	if (pwq) {
4157		if (unlikely(pwq->pool != pool))
4158			goto already_gone;
4159	} else {
4160		worker = find_worker_executing_work(pool, work);
4161		if (!worker)
4162			goto already_gone;
4163		pwq = worker->current_pwq;
4164	}
4165
4166	wq = pwq->wq;
4167	check_flush_dependency(wq, work);
4168
4169	insert_wq_barrier(pwq, barr, work, worker);
4170	raw_spin_unlock_irq(&pool->lock);
4171
4172	touch_work_lockdep_map(work, wq);
4173
4174	/*
4175	 * Force a lock recursion deadlock when using flush_work() inside a
4176	 * single-threaded or rescuer equipped workqueue.
4177	 *
4178	 * For single threaded workqueues the deadlock happens when the work
4179	 * is after the work issuing the flush_work(). For rescuer equipped
4180	 * workqueues the deadlock happens when the rescuer stalls, blocking
4181	 * forward progress.
4182	 */
4183	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4184		touch_wq_lockdep_map(wq);
4185
4186	rcu_read_unlock();
4187	return true;
4188already_gone:
4189	raw_spin_unlock_irq(&pool->lock);
4190	rcu_read_unlock();
4191	return false;
4192}
4193
4194static bool __flush_work(struct work_struct *work, bool from_cancel)
4195{
4196	struct wq_barrier barr;
4197
4198	if (WARN_ON(!wq_online))
4199		return false;
4200
4201	if (WARN_ON(!work->func))
4202		return false;
4203
4204	if (start_flush_work(work, &barr, from_cancel)) {
4205		wait_for_completion(&barr.done);
4206		destroy_work_on_stack(&barr.work);
4207		return true;
4208	} else {
4209		return false;
4210	}
4211}
4212
4213/**
4214 * flush_work - wait for a work to finish executing the last queueing instance
4215 * @work: the work to flush
4216 *
4217 * Wait until @work has finished execution.  @work is guaranteed to be idle
4218 * on return if it hasn't been requeued since flush started.
4219 *
4220 * Return:
4221 * %true if flush_work() waited for the work to finish execution,
4222 * %false if it was already idle.
4223 */
4224bool flush_work(struct work_struct *work)
4225{
4226	return __flush_work(work, false);
4227}
4228EXPORT_SYMBOL_GPL(flush_work);
4229
4230/**
4231 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4232 * @dwork: the delayed work to flush
4233 *
4234 * Delayed timer is cancelled and the pending work is queued for
4235 * immediate execution.  Like flush_work(), this function only
4236 * considers the last queueing instance of @dwork.
4237 *
4238 * Return:
4239 * %true if flush_work() waited for the work to finish execution,
4240 * %false if it was already idle.
4241 */
4242bool flush_delayed_work(struct delayed_work *dwork)
4243{
4244	local_irq_disable();
4245	if (del_timer_sync(&dwork->timer))
4246		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4247	local_irq_enable();
4248	return flush_work(&dwork->work);
4249}
4250EXPORT_SYMBOL(flush_delayed_work);
4251
4252/**
4253 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4254 * @rwork: the rcu work to flush
4255 *
4256 * Return:
4257 * %true if flush_rcu_work() waited for the work to finish execution,
4258 * %false if it was already idle.
4259 */
4260bool flush_rcu_work(struct rcu_work *rwork)
4261{
4262	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4263		rcu_barrier();
4264		flush_work(&rwork->work);
4265		return true;
4266	} else {
4267		return flush_work(&rwork->work);
4268	}
4269}
4270EXPORT_SYMBOL(flush_rcu_work);
4271
4272static bool __cancel_work(struct work_struct *work, u32 cflags)
4273{
4274	unsigned long irq_flags;
4275	int ret;
4276
4277	do {
4278		ret = try_to_grab_pending(work, cflags, &irq_flags);
4279	} while (unlikely(ret == -EAGAIN));
4280
4281	if (unlikely(ret < 0))
4282		return false;
4283
4284	set_work_pool_and_clear_pending(work, get_work_pool_id(work), 0);
4285	local_irq_restore(irq_flags);
4286	return ret;
4287}
4288
4289static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4290{
4291	unsigned long irq_flags;
4292	bool ret;
4293
4294	/* claim @work and tell other tasks trying to grab @work to back off */
4295	ret = work_grab_pending(work, cflags, &irq_flags);
4296	mark_work_canceling(work);
4297	local_irq_restore(irq_flags);
4298
4299	/*
4300	 * Skip __flush_work() during early boot when we know that @work isn't
4301	 * executing. This allows canceling during early boot.
4302	 */
4303	if (wq_online)
4304		__flush_work(work, true);
4305
4306	/*
4307	 * smp_mb() at the end of set_work_pool_and_clear_pending() is paired
4308	 * with prepare_to_wait() above so that either waitqueue_active() is
4309	 * visible here or !work_is_canceling() is visible there.
4310	 */
4311	set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, 0);
4312
4313	if (waitqueue_active(&wq_cancel_waitq))
4314		__wake_up(&wq_cancel_waitq, TASK_NORMAL, 1, work);
4315
4316	return ret;
4317}
4318
4319/*
4320 * See cancel_delayed_work()
4321 */
4322bool cancel_work(struct work_struct *work)
4323{
4324	return __cancel_work(work, 0);
4325}
4326EXPORT_SYMBOL(cancel_work);
4327
4328/**
4329 * cancel_work_sync - cancel a work and wait for it to finish
4330 * @work: the work to cancel
4331 *
4332 * Cancel @work and wait for its execution to finish.  This function
4333 * can be used even if the work re-queues itself or migrates to
4334 * another workqueue.  On return from this function, @work is
4335 * guaranteed to be not pending or executing on any CPU.
4336 *
4337 * cancel_work_sync(&delayed_work->work) must not be used for
4338 * delayed_work's.  Use cancel_delayed_work_sync() instead.
4339 *
4340 * The caller must ensure that the workqueue on which @work was last
4341 * queued can't be destroyed before this function returns.
4342 *
4343 * Return:
4344 * %true if @work was pending, %false otherwise.
4345 */
4346bool cancel_work_sync(struct work_struct *work)
4347{
4348	return __cancel_work_sync(work, 0);
4349}
4350EXPORT_SYMBOL_GPL(cancel_work_sync);
4351
4352/**
4353 * cancel_delayed_work - cancel a delayed work
4354 * @dwork: delayed_work to cancel
4355 *
4356 * Kill off a pending delayed_work.
4357 *
4358 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4359 * pending.
4360 *
4361 * Note:
4362 * The work callback function may still be running on return, unless
4363 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4364 * use cancel_delayed_work_sync() to wait on it.
4365 *
4366 * This function is safe to call from any context including IRQ handler.
4367 */
4368bool cancel_delayed_work(struct delayed_work *dwork)
4369{
4370	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4371}
4372EXPORT_SYMBOL(cancel_delayed_work);
4373
4374/**
4375 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4376 * @dwork: the delayed work cancel
4377 *
4378 * This is cancel_work_sync() for delayed works.
4379 *
4380 * Return:
4381 * %true if @dwork was pending, %false otherwise.
4382 */
4383bool cancel_delayed_work_sync(struct delayed_work *dwork)
4384{
4385	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4386}
4387EXPORT_SYMBOL(cancel_delayed_work_sync);
4388
4389/**
4390 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4391 * @func: the function to call
4392 *
4393 * schedule_on_each_cpu() executes @func on each online CPU using the
4394 * system workqueue and blocks until all CPUs have completed.
4395 * schedule_on_each_cpu() is very slow.
4396 *
4397 * Return:
4398 * 0 on success, -errno on failure.
4399 */
4400int schedule_on_each_cpu(work_func_t func)
4401{
4402	int cpu;
4403	struct work_struct __percpu *works;
4404
4405	works = alloc_percpu(struct work_struct);
4406	if (!works)
4407		return -ENOMEM;
4408
4409	cpus_read_lock();
4410
4411	for_each_online_cpu(cpu) {
4412		struct work_struct *work = per_cpu_ptr(works, cpu);
4413
4414		INIT_WORK(work, func);
4415		schedule_work_on(cpu, work);
4416	}
4417
4418	for_each_online_cpu(cpu)
4419		flush_work(per_cpu_ptr(works, cpu));
4420
4421	cpus_read_unlock();
4422	free_percpu(works);
4423	return 0;
4424}
4425
4426/**
4427 * execute_in_process_context - reliably execute the routine with user context
4428 * @fn:		the function to execute
4429 * @ew:		guaranteed storage for the execute work structure (must
4430 *		be available when the work executes)
4431 *
4432 * Executes the function immediately if process context is available,
4433 * otherwise schedules the function for delayed execution.
4434 *
4435 * Return:	0 - function was executed
4436 *		1 - function was scheduled for execution
4437 */
4438int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4439{
4440	if (!in_interrupt()) {
4441		fn(&ew->work);
4442		return 0;
4443	}
4444
4445	INIT_WORK(&ew->work, fn);
4446	schedule_work(&ew->work);
4447
4448	return 1;
4449}
4450EXPORT_SYMBOL_GPL(execute_in_process_context);
4451
4452/**
4453 * free_workqueue_attrs - free a workqueue_attrs
4454 * @attrs: workqueue_attrs to free
4455 *
4456 * Undo alloc_workqueue_attrs().
4457 */
4458void free_workqueue_attrs(struct workqueue_attrs *attrs)
4459{
4460	if (attrs) {
4461		free_cpumask_var(attrs->cpumask);
4462		free_cpumask_var(attrs->__pod_cpumask);
4463		kfree(attrs);
4464	}
4465}
4466
4467/**
4468 * alloc_workqueue_attrs - allocate a workqueue_attrs
4469 *
4470 * Allocate a new workqueue_attrs, initialize with default settings and
4471 * return it.
4472 *
4473 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4474 */
4475struct workqueue_attrs *alloc_workqueue_attrs(void)
4476{
4477	struct workqueue_attrs *attrs;
4478
4479	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4480	if (!attrs)
4481		goto fail;
4482	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4483		goto fail;
4484	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4485		goto fail;
4486
4487	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4488	attrs->affn_scope = WQ_AFFN_DFL;
4489	return attrs;
4490fail:
4491	free_workqueue_attrs(attrs);
4492	return NULL;
4493}
4494
4495static void copy_workqueue_attrs(struct workqueue_attrs *to,
4496				 const struct workqueue_attrs *from)
4497{
4498	to->nice = from->nice;
4499	cpumask_copy(to->cpumask, from->cpumask);
4500	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4501	to->affn_strict = from->affn_strict;
4502
4503	/*
4504	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4505	 * fields as copying is used for both pool and wq attrs. Instead,
4506	 * get_unbound_pool() explicitly clears the fields.
4507	 */
4508	to->affn_scope = from->affn_scope;
4509	to->ordered = from->ordered;
4510}
4511
4512/*
4513 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4514 * comments in 'struct workqueue_attrs' definition.
4515 */
4516static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4517{
4518	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4519	attrs->ordered = false;
4520}
4521
4522/* hash value of the content of @attr */
4523static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4524{
4525	u32 hash = 0;
4526
4527	hash = jhash_1word(attrs->nice, hash);
4528	hash = jhash(cpumask_bits(attrs->cpumask),
4529		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4530	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4531		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4532	hash = jhash_1word(attrs->affn_strict, hash);
4533	return hash;
4534}
4535
4536/* content equality test */
4537static bool wqattrs_equal(const struct workqueue_attrs *a,
4538			  const struct workqueue_attrs *b)
4539{
4540	if (a->nice != b->nice)
4541		return false;
4542	if (!cpumask_equal(a->cpumask, b->cpumask))
4543		return false;
4544	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4545		return false;
4546	if (a->affn_strict != b->affn_strict)
4547		return false;
4548	return true;
4549}
4550
4551/* Update @attrs with actually available CPUs */
4552static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4553				      const cpumask_t *unbound_cpumask)
4554{
4555	/*
4556	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4557	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4558	 * @unbound_cpumask.
4559	 */
4560	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4561	if (unlikely(cpumask_empty(attrs->cpumask)))
4562		cpumask_copy(attrs->cpumask, unbound_cpumask);
4563}
4564
4565/* find wq_pod_type to use for @attrs */
4566static const struct wq_pod_type *
4567wqattrs_pod_type(const struct workqueue_attrs *attrs)
4568{
4569	enum wq_affn_scope scope;
4570	struct wq_pod_type *pt;
4571
4572	/* to synchronize access to wq_affn_dfl */
4573	lockdep_assert_held(&wq_pool_mutex);
4574
4575	if (attrs->affn_scope == WQ_AFFN_DFL)
4576		scope = wq_affn_dfl;
4577	else
4578		scope = attrs->affn_scope;
4579
4580	pt = &wq_pod_types[scope];
4581
4582	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4583	    likely(pt->nr_pods))
4584		return pt;
4585
4586	/*
4587	 * Before workqueue_init_topology(), only SYSTEM is available which is
4588	 * initialized in workqueue_init_early().
4589	 */
4590	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4591	BUG_ON(!pt->nr_pods);
4592	return pt;
4593}
4594
4595/**
4596 * init_worker_pool - initialize a newly zalloc'd worker_pool
4597 * @pool: worker_pool to initialize
4598 *
4599 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4600 *
4601 * Return: 0 on success, -errno on failure.  Even on failure, all fields
4602 * inside @pool proper are initialized and put_unbound_pool() can be called
4603 * on @pool safely to release it.
