1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2021, Microsoft Corporation.
4 *
5 * Authors:
6 *   Beau Belgrave <beaub@linux.microsoft.com>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/cdev.h>
11#include <linux/hashtable.h>
12#include <linux/list.h>
13#include <linux/io.h>
14#include <linux/uio.h>
15#include <linux/ioctl.h>
16#include <linux/jhash.h>
17#include <linux/refcount.h>
18#include <linux/trace_events.h>
19#include <linux/tracefs.h>
20#include <linux/types.h>
21#include <linux/uaccess.h>
22#include <linux/highmem.h>
23#include <linux/init.h>
24#include <linux/user_events.h>
25#include "trace_dynevent.h"
26#include "trace_output.h"
27#include "trace.h"
28
29#define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30
31#define FIELD_DEPTH_TYPE 0
32#define FIELD_DEPTH_NAME 1
33#define FIELD_DEPTH_SIZE 2
34
35/* Limit how long of an event name plus args within the subsystem. */
36#define MAX_EVENT_DESC 512
37#define EVENT_NAME(user_event) ((user_event)->reg_name)
38#define EVENT_TP_NAME(user_event) ((user_event)->tracepoint.name)
39#define MAX_FIELD_ARRAY_SIZE 1024
40
41/*
42 * Internal bits (kernel side only) to keep track of connected probes:
43 * These are used when status is requested in text form about an event. These
44 * bits are compared against an internal byte on the event to determine which
45 * probes to print out to the user.
46 *
47 * These do not reflect the mapped bytes between the user and kernel space.
48 */
49#define EVENT_STATUS_FTRACE BIT(0)
50#define EVENT_STATUS_PERF BIT(1)
51#define EVENT_STATUS_OTHER BIT(7)
52
53/*
54 * Stores the system name, tables, and locks for a group of events. This
55 * allows isolation for events by various means.
56 */
57struct user_event_group {
58	char			*system_name;
59	char			*system_multi_name;
60	struct hlist_node	node;
61	struct mutex		reg_mutex;
62	DECLARE_HASHTABLE(register_table, 8);
63	/* ID that moves forward within the group for multi-event names */
64	u64			multi_id;
65};
66
67/* Group for init_user_ns mapping, top-most group */
68static struct user_event_group *init_group;
69
70/* Max allowed events for the whole system */
71static unsigned int max_user_events = 32768;
72
73/* Current number of events on the whole system */
74static unsigned int current_user_events;
75
76/*
77 * Stores per-event properties, as users register events
78 * within a file a user_event might be created if it does not
79 * already exist. These are globally used and their lifetime
80 * is tied to the refcnt member. These cannot go away until the
81 * refcnt reaches one.
82 */
83struct user_event {
84	struct user_event_group		*group;
85	char				*reg_name;
86	struct tracepoint		tracepoint;
87	struct trace_event_call		call;
88	struct trace_event_class	class;
89	struct dyn_event		devent;
90	struct hlist_node		node;
91	struct list_head		fields;
92	struct list_head		validators;
93	struct work_struct		put_work;
94	refcount_t			refcnt;
95	int				min_size;
96	int				reg_flags;
97	char				status;
98};
99
100/*
101 * Stores per-mm/event properties that enable an address to be
102 * updated properly for each task. As tasks are forked, we use
103 * these to track enablement sites that are tied to an event.
104 */
105struct user_event_enabler {
106	struct list_head	mm_enablers_link;
107	struct user_event	*event;
108	unsigned long		addr;
109
110	/* Track enable bit, flags, etc. Aligned for bitops. */
111	unsigned long		values;
112};
113
114/* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
115#define ENABLE_VAL_BIT_MASK 0x3F
116
117/* Bit 6 is for faulting status of enablement */
118#define ENABLE_VAL_FAULTING_BIT 6
119
120/* Bit 7 is for freeing status of enablement */
121#define ENABLE_VAL_FREEING_BIT 7
122
123/* Bit 8 is for marking 32-bit on 64-bit */
124#define ENABLE_VAL_32_ON_64_BIT 8
125
126#define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
127
128/* Only duplicate the bit and compat values */
129#define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
130
131#define ENABLE_BITOPS(e) (&(e)->values)
132
133#define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
134
135#define EVENT_MULTI_FORMAT(f) ((f) & USER_EVENT_REG_MULTI_FORMAT)
136
137/* Used for asynchronous faulting in of pages */
138struct user_event_enabler_fault {
139	struct work_struct		work;
140	struct user_event_mm		*mm;
141	struct user_event_enabler	*enabler;
142	int				attempt;
143};
144
145static struct kmem_cache *fault_cache;
146
147/* Global list of memory descriptors using user_events */
148static LIST_HEAD(user_event_mms);
149static DEFINE_SPINLOCK(user_event_mms_lock);
150
151/*
152 * Stores per-file events references, as users register events
153 * within a file this structure is modified and freed via RCU.
154 * The lifetime of this struct is tied to the lifetime of the file.
155 * These are not shared and only accessible by the file that created it.
156 */
157struct user_event_refs {
158	struct rcu_head		rcu;
159	int			count;
160	struct user_event	*events[];
161};
162
163struct user_event_file_info {
164	struct user_event_group	*group;
165	struct user_event_refs	*refs;
166};
167
168#define VALIDATOR_ENSURE_NULL (1 << 0)
169#define VALIDATOR_REL (1 << 1)
170
171struct user_event_validator {
172	struct list_head	user_event_link;
173	int			offset;
174	int			flags;
175};
176
177static inline void align_addr_bit(unsigned long *addr, int *bit,
178				  unsigned long *flags)
179{
180	if (IS_ALIGNED(*addr, sizeof(long))) {
181#ifdef __BIG_ENDIAN
182		/* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
183		if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
184			*bit += 32;
185#endif
186		return;
187	}
188
189	*addr = ALIGN_DOWN(*addr, sizeof(long));
190
191	/*
192	 * We only support 32 and 64 bit values. The only time we need
193	 * to align is a 32 bit value on a 64 bit kernel, which on LE
194	 * is always 32 bits, and on BE requires no change when unaligned.
195	 */
196#ifdef __LITTLE_ENDIAN
197	*bit += 32;
198#endif
199}
200
201typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
202				   void *tpdata, bool *faulted);
203
204static int user_event_parse(struct user_event_group *group, char *name,
205			    char *args, char *flags,
206			    struct user_event **newuser, int reg_flags);
207
208static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
209static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
210static void user_event_mm_put(struct user_event_mm *mm);
211static int destroy_user_event(struct user_event *user);
212static bool user_fields_match(struct user_event *user, int argc,
213			      const char **argv);
214
215static u32 user_event_key(char *name)
216{
217	return jhash(name, strlen(name), 0);
218}
219
220static bool user_event_capable(u16 reg_flags)
221{
222	/* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */
223	if (reg_flags & USER_EVENT_REG_PERSIST) {
224		if (!perfmon_capable())
225			return false;
226	}
227
228	return true;
229}
230
231static struct user_event *user_event_get(struct user_event *user)
232{
233	refcount_inc(&user->refcnt);
234
235	return user;
236}
237
238static void delayed_destroy_user_event(struct work_struct *work)
239{
240	struct user_event *user = container_of(
241		work, struct user_event, put_work);
242
243	mutex_lock(&event_mutex);
244
245	if (!refcount_dec_and_test(&user->refcnt))
246		goto out;
247
248	if (destroy_user_event(user)) {
249		/*
250		 * The only reason this would fail here is if we cannot
251		 * update the visibility of the event. In this case the
252		 * event stays in the hashtable, waiting for someone to
253		 * attempt to delete it later.
254		 */
255		pr_warn("user_events: Unable to delete event\n");
256		refcount_set(&user->refcnt, 1);
257	}
258out:
259	mutex_unlock(&event_mutex);
260}
261
262static void user_event_put(struct user_event *user, bool locked)
263{
264	bool delete;
265
266	if (unlikely(!user))
267		return;
268
269	/*
270	 * When the event is not enabled for auto-delete there will always
271	 * be at least 1 reference to the event. During the event creation
272	 * we initially set the refcnt to 2 to achieve this. In those cases
273	 * the caller must acquire event_mutex and after decrement check if
274	 * the refcnt is 1, meaning this is the last reference. When auto
275	 * delete is enabled, there will only be 1 ref, IE: refcnt will be
276	 * only set to 1 during creation to allow the below checks to go
277	 * through upon the last put. The last put must always be done with
278	 * the event mutex held.