4604 */
4605static int init_worker_pool(struct worker_pool *pool)
4606{
4607	raw_spin_lock_init(&pool->lock);
4608	pool->id = -1;
4609	pool->cpu = -1;
4610	pool->node = NUMA_NO_NODE;
4611	pool->flags |= POOL_DISASSOCIATED;
4612	pool->watchdog_ts = jiffies;
4613	INIT_LIST_HEAD(&pool->worklist);
4614	INIT_LIST_HEAD(&pool->idle_list);
4615	hash_init(pool->busy_hash);
4616
4617	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4618	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4619
4620	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4621
4622	INIT_LIST_HEAD(&pool->workers);
4623	INIT_LIST_HEAD(&pool->dying_workers);
4624
4625	ida_init(&pool->worker_ida);
4626	INIT_HLIST_NODE(&pool->hash_node);
4627	pool->refcnt = 1;
4628
4629	/* shouldn't fail above this point */
4630	pool->attrs = alloc_workqueue_attrs();
4631	if (!pool->attrs)
4632		return -ENOMEM;
4633
4634	wqattrs_clear_for_pool(pool->attrs);
4635
4636	return 0;
4637}
4638
4639#ifdef CONFIG_LOCKDEP
4640static void wq_init_lockdep(struct workqueue_struct *wq)
4641{
4642	char *lock_name;
4643
4644	lockdep_register_key(&wq->key);
4645	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4646	if (!lock_name)
4647		lock_name = wq->name;
4648
4649	wq->lock_name = lock_name;
4650	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4651}
4652
4653static void wq_unregister_lockdep(struct workqueue_struct *wq)
4654{
4655	lockdep_unregister_key(&wq->key);
4656}
4657
4658static void wq_free_lockdep(struct workqueue_struct *wq)
4659{
4660	if (wq->lock_name != wq->name)
4661		kfree(wq->lock_name);
4662}
4663#else
4664static void wq_init_lockdep(struct workqueue_struct *wq)
4665{
4666}
4667
4668static void wq_unregister_lockdep(struct workqueue_struct *wq)
4669{
4670}
4671
4672static void wq_free_lockdep(struct workqueue_struct *wq)
4673{
4674}
4675#endif
4676
4677static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4678{
4679	int node;
4680
4681	for_each_node(node) {
4682		kfree(nna_ar[node]);
4683		nna_ar[node] = NULL;
4684	}
4685
4686	kfree(nna_ar[nr_node_ids]);
4687	nna_ar[nr_node_ids] = NULL;
4688}
4689
4690static void init_node_nr_active(struct wq_node_nr_active *nna)
4691{
4692	nna->max = WQ_DFL_MIN_ACTIVE;
4693	atomic_set(&nna->nr, 0);
4694	raw_spin_lock_init(&nna->lock);
4695	INIT_LIST_HEAD(&nna->pending_pwqs);
4696}
4697
4698/*
4699 * Each node's nr_active counter will be accessed mostly from its own node and
4700 * should be allocated in the node.
4701 */
4702static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4703{
4704	struct wq_node_nr_active *nna;
4705	int node;
4706
4707	for_each_node(node) {
4708		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4709		if (!nna)
4710			goto err_free;
4711		init_node_nr_active(nna);
4712		nna_ar[node] = nna;
4713	}
4714
4715	/* [nr_node_ids] is used as the fallback */
4716	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4717	if (!nna)
4718		goto err_free;
4719	init_node_nr_active(nna);
4720	nna_ar[nr_node_ids] = nna;
4721
4722	return 0;
4723
4724err_free:
4725	free_node_nr_active(nna_ar);
4726	return -ENOMEM;
4727}
4728
4729static void rcu_free_wq(struct rcu_head *rcu)
4730{
4731	struct workqueue_struct *wq =
4732		container_of(rcu, struct workqueue_struct, rcu);
4733
4734	if (wq->flags & WQ_UNBOUND)
4735		free_node_nr_active(wq->node_nr_active);
4736
4737	wq_free_lockdep(wq);
4738	free_percpu(wq->cpu_pwq);
4739	free_workqueue_attrs(wq->unbound_attrs);
4740	kfree(wq);
4741}
4742
4743static void rcu_free_pool(struct rcu_head *rcu)
4744{
4745	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4746
4747	ida_destroy(&pool->worker_ida);
4748	free_workqueue_attrs(pool->attrs);
4749	kfree(pool);
4750}
4751
4752/**
4753 * put_unbound_pool - put a worker_pool
4754 * @pool: worker_pool to put
4755 *
4756 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4757 * safe manner.  get_unbound_pool() calls this function on its failure path
4758 * and this function should be able to release pools which went through,
4759 * successfully or not, init_worker_pool().
4760 *
4761 * Should be called with wq_pool_mutex held.
4762 */
4763static void put_unbound_pool(struct worker_pool *pool)
4764{
4765	DECLARE_COMPLETION_ONSTACK(detach_completion);
4766	struct worker *worker;
4767	LIST_HEAD(cull_list);
4768
4769	lockdep_assert_held(&wq_pool_mutex);
4770
4771	if (--pool->refcnt)
4772		return;
4773
4774	/* sanity checks */
4775	if (WARN_ON(!(pool->cpu < 0)) ||
4776	    WARN_ON(!list_empty(&pool->worklist)))
4777		return;
4778
4779	/* release id and unhash */
4780	if (pool->id >= 0)
4781		idr_remove(&worker_pool_idr, pool->id);
4782	hash_del(&pool->hash_node);
4783
4784	/*
4785	 * Become the manager and destroy all workers.  This prevents
4786	 * @pool's workers from blocking on attach_mutex.  We're the last
4787	 * manager and @pool gets freed with the flag set.
4788	 *
4789	 * Having a concurrent manager is quite unlikely to happen as we can
4790	 * only get here with
4791	 *   pwq->refcnt == pool->refcnt == 0
4792	 * which implies no work queued to the pool, which implies no worker can
4793	 * become the manager. However a worker could have taken the role of
4794	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4795	 * drops pool->lock
4796	 */
4797	while (true) {
4798		rcuwait_wait_event(&manager_wait,
4799				   !(pool->flags & POOL_MANAGER_ACTIVE),
4800				   TASK_UNINTERRUPTIBLE);
4801
4802		mutex_lock(&wq_pool_attach_mutex);
4803		raw_spin_lock_irq(&pool->lock);
4804		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4805			pool->flags |= POOL_MANAGER_ACTIVE;
4806			break;
4807		}
4808		raw_spin_unlock_irq(&pool->lock);
4809		mutex_unlock(&wq_pool_attach_mutex);
4810	}
4811
4812	while ((worker = first_idle_worker(pool)))
4813		set_worker_dying(worker, &cull_list);
4814	WARN_ON(pool->nr_workers || pool->nr_idle);
4815	raw_spin_unlock_irq(&pool->lock);
4816
4817	wake_dying_workers(&cull_list);
4818
4819	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4820		pool->detach_completion = &detach_completion;
4821	mutex_unlock(&wq_pool_attach_mutex);
4822
4823	if (pool->detach_completion)
4824		wait_for_completion(pool->detach_completion);
4825
4826	/* shut down the timers */
4827	del_timer_sync(&pool->idle_timer);
4828	cancel_work_sync(&pool->idle_cull_work);
4829	del_timer_sync(&pool->mayday_timer);
4830
4831	/* RCU protected to allow dereferences from get_work_pool() */
4832	call_rcu(&pool->rcu, rcu_free_pool);
4833}
4834
4835/**
4836 * get_unbound_pool - get a worker_pool with the specified attributes
4837 * @attrs: the attributes of the worker_pool to get
4838 *
4839 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4840 * reference count and return it.  If there already is a matching
4841 * worker_pool, it will be used; otherwise, this function attempts to
4842 * create a new one.
4843 *
4844 * Should be called with wq_pool_mutex held.
4845 *
4846 * Return: On success, a worker_pool with the same attributes as @attrs.
4847 * On failure, %NULL.
4848 */
4849static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4850{
4851	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4852	u32 hash = wqattrs_hash(attrs);
4853	struct worker_pool *pool;
4854	int pod, node = NUMA_NO_NODE;
4855
4856	lockdep_assert_held(&wq_pool_mutex);
4857
4858	/* do we already have a matching pool? */
4859	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4860		if (wqattrs_equal(pool->attrs, attrs)) {
4861			pool->refcnt++;
4862			return pool;
4863		}
4864	}
4865
4866	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4867	for (pod = 0; pod < pt->nr_pods; pod++) {
4868		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4869			node = pt->pod_node[pod];
4870			break;
4871		}
4872	}
4873
4874	/* nope, create a new one */
4875	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4876	if (!pool || init_worker_pool(pool) < 0)
4877		goto fail;
4878
4879	pool->node = node;
4880	copy_workqueue_attrs(pool->attrs, attrs);
4881	wqattrs_clear_for_pool(pool->attrs);
4882
4883	if (worker_pool_assign_id(pool) < 0)
4884		goto fail;
4885
4886	/* create and start the initial worker */
4887	if (wq_online && !create_worker(pool))
4888		goto fail;
4889
4890	/* install */
4891	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4892
4893	return pool;
4894fail:
4895	if (pool)
4896		put_unbound_pool(pool);
4897	return NULL;
4898}
4899
4900static void rcu_free_pwq(struct rcu_head *rcu)
4901{
4902	kmem_cache_free(pwq_cache,
4903			container_of(rcu, struct pool_workqueue, rcu));
4904}
4905
4906/*
4907 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4908 * refcnt and needs to be destroyed.
4909 */
4910static void pwq_release_workfn(struct kthread_work *work)
4911{
4912	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4913						  release_work);
4914	struct workqueue_struct *wq = pwq->wq;
4915	struct worker_pool *pool = pwq->pool;
4916	bool is_last = false;
4917
4918	/*
4919	 * When @pwq is not linked, it doesn't hold any reference to the
4920	 * @wq, and @wq is invalid to access.
4921	 */
4922	if (!list_empty(&pwq->pwqs_node)) {
4923		mutex_lock(&wq->mutex);
4924		list_del_rcu(&pwq->pwqs_node);
4925		is_last = list_empty(&wq->pwqs);
4926
4927		/*
4928		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
4929		 */
4930		if (!is_last && (wq->flags & __WQ_ORDERED))
4931			unplug_oldest_pwq(wq);
4932
4933		mutex_unlock(&wq->mutex);
4934	}
4935
4936	if (wq->flags & WQ_UNBOUND) {
4937		mutex_lock(&wq_pool_mutex);
4938		put_unbound_pool(pool);
4939		mutex_unlock(&wq_pool_mutex);
4940	}
4941
4942	if (!list_empty(&pwq->pending_node)) {
4943		struct wq_node_nr_active *nna =
4944			wq_node_nr_active(pwq->wq, pwq->pool->node);
4945
4946		raw_spin_lock_irq(&nna->lock);
4947		list_del_init(&pwq->pending_node);
4948		raw_spin_unlock_irq(&nna->lock);
4949	}
4950
4951	call_rcu(&pwq->rcu, rcu_free_pwq);
4952
4953	/*
4954	 * If we're the last pwq going away, @wq is already dead and no one
4955	 * is gonna access it anymore.  Schedule RCU free.
4956	 */
4957	if (is_last) {
4958		wq_unregister_lockdep(wq);
4959		call_rcu(&wq->rcu, rcu_free_wq);
4960	}
4961}
4962
4963/* initialize newly allocated @pwq which is associated with @wq and @pool */
4964static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4965		     struct worker_pool *pool)
4966{
4967	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
4968
4969	memset(pwq, 0, sizeof(*pwq));
4970
4971	pwq->pool = pool;
4972	pwq->wq = wq;
4973	pwq->flush_color = -1;
4974	pwq->refcnt = 1;
4975	INIT_LIST_HEAD(&pwq->inactive_works);
4976	INIT_LIST_HEAD(&pwq->pending_node);
4977	INIT_LIST_HEAD(&pwq->pwqs_node);
4978	INIT_LIST_HEAD(&pwq->mayday_node);
4979	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4980}
4981
4982/* sync @pwq with the current state of its associated wq and link it */
4983static void link_pwq(struct pool_workqueue *pwq)
4984{
4985	struct workqueue_struct *wq = pwq->wq;
4986
4987	lockdep_assert_held(&wq->mutex);
4988
4989	/* may be called multiple times, ignore if already linked */
4990	if (!list_empty(&pwq->pwqs_node))
4991		return;
4992
4993	/* set the matching work_color */
4994	pwq->work_color = wq->work_color;
4995
4996	/* link in @pwq */
4997	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
4998}
4999
5000/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5001static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5002					const struct workqueue_attrs *attrs)
5003{
5004	struct worker_pool *pool;
5005	struct pool_workqueue *pwq;
5006
5007	lockdep_assert_held(&wq_pool_mutex);
5008
5009	pool = get_unbound_pool(attrs);
5010	if (!pool)
5011		return NULL;
5012
5013	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5014	if (!pwq) {
5015		put_unbound_pool(pool);
5016		return NULL;
5017	}
5018
5019	init_pwq(pwq, wq, pool);
5020	return pwq;
5021}
5022
5023/**
5024 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5025 * @attrs: the wq_attrs of the default pwq of the target workqueue
5026 * @cpu: the target CPU
5027 * @cpu_going_down: if >= 0, the CPU to consider as offline
5028 *
5029 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5030 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
5031 * The result is stored in @attrs->__pod_cpumask.