279	 */
280	if (!locked) {
281		lockdep_assert_not_held(&event_mutex);
282		delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
283	} else {
284		lockdep_assert_held(&event_mutex);
285		delete = refcount_dec_and_test(&user->refcnt);
286	}
287
288	if (!delete)
289		return;
290
291	/*
292	 * We now have the event_mutex in all cases, which ensures that
293	 * no new references will be taken until event_mutex is released.
294	 * New references come through find_user_event(), which requires
295	 * the event_mutex to be held.
296	 */
297
298	if (user->reg_flags & USER_EVENT_REG_PERSIST) {
299		/* We should not get here when persist flag is set */
300		pr_alert("BUG: Auto-delete engaged on persistent event\n");
301		goto out;
302	}
303
304	/*
305	 * Unfortunately we have to attempt the actual destroy in a work
306	 * queue. This is because not all cases handle a trace_event_call
307	 * being removed within the class->reg() operation for unregister.
308	 */
309	INIT_WORK(&user->put_work, delayed_destroy_user_event);
310
311	/*
312	 * Since the event is still in the hashtable, we have to re-inc
313	 * the ref count to 1. This count will be decremented and checked
314	 * in the work queue to ensure it's still the last ref. This is
315	 * needed because a user-process could register the same event in
316	 * between the time of event_mutex release and the work queue
317	 * running the delayed destroy. If we removed the item now from
318	 * the hashtable, this would result in a timing window where a
319	 * user process would fail a register because the trace_event_call
320	 * register would fail in the tracing layers.
321	 */
322	refcount_set(&user->refcnt, 1);
323
324	if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
325		/*
326		 * If we fail we must wait for an admin to attempt delete or
327		 * another register/close of the event, whichever is first.
328		 */
329		pr_warn("user_events: Unable to queue delayed destroy\n");
330	}
331out:
332	/* Ensure if we didn't have event_mutex before we unlock it */
333	if (!locked)
334		mutex_unlock(&event_mutex);
335}
336
337static void user_event_group_destroy(struct user_event_group *group)
338{
339	kfree(group->system_name);
340	kfree(group->system_multi_name);
341	kfree(group);
342}
343
344static char *user_event_group_system_name(void)
345{
346	char *system_name;
347	int len = sizeof(USER_EVENTS_SYSTEM) + 1;
348
349	system_name = kmalloc(len, GFP_KERNEL);
350
351	if (!system_name)
352		return NULL;
353
354	snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
355
356	return system_name;
357}
358
359static char *user_event_group_system_multi_name(void)
360{
361	return kstrdup(USER_EVENTS_MULTI_SYSTEM, GFP_KERNEL);
362}
363
364static struct user_event_group *current_user_event_group(void)
365{
366	return init_group;
367}
368
369static struct user_event_group *user_event_group_create(void)
370{
371	struct user_event_group *group;
372
373	group = kzalloc(sizeof(*group), GFP_KERNEL);
374
375	if (!group)
376		return NULL;
377
378	group->system_name = user_event_group_system_name();
379
380	if (!group->system_name)
381		goto error;
382
383	group->system_multi_name = user_event_group_system_multi_name();
384
385	if (!group->system_multi_name)
386		goto error;
387
388	mutex_init(&group->reg_mutex);
389	hash_init(group->register_table);
390
391	return group;
392error:
393	if (group)
394		user_event_group_destroy(group);
395
396	return NULL;
397};
398
399static void user_event_enabler_destroy(struct user_event_enabler *enabler,
400				       bool locked)
401{
402	list_del_rcu(&enabler->mm_enablers_link);
403
404	/* No longer tracking the event via the enabler */
405	user_event_put(enabler->event, locked);
406
407	kfree(enabler);
408}
409
410static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
411				  int attempt)
412{
413	bool unlocked;
414	int ret;
415
416	/*
417	 * Normally this is low, ensure that it cannot be taken advantage of by
418	 * bad user processes to cause excessive looping.
419	 */
420	if (attempt > 10)
421		return -EFAULT;
422
423	mmap_read_lock(mm->mm);
424
425	/* Ensure MM has tasks, cannot use after exit_mm() */
426	if (refcount_read(&mm->tasks) == 0) {
427		ret = -ENOENT;
428		goto out;
429	}
430
431	ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
432			       &unlocked);
433out:
434	mmap_read_unlock(mm->mm);
435
436	return ret;
437}
438
439static int user_event_enabler_write(struct user_event_mm *mm,
440				    struct user_event_enabler *enabler,
441				    bool fixup_fault, int *attempt);
442
443static void user_event_enabler_fault_fixup(struct work_struct *work)
444{
445	struct user_event_enabler_fault *fault = container_of(
446		work, struct user_event_enabler_fault, work);
447	struct user_event_enabler *enabler = fault->enabler;
448	struct user_event_mm *mm = fault->mm;
449	unsigned long uaddr = enabler->addr;
450	int attempt = fault->attempt;
451	int ret;
452
453	ret = user_event_mm_fault_in(mm, uaddr, attempt);
454
455	if (ret && ret != -ENOENT) {
456		struct user_event *user = enabler->event;
457
458		pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
459			mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
460	}
461
462	/* Prevent state changes from racing */
463	mutex_lock(&event_mutex);
464
465	/* User asked for enabler to be removed during fault */
466	if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
467		user_event_enabler_destroy(enabler, true);
468		goto out;
469	}
470
471	/*
472	 * If we managed to get the page, re-issue the write. We do not
473	 * want to get into a possible infinite loop, which is why we only
474	 * attempt again directly if the page came in. If we couldn't get
475	 * the page here, then we will try again the next time the event is
476	 * enabled/disabled.
477	 */
478	clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
479
480	if (!ret) {
481		mmap_read_lock(mm->mm);
482		user_event_enabler_write(mm, enabler, true, &attempt);
483		mmap_read_unlock(mm->mm);
484	}
485out:
486	mutex_unlock(&event_mutex);
487
488	/* In all cases we no longer need the mm or fault */
489	user_event_mm_put(mm);
490	kmem_cache_free(fault_cache, fault);
491}
492
493static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
494					   struct user_event_enabler *enabler,
495					   int attempt)
496{
497	struct user_event_enabler_fault *fault;
498
499	fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
500
501	if (!fault)
502		return false;
503
504	INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
505	fault->mm = user_event_mm_get(mm);
506	fault->enabler = enabler;
507	fault->attempt = attempt;
508
509	/* Don't try to queue in again while we have a pending fault */
510	set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
511
512	if (!schedule_work(&fault->work)) {
513		/* Allow another attempt later */
514		clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
515
516		user_event_mm_put(mm);
517		kmem_cache_free(fault_cache, fault);
518
519		return false;
520	}
521
522	return true;
523}
524
525static int user_event_enabler_write(struct user_event_mm *mm,
526				    struct user_event_enabler *enabler,
527				    bool fixup_fault, int *attempt)
528{
529	unsigned long uaddr = enabler->addr;
530	unsigned long *ptr;
531	struct page *page;
532	void *kaddr;
533	int bit = ENABLE_BIT(enabler);
534	int ret;
535
536	lockdep_assert_held(&event_mutex);
537	mmap_assert_locked(mm->mm);
538
539	*attempt += 1;
540
541	/* Ensure MM has tasks, cannot use after exit_mm() */
542	if (refcount_read(&mm->tasks) == 0)
543		return -ENOENT;
544
545	if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
546		     test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
547		return -EBUSY;
548
549	align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler));
550
551	ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
552				    &page, NULL);
553
554	if (unlikely(ret <= 0)) {
555		if (!fixup_fault)
556			return -EFAULT;
557
558		if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
559			pr_warn("user_events: Unable to queue fault handler\n");
560
561		return -EFAULT;
562	}
563
564	kaddr = kmap_local_page(page);
565	ptr = kaddr + (uaddr & ~PAGE_MASK);
566
567	/* Update bit atomically, user tracers must be atomic as well */
568	if (enabler->event && enabler->event->status)
569		set_bit(bit, ptr);
570	else
571		clear_bit(bit, ptr);
572
573	kunmap_local(kaddr);
574	unpin_user_pages_dirty_lock(&page, 1, true);
575
576	return 0;
577}
578
579static bool user_event_enabler_exists(struct user_event_mm *mm,
580				      unsigned long uaddr, unsigned char bit)
581{
582	struct user_event_enabler *enabler;
583
584	list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
585		if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
586			return true;
587	}
588
589	return false;
590}
591
592static void user_event_enabler_update(struct user_event *user)
593{
594	struct user_event_enabler *enabler;
595	struct user_event_mm *next;
596	struct user_event_mm *mm;
597	int attempt;
598
599	lockdep_assert_held(&event_mutex);
600
601	/*
602	 * We need to build a one-shot list of all the mms that have an
603	 * enabler for the user_event passed in. This list is only valid
604	 * while holding the event_mutex. The only reason for this is due
605	 * to the global mm list being RCU protected and we use methods
606	 * which can wait (mmap_read_lock and pin_user_pages_remote).
607	 *
608	 * NOTE: user_event_mm_get_all() increments the ref count of each
609	 * mm that is added to the list to prevent removal timing windows.
610	 * We must always put each mm after they are used, which may wait.
611	 */
612	mm = user_event_mm_get_all(user);
613
614	while (mm) {
615		next = mm->next;
616		mmap_read_lock(mm->mm);
617
618		list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
619			if (enabler->event == user) {
620				attempt = 0;
621				user_event_enabler_write(mm, enabler, true, &attempt);
622			}
623		}
624
625		mmap_read_unlock(mm->mm);
626		user_event_mm_put(mm);
627		mm = next;
628	}
629}
630
631static bool user_event_enabler_dup(struct user_event_enabler *orig,
632				   struct user_event_mm *mm)
633{
634	struct user_event_enabler *enabler;
635
636	/* Skip pending frees */
637	if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
638		return true;
639
640	enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
641
642	if (!enabler)
643		return false;
644
645	enabler->event = user_event_get(orig->event);
646	enabler->addr = orig->addr;
647
648	/* Only dup part of value (ignore future flags, etc) */
649	enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
650
651	/* Enablers not exposed yet, RCU not required */
652	list_add(&enabler->mm_enablers_link, &mm->enablers);
653
654	return true;
655}
656
657static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
658{
659	refcount_inc(&mm->refcnt);
660
661	return mm;
662}
663
664static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
665{
666	struct user_event_mm *found = NULL;
667	struct user_event_enabler *enabler;
668	struct user_event_mm *mm;
669
670	/*
671	 * We use the mm->next field to build a one-shot list from the global
672	 * RCU protected list. To build this list the event_mutex must be held.
673	 * This lets us build a list without requiring allocs that could fail
674	 * when user based events are most wanted for diagnostics.
675	 */
676	lockdep_assert_held(&event_mutex);
677
678	/*
679	 * We do not want to block fork/exec while enablements are being
680	 * updated, so we use RCU to walk the current tasks that have used
681	 * user_events ABI for 1 or more events. Each enabler found in each
682	 * task that matches the event being updated has a write to reflect
683	 * the kernel state back into the process. Waits/faults must not occur
684	 * during this. So we scan the list under RCU for all the mm that have
685	 * the event within it. This is needed because mm_read_lock() can wait.
686	 * Each user mm returned has a ref inc to handle remove RCU races.
687	 */
688	rcu_read_lock();
689
690	list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
691		list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
692			if (enabler->event == user) {
693				mm->next = found;
694				found = user_event_mm_get(mm);
695				break;
696			}
697		}
698	}
699
700	rcu_read_unlock();
701
702	return found;
703}
704
705static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
706{
707	struct user_event_mm *user_mm;
708
709	user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
710
711	if (!user_mm)
712		return NULL;
713
714	user_mm->mm = t->mm;
715	INIT_LIST_HEAD(&user_mm->enablers);
716	refcount_set(&user_mm->refcnt, 1);
717	refcount_set(&user_mm->tasks, 1);
718
719	/*
720	 * The lifetime of the memory descriptor can slightly outlast
721	 * the task lifetime if a ref to the user_event_mm is taken
722	 * between list_del_rcu() and call_rcu(). Therefore we need
723	 * to take a reference to it to ensure it can live this long
724	 * under this corner case. This can also occur in clones that
725	 * outlast the parent.
726	 */
727	mmgrab(user_mm->mm);
728
729	return user_mm;
730}
731
732static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
733{
734	unsigned long flags;
735
736	spin_lock_irqsave(&user_event_mms_lock, flags);
737	list_add_rcu(&user_mm->mms_link, &user_event_mms);
738	spin_unlock_irqrestore(&user_event_mms_lock, flags);
739
740	t->user_event_mm = user_mm;
741}
742
743static struct user_event_mm *current_user_event_mm(void)
744{
745	struct user_event_mm *user_mm = current->user_event_mm;
746
747	if (user_mm)
748		goto inc;
749
750	user_mm = user_event_mm_alloc(current);
751
752	if (!user_mm)
753		goto error;
754
755	user_event_mm_attach(user_mm, current);
756inc:
757	refcount_inc(&user_mm->refcnt);
758error:
759	return user_mm;
760}
761
762static void user_event_mm_destroy(struct user_event_mm *mm)
763{
764	struct user_event_enabler *enabler, *next;
765
766	list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
767		user_event_enabler_destroy(enabler, false);
768
769	mmdrop(mm->mm);
770	kfree(mm);
771}
772
773static void user_event_mm_put(struct user_event_mm *mm)
774{
775	if (mm && refcount_dec_and_test(&mm->refcnt))
776		user_event_mm_destroy(mm);
777}
778
779static void delayed_user_event_mm_put(struct work_struct *work)
780{
781	struct user_event_mm *mm;
782
783	mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
784	user_event_mm_put(mm);
785}
786
787void user_event_mm_remove(struct task_struct *t)
788{
789	struct user_event_mm *mm;
790	unsigned long flags;
791
792	might_sleep();
793
794	mm = t->user_event_mm;
795	t->user_event_mm = NULL;
796
797	/* Clone will increment the tasks, only remove if last clone */
798	if (!refcount_dec_and_test(&mm->tasks))
799		return;
800
801	/* Remove the mm from the list, so it can no longer be enabled */
802	spin_lock_irqsave(&user_event_mms_lock, flags);
803	list_del_rcu(&mm->mms_link);
804	spin_unlock_irqrestore(&user_event_mms_lock, flags);
805
806	/*
807	 * We need to wait for currently occurring writes to stop within
808	 * the mm. This is required since exit_mm() snaps the current rss
809	 * stats and clears them. On the final mmdrop(), check_mm() will
810	 * report a bug if these increment.
811	 *
812	 * All writes/pins are done under mmap_read lock, take the write
813	 * lock to ensure in-progress faults have completed. Faults that
814	 * are pending but yet to run will check the task count and skip
815	 * the fault since the mm is going away.
816	 */
817	mmap_write_lock(mm->mm);
818	mmap_write_unlock(mm->mm);
819
820	/*
821	 * Put for mm must be done after RCU delay to handle new refs in
822	 * between the list_del_rcu() and now. This ensures any get refs
823	 * during rcu_read_lock() are accounted for during list removal.
824	 *
825	 * CPU A			|	CPU B
826	 * ---------------------------------------------------------------
827	 * user_event_mm_remove()	|	rcu_read_lock();
828	 * list_del_rcu()		|	list_for_each_entry_rcu();
829	 * call_rcu()			|	refcount_inc();
830	 * .				|	rcu_read_unlock();
831	 * schedule_work()		|	.
832	 * user_event_mm_put()		|	.
833	 *
834	 * mmdrop() cannot be called in the softirq context of call_rcu()
835	 * so we use a work queue after call_rcu() to run within.
836	 */
837	INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
838	queue_rcu_work(system_wq, &mm->put_rwork);
839}
840
841void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
842{
843	struct user_event_mm *mm = user_event_mm_alloc(t);
844	struct user_event_enabler *enabler;
845
846	if (!mm)
847		return;
848
849	rcu_read_lock();
850
851	list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
852		if (!user_event_enabler_dup(enabler, mm))
853			goto error;
854	}
855
856	rcu_read_unlock();
857
858	user_event_mm_attach(mm, t);
859	return;
860error:
861	rcu_read_unlock();
862	user_event_mm_destroy(mm);
863}
864
865static bool current_user_event_enabler_exists(unsigned long uaddr,
866					      unsigned char bit)
867{
868	struct user_event_mm *user_mm = current_user_event_mm();
869	bool exists;
870
871	if (!user_mm)
872		return false;
873
874	exists = user_event_enabler_exists(user_mm, uaddr, bit);
875
876	user_event_mm_put(user_mm);
877
878	return exists;
879}
880
881static struct user_event_enabler
882*user_event_enabler_create(struct user_reg *reg, struct user_event *user,
883			   int *write_result)
884{
885	struct user_event_enabler *enabler;
886	struct user_event_mm *user_mm;
887	unsigned long uaddr = (unsigned long)reg->enable_addr;
888	int attempt = 0;
889
890	user_mm = current_user_event_mm();
891
892	if (!user_mm)
893		return NULL;
894
895	enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
896
897	if (!enabler)
898		goto out;
899
900	enabler->event = user;
901	enabler->addr = uaddr;
902	enabler->values = reg->enable_bit;
903
904#if BITS_PER_LONG >= 64
905	if (reg->enable_size == 4)
906		set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
907#endif
908
909retry:
910	/* Prevents state changes from racing with new enablers */
911	mutex_lock(&event_mutex);
912
913	/* Attempt to reflect the current state within the process */
914	mmap_read_lock(user_mm->mm);
915	*write_result = user_event_enabler_write(user_mm, enabler, false,
916						 &attempt);
917	mmap_read_unlock(user_mm->mm);
918
919	/*
920	 * If the write works, then we will track the enabler. A ref to the
921	 * underlying user_event is held by the enabler to prevent it going
922	 * away while the enabler is still in use by a process. The ref is
923	 * removed when the enabler is destroyed. This means a event cannot
924	 * be forcefully deleted from the system until all tasks using it
925	 * exit or run exec(), which includes forks and clones.