5032 *
5033 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5034 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5035 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5036 *
5037 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5038 */
5039static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5040				int cpu_going_down)
5041{
5042	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5043	int pod = pt->cpu_pod[cpu];
5044
5045	/* does @pod have any online CPUs @attrs wants? */
5046	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5047	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
5048	if (cpu_going_down >= 0)
5049		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
5050
5051	if (cpumask_empty(attrs->__pod_cpumask)) {
5052		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5053		return;
5054	}
5055
5056	/* yeap, return possible CPUs in @pod that @attrs wants */
5057	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
5058
5059	if (cpumask_empty(attrs->__pod_cpumask))
5060		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5061				"possible intersect\n");
5062}
5063
5064/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5065static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5066					int cpu, struct pool_workqueue *pwq)
5067{
5068	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5069	struct pool_workqueue *old_pwq;
5070
5071	lockdep_assert_held(&wq_pool_mutex);
5072	lockdep_assert_held(&wq->mutex);
5073
5074	/* link_pwq() can handle duplicate calls */
5075	link_pwq(pwq);
5076
5077	old_pwq = rcu_access_pointer(*slot);
5078	rcu_assign_pointer(*slot, pwq);
5079	return old_pwq;
5080}
5081
5082/* context to store the prepared attrs & pwqs before applying */
5083struct apply_wqattrs_ctx {
5084	struct workqueue_struct	*wq;		/* target workqueue */
5085	struct workqueue_attrs	*attrs;		/* attrs to apply */
5086	struct list_head	list;		/* queued for batching commit */
5087	struct pool_workqueue	*dfl_pwq;
5088	struct pool_workqueue	*pwq_tbl[];
5089};
5090
5091/* free the resources after success or abort */
5092static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5093{
5094	if (ctx) {
5095		int cpu;
5096
5097		for_each_possible_cpu(cpu)
5098			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5099		put_pwq_unlocked(ctx->dfl_pwq);
5100
5101		free_workqueue_attrs(ctx->attrs);
5102
5103		kfree(ctx);
5104	}
5105}
5106
5107/* allocate the attrs and pwqs for later installation */
5108static struct apply_wqattrs_ctx *
5109apply_wqattrs_prepare(struct workqueue_struct *wq,
5110		      const struct workqueue_attrs *attrs,
5111		      const cpumask_var_t unbound_cpumask)
5112{
5113	struct apply_wqattrs_ctx *ctx;
5114	struct workqueue_attrs *new_attrs;
5115	int cpu;
5116
5117	lockdep_assert_held(&wq_pool_mutex);
5118
5119	if (WARN_ON(attrs->affn_scope < 0 ||
5120		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5121		return ERR_PTR(-EINVAL);
5122
5123	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5124
5125	new_attrs = alloc_workqueue_attrs();
5126	if (!ctx || !new_attrs)
5127		goto out_free;
5128
5129	/*
5130	 * If something goes wrong during CPU up/down, we'll fall back to
5131	 * the default pwq covering whole @attrs->cpumask.  Always create
5132	 * it even if we don't use it immediately.
5133	 */
5134	copy_workqueue_attrs(new_attrs, attrs);
5135	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5136	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5137	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5138	if (!ctx->dfl_pwq)
5139		goto out_free;
5140
5141	for_each_possible_cpu(cpu) {
5142		if (new_attrs->ordered) {
5143			ctx->dfl_pwq->refcnt++;
5144			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5145		} else {
5146			wq_calc_pod_cpumask(new_attrs, cpu, -1);
5147			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5148			if (!ctx->pwq_tbl[cpu])
5149				goto out_free;
5150		}
5151	}
5152
5153	/* save the user configured attrs and sanitize it. */
5154	copy_workqueue_attrs(new_attrs, attrs);
5155	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5156	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5157	ctx->attrs = new_attrs;
5158
5159	/*
5160	 * For initialized ordered workqueues, there should only be one pwq
5161	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5162	 * of newly queued work items until execution of older work items in
5163	 * the old pwq's have completed.
5164	 */
5165	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5166		ctx->dfl_pwq->plugged = true;
5167
5168	ctx->wq = wq;
5169	return ctx;
5170
5171out_free:
5172	free_workqueue_attrs(new_attrs);
5173	apply_wqattrs_cleanup(ctx);
5174	return ERR_PTR(-ENOMEM);
5175}
5176
5177/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5178static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5179{
5180	int cpu;
5181
5182	/* all pwqs have been created successfully, let's install'em */
5183	mutex_lock(&ctx->wq->mutex);
5184
5185	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5186
5187	/* save the previous pwqs and install the new ones */
5188	for_each_possible_cpu(cpu)
5189		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5190							ctx->pwq_tbl[cpu]);
5191	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5192
5193	/* update node_nr_active->max */
5194	wq_update_node_max_active(ctx->wq, -1);
5195
5196	/* rescuer needs to respect wq cpumask changes */
5197	if (ctx->wq->rescuer)
5198		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5199				     unbound_effective_cpumask(ctx->wq));
5200
5201	mutex_unlock(&ctx->wq->mutex);
5202}
5203
5204static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5205					const struct workqueue_attrs *attrs)
5206{
5207	struct apply_wqattrs_ctx *ctx;
5208
5209	/* only unbound workqueues can change attributes */
5210	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5211		return -EINVAL;
5212
5213	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5214	if (IS_ERR(ctx))
5215		return PTR_ERR(ctx);
5216
5217	/* the ctx has been prepared successfully, let's commit it */
5218	apply_wqattrs_commit(ctx);
5219	apply_wqattrs_cleanup(ctx);
5220
5221	return 0;
5222}
5223
5224/**
5225 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5226 * @wq: the target workqueue
5227 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5228 *
5229 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5230 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5231 * work items are affine to the pod it was issued on. Older pwqs are released as
5232 * in-flight work items finish. Note that a work item which repeatedly requeues
5233 * itself back-to-back will stay on its current pwq.
5234 *
5235 * Performs GFP_KERNEL allocations.
5236 *
5237 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5238 *
5239 * Return: 0 on success and -errno on failure.
5240 */
5241int apply_workqueue_attrs(struct workqueue_struct *wq,
5242			  const struct workqueue_attrs *attrs)
5243{
5244	int ret;
5245
5246	lockdep_assert_cpus_held();
5247
5248	mutex_lock(&wq_pool_mutex);
5249	ret = apply_workqueue_attrs_locked(wq, attrs);
5250	mutex_unlock(&wq_pool_mutex);
5251
5252	return ret;
5253}
5254
5255/**
5256 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5257 * @wq: the target workqueue
5258 * @cpu: the CPU to update pool association for
5259 * @hotplug_cpu: the CPU coming up or going down
5260 * @online: whether @cpu is coming up or going down
5261 *
5262 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5263 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5264 * @wq accordingly.
5265 *
5266 *
5267 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5268 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5269 *
5270 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5271 * with a cpumask spanning multiple pods, the workers which were already
5272 * executing the work items for the workqueue will lose their CPU affinity and
5273 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5274 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5275 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5276 */
5277static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5278			  int hotplug_cpu, bool online)
5279{
5280	int off_cpu = online ? -1 : hotplug_cpu;
5281	struct pool_workqueue *old_pwq = NULL, *pwq;
5282	struct workqueue_attrs *target_attrs;
5283
5284	lockdep_assert_held(&wq_pool_mutex);
5285
5286	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5287		return;
5288
5289	/*
5290	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5291	 * Let's use a preallocated one.  The following buf is protected by
5292	 * CPU hotplug exclusion.
5293	 */
5294	target_attrs = wq_update_pod_attrs_buf;
5295
5296	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5297	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5298
5299	/* nothing to do if the target cpumask matches the current pwq */
5300	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5301	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5302		return;
5303
5304	/* create a new pwq */
5305	pwq = alloc_unbound_pwq(wq, target_attrs);
5306	if (!pwq) {
5307		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5308			wq->name);
5309		goto use_dfl_pwq;
5310	}
5311
5312	/* Install the new pwq. */
5313	mutex_lock(&wq->mutex);
5314	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5315	goto out_unlock;
5316
5317use_dfl_pwq:
5318	mutex_lock(&wq->mutex);
5319	pwq = unbound_pwq(wq, -1);
5320	raw_spin_lock_irq(&pwq->pool->lock);
5321	get_pwq(pwq);
5322	raw_spin_unlock_irq(&pwq->pool->lock);
5323	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5324out_unlock:
5325	mutex_unlock(&wq->mutex);
5326	put_pwq_unlocked(old_pwq);
5327}
5328
5329static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5330{
5331	bool highpri = wq->flags & WQ_HIGHPRI;
5332	int cpu, ret;
5333
5334	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5335	if (!wq->cpu_pwq)
5336		goto enomem;
5337
5338	if (!(wq->flags & WQ_UNBOUND)) {
5339		for_each_possible_cpu(cpu) {
5340			struct pool_workqueue **pwq_p;
5341			struct worker_pool __percpu *pools;
5342			struct worker_pool *pool;
5343
5344			if (wq->flags & WQ_BH)
5345				pools = bh_worker_pools;
5346			else
5347				pools = cpu_worker_pools;
5348
5349			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5350			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5351
5352			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5353						       pool->node);
5354			if (!*pwq_p)
5355				goto enomem;
5356
5357			init_pwq(*pwq_p, wq, pool);
5358
5359			mutex_lock(&wq->mutex);
5360			link_pwq(*pwq_p);
5361			mutex_unlock(&wq->mutex);
5362		}
5363		return 0;
5364	}
5365
5366	cpus_read_lock();
5367	if (wq->flags & __WQ_ORDERED) {
5368		struct pool_workqueue *dfl_pwq;
5369
5370		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5371		/* there should only be single pwq for ordering guarantee */
5372		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5373		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5374			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5375		     "ordering guarantee broken for workqueue %s\n", wq->name);
5376	} else {
5377		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5378	}
5379	cpus_read_unlock();
5380
5381	/* for unbound pwq, flush the pwq_release_worker ensures that the
5382	 * pwq_release_workfn() completes before calling kfree(wq).
5383	 */
5384	if (ret)
5385		kthread_flush_worker(pwq_release_worker);
5386
5387	return ret;
5388
5389enomem:
5390	if (wq->cpu_pwq) {
5391		for_each_possible_cpu(cpu) {
5392			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5393
5394			if (pwq)
5395				kmem_cache_free(pwq_cache, pwq);
5396		}
5397		free_percpu(wq->cpu_pwq);
5398		wq->cpu_pwq = NULL;
5399	}
5400	return -ENOMEM;
5401}
5402
5403static int wq_clamp_max_active(int max_active, unsigned int flags,
5404			       const char *name)
5405{
5406	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5407		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5408			max_active, name, 1, WQ_MAX_ACTIVE);
5409
5410	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5411}
5412
5413/*
5414 * Workqueues which may be used during memory reclaim should have a rescuer
5415 * to guarantee forward progress.
5416 */
5417static int init_rescuer(struct workqueue_struct *wq)
5418{
5419	struct worker *rescuer;
5420	int ret;
5421
5422	if (!(wq->flags & WQ_MEM_RECLAIM))
5423		return 0;
5424
5425	rescuer = alloc_worker(NUMA_NO_NODE);
5426	if (!rescuer) {
5427		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5428		       wq->name);
5429		return -ENOMEM;
5430	}
5431
5432	rescuer->rescue_wq = wq;
5433	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5434	if (IS_ERR(rescuer->task)) {
5435		ret = PTR_ERR(rescuer->task);
5436		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5437		       wq->name, ERR_PTR(ret));
5438		kfree(rescuer);
5439		return ret;
5440	}
5441
5442	wq->rescuer = rescuer;
5443	if (wq->flags & WQ_UNBOUND)
5444		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5445	else
5446		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5447	wake_up_process(rescuer->task);
5448
5449	return 0;
5450}
5451
5452/**
5453 * wq_adjust_max_active - update a wq's max_active to the current setting
5454 * @wq: target workqueue
5455 *
5456 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5457 * activate inactive work items accordingly. If @wq is freezing, clear
5458 * @wq->max_active to zero.
5459 */
5460static void wq_adjust_max_active(struct workqueue_struct *wq)
5461{
5462	bool activated;
5463	int new_max, new_min;
5464
5465	lockdep_assert_held(&wq->mutex);
5466
5467	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5468		new_max = 0;
5469		new_min = 0;
5470	} else {
5471		new_max = wq->saved_max_active;
5472		new_min = wq->saved_min_active;
5473	}
5474
5475	if (wq->max_active == new_max && wq->min_active == new_min)
5476		return;
5477
5478	/*
5479	 * Update @wq->max/min_active and then kick inactive work items if more
5480	 * active work items are allowed. This doesn't break work item ordering
5481	 * because new work items are always queued behind existing inactive
5482	 * work items if there are any.
5483	 */
5484	WRITE_ONCE(wq->max_active, new_max);
5485	WRITE_ONCE(wq->min_active, new_min);
5486
5487	if (wq->flags & WQ_UNBOUND)
5488		wq_update_node_max_active(wq, -1);
5489
5490	if (new_max == 0)
5491		return;
5492
5493	/*
5494	 * Round-robin through pwq's activating the first inactive work item
5495	 * until max_active is filled.
5496	 */
5497	do {
5498		struct pool_workqueue *pwq;
5499
5500		activated = false;
5501		for_each_pwq(pwq, wq) {
5502			unsigned long irq_flags;
5503
5504			/* can be called during early boot w/ irq disabled */
5505			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5506			if (pwq_activate_first_inactive(pwq, true)) {
5507				activated = true;
5508				kick_pool(pwq->pool);
5509			}
5510			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5511		}
5512	} while (activated);
5513}
5514
5515__printf(1, 4)
5516struct workqueue_struct *alloc_workqueue(const char *fmt,
5517					 unsigned int flags,
5518					 int max_active, ...)
5519{
5520	va_list args;
5521	struct workqueue_struct *wq;
5522	size_t wq_size;
5523	int name_len;
5524
5525	if (flags & WQ_BH) {
5526		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5527			return NULL;
5528		if (WARN_ON_ONCE(max_active))
5529			return NULL;
5530	}
5531
5532	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5533	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5534		flags |= WQ_UNBOUND;
5535
5536	/* allocate wq and format name */
5537	if (flags & WQ_UNBOUND)
5538		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5539	else
5540		wq_size = sizeof(*wq);
5541
5542	wq = kzalloc(wq_size, GFP_KERNEL);
5543	if (!wq)
5544		return NULL;
5545
5546	if (flags & WQ_UNBOUND) {
5547		wq->unbound_attrs = alloc_workqueue_attrs();
5548		if (!wq->unbound_attrs)
5549			goto err_free_wq;
5550	}
5551
5552	va_start(args, max_active);
5553	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5554	va_end(args);
5555
5556	if (name_len >= WQ_NAME_LEN)
5557		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5558			     wq->name);
5559
5560	if (flags & WQ_BH) {
5561		/*
5562		 * BH workqueues always share a single execution context per CPU
5563		 * and don't impose any max_active limit.
5564		 */
5565		max_active = INT_MAX;
5566	} else {
5567		max_active = max_active ?: WQ_DFL_ACTIVE;
5568		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5569	}
5570
5571	/* init wq */
5572	wq->flags = flags;
5573	wq->max_active = max_active;
5574	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5575	wq->saved_max_active = wq->max_active;
5576	wq->saved_min_active = wq->min_active;
5577	mutex_init(&wq->mutex);
5578	atomic_set(&wq->nr_pwqs_to_flush, 0);
5579	INIT_LIST_HEAD(&wq->pwqs);
5580	INIT_LIST_HEAD(&wq->flusher_queue);
5581	INIT_LIST_HEAD(&wq->flusher_overflow);
5582	INIT_LIST_HEAD(&wq->maydays);
5583
5584	wq_init_lockdep(wq);
5585	INIT_LIST_HEAD(&wq->list);
5586
5587	if (flags & WQ_UNBOUND) {
5588		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5589			goto err_unreg_lockdep;
5590	}
5591
5592	if (alloc_and_link_pwqs(wq) < 0)
5593		goto err_free_node_nr_active;
5594
5595	if (wq_online && init_rescuer(wq) < 0)
5596		goto err_destroy;
5597
5598	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5599		goto err_destroy;
5600
5601	/*
5602	 * wq_pool_mutex protects global freeze state and workqueues list.
5603	 * Grab it, adjust max_active and add the new @wq to workqueues
5604	 * list.
5605	 */
5606	mutex_lock(&wq_pool_mutex);
5607
5608	mutex_lock(&wq->mutex);
5609	wq_adjust_max_active(wq);
5610	mutex_unlock(&wq->mutex);
5611
5612	list_add_tail_rcu(&wq->list, &workqueues);
5613
5614	mutex_unlock(&wq_pool_mutex);
5615
5616	return wq;
5617
5618err_free_node_nr_active:
5619	if (wq->flags & WQ_UNBOUND)
5620		free_node_nr_active(wq->node_nr_active);
5621err_unreg_lockdep:
5622	wq_unregister_lockdep(wq);
5623	wq_free_lockdep(wq);
5624err_free_wq:
5625	free_workqueue_attrs(wq->unbound_attrs);
5626	kfree(wq);
5627	return NULL;
5628err_destroy:
5629	destroy_workqueue(wq);
5630	return NULL;
5631}
5632EXPORT_SYMBOL_GPL(alloc_workqueue);
5633
5634static bool pwq_busy(struct pool_workqueue *pwq)
5635{
5636	int i;
5637
5638	for (i = 0; i < WORK_NR_COLORS; i++)
5639		if (pwq->nr_in_flight[i])
5640			return true;
5641
5642	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5643		return true;
5644	if (!pwq_is_empty(pwq))
5645		return true;
5646
5647	return false;
5648}
5649
5650/**
5651 * destroy_workqueue - safely terminate a workqueue
5652 * @wq: target workqueue
5653 *
5654 * Safely destroy a workqueue. All work currently pending will be done first.
5655 */
5656void destroy_workqueue(struct workqueue_struct *wq)
5657{
5658	struct pool_workqueue *pwq;
5659	int cpu;
5660
5661	/*
5662	 * Remove it from sysfs first so that sanity check failure doesn't
5663	 * lead to sysfs name conflicts.
5664	 */
5665	workqueue_sysfs_unregister(wq);
5666
5667	/* mark the workqueue destruction is in progress */
5668	mutex_lock(&wq->mutex);
5669	wq->flags |= __WQ_DESTROYING;
5670	mutex_unlock(&wq->mutex);
5671
5672	/* drain it before proceeding with destruction */
5673	drain_workqueue(wq);
5674
5675	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5676	if (wq->rescuer) {
5677		struct worker *rescuer = wq->rescuer;
5678
5679		/* this prevents new queueing */
5680		raw_spin_lock_irq(&wq_mayday_lock);
5681		wq->rescuer = NULL;
5682		raw_spin_unlock_irq(&wq_mayday_lock);
5683
5684		/* rescuer will empty maydays list before exiting */
5685		kthread_stop(rescuer->task);
5686		kfree(rescuer);
5687	}
5688
5689	/*
5690	 * Sanity checks - grab all the locks so that we wait for all
5691	 * in-flight operations which may do put_pwq().
5692	 */
5693	mutex_lock(&wq_pool_mutex);
5694	mutex_lock(&wq->mutex);
5695	for_each_pwq(pwq, wq) {
5696		raw_spin_lock_irq(&pwq->pool->lock);
5697		if (WARN_ON(pwq_busy(pwq))) {
5698			pr_warn("%s: %s has the following busy pwq\n",
5699				__func__, wq->name);
5700			show_pwq(pwq);
5701			raw_spin_unlock_irq(&pwq->pool->lock);
5702			mutex_unlock(&wq->mutex);
5703			mutex_unlock(&wq_pool_mutex);
5704			show_one_workqueue(wq);
5705			return;
5706		}
5707		raw_spin_unlock_irq(&pwq->pool->lock);
5708	}
5709	mutex_unlock(&wq->mutex);
5710
5711	/*
5712	 * wq list is used to freeze wq, remove from list after
5713	 * flushing is complete in case freeze races us.
5714	 */
5715	list_del_rcu(&wq->list);
5716	mutex_unlock(&wq_pool_mutex);
5717
5718	/*
5719	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5720	 * to put the base refs. @wq will be auto-destroyed from the last
5721	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5722	 */
5723	rcu_read_lock();
5724
5725	for_each_possible_cpu(cpu) {
5726		put_pwq_unlocked(unbound_pwq(wq, cpu));
5727		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5728	}
5729
5730	put_pwq_unlocked(unbound_pwq(wq, -1));
5731	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5732
5733	rcu_read_unlock();
5734}
5735EXPORT_SYMBOL_GPL(destroy_workqueue);
5736
5737/**
5738 * workqueue_set_max_active - adjust max_active of a workqueue
5739 * @wq: target workqueue
5740 * @max_active: new max_active value.
5741 *
5742 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5743 * comment.
5744 *
5745 * CONTEXT:
5746 * Don't call from IRQ context.
5747 */
5748void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5749{
5750	/* max_active doesn't mean anything for BH workqueues */
5751	if (WARN_ON(wq->flags & WQ_BH))
5752		return;
5753	/* disallow meddling with max_active for ordered workqueues */
5754	if (WARN_ON(wq->flags & __WQ_ORDERED))
5755		return;
5756
5757	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5758
5759	mutex_lock(&wq->mutex);
5760
5761	wq->saved_max_active = max_active;
5762	if (wq->flags & WQ_UNBOUND)
5763		wq->saved_min_active = min(wq->saved_min_active, max_active);
5764
5765	wq_adjust_max_active(wq);
5766
5767	mutex_unlock(&wq->mutex);
5768}
5769EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5770
5771/**
5772 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5773 * @wq: target unbound workqueue
5774 * @min_active: new min_active value
5775 *
5776 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5777 * unbound workqueue is not guaranteed to be able to process max_active
5778 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5779 * able to process min_active number of interdependent work items which is
5780 * %WQ_DFL_MIN_ACTIVE by default.
5781 *
5782 * Use this function to adjust the min_active value between 0 and the current
5783 * max_active.
5784 */
5785void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5786{
5787	/* min_active is only meaningful for non-ordered unbound workqueues */
5788	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5789		    WQ_UNBOUND))
5790		return;
5791
5792	mutex_lock(&wq->mutex);
5793	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5794	wq_adjust_max_active(wq);
5795	mutex_unlock(&wq->mutex);
5796}
5797
5798/**
5799 * current_work - retrieve %current task's work struct
5800 *
5801 * Determine if %current task is a workqueue worker and what it's working on.
5802 * Useful to find out the context that the %current task is running in.
5803 *
5804 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5805 */
5806struct work_struct *current_work(void)
5807{
5808	struct worker *worker = current_wq_worker();
5809
5810	return worker ? worker->current_work : NULL;
5811}
5812EXPORT_SYMBOL(current_work);
5813
5814/**
5815 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5816 *
5817 * Determine whether %current is a workqueue rescuer.  Can be used from
5818 * work functions to determine whether it's being run off the rescuer task.
5819 *
5820 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5821 */
5822bool current_is_workqueue_rescuer(void)
5823{
5824	struct worker *worker = current_wq_worker();
5825
5826	return worker && worker->rescue_wq;
5827}
5828
5829/**
5830 * workqueue_congested - test whether a workqueue is congested
5831 * @cpu: CPU in question
5832 * @wq: target workqueue
5833 *
5834 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5835 * no synchronization around this function and the test result is
5836 * unreliable and only useful as advisory hints or for debugging.
5837 *
5838 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5839 *
5840 * With the exception of ordered workqueues, all workqueues have per-cpu
5841 * pool_workqueues, each with its own congested state. A workqueue being
5842 * congested on one CPU doesn't mean that the workqueue is contested on any
5843 * other CPUs.
5844 *
5845 * Return:
5846 * %true if congested, %false otherwise.
5847 */
5848bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5849{
5850	struct pool_workqueue *pwq;
5851	bool ret;
5852
5853	rcu_read_lock();
5854	preempt_disable();
5855
5856	if (cpu == WORK_CPU_UNBOUND)
5857		cpu = smp_processor_id();
5858
5859	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5860	ret = !list_empty(&pwq->inactive_works);
5861
5862	preempt_enable();
5863	rcu_read_unlock();
5864
5865	return ret;
5866}
5867EXPORT_SYMBOL_GPL(workqueue_congested);
5868
5869/**
5870 * work_busy - test whether a work is currently pending or running
5871 * @work: the work to be tested
5872 *
5873 * Test whether @work is currently pending or running.  There is no
5874 * synchronization around this function and the test result is
5875 * unreliable and only useful as advisory hints or for debugging.
5876 *
5877 * Return:
5878 * OR'd bitmask of WORK_BUSY_* bits.
5879 */
5880unsigned int work_busy(struct work_struct *work)
5881{
5882	struct worker_pool *pool;
5883	unsigned long irq_flags;
5884	unsigned int ret = 0;
5885
5886	if (work_pending(work))
5887		ret |= WORK_BUSY_PENDING;
5888
5889	rcu_read_lock();
5890	pool = get_work_pool(work);
5891	if (pool) {
5892		raw_spin_lock_irqsave(&pool->lock, irq_flags);
5893		if (find_worker_executing_work(pool, work))
5894			ret |= WORK_BUSY_RUNNING;
5895		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
5896	}
5897	rcu_read_unlock();
5898
5899	return ret;
5900}
5901EXPORT_SYMBOL_GPL(work_busy);
5902
5903/**
5904 * set_worker_desc - set description for the current work item
5905 * @fmt: printf-style format string
5906 * @...: arguments for the format string
5907 *
5908 * This function can be called by a running work function to describe what
5909 * the work item is about.  If the worker task gets dumped, this
5910 * information will be printed out together to help debugging.  The
5911 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5912 */
5913void set_worker_desc(const char *fmt, ...)
5914{
5915	struct worker *worker = current_wq_worker();
5916	va_list args;
5917
5918	if (worker) {
5919		va_start(args, fmt);
5920		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5921		va_end(args);
5922	}
5923}
5924EXPORT_SYMBOL_GPL(set_worker_desc);
5925
5926/**
5927 * print_worker_info - print out worker information and description
5928 * @log_lvl: the log level to use when printing
5929 * @task: target task
5930 *
5931 * If @task is a worker and currently executing a work item, print out the
5932 * name of the workqueue being serviced and worker description set with
5933 * set_worker_desc() by the currently executing work item.
5934 *
5935 * This function can be safely called on any task as long as the
5936 * task_struct itself is accessible.  While safe, this function isn't
5937 * synchronized and may print out mixups or garbages of limited length.
5938 */
5939void print_worker_info(const char *log_lvl, struct task_struct *task)
5940{
5941	work_func_t *fn = NULL;
5942	char name[WQ_NAME_LEN] = { };
5943	char desc[WORKER_DESC_LEN] = { };
5944	struct pool_workqueue *pwq = NULL;
5945	struct workqueue_struct *wq = NULL;
5946	struct worker *worker;
5947
5948	if (!(task->flags & PF_WQ_WORKER))
5949		return;
5950
5951	/*
5952	 * This function is called without any synchronization and @task
5953	 * could be in any state.  Be careful with dereferences.
5954	 */
5955	worker = kthread_probe_data(task);
5956
5957	/*
5958	 * Carefully copy the associated workqueue's workfn, name and desc.
5959	 * Keep the original last '\0' in case the original is garbage.