926	 */
927	if (!*write_result) {
928		user_event_get(user);
929		list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
930	}
931
932	mutex_unlock(&event_mutex);
933
934	if (*write_result) {
935		/* Attempt to fault-in and retry if it worked */
936		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
937			goto retry;
938
939		kfree(enabler);
940		enabler = NULL;
941	}
942out:
943	user_event_mm_put(user_mm);
944
945	return enabler;
946}
947
948static __always_inline __must_check
949bool user_event_last_ref(struct user_event *user)
950{
951	int last = 0;
952
953	if (user->reg_flags & USER_EVENT_REG_PERSIST)
954		last = 1;
955
956	return refcount_read(&user->refcnt) == last;
957}
958
959static __always_inline __must_check
960size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
961{
962	size_t ret;
963
964	pagefault_disable();
965
966	ret = copy_from_iter_nocache(addr, bytes, i);
967
968	pagefault_enable();
969
970	return ret;
971}
972
973static struct list_head *user_event_get_fields(struct trace_event_call *call)
974{
975	struct user_event *user = (struct user_event *)call->data;
976
977	return &user->fields;
978}
979
980/*
981 * Parses a register command for user_events
982 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
983 *
984 * Example event named 'test' with a 20 char 'msg' field with an unsigned int
985 * 'id' field after:
986 * test char[20] msg;unsigned int id
987 *
988 * NOTE: Offsets are from the user data perspective, they are not from the
989 * trace_entry/buffer perspective. We automatically add the common properties
990 * sizes to the offset for the user.
991 *
992 * Upon success user_event has its ref count increased by 1.
993 */
994static int user_event_parse_cmd(struct user_event_group *group,
995				char *raw_command, struct user_event **newuser,
996				int reg_flags)
997{
998	char *name = raw_command;
999	char *args = strpbrk(name, " ");
1000	char *flags;
1001
1002	if (args)
1003		*args++ = '\0';
1004
1005	flags = strpbrk(name, ":");
1006
1007	if (flags)
1008		*flags++ = '\0';
1009
1010	return user_event_parse(group, name, args, flags, newuser, reg_flags);
1011}
1012
1013static int user_field_array_size(const char *type)
1014{
1015	const char *start = strchr(type, '[');
1016	char val[8];
1017	char *bracket;
1018	int size = 0;
1019
1020	if (start == NULL)
1021		return -EINVAL;
1022
1023	if (strscpy(val, start + 1, sizeof(val)) <= 0)
1024		return -EINVAL;
1025
1026	bracket = strchr(val, ']');
1027
1028	if (!bracket)
1029		return -EINVAL;
1030
1031	*bracket = '\0';
1032
1033	if (kstrtouint(val, 0, &size))
1034		return -EINVAL;
1035
1036	if (size > MAX_FIELD_ARRAY_SIZE)
1037		return -EINVAL;
1038
1039	return size;
1040}
1041
1042static int user_field_size(const char *type)
1043{
1044	/* long is not allowed from a user, since it's ambigious in size */
1045	if (strcmp(type, "s64") == 0)
1046		return sizeof(s64);
1047	if (strcmp(type, "u64") == 0)
1048		return sizeof(u64);
1049	if (strcmp(type, "s32") == 0)
1050		return sizeof(s32);
1051	if (strcmp(type, "u32") == 0)
1052		return sizeof(u32);
1053	if (strcmp(type, "int") == 0)
1054		return sizeof(int);
1055	if (strcmp(type, "unsigned int") == 0)
1056		return sizeof(unsigned int);
1057	if (strcmp(type, "s16") == 0)
1058		return sizeof(s16);
1059	if (strcmp(type, "u16") == 0)
1060		return sizeof(u16);
1061	if (strcmp(type, "short") == 0)
1062		return sizeof(short);
1063	if (strcmp(type, "unsigned short") == 0)
1064		return sizeof(unsigned short);
1065	if (strcmp(type, "s8") == 0)
1066		return sizeof(s8);
1067	if (strcmp(type, "u8") == 0)
1068		return sizeof(u8);
1069	if (strcmp(type, "char") == 0)
1070		return sizeof(char);
1071	if (strcmp(type, "unsigned char") == 0)
1072		return sizeof(unsigned char);
1073	if (str_has_prefix(type, "char["))
1074		return user_field_array_size(type);
1075	if (str_has_prefix(type, "unsigned char["))
1076		return user_field_array_size(type);
1077	if (str_has_prefix(type, "__data_loc "))
1078		return sizeof(u32);
1079	if (str_has_prefix(type, "__rel_loc "))
1080		return sizeof(u32);
1081
1082	/* Uknown basic type, error */
1083	return -EINVAL;
1084}
1085
1086static void user_event_destroy_validators(struct user_event *user)
1087{
1088	struct user_event_validator *validator, *next;
1089	struct list_head *head = &user->validators;
1090
1091	list_for_each_entry_safe(validator, next, head, user_event_link) {
1092		list_del(&validator->user_event_link);
1093		kfree(validator);
1094	}
1095}
1096
1097static void user_event_destroy_fields(struct user_event *user)
1098{
1099	struct ftrace_event_field *field, *next;
1100	struct list_head *head = &user->fields;
1101
1102	list_for_each_entry_safe(field, next, head, link) {
1103		list_del(&field->link);
1104		kfree(field);
1105	}
1106}
1107
1108static int user_event_add_field(struct user_event *user, const char *type,
1109				const char *name, int offset, int size,
1110				int is_signed, int filter_type)
1111{
1112	struct user_event_validator *validator;
1113	struct ftrace_event_field *field;
1114	int validator_flags = 0;
1115
1116	field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
1117
1118	if (!field)
1119		return -ENOMEM;
1120
1121	if (str_has_prefix(type, "__data_loc "))
1122		goto add_validator;
1123
1124	if (str_has_prefix(type, "__rel_loc ")) {
1125		validator_flags |= VALIDATOR_REL;
1126		goto add_validator;
1127	}
1128
1129	goto add_field;
1130
1131add_validator:
1132	if (strstr(type, "char") != NULL)
1133		validator_flags |= VALIDATOR_ENSURE_NULL;
1134
1135	validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
1136
1137	if (!validator) {
1138		kfree(field);
1139		return -ENOMEM;
1140	}
1141
1142	validator->flags = validator_flags;
1143	validator->offset = offset;
1144
1145	/* Want sequential access when validating */
1146	list_add_tail(&validator->user_event_link, &user->validators);
1147
1148add_field:
1149	field->type = type;
1150	field->name = name;
1151	field->offset = offset;
1152	field->size = size;
1153	field->is_signed = is_signed;
1154	field->filter_type = filter_type;
1155
1156	if (filter_type == FILTER_OTHER)
1157		field->filter_type = filter_assign_type(type);
1158
1159	list_add(&field->link, &user->fields);
1160
1161	/*
1162	 * Min size from user writes that are required, this does not include
1163	 * the size of trace_entry (common fields).