5960	 */
5961	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5962	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5963	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5964	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5965	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5966
5967	if (fn || name[0] || desc[0]) {
5968		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5969		if (strcmp(name, desc))
5970			pr_cont(" (%s)", desc);
5971		pr_cont("\n");
5972	}
5973}
5974
5975static void pr_cont_pool_info(struct worker_pool *pool)
5976{
5977	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5978	if (pool->node != NUMA_NO_NODE)
5979		pr_cont(" node=%d", pool->node);
5980	pr_cont(" flags=0x%x", pool->flags);
5981	if (pool->flags & POOL_BH)
5982		pr_cont(" bh%s",
5983			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5984	else
5985		pr_cont(" nice=%d", pool->attrs->nice);
5986}
5987
5988static void pr_cont_worker_id(struct worker *worker)
5989{
5990	struct worker_pool *pool = worker->pool;
5991
5992	if (pool->flags & WQ_BH)
5993		pr_cont("bh%s",
5994			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5995	else
5996		pr_cont("%d%s", task_pid_nr(worker->task),
5997			worker->rescue_wq ? "(RESCUER)" : "");
5998}
5999
6000struct pr_cont_work_struct {
6001	bool comma;
6002	work_func_t func;
6003	long ctr;
6004};
6005
6006static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6007{
6008	if (!pcwsp->ctr)
6009		goto out_record;
6010	if (func == pcwsp->func) {
6011		pcwsp->ctr++;
6012		return;
6013	}
6014	if (pcwsp->ctr == 1)
6015		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6016	else
6017		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6018	pcwsp->ctr = 0;
6019out_record:
6020	if ((long)func == -1L)
6021		return;
6022	pcwsp->comma = comma;
6023	pcwsp->func = func;
6024	pcwsp->ctr = 1;
6025}
6026
6027static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6028{
6029	if (work->func == wq_barrier_func) {
6030		struct wq_barrier *barr;
6031
6032		barr = container_of(work, struct wq_barrier, work);
6033
6034		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6035		pr_cont("%s BAR(%d)", comma ? "," : "",
6036			task_pid_nr(barr->task));
6037	} else {
6038		if (!comma)
6039			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6040		pr_cont_work_flush(comma, work->func, pcwsp);
6041	}
6042}
6043
6044static void show_pwq(struct pool_workqueue *pwq)
6045{
6046	struct pr_cont_work_struct pcws = { .ctr = 0, };
6047	struct worker_pool *pool = pwq->pool;
6048	struct work_struct *work;
6049	struct worker *worker;
6050	bool has_in_flight = false, has_pending = false;
6051	int bkt;
6052
6053	pr_info("  pwq %d:", pool->id);
6054	pr_cont_pool_info(pool);
6055
6056	pr_cont(" active=%d refcnt=%d%s\n",
6057		pwq->nr_active, pwq->refcnt,
6058		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6059
6060	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6061		if (worker->current_pwq == pwq) {
6062			has_in_flight = true;
6063			break;
6064		}
6065	}
6066	if (has_in_flight) {
6067		bool comma = false;
6068
6069		pr_info("    in-flight:");
6070		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6071			if (worker->current_pwq != pwq)
6072				continue;
6073
6074			pr_cont(" %s", comma ? "," : "");
6075			pr_cont_worker_id(worker);
6076			pr_cont(":%ps", worker->current_func);
6077			list_for_each_entry(work, &worker->scheduled, entry)
6078				pr_cont_work(false, work, &pcws);
6079			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6080			comma = true;
6081		}
6082		pr_cont("\n");
6083	}
6084
6085	list_for_each_entry(work, &pool->worklist, entry) {
6086		if (get_work_pwq(work) == pwq) {
6087			has_pending = true;
6088			break;
6089		}
6090	}
6091	if (has_pending) {
6092		bool comma = false;
6093
6094		pr_info("    pending:");
6095		list_for_each_entry(work, &pool->worklist, entry) {
6096			if (get_work_pwq(work) != pwq)
6097				continue;
6098
6099			pr_cont_work(comma, work, &pcws);
6100			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6101		}
6102		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6103		pr_cont("\n");
6104	}
6105
6106	if (!list_empty(&pwq->inactive_works)) {
6107		bool comma = false;
6108
6109		pr_info("    inactive:");
6110		list_for_each_entry(work, &pwq->inactive_works, entry) {
6111			pr_cont_work(comma, work, &pcws);
6112			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6113		}
6114		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6115		pr_cont("\n");
6116	}
6117}
6118
6119/**
6120 * show_one_workqueue - dump state of specified workqueue
6121 * @wq: workqueue whose state will be printed
6122 */
6123void show_one_workqueue(struct workqueue_struct *wq)
6124{
6125	struct pool_workqueue *pwq;
6126	bool idle = true;
6127	unsigned long irq_flags;
6128
6129	for_each_pwq(pwq, wq) {
6130		if (!pwq_is_empty(pwq)) {
6131			idle = false;
6132			break;
6133		}
6134	}
6135	if (idle) /* Nothing to print for idle workqueue */
6136		return;
6137
6138	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6139
6140	for_each_pwq(pwq, wq) {
6141		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6142		if (!pwq_is_empty(pwq)) {
6143			/*
6144			 * Defer printing to avoid deadlocks in console
6145			 * drivers that queue work while holding locks
6146			 * also taken in their write paths.
6147			 */
6148			printk_deferred_enter();
6149			show_pwq(pwq);
6150			printk_deferred_exit();
6151		}
6152		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6153		/*
6154		 * We could be printing a lot from atomic context, e.g.
6155		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6156		 * hard lockup.
6157		 */
6158		touch_nmi_watchdog();
6159	}
6160
6161}
6162
6163/**
6164 * show_one_worker_pool - dump state of specified worker pool
6165 * @pool: worker pool whose state will be printed
6166 */
6167static void show_one_worker_pool(struct worker_pool *pool)
6168{
6169	struct worker *worker;
6170	bool first = true;
6171	unsigned long irq_flags;
6172	unsigned long hung = 0;
6173
6174	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6175	if (pool->nr_workers == pool->nr_idle)
6176		goto next_pool;
6177
6178	/* How long the first pending work is waiting for a worker. */
6179	if (!list_empty(&pool->worklist))
6180		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6181
6182	/*
6183	 * Defer printing to avoid deadlocks in console drivers that
6184	 * queue work while holding locks also taken in their write
6185	 * paths.
6186	 */
6187	printk_deferred_enter();
6188	pr_info("pool %d:", pool->id);
6189	pr_cont_pool_info(pool);
6190	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6191	if (pool->manager)
6192		pr_cont(" manager: %d",
6193			task_pid_nr(pool->manager->task));
6194	list_for_each_entry(worker, &pool->idle_list, entry) {
6195		pr_cont(" %s", first ? "idle: " : "");
6196		pr_cont_worker_id(worker);
6197		first = false;
6198	}
6199	pr_cont("\n");
6200	printk_deferred_exit();
6201next_pool:
6202	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6203	/*
6204	 * We could be printing a lot from atomic context, e.g.
6205	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6206	 * hard lockup.
6207	 */
6208	touch_nmi_watchdog();
6209
6210}
6211
6212/**
6213 * show_all_workqueues - dump workqueue state
6214 *
6215 * Called from a sysrq handler and prints out all busy workqueues and pools.
6216 */
6217void show_all_workqueues(void)
6218{
6219	struct workqueue_struct *wq;
6220	struct worker_pool *pool;
6221	int pi;
6222
6223	rcu_read_lock();
6224
6225	pr_info("Showing busy workqueues and worker pools:\n");
6226
6227	list_for_each_entry_rcu(wq, &workqueues, list)
6228		show_one_workqueue(wq);
6229
6230	for_each_pool(pool, pi)
6231		show_one_worker_pool(pool);
6232
6233	rcu_read_unlock();
6234}
6235
6236/**
6237 * show_freezable_workqueues - dump freezable workqueue state
6238 *
6239 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6240 * still busy.
6241 */
6242void show_freezable_workqueues(void)
6243{
6244	struct workqueue_struct *wq;
6245
6246	rcu_read_lock();
6247
6248	pr_info("Showing freezable workqueues that are still busy:\n");
6249
6250	list_for_each_entry_rcu(wq, &workqueues, list) {
6251		if (!(wq->flags & WQ_FREEZABLE))
6252			continue;
6253		show_one_workqueue(wq);
6254	}
6255
6256	rcu_read_unlock();
6257}
6258
6259/* used to show worker information through /proc/PID/{comm,stat,status} */
6260void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6261{
6262	int off;
6263
6264	/* always show the actual comm */
6265	off = strscpy(buf, task->comm, size);
6266	if (off < 0)
6267		return;
6268
6269	/* stabilize PF_WQ_WORKER and worker pool association */
6270	mutex_lock(&wq_pool_attach_mutex);
6271
6272	if (task->flags & PF_WQ_WORKER) {
6273		struct worker *worker = kthread_data(task);
6274		struct worker_pool *pool = worker->pool;
6275
6276		if (pool) {
6277			raw_spin_lock_irq(&pool->lock);
6278			/*
6279			 * ->desc tracks information (wq name or
6280			 * set_worker_desc()) for the latest execution.  If
6281			 * current, prepend '+', otherwise '-'.
6282			 */
6283			if (worker->desc[0] != '\0') {
6284				if (worker->current_work)
6285					scnprintf(buf + off, size - off, "+%s",
6286						  worker->desc);
6287				else
6288					scnprintf(buf + off, size - off, "-%s",
6289						  worker->desc);
6290			}
6291			raw_spin_unlock_irq(&pool->lock);
6292		}
6293	}
6294
6295	mutex_unlock(&wq_pool_attach_mutex);
6296}
6297
6298#ifdef CONFIG_SMP
6299
6300/*
6301 * CPU hotplug.
6302 *
6303 * There are two challenges in supporting CPU hotplug.  Firstly, there
6304 * are a lot of assumptions on strong associations among work, pwq and
6305 * pool which make migrating pending and scheduled works very
6306 * difficult to implement without impacting hot paths.  Secondly,
6307 * worker pools serve mix of short, long and very long running works making
6308 * blocked draining impractical.
6309 *
6310 * This is solved by allowing the pools to be disassociated from the CPU
6311 * running as an unbound one and allowing it to be reattached later if the
6312 * cpu comes back online.
6313 */
6314
6315static void unbind_workers(int cpu)
6316{
6317	struct worker_pool *pool;
6318	struct worker *worker;
6319
6320	for_each_cpu_worker_pool(pool, cpu) {
6321		mutex_lock(&wq_pool_attach_mutex);
6322		raw_spin_lock_irq(&pool->lock);
6323
6324		/*
6325		 * We've blocked all attach/detach operations. Make all workers
6326		 * unbound and set DISASSOCIATED.  Before this, all workers
6327		 * must be on the cpu.  After this, they may become diasporas.
6328		 * And the preemption disabled section in their sched callbacks
6329		 * are guaranteed to see WORKER_UNBOUND since the code here
6330		 * is on the same cpu.
6331		 */
6332		for_each_pool_worker(worker, pool)
6333			worker->flags |= WORKER_UNBOUND;
6334
6335		pool->flags |= POOL_DISASSOCIATED;
6336
6337		/*
6338		 * The handling of nr_running in sched callbacks are disabled
6339		 * now.  Zap nr_running.  After this, nr_running stays zero and
6340		 * need_more_worker() and keep_working() are always true as
6341		 * long as the worklist is not empty.  This pool now behaves as
6342		 * an unbound (in terms of concurrency management) pool which
6343		 * are served by workers tied to the pool.
6344		 */
6345		pool->nr_running = 0;
6346
6347		/*
6348		 * With concurrency management just turned off, a busy
6349		 * worker blocking could lead to lengthy stalls.  Kick off
6350		 * unbound chain execution of currently pending work items.
6351		 */
6352		kick_pool(pool);
6353
6354		raw_spin_unlock_irq(&pool->lock);
6355
6356		for_each_pool_worker(worker, pool)
6357			unbind_worker(worker);
6358
6359		mutex_unlock(&wq_pool_attach_mutex);
6360	}
6361}
6362
6363/**
6364 * rebind_workers - rebind all workers of a pool to the associated CPU
6365 * @pool: pool of interest
6366 *
6367 * @pool->cpu is coming online.  Rebind all workers to the CPU.
6368 */
6369static void rebind_workers(struct worker_pool *pool)
6370{
6371	struct worker *worker;
6372
6373	lockdep_assert_held(&wq_pool_attach_mutex);
6374
6375	/*
6376	 * Restore CPU affinity of all workers.  As all idle workers should
6377	 * be on the run-queue of the associated CPU before any local
6378	 * wake-ups for concurrency management happen, restore CPU affinity
6379	 * of all workers first and then clear UNBOUND.  As we're called
6380	 * from CPU_ONLINE, the following shouldn't fail.
6381	 */
6382	for_each_pool_worker(worker, pool) {
6383		kthread_set_per_cpu(worker->task, pool->cpu);
6384		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6385						  pool_allowed_cpus(pool)) < 0);
6386	}
6387
6388	raw_spin_lock_irq(&pool->lock);
6389
6390	pool->flags &= ~POOL_DISASSOCIATED;
6391
6392	for_each_pool_worker(worker, pool) {
6393		unsigned int worker_flags = worker->flags;
6394
6395		/*
6396		 * We want to clear UNBOUND but can't directly call
6397		 * worker_clr_flags() or adjust nr_running.  Atomically
6398		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6399		 * @worker will clear REBOUND using worker_clr_flags() when
6400		 * it initiates the next execution cycle thus restoring
6401		 * concurrency management.  Note that when or whether
6402		 * @worker clears REBOUND doesn't affect correctness.
6403		 *
6404		 * WRITE_ONCE() is necessary because @worker->flags may be
6405		 * tested without holding any lock in
6406		 * wq_worker_running().  Without it, NOT_RUNNING test may
6407		 * fail incorrectly leading to premature concurrency
6408		 * management operations.
6409		 */
6410		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6411		worker_flags |= WORKER_REBOUND;
6412		worker_flags &= ~WORKER_UNBOUND;
6413		WRITE_ONCE(worker->flags, worker_flags);
6414	}
6415
6416	raw_spin_unlock_irq(&pool->lock);
6417}
6418
6419/**
6420 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6421 * @pool: unbound pool of interest
6422 * @cpu: the CPU which is coming up
6423 *
6424 * An unbound pool may end up with a cpumask which doesn't have any online
6425 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6426 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6427 * online CPU before, cpus_allowed of all its workers should be restored.
6428 */
6429static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6430{
6431	static cpumask_t cpumask;
6432	struct worker *worker;
6433
6434	lockdep_assert_held(&wq_pool_attach_mutex);
6435
6436	/* is @cpu allowed for @pool? */
6437	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6438		return;
6439
6440	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6441
6442	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6443	for_each_pool_worker(worker, pool)
6444		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6445}
6446
6447int workqueue_prepare_cpu(unsigned int cpu)
6448{
6449	struct worker_pool *pool;
6450
6451	for_each_cpu_worker_pool(pool, cpu) {
6452		if (pool->nr_workers)
6453			continue;
6454		if (!create_worker(pool))
6455			return -ENOMEM;
6456	}
6457	return 0;
6458}
6459
6460int workqueue_online_cpu(unsigned int cpu)
6461{
6462	struct worker_pool *pool;
6463	struct workqueue_struct *wq;
6464	int pi;
6465
6466	mutex_lock(&wq_pool_mutex);
6467
6468	for_each_pool(pool, pi) {
6469		/* BH pools aren't affected by hotplug */
6470		if (pool->flags & POOL_BH)
6471			continue;
6472
6473		mutex_lock(&wq_pool_attach_mutex);
6474		if (pool->cpu == cpu)
6475			rebind_workers(pool);
6476		else if (pool->cpu < 0)
6477			restore_unbound_workers_cpumask(pool, cpu);
6478		mutex_unlock(&wq_pool_attach_mutex);
6479	}
6480
6481	/* update pod affinity of unbound workqueues */
6482	list_for_each_entry(wq, &workqueues, list) {
6483		struct workqueue_attrs *attrs = wq->unbound_attrs;
6484
6485		if (attrs) {
6486			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6487			int tcpu;
6488
6489			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6490				wq_update_pod(wq, tcpu, cpu, true);
6491
6492			mutex_lock(&wq->mutex);
6493			wq_update_node_max_active(wq, -1);
6494			mutex_unlock(&wq->mutex);
6495		}
6496	}
6497
6498	mutex_unlock(&wq_pool_mutex);
6499	return 0;
6500}
6501
6502int workqueue_offline_cpu(unsigned int cpu)
6503{
6504	struct workqueue_struct *wq;
6505
6506	/* unbinding per-cpu workers should happen on the local CPU */
6507	if (WARN_ON(cpu != smp_processor_id()))
6508		return -1;
6509
6510	unbind_workers(cpu);
6511
6512	/* update pod affinity of unbound workqueues */
6513	mutex_lock(&wq_pool_mutex);
6514	list_for_each_entry(wq, &workqueues, list) {
6515		struct workqueue_attrs *attrs = wq->unbound_attrs;
6516
6517		if (attrs) {
6518			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6519			int tcpu;
6520
6521			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6522				wq_update_pod(wq, tcpu, cpu, false);
6523
6524			mutex_lock(&wq->mutex);
6525			wq_update_node_max_active(wq, cpu);
6526			mutex_unlock(&wq->mutex);
6527		}
6528	}
6529	mutex_unlock(&wq_pool_mutex);
6530
6531	return 0;
6532}
6533
6534struct work_for_cpu {
6535	struct work_struct work;
6536	long (*fn)(void *);
6537	void *arg;
6538	long ret;
6539};
6540
6541static void work_for_cpu_fn(struct work_struct *work)
6542{
6543	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6544
6545	wfc->ret = wfc->fn(wfc->arg);
6546}
6547
6548/**
6549 * work_on_cpu_key - run a function in thread context on a particular cpu
6550 * @cpu: the cpu to run on
6551 * @fn: the function to run
6552 * @arg: the function arg
6553 * @key: The lock class key for lock debugging purposes
6554 *
6555 * It is up to the caller to ensure that the cpu doesn't go offline.
6556 * The caller must not hold any locks which would prevent @fn from completing.
6557 *
6558 * Return: The value @fn returns.
6559 */
6560long work_on_cpu_key(int cpu, long (*fn)(void *),
6561		     void *arg, struct lock_class_key *key)
6562{
6563	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6564
6565	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6566	schedule_work_on(cpu, &wfc.work);
6567	flush_work(&wfc.work);
6568	destroy_work_on_stack(&wfc.work);
6569	return wfc.ret;
6570}
6571EXPORT_SYMBOL_GPL(work_on_cpu_key);
6572
6573/**
6574 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6575 * @cpu: the cpu to run on
6576 * @fn:  the function to run
6577 * @arg: the function argument
6578 * @key: The lock class key for lock debugging purposes
6579 *
6580 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6581 * any locks which would prevent @fn from completing.
6582 *
6583 * Return: The value @fn returns.
6584 */
6585long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6586			  void *arg, struct lock_class_key *key)
6587{
6588	long ret = -ENODEV;
6589
6590	cpus_read_lock();
6591	if (cpu_online(cpu))
6592		ret = work_on_cpu_key(cpu, fn, arg, key);
6593	cpus_read_unlock();
6594	return ret;
6595}
6596EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6597#endif /* CONFIG_SMP */
6598
6599#ifdef CONFIG_FREEZER
6600
6601/**
6602 * freeze_workqueues_begin - begin freezing workqueues
6603 *
6604 * Start freezing workqueues.  After this function returns, all freezable
6605 * workqueues will queue new works to their inactive_works list instead of
6606 * pool->worklist.
6607 *
6608 * CONTEXT:
6609 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6610 */
6611void freeze_workqueues_begin(void)
6612{
6613	struct workqueue_struct *wq;
6614
6615	mutex_lock(&wq_pool_mutex);
6616
6617	WARN_ON_ONCE(workqueue_freezing);
6618	workqueue_freezing = true;
6619
6620	list_for_each_entry(wq, &workqueues, list) {
6621		mutex_lock(&wq->mutex);
6622		wq_adjust_max_active(wq);
6623		mutex_unlock(&wq->mutex);
6624	}
6625
6626	mutex_unlock(&wq_pool_mutex);
6627}
6628
6629/**
6630 * freeze_workqueues_busy - are freezable workqueues still busy?
6631 *
6632 * Check whether freezing is complete.  This function must be called
6633 * between freeze_workqueues_begin() and thaw_workqueues().
6634 *
6635 * CONTEXT:
6636 * Grabs and releases wq_pool_mutex.
6637 *
6638 * Return:
6639 * %true if some freezable workqueues are still busy.  %false if freezing
6640 * is complete.
6641 */
6642bool freeze_workqueues_busy(void)
6643{
6644	bool busy = false;
6645	struct workqueue_struct *wq;
6646	struct pool_workqueue *pwq;
6647
6648	mutex_lock(&wq_pool_mutex);
6649
6650	WARN_ON_ONCE(!workqueue_freezing);
6651
6652	list_for_each_entry(wq, &workqueues, list) {
6653		if (!(wq->flags & WQ_FREEZABLE))
6654			continue;
6655		/*
6656		 * nr_active is monotonically decreasing.  It's safe
6657		 * to peek without lock.
6658		 */
6659		rcu_read_lock();
6660		for_each_pwq(pwq, wq) {
6661			WARN_ON_ONCE(pwq->nr_active < 0);
6662			if (pwq->nr_active) {
6663				busy = true;
6664				rcu_read_unlock();
6665				goto out_unlock;
6666			}
6667		}
6668		rcu_read_unlock();
6669	}
6670out_unlock:
6671	mutex_unlock(&wq_pool_mutex);
6672	return busy;
6673}
6674
6675/**
6676 * thaw_workqueues - thaw workqueues
6677 *
6678 * Thaw workqueues.  Normal queueing is restored and all collected
6679 * frozen works are transferred to their respective pool worklists.
6680 *
6681 * CONTEXT:
6682 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6683 */
6684void thaw_workqueues(void)
6685{
6686	struct workqueue_struct *wq;
6687
6688	mutex_lock(&wq_pool_mutex);
6689
6690	if (!workqueue_freezing)
6691		goto out_unlock;
6692
6693	workqueue_freezing = false;
6694
6695	/* restore max_active and repopulate worklist */
6696	list_for_each_entry(wq, &workqueues, list) {
6697		mutex_lock(&wq->mutex);
6698		wq_adjust_max_active(wq);
6699		mutex_unlock(&wq->mutex);
6700	}
6701
6702out_unlock:
6703	mutex_unlock(&wq_pool_mutex);
6704}
6705#endif /* CONFIG_FREEZER */
6706
6707static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6708{
6709	LIST_HEAD(ctxs);
6710	int ret = 0;
6711	struct workqueue_struct *wq;
6712	struct apply_wqattrs_ctx *ctx, *n;
6713
6714	lockdep_assert_held(&wq_pool_mutex);
6715
6716	list_for_each_entry(wq, &workqueues, list) {
6717		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6718			continue;
6719
6720		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6721		if (IS_ERR(ctx)) {
6722			ret = PTR_ERR(ctx);
6723			break;
6724		}
6725
6726		list_add_tail(&ctx->list, &ctxs);
6727	}
6728
6729	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6730		if (!ret)
6731			apply_wqattrs_commit(ctx);
6732		apply_wqattrs_cleanup(ctx);
6733	}
6734
6735	if (!ret) {
6736		mutex_lock(&wq_pool_attach_mutex);
6737		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6738		mutex_unlock(&wq_pool_attach_mutex);
6739	}
6740	return ret;
6741}
6742
6743/**
6744 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6745 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6746 *
6747 * This function can be called from cpuset code to provide a set of isolated
6748 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6749 * either cpus_read_lock or cpus_write_lock.
6750 */
6751int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6752{
6753	cpumask_var_t cpumask;
6754	int ret = 0;
6755
6756	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6757		return -ENOMEM;
6758
6759	lockdep_assert_cpus_held();
6760	mutex_lock(&wq_pool_mutex);
6761
6762	/* Save the current isolated cpumask & export it via sysfs */
6763	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6764
6765	/*
6766	 * If the operation fails, it will fall back to
6767	 * wq_requested_unbound_cpumask which is initially set to
6768	 * (HK_TYPE_WQ ��� HK_TYPE_DOMAIN) house keeping mask and rewritten
6769	 * by any subsequent write to workqueue/cpumask sysfs file.
6770	 */
6771	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6772		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6773	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6774		ret = workqueue_apply_unbound_cpumask(cpumask);
6775
6776	mutex_unlock(&wq_pool_mutex);
6777	free_cpumask_var(cpumask);
6778	return ret;
6779}
6780
6781static int parse_affn_scope(const char *val)
6782{
6783	int i;
6784
6785	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6786		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6787			return i;
6788	}
6789	return -EINVAL;
6790}
6791
6792static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6793{
6794	struct workqueue_struct *wq;
6795	int affn, cpu;
6796
6797	affn = parse_affn_scope(val);
6798	if (affn < 0)
6799		return affn;
6800	if (affn == WQ_AFFN_DFL)
6801		return -EINVAL;
6802
6803	cpus_read_lock();
6804	mutex_lock(&wq_pool_mutex);
6805
6806	wq_affn_dfl = affn;
6807
6808	list_for_each_entry(wq, &workqueues, list) {
6809		for_each_online_cpu(cpu) {
6810			wq_update_pod(wq, cpu, cpu, true);
6811		}
6812	}
6813
6814	mutex_unlock(&wq_pool_mutex);
6815	cpus_read_unlock();
6816
6817	return 0;
6818}
6819
6820static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6821{
6822	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6823}
6824
6825static const struct kernel_param_ops wq_affn_dfl_ops = {
6826	.set	= wq_affn_dfl_set,
6827	.get	= wq_affn_dfl_get,
6828};
6829
6830module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6831
6832#ifdef CONFIG_SYSFS
6833/*
6834 * Workqueues with WQ_SYSFS flag set is visible to userland via
6835 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6836 * following attributes.
6837 *
6838 *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6839 *  max_active		RW int	: maximum number of in-flight work items
6840 *
6841 * Unbound workqueues have the following extra attributes.