1164	 */
1165	user->min_size = (offset + size) - sizeof(struct trace_entry);
1166
1167	return 0;
1168}
1169
1170/*
1171 * Parses the values of a field within the description
1172 * Format: type name [size]
1173 */
1174static int user_event_parse_field(char *field, struct user_event *user,
1175				  u32 *offset)
1176{
1177	char *part, *type, *name;
1178	u32 depth = 0, saved_offset = *offset;
1179	int len, size = -EINVAL;
1180	bool is_struct = false;
1181
1182	field = skip_spaces(field);
1183
1184	if (*field == '\0')
1185		return 0;
1186
1187	/* Handle types that have a space within */
1188	len = str_has_prefix(field, "unsigned ");
1189	if (len)
1190		goto skip_next;
1191
1192	len = str_has_prefix(field, "struct ");
1193	if (len) {
1194		is_struct = true;
1195		goto skip_next;
1196	}
1197
1198	len = str_has_prefix(field, "__data_loc unsigned ");
1199	if (len)
1200		goto skip_next;
1201
1202	len = str_has_prefix(field, "__data_loc ");
1203	if (len)
1204		goto skip_next;
1205
1206	len = str_has_prefix(field, "__rel_loc unsigned ");
1207	if (len)
1208		goto skip_next;
1209
1210	len = str_has_prefix(field, "__rel_loc ");
1211	if (len)
1212		goto skip_next;
1213
1214	goto parse;
1215skip_next:
1216	type = field;
1217	field = strpbrk(field + len, " ");
1218
1219	if (field == NULL)
1220		return -EINVAL;
1221
1222	*field++ = '\0';
1223	depth++;
1224parse:
1225	name = NULL;
1226
1227	while ((part = strsep(&field, " ")) != NULL) {
1228		switch (depth++) {
1229		case FIELD_DEPTH_TYPE:
1230			type = part;
1231			break;
1232		case FIELD_DEPTH_NAME:
1233			name = part;
1234			break;
1235		case FIELD_DEPTH_SIZE:
1236			if (!is_struct)
1237				return -EINVAL;
1238
1239			if (kstrtou32(part, 10, &size))
1240				return -EINVAL;
1241			break;
1242		default:
1243			return -EINVAL;
1244		}
1245	}
1246
1247	if (depth < FIELD_DEPTH_SIZE || !name)
1248		return -EINVAL;
1249
1250	if (depth == FIELD_DEPTH_SIZE)
1251		size = user_field_size(type);
1252
1253	if (size == 0)
1254		return -EINVAL;
1255
1256	if (size < 0)
1257		return size;
1258
1259	*offset = saved_offset + size;
1260
1261	return user_event_add_field(user, type, name, saved_offset, size,
1262				    type[0] != 'u', FILTER_OTHER);
1263}
1264
1265static int user_event_parse_fields(struct user_event *user, char *args)
1266{
1267	char *field;
1268	u32 offset = sizeof(struct trace_entry);
1269	int ret = -EINVAL;
1270
1271	if (args == NULL)
1272		return 0;
1273
1274	while ((field = strsep(&args, ";")) != NULL) {
1275		ret = user_event_parse_field(field, user, &offset);
1276
1277		if (ret)
1278			break;
1279	}
1280
1281	return ret;
1282}
1283
1284static struct trace_event_fields user_event_fields_array[1];
1285
1286static const char *user_field_format(const char *type)
1287{
1288	if (strcmp(type, "s64") == 0)
1289		return "%lld";
1290	if (strcmp(type, "u64") == 0)
1291		return "%llu";
1292	if (strcmp(type, "s32") == 0)
1293		return "%d";
1294	if (strcmp(type, "u32") == 0)
1295		return "%u";
1296	if (strcmp(type, "int") == 0)
1297		return "%d";
1298	if (strcmp(type, "unsigned int") == 0)
1299		return "%u";
1300	if (strcmp(type, "s16") == 0)
1301		return "%d";
1302	if (strcmp(type, "u16") == 0)
1303		return "%u";
1304	if (strcmp(type, "short") == 0)
1305		return "%d";
1306	if (strcmp(type, "unsigned short") == 0)
1307		return "%u";
1308	if (strcmp(type, "s8") == 0)
1309		return "%d";
1310	if (strcmp(type, "u8") == 0)
1311		return "%u";
1312	if (strcmp(type, "char") == 0)
1313		return "%d";
1314	if (strcmp(type, "unsigned char") == 0)
1315		return "%u";
1316	if (strstr(type, "char[") != NULL)
1317		return "%s";
1318
1319	/* Unknown, likely struct, allowed treat as 64-bit */
1320	return "%llu";
1321}
1322
1323static bool user_field_is_dyn_string(const char *type, const char **str_func)
1324{
1325	if (str_has_prefix(type, "__data_loc ")) {
1326		*str_func = "__get_str";
1327		goto check;
1328	}
1329
1330	if (str_has_prefix(type, "__rel_loc ")) {
1331		*str_func = "__get_rel_str";
1332		goto check;
1333	}
1334
1335	return false;
1336check:
1337	return strstr(type, "char") != NULL;
1338}
1339
1340#define LEN_OR_ZERO (len ? len - pos : 0)
1341static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1342				     char *buf, int len, bool *colon)
1343{
1344	int pos = 0, i = *iout;
1345
1346	*colon = false;
1347
1348	for (; i < argc; ++i) {
1349		if (i != *iout)
1350			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1351
1352		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
1353
1354		if (strchr(argv[i], ';')) {
1355			++i;
1356			*colon = true;
1357			break;
1358		}
1359	}
1360
1361	/* Actual set, advance i */
1362	if (len != 0)
1363		*iout = i;
1364
1365	return pos + 1;
1366}
1367
1368static int user_field_set_string(struct ftrace_event_field *field,
1369				 char *buf, int len, bool colon)
1370{
1371	int pos = 0;
1372
1373	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
1374	pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1375	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
1376
1377	if (str_has_prefix(field->type, "struct "))
1378		pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size);
1379
1380	if (colon)
1381		pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
1382
1383	return pos + 1;
1384}
1385
1386static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1387{
1388	struct ftrace_event_field *field;
1389	struct list_head *head = &user->fields;
1390	int pos = 0, depth = 0;
1391	const char *str_func;
1392
1393	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1394
1395	list_for_each_entry_reverse(field, head, link) {
1396		if (depth != 0)
1397			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1398
1399		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
1400				field->name, user_field_format(field->type));
1401
1402		depth++;
1403	}
1404
1405	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1406
1407	list_for_each_entry_reverse(field, head, link) {
1408		if (user_field_is_dyn_string(field->type, &str_func))
1409			pos += snprintf(buf + pos, LEN_OR_ZERO,
1410					", %s(%s)", str_func, field->name);
1411		else
1412			pos += snprintf(buf + pos, LEN_OR_ZERO,
1413					", REC->%s", field->name);
1414	}
1415
1416	return pos + 1;
1417}
1418#undef LEN_OR_ZERO
1419
1420static int user_event_create_print_fmt(struct user_event *user)
1421{
1422	char *print_fmt;
1423	int len;
1424
1425	len = user_event_set_print_fmt(user, NULL, 0);
1426
1427	print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
1428
1429	if (!print_fmt)
1430		return -ENOMEM;
1431
1432	user_event_set_print_fmt(user, print_fmt, len);
1433
1434	user->call.print_fmt = print_fmt;
1435
1436	return 0;
1437}
1438
1439static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1440						int flags,
1441						struct trace_event *event)
1442{
1443	return print_event_fields(iter, event);
1444}
1445
1446static struct trace_event_functions user_event_funcs = {
1447	.trace = user_event_print_trace,
1448};
1449
1450static int user_event_set_call_visible(struct user_event *user, bool visible)
1451{
1452	int ret;
1453	const struct cred *old_cred;
1454	struct cred *cred;
1455
1456	cred = prepare_creds();
1457
1458	if (!cred)
1459		return -ENOMEM;
1460
1461	/*
1462	 * While by default tracefs is locked down, systems can be configured
1463	 * to allow user_event files to be less locked down. The extreme case
1464	 * being "other" has read/write access to user_events_data/status.
1465	 *
1466	 * When not locked down, processes may not have permissions to
1467	 * add/remove calls themselves to tracefs. We need to temporarily
1468	 * switch to root file permission to allow for this scenario.
1469	 */
1470	cred->fsuid = GLOBAL_ROOT_UID;
1471
1472	old_cred = override_creds(cred);
1473
1474	if (visible)
1475		ret = trace_add_event_call(&user->call);
1476	else
1477		ret = trace_remove_event_call(&user->call);
1478
1479	revert_creds(old_cred);
1480	put_cred(cred);
1481
1482	return ret;
1483}
1484
1485static int destroy_user_event(struct user_event *user)
1486{
1487	int ret = 0;
1488
1489	lockdep_assert_held(&event_mutex);
1490
1491	/* Must destroy fields before call removal */
1492	user_event_destroy_fields(user);
1493
1494	ret = user_event_set_call_visible(user, false);
1495
1496	if (ret)
1497		return ret;
1498
1499	dyn_event_remove(&user->devent);
1500	hash_del(&user->node);
1501
1502	user_event_destroy_validators(user);
1503
1504	/* If we have different names, both must be freed */
1505	if (EVENT_NAME(user) != EVENT_TP_NAME(user))
1506		kfree(EVENT_TP_NAME(user));
1507
1508	kfree(user->call.print_fmt);
1509	kfree(EVENT_NAME(user));
1510	kfree(user);
1511
1512	if (current_user_events > 0)
1513		current_user_events--;
1514	else
1515		pr_alert("BUG: Bad current_user_events\n");
1516
1517	return ret;
1518}
1519
1520static struct user_event *find_user_event(struct user_event_group *group,
1521					  char *name, int argc, const char **argv,
1522					  u32 flags, u32 *outkey)
1523{
1524	struct user_event *user;
1525	u32 key = user_event_key(name);
1526
1527	*outkey = key;
1528
1529	hash_for_each_possible(group->register_table, user, node, key) {
1530		/*
1531		 * Single-format events shouldn't return multi-format
1532		 * events. Callers expect the underlying tracepoint to match
1533		 * the name exactly in these cases. Only check like-formats.
1534		 */
1535		if (EVENT_MULTI_FORMAT(flags) != EVENT_MULTI_FORMAT(user->reg_flags))
1536			continue;
1537
1538		if (strcmp(EVENT_NAME(user), name))
1539			continue;
1540
1541		if (user_fields_match(user, argc, argv))
1542			return user_event_get(user);
1543
1544		/* Scan others if this is a multi-format event */
1545		if (EVENT_MULTI_FORMAT(flags))
1546			continue;
1547
1548		return ERR_PTR(-EADDRINUSE);
1549	}
1550
1551	return NULL;
1552}
1553
1554static int user_event_validate(struct user_event *user, void *data, int len)
1555{
1556	struct list_head *head = &user->validators;
1557	struct user_event_validator *validator;
1558	void *pos, *end = data + len;
1559	u32 loc, offset, size;
1560
1561	list_for_each_entry(validator, head, user_event_link) {
1562		pos = data + validator->offset;
1563
1564		/* Already done min_size check, no bounds check here */
1565		loc = *(u32 *)pos;
1566		offset = loc & 0xffff;
1567		size = loc >> 16;
1568
1569		if (likely(validator->flags & VALIDATOR_REL))
1570			pos += offset + sizeof(loc);
1571		else
1572			pos = data + offset;
1573
1574		pos += size;
1575
1576		if (unlikely(pos > end))
1577			return -EFAULT;
1578
1579		if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1580			if (unlikely(*(char *)(pos - 1) != '\0'))
1581				return -EFAULT;
1582	}
1583
1584	return 0;
1585}
1586
1587/*
1588 * Writes the user supplied payload out to a trace file.
1589 */
1590static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
1591			      void *tpdata, bool *faulted)
1592{
1593	struct trace_event_file *file;
1594	struct trace_entry *entry;
1595	struct trace_event_buffer event_buffer;
1596	size_t size = sizeof(*entry) + i->count;
1597
1598	file = (struct trace_event_file *)tpdata;
1599
1600	if (!file ||
1601	    !(file->flags & EVENT_FILE_FL_ENABLED) ||
1602	    trace_trigger_soft_disabled(file))
1603		return;
1604
1605	/* Allocates and fills trace_entry, + 1 of this is data payload */
1606	entry = trace_event_buffer_reserve(&event_buffer, file, size);
1607
1608	if (unlikely(!entry))
1609		return;
1610
1611	if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
1612		goto discard;
1613
1614	if (!list_empty(&user->validators) &&
1615	    unlikely(user_event_validate(user, entry, size)))
1616		goto discard;
1617
1618	trace_event_buffer_commit(&event_buffer);
1619
1620	return;
1621discard:
1622	*faulted = true;
1623	__trace_event_discard_commit(event_buffer.buffer,
1624				     event_buffer.event);
1625}
1626
1627#ifdef CONFIG_PERF_EVENTS
1628/*
1629 * Writes the user supplied payload out to perf ring buffer.
1630 */
1631static void user_event_perf(struct user_event *user, struct iov_iter *i,
1632			    void *tpdata, bool *faulted)
1633{
1634	struct hlist_head *perf_head;
1635
1636	perf_head = this_cpu_ptr(user->call.perf_events);
1637
1638	if (perf_head && !hlist_empty(perf_head)) {
1639		struct trace_entry *perf_entry;
1640		struct pt_regs *regs;
1641		size_t size = sizeof(*perf_entry) + i->count;
1642		int context;
1643
1644		perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1645						  &regs, &context);
1646
1647		if (unlikely(!perf_entry))
1648			return;
1649
1650		perf_fetch_caller_regs(regs);
1651
1652		if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
1653			goto discard;
1654
1655		if (!list_empty(&user->validators) &&
1656		    unlikely(user_event_validate(user, perf_entry, size)))
1657			goto discard;
1658
1659		perf_trace_buf_submit(perf_entry, size, context,
1660				      user->call.event.type, 1, regs,
1661				      perf_head, NULL);
1662
1663		return;
1664discard:
1665		*faulted = true;
1666		perf_swevent_put_recursion_context(context);
1667	}
1668}
1669#endif
1670
1671/*
1672 * Update the enabled bit among all user processes.
1673 */
1674static void update_enable_bit_for(struct user_event *user)
1675{
1676	struct tracepoint *tp = &user->tracepoint;
1677	char status = 0;
1678
1679	if (atomic_read(&tp->key.enabled) > 0) {
1680		struct tracepoint_func *probe_func_ptr;
1681		user_event_func_t probe_func;
1682
1683		rcu_read_lock_sched();
1684
1685		probe_func_ptr = rcu_dereference_sched(tp->funcs);
1686
1687		if (probe_func_ptr) {
1688			do {
1689				probe_func = probe_func_ptr->func;
1690
1691				if (probe_func == user_event_ftrace)
1692					status |= EVENT_STATUS_FTRACE;
1693#ifdef CONFIG_PERF_EVENTS
1694				else if (probe_func == user_event_perf)
1695					status |= EVENT_STATUS_PERF;
1696#endif
1697				else
1698					status |= EVENT_STATUS_OTHER;
1699			} while ((++probe_func_ptr)->func);
1700		}
1701
1702		rcu_read_unlock_sched();
1703	}
1704
1705	user->status = status;
1706
1707	user_event_enabler_update(user);
1708}
1709
1710/*
1711 * Register callback for our events from tracing sub-systems.