6842 *
6843 *  nice		RW int	: nice value of the workers
6844 *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6845 *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6846 *  affinity_strict	RW bool : worker CPU affinity is strict
6847 */
6848struct wq_device {
6849	struct workqueue_struct		*wq;
6850	struct device			dev;
6851};
6852
6853static struct workqueue_struct *dev_to_wq(struct device *dev)
6854{
6855	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6856
6857	return wq_dev->wq;
6858}
6859
6860static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6861			    char *buf)
6862{
6863	struct workqueue_struct *wq = dev_to_wq(dev);
6864
6865	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6866}
6867static DEVICE_ATTR_RO(per_cpu);
6868
6869static ssize_t max_active_show(struct device *dev,
6870			       struct device_attribute *attr, char *buf)
6871{
6872	struct workqueue_struct *wq = dev_to_wq(dev);
6873
6874	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6875}
6876
6877static ssize_t max_active_store(struct device *dev,
6878				struct device_attribute *attr, const char *buf,
6879				size_t count)
6880{
6881	struct workqueue_struct *wq = dev_to_wq(dev);
6882	int val;
6883
6884	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6885		return -EINVAL;
6886
6887	workqueue_set_max_active(wq, val);
6888	return count;
6889}
6890static DEVICE_ATTR_RW(max_active);
6891
6892static struct attribute *wq_sysfs_attrs[] = {
6893	&dev_attr_per_cpu.attr,
6894	&dev_attr_max_active.attr,
6895	NULL,
6896};
6897ATTRIBUTE_GROUPS(wq_sysfs);
6898
6899static void apply_wqattrs_lock(void)
6900{
6901	/* CPUs should stay stable across pwq creations and installations */
6902	cpus_read_lock();
6903	mutex_lock(&wq_pool_mutex);
6904}
6905
6906static void apply_wqattrs_unlock(void)
6907{
6908	mutex_unlock(&wq_pool_mutex);
6909	cpus_read_unlock();
6910}
6911
6912static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6913			    char *buf)
6914{
6915	struct workqueue_struct *wq = dev_to_wq(dev);
6916	int written;
6917
6918	mutex_lock(&wq->mutex);
6919	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6920	mutex_unlock(&wq->mutex);
6921
6922	return written;
6923}
6924
6925/* prepare workqueue_attrs for sysfs store operations */
6926static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6927{
6928	struct workqueue_attrs *attrs;
6929
6930	lockdep_assert_held(&wq_pool_mutex);
6931
6932	attrs = alloc_workqueue_attrs();
6933	if (!attrs)
6934		return NULL;
6935
6936	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6937	return attrs;
6938}
6939
6940static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6941			     const char *buf, size_t count)
6942{
6943	struct workqueue_struct *wq = dev_to_wq(dev);
6944	struct workqueue_attrs *attrs;
6945	int ret = -ENOMEM;
6946
6947	apply_wqattrs_lock();
6948
6949	attrs = wq_sysfs_prep_attrs(wq);
6950	if (!attrs)
6951		goto out_unlock;
6952
6953	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6954	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6955		ret = apply_workqueue_attrs_locked(wq, attrs);
6956	else
6957		ret = -EINVAL;
6958
6959out_unlock:
6960	apply_wqattrs_unlock();
6961	free_workqueue_attrs(attrs);
6962	return ret ?: count;
6963}
6964
6965static ssize_t wq_cpumask_show(struct device *dev,
6966			       struct device_attribute *attr, char *buf)
6967{
6968	struct workqueue_struct *wq = dev_to_wq(dev);
6969	int written;
6970
6971	mutex_lock(&wq->mutex);
6972	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6973			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6974	mutex_unlock(&wq->mutex);
6975	return written;
6976}
6977
6978static ssize_t wq_cpumask_store(struct device *dev,
6979				struct device_attribute *attr,
6980				const char *buf, size_t count)
6981{
6982	struct workqueue_struct *wq = dev_to_wq(dev);
6983	struct workqueue_attrs *attrs;
6984	int ret = -ENOMEM;
6985
6986	apply_wqattrs_lock();
6987
6988	attrs = wq_sysfs_prep_attrs(wq);
6989	if (!attrs)
6990		goto out_unlock;
6991
6992	ret = cpumask_parse(buf, attrs->cpumask);
6993	if (!ret)
6994		ret = apply_workqueue_attrs_locked(wq, attrs);
6995
6996out_unlock:
6997	apply_wqattrs_unlock();
6998	free_workqueue_attrs(attrs);
6999	return ret ?: count;
7000}
7001
7002static ssize_t wq_affn_scope_show(struct device *dev,
7003				  struct device_attribute *attr, char *buf)
7004{
7005	struct workqueue_struct *wq = dev_to_wq(dev);
7006	int written;
7007
7008	mutex_lock(&wq->mutex);
7009	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7010		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7011				    wq_affn_names[WQ_AFFN_DFL],
7012				    wq_affn_names[wq_affn_dfl]);
7013	else
7014		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7015				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7016	mutex_unlock(&wq->mutex);
7017
7018	return written;
7019}
7020
7021static ssize_t wq_affn_scope_store(struct device *dev,
7022				   struct device_attribute *attr,
7023				   const char *buf, size_t count)
7024{
7025	struct workqueue_struct *wq = dev_to_wq(dev);
7026	struct workqueue_attrs *attrs;
7027	int affn, ret = -ENOMEM;
7028
7029	affn = parse_affn_scope(buf);
7030	if (affn < 0)
7031		return affn;
7032
7033	apply_wqattrs_lock();
7034	attrs = wq_sysfs_prep_attrs(wq);
7035	if (attrs) {
7036		attrs->affn_scope = affn;
7037		ret = apply_workqueue_attrs_locked(wq, attrs);
7038	}
7039	apply_wqattrs_unlock();
7040	free_workqueue_attrs(attrs);
7041	return ret ?: count;
7042}
7043
7044static ssize_t wq_affinity_strict_show(struct device *dev,
7045				       struct device_attribute *attr, char *buf)
7046{
7047	struct workqueue_struct *wq = dev_to_wq(dev);
7048
7049	return scnprintf(buf, PAGE_SIZE, "%d\n",
7050			 wq->unbound_attrs->affn_strict);
7051}
7052
7053static ssize_t wq_affinity_strict_store(struct device *dev,
7054					struct device_attribute *attr,
7055					const char *buf, size_t count)
7056{
7057	struct workqueue_struct *wq = dev_to_wq(dev);
7058	struct workqueue_attrs *attrs;
7059	int v, ret = -ENOMEM;
7060
7061	if (sscanf(buf, "%d", &v) != 1)
7062		return -EINVAL;
7063
7064	apply_wqattrs_lock();
7065	attrs = wq_sysfs_prep_attrs(wq);
7066	if (attrs) {
7067		attrs->affn_strict = (bool)v;
7068		ret = apply_workqueue_attrs_locked(wq, attrs);
7069	}
7070	apply_wqattrs_unlock();
7071	free_workqueue_attrs(attrs);
7072	return ret ?: count;
7073}
7074
7075static struct device_attribute wq_sysfs_unbound_attrs[] = {
7076	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7077	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7078	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7079	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7080	__ATTR_NULL,
7081};
7082
7083static const struct bus_type wq_subsys = {
7084	.name				= "workqueue",
7085	.dev_groups			= wq_sysfs_groups,
7086};
7087
7088/**
7089 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7090 *  @cpumask: the cpumask to set
7091 *
7092 *  The low-level workqueues cpumask is a global cpumask that limits
7093 *  the affinity of all unbound workqueues.  This function check the @cpumask
7094 *  and apply it to all unbound workqueues and updates all pwqs of them.
7095 *
7096 *  Return:	0	- Success
7097 *		-EINVAL	- Invalid @cpumask
7098 *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7099 */
7100static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7101{
7102	int ret = -EINVAL;
7103
7104	/*
7105	 * Not excluding isolated cpus on purpose.
7106	 * If the user wishes to include them, we allow that.
7107	 */
7108	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7109	if (!cpumask_empty(cpumask)) {
7110		apply_wqattrs_lock();
7111		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7112		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7113			ret = 0;
7114			goto out_unlock;
7115		}
7116
7117		ret = workqueue_apply_unbound_cpumask(cpumask);
7118
7119out_unlock:
7120		apply_wqattrs_unlock();
7121	}
7122
7123	return ret;
7124}
7125
7126static ssize_t __wq_cpumask_show(struct device *dev,
7127		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7128{
7129	int written;
7130
7131	mutex_lock(&wq_pool_mutex);
7132	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7133	mutex_unlock(&wq_pool_mutex);
7134
7135	return written;
7136}
7137
7138static ssize_t wq_unbound_cpumask_show(struct device *dev,
7139		struct device_attribute *attr, char *buf)
7140{
7141	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7142}
7143
7144static ssize_t wq_requested_cpumask_show(struct device *dev,
7145		struct device_attribute *attr, char *buf)
7146{
7147	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7148}
7149
7150static ssize_t wq_isolated_cpumask_show(struct device *dev,
7151		struct device_attribute *attr, char *buf)
7152{
7153	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7154}
7155
7156static ssize_t wq_unbound_cpumask_store(struct device *dev,
7157		struct device_attribute *attr, const char *buf, size_t count)
7158{
7159	cpumask_var_t cpumask;
7160	int ret;
7161
7162	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7163		return -ENOMEM;
7164
7165	ret = cpumask_parse(buf, cpumask);
7166	if (!ret)
7167		ret = workqueue_set_unbound_cpumask(cpumask);
7168
7169	free_cpumask_var(cpumask);
7170	return ret ? ret : count;
7171}
7172
7173static struct device_attribute wq_sysfs_cpumask_attrs[] = {
7174	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
7175	       wq_unbound_cpumask_store),
7176	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
7177	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
7178	__ATTR_NULL,
7179};
7180
7181static int __init wq_sysfs_init(void)
7182{
7183	struct device *dev_root;
7184	int err;
7185
7186	err = subsys_virtual_register(&wq_subsys, NULL);
7187	if (err)
7188		return err;
7189
7190	dev_root = bus_get_dev_root(&wq_subsys);
7191	if (dev_root) {
7192		struct device_attribute *attr;
7193
7194		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
7195			err = device_create_file(dev_root, attr);
7196			if (err)
7197				break;
7198		}
7199		put_device(dev_root);
7200	}
7201	return err;
7202}
7203core_initcall(wq_sysfs_init);
7204
7205static void wq_device_release(struct device *dev)
7206{
7207	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7208
7209	kfree(wq_dev);
7210}
7211
7212/**
7213 * workqueue_sysfs_register - make a workqueue visible in sysfs
7214 * @wq: the workqueue to register
7215 *
7216 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7217 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7218 * which is the preferred method.
7219 *
7220 * Workqueue user should use this function directly iff it wants to apply
7221 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7222 * apply_workqueue_attrs() may race against userland updating the
7223 * attributes.
7224 *
7225 * Return: 0 on success, -errno on failure.
7226 */
7227int workqueue_sysfs_register(struct workqueue_struct *wq)
7228{
7229	struct wq_device *wq_dev;
7230	int ret;
7231
7232	/*
7233	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7234	 * ordered workqueues.
7235	 */
7236	if (WARN_ON(wq->flags & __WQ_ORDERED))
7237		return -EINVAL;
7238
7239	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7240	if (!wq_dev)
7241		return -ENOMEM;
7242
7243	wq_dev->wq = wq;
7244	wq_dev->dev.bus = &wq_subsys;
7245	wq_dev->dev.release = wq_device_release;
7246	dev_set_name(&wq_dev->dev, "%s", wq->name);
7247
7248	/*
7249	 * unbound_attrs are created separately.  Suppress uevent until
7250	 * everything is ready.
7251	 */
7252	dev_set_uevent_suppress(&wq_dev->dev, true);
7253
7254	ret = device_register(&wq_dev->dev);
7255	if (ret) {
7256		put_device(&wq_dev->dev);
7257		wq->wq_dev = NULL;
7258		return ret;
7259	}
7260
7261	if (wq->flags & WQ_UNBOUND) {
7262		struct device_attribute *attr;
7263
7264		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7265			ret = device_create_file(&wq_dev->dev, attr);
7266			if (ret) {
7267				device_unregister(&wq_dev->dev);
7268				wq->wq_dev = NULL;
7269				return ret;
7270			}
7271		}
7272	}
7273
7274	dev_set_uevent_suppress(&wq_dev->dev, false);
7275	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7276	return 0;
7277}
7278
7279/**
7280 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7281 * @wq: the workqueue to unregister
7282 *
7283 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7284 */
7285static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7286{
7287	struct wq_device *wq_dev = wq->wq_dev;
7288
7289	if (!wq->wq_dev)
7290		return;
7291
7292	wq->wq_dev = NULL;
7293	device_unregister(&wq_dev->dev);
7294}
7295#else	/* CONFIG_SYSFS */
7296static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7297#endif	/* CONFIG_SYSFS */
7298
7299/*
7300 * Workqueue watchdog.
7301 *
7302 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7303 * flush dependency, a concurrency managed work item which stays RUNNING
7304 * indefinitely.  Workqueue stalls can be very difficult to debug as the
7305 * usual warning mechanisms don't trigger and internal workqueue state is
7306 * largely opaque.
7307 *
7308 * Workqueue watchdog monitors all worker pools periodically and dumps
7309 * state if some pools failed to make forward progress for a while where
7310 * forward progress is defined as the first item on ->worklist changing.
7311 *
7312 * This mechanism is controlled through the kernel parameter
7313 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7314 * corresponding sysfs parameter file.
7315 */
7316#ifdef CONFIG_WQ_WATCHDOG
7317
7318static unsigned long wq_watchdog_thresh = 30;
7319static struct timer_list wq_watchdog_timer;
7320
7321static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7322static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7323
7324/*
7325 * Show workers that might prevent the processing of pending work items.
7326 * The only candidates are CPU-bound workers in the running state.
7327 * Pending work items should be handled by another idle worker
7328 * in all other situations.
7329 */
7330static void show_cpu_pool_hog(struct worker_pool *pool)
7331{
7332	struct worker *worker;
7333	unsigned long irq_flags;
7334	int bkt;
7335
7336	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7337
7338	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7339		if (task_is_running(worker->task)) {
7340			/*
7341			 * Defer printing to avoid deadlocks in console
7342			 * drivers that queue work while holding locks
7343			 * also taken in their write paths.
7344			 */
7345			printk_deferred_enter();
7346
7347			pr_info("pool %d:\n", pool->id);
7348			sched_show_task(worker->task);
7349
7350			printk_deferred_exit();
7351		}
7352	}
7353
7354	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7355}
7356
7357static void show_cpu_pools_hogs(void)
7358{
7359	struct worker_pool *pool;
7360	int pi;
7361
7362	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7363
7364	rcu_read_lock();
7365
7366	for_each_pool(pool, pi) {
7367		if (pool->cpu_stall)
7368			show_cpu_pool_hog(pool);
7369
7370	}
7371
7372	rcu_read_unlock();
7373}
7374
7375static void wq_watchdog_reset_touched(void)
7376{
7377	int cpu;
7378
7379	wq_watchdog_touched = jiffies;
7380	for_each_possible_cpu(cpu)
7381		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7382}
7383
7384static void wq_watchdog_timer_fn(struct timer_list *unused)
7385{
7386	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7387	bool lockup_detected = false;
7388	bool cpu_pool_stall = false;
7389	unsigned long now = jiffies;
7390	struct worker_pool *pool;
7391	int pi;
7392
7393	if (!thresh)
7394		return;
7395
7396	rcu_read_lock();
7397
7398	for_each_pool(pool, pi) {
7399		unsigned long pool_ts, touched, ts;
7400
7401		pool->cpu_stall = false;
7402		if (list_empty(&pool->worklist))
7403			continue;
7404
7405		/*
7406		 * If a virtual machine is stopped by the host it can look to
7407		 * the watchdog like a stall.