1712 */
1713static int user_event_reg(struct trace_event_call *call,
1714			  enum trace_reg type,
1715			  void *data)
1716{
1717	struct user_event *user = (struct user_event *)call->data;
1718	int ret = 0;
1719
1720	if (!user)
1721		return -ENOENT;
1722
1723	switch (type) {
1724	case TRACE_REG_REGISTER:
1725		ret = tracepoint_probe_register(call->tp,
1726						call->class->probe,
1727						data);
1728		if (!ret)
1729			goto inc;
1730		break;
1731
1732	case TRACE_REG_UNREGISTER:
1733		tracepoint_probe_unregister(call->tp,
1734					    call->class->probe,
1735					    data);
1736		goto dec;
1737
1738#ifdef CONFIG_PERF_EVENTS
1739	case TRACE_REG_PERF_REGISTER:
1740		ret = tracepoint_probe_register(call->tp,
1741						call->class->perf_probe,
1742						data);
1743		if (!ret)
1744			goto inc;
1745		break;
1746
1747	case TRACE_REG_PERF_UNREGISTER:
1748		tracepoint_probe_unregister(call->tp,
1749					    call->class->perf_probe,
1750					    data);
1751		goto dec;
1752
1753	case TRACE_REG_PERF_OPEN:
1754	case TRACE_REG_PERF_CLOSE:
1755	case TRACE_REG_PERF_ADD:
1756	case TRACE_REG_PERF_DEL:
1757		break;
1758#endif
1759	}
1760
1761	return ret;
1762inc:
1763	user_event_get(user);
1764	update_enable_bit_for(user);
1765	return 0;
1766dec:
1767	update_enable_bit_for(user);
1768	user_event_put(user, true);
1769	return 0;
1770}
1771
1772static int user_event_create(const char *raw_command)
1773{
1774	struct user_event_group *group;
1775	struct user_event *user;
1776	char *name;
1777	int ret;
1778
1779	if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
1780		return -ECANCELED;
1781
1782	raw_command += USER_EVENTS_PREFIX_LEN;
1783	raw_command = skip_spaces(raw_command);
1784
1785	name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
1786
1787	if (!name)
1788		return -ENOMEM;
1789
1790	group = current_user_event_group();
1791
1792	if (!group) {
1793		kfree(name);
1794		return -ENOENT;
1795	}
1796
1797	mutex_lock(&group->reg_mutex);
1798
1799	/* Dyn events persist, otherwise they would cleanup immediately */
1800	ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
1801
1802	if (!ret)
1803		user_event_put(user, false);
1804
1805	mutex_unlock(&group->reg_mutex);
1806
1807	if (ret)
1808		kfree(name);
1809
1810	return ret;
1811}
1812
1813static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1814{
1815	struct user_event *user = container_of(ev, struct user_event, devent);
1816	struct ftrace_event_field *field;
1817	struct list_head *head;
1818	int depth = 0;
1819
1820	seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1821
1822	head = trace_get_fields(&user->call);
1823
1824	list_for_each_entry_reverse(field, head, link) {
1825		if (depth == 0)
1826			seq_puts(m, " ");
1827		else
1828			seq_puts(m, "; ");
1829
1830		seq_printf(m, "%s %s", field->type, field->name);
1831
1832		if (str_has_prefix(field->type, "struct "))
1833			seq_printf(m, " %d", field->size);
1834
1835		depth++;
1836	}
1837
1838	seq_puts(m, "\n");
1839
1840	return 0;
1841}
1842
1843static bool user_event_is_busy(struct dyn_event *ev)
1844{
1845	struct user_event *user = container_of(ev, struct user_event, devent);
1846
1847	return !user_event_last_ref(user);
1848}
1849
1850static int user_event_free(struct dyn_event *ev)
1851{
1852	struct user_event *user = container_of(ev, struct user_event, devent);
1853
1854	if (!user_event_last_ref(user))
1855		return -EBUSY;
1856
1857	if (!user_event_capable(user->reg_flags))
1858		return -EPERM;
1859
1860	return destroy_user_event(user);
1861}
1862
1863static bool user_field_match(struct ftrace_event_field *field, int argc,
1864			     const char **argv, int *iout)
1865{
1866	char *field_name = NULL, *dyn_field_name = NULL;
1867	bool colon = false, match = false;
1868	int dyn_len, len;
1869
1870	if (*iout >= argc)
1871		return false;
1872
1873	dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1874					    0, &colon);
1875
1876	len = user_field_set_string(field, field_name, 0, colon);
1877
1878	if (dyn_len != len)
1879		return false;
1880
1881	dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
1882	field_name = kmalloc(len, GFP_KERNEL);
1883
1884	if (!dyn_field_name || !field_name)
1885		goto out;
1886
1887	user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1888				  dyn_len, &colon);
1889
1890	user_field_set_string(field, field_name, len, colon);
1891
1892	match = strcmp(dyn_field_name, field_name) == 0;
1893out:
1894	kfree(dyn_field_name);
1895	kfree(field_name);
1896
1897	return match;
1898}
1899
1900static bool user_fields_match(struct user_event *user, int argc,
1901			      const char **argv)
1902{
1903	struct ftrace_event_field *field;
1904	struct list_head *head = &user->fields;
1905	int i = 0;
1906
1907	if (argc == 0)
1908		return list_empty(head);
1909
1910	list_for_each_entry_reverse(field, head, link) {
1911		if (!user_field_match(field, argc, argv, &i))
1912			return false;
1913	}
1914
1915	if (i != argc)
1916		return false;
1917
1918	return true;
1919}
1920
1921static bool user_event_match(const char *system, const char *event,
1922			     int argc, const char **argv, struct dyn_event *ev)
1923{
1924	struct user_event *user = container_of(ev, struct user_event, devent);
1925	bool match;
1926
1927	match = strcmp(EVENT_NAME(user), event) == 0;
1928
1929	if (match && system) {
1930		match = strcmp(system, user->group->system_name) == 0 ||
1931			strcmp(system, user->group->system_multi_name) == 0;
1932	}
1933
1934	if (match)
1935		match = user_fields_match(user, argc, argv);
1936
1937	return match;
1938}
1939
1940static struct dyn_event_operations user_event_dops = {
1941	.create = user_event_create,
1942	.show = user_event_show,
1943	.is_busy = user_event_is_busy,
1944	.free = user_event_free,
1945	.match = user_event_match,
1946};
1947
1948static int user_event_trace_register(struct user_event *user)
1949{
1950	int ret;
1951
1952	ret = register_trace_event(&user->call.event);
1953
1954	if (!ret)
1955		return -ENODEV;
1956
1957	ret = user_event_set_call_visible(user, true);
1958
1959	if (ret)
1960		unregister_trace_event(&user->call.event);
1961
1962	return ret;
1963}
1964
1965static int user_event_set_tp_name(struct user_event *user)
1966{
1967	lockdep_assert_held(&user->group->reg_mutex);
1968
1969	if (EVENT_MULTI_FORMAT(user->reg_flags)) {
1970		char *multi_name;
1971
1972		multi_name = kasprintf(GFP_KERNEL_ACCOUNT, "%s.%llx",
1973				       user->reg_name, user->group->multi_id);
1974
1975		if (!multi_name)
1976			return -ENOMEM;
1977
1978		user->call.name = multi_name;
1979		user->tracepoint.name = multi_name;
1980
1981		/* Inc to ensure unique multi-event name next time */
1982		user->group->multi_id++;
1983	} else {
1984		/* Non Multi-format uses register name */
1985		user->call.name = user->reg_name;
1986		user->tracepoint.name = user->reg_name;
1987	}
1988
1989	return 0;
1990}
1991
1992/*
1993 * Parses the event name, arguments and flags then registers if successful.
1994 * The name buffer lifetime is owned by this method for success cases only.
1995 * Upon success the returned user_event has its ref count increased by 1.
1996 */
1997static int user_event_parse(struct user_event_group *group, char *name,
1998			    char *args, char *flags,
1999			    struct user_event **newuser, int reg_flags)
2000{
2001	struct user_event *user;
2002	char **argv = NULL;
2003	int argc = 0;
2004	int ret;
2005	u32 key;
2006
2007	/* Currently don't support any text based flags */
2008	if (flags != NULL)
2009		return -EINVAL;
2010
2011	if (!user_event_capable(reg_flags))
2012		return -EPERM;
2013
2014	if (args) {
2015		argv = argv_split(GFP_KERNEL, args, &argc);
2016
2017		if (!argv)
2018			return -ENOMEM;
2019	}
2020
2021	/* Prevent dyn_event from racing */
2022	mutex_lock(&event_mutex);
2023	user = find_user_event(group, name, argc, (const char **)argv,
2024			       reg_flags, &key);
2025	mutex_unlock(&event_mutex);
2026
2027	if (argv)
2028		argv_free(argv);
2029
2030	if (IS_ERR(user))
2031		return PTR_ERR(user);
2032
2033	if (user) {
2034		*newuser = user;
2035		/*
2036		 * Name is allocated by caller, free it since it already exists.
2037		 * Caller only worries about failure cases for freeing.