7408		 */
7409		kvm_check_and_clear_guest_paused();
7410
7411		/* get the latest of pool and touched timestamps */
7412		if (pool->cpu >= 0)
7413			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7414		else
7415			touched = READ_ONCE(wq_watchdog_touched);
7416		pool_ts = READ_ONCE(pool->watchdog_ts);
7417
7418		if (time_after(pool_ts, touched))
7419			ts = pool_ts;
7420		else
7421			ts = touched;
7422
7423		/* did we stall? */
7424		if (time_after(now, ts + thresh)) {
7425			lockup_detected = true;
7426			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7427				pool->cpu_stall = true;
7428				cpu_pool_stall = true;
7429			}
7430			pr_emerg("BUG: workqueue lockup - pool");
7431			pr_cont_pool_info(pool);
7432			pr_cont(" stuck for %us!\n",
7433				jiffies_to_msecs(now - pool_ts) / 1000);
7434		}
7435
7436
7437	}
7438
7439	rcu_read_unlock();
7440
7441	if (lockup_detected)
7442		show_all_workqueues();
7443
7444	if (cpu_pool_stall)
7445		show_cpu_pools_hogs();
7446
7447	wq_watchdog_reset_touched();
7448	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7449}
7450
7451notrace void wq_watchdog_touch(int cpu)
7452{
7453	if (cpu >= 0)
7454		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7455
7456	wq_watchdog_touched = jiffies;
7457}
7458
7459static void wq_watchdog_set_thresh(unsigned long thresh)
7460{
7461	wq_watchdog_thresh = 0;
7462	del_timer_sync(&wq_watchdog_timer);
7463
7464	if (thresh) {
7465		wq_watchdog_thresh = thresh;
7466		wq_watchdog_reset_touched();
7467		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7468	}
7469}
7470
7471static int wq_watchdog_param_set_thresh(const char *val,
7472					const struct kernel_param *kp)
7473{
7474	unsigned long thresh;
7475	int ret;
7476
7477	ret = kstrtoul(val, 0, &thresh);
7478	if (ret)
7479		return ret;
7480
7481	if (system_wq)
7482		wq_watchdog_set_thresh(thresh);
7483	else
7484		wq_watchdog_thresh = thresh;
7485
7486	return 0;
7487}
7488
7489static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7490	.set	= wq_watchdog_param_set_thresh,
7491	.get	= param_get_ulong,
7492};
7493
7494module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7495		0644);
7496
7497static void wq_watchdog_init(void)
7498{
7499	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7500	wq_watchdog_set_thresh(wq_watchdog_thresh);
7501}
7502
7503#else	/* CONFIG_WQ_WATCHDOG */
7504
7505static inline void wq_watchdog_init(void) { }
7506
7507#endif	/* CONFIG_WQ_WATCHDOG */
7508
7509static void bh_pool_kick_normal(struct irq_work *irq_work)
7510{
7511	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7512}
7513
7514static void bh_pool_kick_highpri(struct irq_work *irq_work)
7515{
7516	raise_softirq_irqoff(HI_SOFTIRQ);
7517}
7518
7519static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7520{
7521	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7522		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7523			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7524		return;
7525	}
7526
7527	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7528}
7529
7530static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7531{
7532	BUG_ON(init_worker_pool(pool));
7533	pool->cpu = cpu;
7534	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7535	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7536	pool->attrs->nice = nice;
7537	pool->attrs->affn_strict = true;
7538	pool->node = cpu_to_node(cpu);
7539
7540	/* alloc pool ID */
7541	mutex_lock(&wq_pool_mutex);
7542	BUG_ON(worker_pool_assign_id(pool));
7543	mutex_unlock(&wq_pool_mutex);
7544}
7545
7546/**
7547 * workqueue_init_early - early init for workqueue subsystem
7548 *
7549 * This is the first step of three-staged workqueue subsystem initialization and
7550 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7551 * up. It sets up all the data structures and system workqueues and allows early
7552 * boot code to create workqueues and queue/cancel work items. Actual work item
7553 * execution starts only after kthreads can be created and scheduled right
7554 * before early initcalls.
7555 */
7556void __init workqueue_init_early(void)
7557{
7558	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7559	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7560	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7561						       bh_pool_kick_highpri };
7562	int i, cpu;
7563
7564	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7565
7566	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7567	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7568	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7569
7570	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7571	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7572	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7573	if (!cpumask_empty(&wq_cmdline_cpumask))
7574		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7575
7576	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7577
7578	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7579
7580	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7581	BUG_ON(!wq_update_pod_attrs_buf);
7582
7583	/*
7584	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7585	 * This allows workqueue items to be moved to HK CPUs.
7586	 */
7587	if (housekeeping_enabled(HK_TYPE_TICK))
7588		wq_power_efficient = true;
7589
7590	/* initialize WQ_AFFN_SYSTEM pods */
7591	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7592	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7593	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7594	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7595
7596	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7597
7598	pt->nr_pods = 1;
7599	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7600	pt->pod_node[0] = NUMA_NO_NODE;
7601	pt->cpu_pod[0] = 0;
7602
7603	/* initialize BH and CPU pools */
7604	for_each_possible_cpu(cpu) {
7605		struct worker_pool *pool;
7606
7607		i = 0;
7608		for_each_bh_worker_pool(pool, cpu) {
7609			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7610			pool->flags |= POOL_BH;
7611			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7612			i++;
7613		}
7614
7615		i = 0;
7616		for_each_cpu_worker_pool(pool, cpu)
7617			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7618	}
7619
7620	/* create default unbound and ordered wq attrs */
7621	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7622		struct workqueue_attrs *attrs;
7623
7624		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7625		attrs->nice = std_nice[i];
7626		unbound_std_wq_attrs[i] = attrs;
7627
7628		/*
7629		 * An ordered wq should have only one pwq as ordering is
7630		 * guaranteed by max_active which is enforced by pwqs.
7631		 */
7632		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7633		attrs->nice = std_nice[i];
7634		attrs->ordered = true;
7635		ordered_wq_attrs[i] = attrs;
7636	}
7637
7638	system_wq = alloc_workqueue("events", 0, 0);
7639	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7640	system_long_wq = alloc_workqueue("events_long", 0, 0);
7641	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7642					    WQ_MAX_ACTIVE);
7643	system_freezable_wq = alloc_workqueue("events_freezable",
7644					      WQ_FREEZABLE, 0);
7645	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7646					      WQ_POWER_EFFICIENT, 0);
7647	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7648					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7649					      0);
7650	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7651	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7652					       WQ_BH | WQ_HIGHPRI, 0);
7653	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7654	       !system_unbound_wq || !system_freezable_wq ||
7655	       !system_power_efficient_wq ||
7656	       !system_freezable_power_efficient_wq ||
7657	       !system_bh_wq || !system_bh_highpri_wq);
7658}
7659
7660static void __init wq_cpu_intensive_thresh_init(void)
7661{
7662	unsigned long thresh;
7663	unsigned long bogo;
7664
7665	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7666	BUG_ON(IS_ERR(pwq_release_worker));
7667
7668	/* if the user set it to a specific value, keep it */
7669	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7670		return;
7671
7672	/*
7673	 * The default of 10ms is derived from the fact that most modern (as of
7674	 * 2023) processors can do a lot in 10ms and that it's just below what
7675	 * most consider human-perceivable. However, the kernel also runs on a
7676	 * lot slower CPUs including microcontrollers where the threshold is way
7677	 * too low.
7678	 *
7679	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7680	 * This is by no means accurate but it doesn't have to be. The mechanism
7681	 * is still useful even when the threshold is fully scaled up. Also, as
7682	 * the reports would usually be applicable to everyone, some machines
7683	 * operating on longer thresholds won't significantly diminish their
7684	 * usefulness.
7685	 */
7686	thresh = 10 * USEC_PER_MSEC;
7687
7688	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7689	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7690	if (bogo < 4000)
7691		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7692
7693	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7694		 loops_per_jiffy, bogo, thresh);
7695
7696	wq_cpu_intensive_thresh_us = thresh;
7697}
7698
7699/**
7700 * workqueue_init - bring workqueue subsystem fully online
7701 *
7702 * This is the second step of three-staged workqueue subsystem initialization
7703 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7704 * been created and work items queued on them, but there are no kworkers
7705 * executing the work items yet. Populate the worker pools with the initial
7706 * workers and enable future kworker creations.
7707 */
7708void __init workqueue_init(void)
7709{
7710	struct workqueue_struct *wq;
7711	struct worker_pool *pool;
7712	int cpu, bkt;
7713
7714	wq_cpu_intensive_thresh_init();
7715
7716	mutex_lock(&wq_pool_mutex);
7717
7718	/*
7719	 * Per-cpu pools created earlier could be missing node hint. Fix them
7720	 * up. Also, create a rescuer for workqueues that requested it.
7721	 */
7722	for_each_possible_cpu(cpu) {
7723		for_each_bh_worker_pool(pool, cpu)
7724			pool->node = cpu_to_node(cpu);
7725		for_each_cpu_worker_pool(pool, cpu)
7726			pool->node = cpu_to_node(cpu);
7727	}
7728
7729	list_for_each_entry(wq, &workqueues, list) {
7730		WARN(init_rescuer(wq),
7731		     "workqueue: failed to create early rescuer for %s",
7732		     wq->name);
7733	}
7734
7735	mutex_unlock(&wq_pool_mutex);
7736
7737	/*
7738	 * Create the initial workers. A BH pool has one pseudo worker that
7739	 * represents the shared BH execution context and thus doesn't get
7740	 * affected by hotplug events. Create the BH pseudo workers for all
7741	 * possible CPUs here.
7742	 */
7743	for_each_possible_cpu(cpu)
7744		for_each_bh_worker_pool(pool, cpu)
7745			BUG_ON(!create_worker(pool));
7746
7747	for_each_online_cpu(cpu) {
7748		for_each_cpu_worker_pool(pool, cpu) {
7749			pool->flags &= ~POOL_DISASSOCIATED;
7750			BUG_ON(!create_worker(pool));
7751		}
7752	}
7753
7754	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7755		BUG_ON(!create_worker(pool));
7756
7757	wq_online = true;
7758	wq_watchdog_init();
7759}
7760
7761/*
7762 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7763 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7764 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7765 */
7766static void __init init_pod_type(struct wq_pod_type *pt,
7767				 bool (*cpus_share_pod)(int, int))
7768{
7769	int cur, pre, cpu, pod;
7770
7771	pt->nr_pods = 0;
7772
7773	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7774	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7775	BUG_ON(!pt->cpu_pod);
7776
7777	for_each_possible_cpu(cur) {
7778		for_each_possible_cpu(pre) {
7779			if (pre >= cur) {
7780				pt->cpu_pod[cur] = pt->nr_pods++;
7781				break;
7782			}
7783			if (cpus_share_pod(cur, pre)) {
7784				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7785				break;
7786			}
7787		}
7788	}
7789
7790	/* init the rest to match @pt->cpu_pod[] */
7791	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7792	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7793	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7794
7795	for (pod = 0; pod < pt->nr_pods; pod++)
7796		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7797
7798	for_each_possible_cpu(cpu) {
7799		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7800		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7801	}
7802}
7803
7804static bool __init cpus_dont_share(int cpu0, int cpu1)
7805{
7806	return false;
7807}
7808
7809static bool __init cpus_share_smt(int cpu0, int cpu1)
7810{
7811#ifdef CONFIG_SCHED_SMT
7812	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7813#else
7814	return false;
7815#endif
7816}
7817
7818static bool __init cpus_share_numa(int cpu0, int cpu1)
7819{
7820	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7821}
7822
7823/**
7824 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7825 *
7826 * This is the third step of three-staged workqueue subsystem initialization and
7827 * invoked after SMP and topology information are fully initialized. It
7828 * initializes the unbound CPU pods accordingly.
7829 */
7830void __init workqueue_init_topology(void)
7831{
7832	struct workqueue_struct *wq;
7833	int cpu;
7834
7835	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7836	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7837	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7838	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7839
7840	wq_topo_initialized = true;
7841
7842	mutex_lock(&wq_pool_mutex);
7843
7844	/*
7845	 * Workqueues allocated earlier would have all CPUs sharing the default
7846	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7847	 * combinations to apply per-pod sharing.
7848	 */
7849	list_for_each_entry(wq, &workqueues, list) {
7850		for_each_online_cpu(cpu)
7851			wq_update_pod(wq, cpu, cpu, true);
7852		if (wq->flags & WQ_UNBOUND) {
7853			mutex_lock(&wq->mutex);
7854			wq_update_node_max_active(wq, -1);
7855			mutex_unlock(&wq->mutex);
7856		}
7857	}
7858
7859	mutex_unlock(&wq_pool_mutex);
7860}
7861
7862void __warn_flushing_systemwide_wq(void)
7863{
7864	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7865	dump_stack();
7866}
7867EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7868
7869static int __init workqueue_unbound_cpus_setup(char *str)
7870{
7871	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7872		cpumask_clear(&wq_cmdline_cpumask);
7873		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7874	}
7875
7876	return 1;
7877}
7878__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7879