2038		 */
2039		kfree(name);
2040
2041		return 0;
2042	}
2043
2044	user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
2045
2046	if (!user)
2047		return -ENOMEM;
2048
2049	INIT_LIST_HEAD(&user->class.fields);
2050	INIT_LIST_HEAD(&user->fields);
2051	INIT_LIST_HEAD(&user->validators);
2052
2053	user->group = group;
2054	user->reg_name = name;
2055	user->reg_flags = reg_flags;
2056
2057	ret = user_event_set_tp_name(user);
2058
2059	if (ret)
2060		goto put_user;
2061
2062	ret = user_event_parse_fields(user, args);
2063
2064	if (ret)
2065		goto put_user;
2066
2067	ret = user_event_create_print_fmt(user);
2068
2069	if (ret)
2070		goto put_user;
2071
2072	user->call.data = user;
2073	user->call.class = &user->class;
2074	user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
2075	user->call.tp = &user->tracepoint;
2076	user->call.event.funcs = &user_event_funcs;
2077
2078	if (EVENT_MULTI_FORMAT(user->reg_flags))
2079		user->class.system = group->system_multi_name;
2080	else
2081		user->class.system = group->system_name;
2082
2083	user->class.fields_array = user_event_fields_array;
2084	user->class.get_fields = user_event_get_fields;
2085	user->class.reg = user_event_reg;
2086	user->class.probe = user_event_ftrace;
2087#ifdef CONFIG_PERF_EVENTS
2088	user->class.perf_probe = user_event_perf;
2089#endif
2090
2091	mutex_lock(&event_mutex);
2092
2093	if (current_user_events >= max_user_events) {
2094		ret = -EMFILE;
2095		goto put_user_lock;
2096	}
2097
2098	ret = user_event_trace_register(user);
2099
2100	if (ret)
2101		goto put_user_lock;
2102
2103	if (user->reg_flags & USER_EVENT_REG_PERSIST) {
2104		/* Ensure we track self ref and caller ref (2) */
2105		refcount_set(&user->refcnt, 2);
2106	} else {
2107		/* Ensure we track only caller ref (1) */
2108		refcount_set(&user->refcnt, 1);
2109	}
2110
2111	dyn_event_init(&user->devent, &user_event_dops);
2112	dyn_event_add(&user->devent, &user->call);
2113	hash_add(group->register_table, &user->node, key);
2114	current_user_events++;
2115
2116	mutex_unlock(&event_mutex);
2117
2118	*newuser = user;
2119	return 0;
2120put_user_lock:
2121	mutex_unlock(&event_mutex);
2122put_user:
2123	user_event_destroy_fields(user);
2124	user_event_destroy_validators(user);
2125	kfree(user->call.print_fmt);
2126
2127	/* Caller frees reg_name on error, but not multi-name */
2128	if (EVENT_NAME(user) != EVENT_TP_NAME(user))
2129		kfree(EVENT_TP_NAME(user));
2130
2131	kfree(user);
2132	return ret;
2133}
2134
2135/*
2136 * Deletes previously created events if they are no longer being used.
2137 */
2138static int delete_user_event(struct user_event_group *group, char *name)
2139{
2140	struct user_event *user;
2141	struct hlist_node *tmp;
2142	u32 key = user_event_key(name);
2143	int ret = -ENOENT;
2144
2145	/* Attempt to delete all event(s) with the name passed in */
2146	hash_for_each_possible_safe(group->register_table, user, tmp, node, key) {
2147		if (strcmp(EVENT_NAME(user), name))
2148			continue;
2149
2150		if (!user_event_last_ref(user))
2151			return -EBUSY;
2152
2153		if (!user_event_capable(user->reg_flags))
2154			return -EPERM;
2155
2156		ret = destroy_user_event(user);
2157
2158		if (ret)
2159			goto out;
2160	}
2161out:
2162	return ret;
2163}
2164
2165/*
2166 * Validates the user payload and writes via iterator.
2167 */
2168static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
2169{
2170	struct user_event_file_info *info = file->private_data;
2171	struct user_event_refs *refs;
2172	struct user_event *user = NULL;
2173	struct tracepoint *tp;
2174	ssize_t ret = i->count;
2175	int idx;
2176
2177	if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
2178		return -EFAULT;
2179
2180	if (idx < 0)
2181		return -EINVAL;
2182
2183	rcu_read_lock_sched();
2184
2185	refs = rcu_dereference_sched(info->refs);
2186
2187	/*
2188	 * The refs->events array is protected by RCU, and new items may be
2189	 * added. But the user retrieved from indexing into the events array
2190	 * shall be immutable while the file is opened.
2191	 */
2192	if (likely(refs && idx < refs->count))
2193		user = refs->events[idx];
2194
2195	rcu_read_unlock_sched();
2196
2197	if (unlikely(user == NULL))
2198		return -ENOENT;
2199
2200	if (unlikely(i->count < user->min_size))
2201		return -EINVAL;
2202
2203	tp = &user->tracepoint;
2204
2205	/*
2206	 * It's possible key.enabled disables after this check, however
2207	 * we don't mind if a few events are included in this condition.
2208	 */
2209	if (likely(atomic_read(&tp->key.enabled) > 0)) {
2210		struct tracepoint_func *probe_func_ptr;
2211		user_event_func_t probe_func;
2212		struct iov_iter copy;
2213		void *tpdata;
2214		bool faulted;
2215
2216		if (unlikely(fault_in_iov_iter_readable(i, i->count)))
2217			return -EFAULT;
2218
2219		faulted = false;
2220
2221		rcu_read_lock_sched();
2222
2223		probe_func_ptr = rcu_dereference_sched(tp->funcs);
2224
2225		if (probe_func_ptr) {
2226			do {
2227				copy = *i;
2228				probe_func = probe_func_ptr->func;
2229				tpdata = probe_func_ptr->data;
2230				probe_func(user, &copy, tpdata, &faulted);
2231			} while ((++probe_func_ptr)->func);
2232		}
2233
2234		rcu_read_unlock_sched();
2235
2236		if (unlikely(faulted))
2237			return -EFAULT;
2238	} else
2239		return -EBADF;
2240
2241	return ret;
2242}
2243
2244static int user_events_open(struct inode *node, struct file *file)
2245{
2246	struct user_event_group *group;
2247	struct user_event_file_info *info;
2248
2249	group = current_user_event_group();
2250
2251	if (!group)
2252		return -ENOENT;
2253
2254	info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
2255
2256	if (!info)
2257		return -ENOMEM;
2258
2259	info->group = group;
2260
2261	file->private_data = info;
2262
2263	return 0;
2264}
2265
2266static ssize_t user_events_write(struct file *file, const char __user *ubuf,
2267				 size_t count, loff_t *ppos)
2268{
2269	struct iov_iter i;
2270
2271	if (unlikely(*ppos != 0))
2272		return -EFAULT;
2273
2274	if (unlikely(import_ubuf(ITER_SOURCE, (char __user *)ubuf, count, &i)))
2275		return -EFAULT;
2276
2277	return user_events_write_core(file, &i);
2278}
2279
2280static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
2281{
2282	return user_events_write_core(kp->ki_filp, i);
2283}
2284
2285static int user_events_ref_add(struct user_event_file_info *info,
2286			       struct user_event *user)
2287{
2288	struct user_event_group *group = info->group;
2289	struct user_event_refs *refs, *new_refs;
2290	int i, size, count = 0;
2291
2292	refs = rcu_dereference_protected(info->refs,
2293					 lockdep_is_held(&group->reg_mutex));
2294
2295	if (refs) {
2296		count = refs->count;
2297
2298		for (i = 0; i < count; ++i)
2299			if (refs->events[i] == user)
2300				return i;
2301	}
2302
2303	size = struct_size(refs, events, count + 1);
2304
2305	new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
2306
2307	if (!new_refs)
2308		return -ENOMEM;
2309
2310	new_refs->count = count + 1;
2311
2312	for (i = 0; i < count; ++i)
2313		new_refs->events[i] = refs->events[i];
2314
2315	new_refs->events[i] = user_event_get(user);
2316
2317	rcu_assign_pointer(info->refs, new_refs);
2318
2319	if (refs)
2320		kfree_rcu(refs, rcu);
2321
2322	return i;
2323}
2324
2325static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2326{
2327	u32 size;
2328	long ret;
2329
2330	ret = get_user(size, &ureg->size);
2331
2332	if (ret)
2333		return ret;
2334
2335	if (size > PAGE_SIZE)
2336		return -E2BIG;
2337
2338	if (size < offsetofend(struct user_reg, write_index))
2339		return -EINVAL;
2340
2341	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2342
2343	if (ret)
2344		return ret;
2345
2346	/* Ensure only valid flags */
2347	if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
2348		return -EINVAL;
2349
2350	/* Ensure supported size */
2351	switch (kreg->enable_size) {
2352	case 4:
2353		/* 32-bit */
2354		break;
2355#if BITS_PER_LONG >= 64
2356	case 8:
2357		/* 64-bit */
2358		break;
2359#endif
2360	default:
2361		return -EINVAL;
2362	}
2363
2364	/* Ensure natural alignment */
2365	if (kreg->enable_addr % kreg->enable_size)
2366		return -EINVAL;
2367
2368	/* Ensure bit range for size */
2369	if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2370		return -EINVAL;
2371
2372	/* Ensure accessible */
2373	if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2374		       kreg->enable_size))
2375		return -EFAULT;
2376
2377	kreg->size = size;
2378
2379	return 0;
2380}
2381
2382/*
2383 * Registers a user_event on behalf of a user process.
2384 */
2385static long user_events_ioctl_reg(struct user_event_file_info *info,
2386				  unsigned long uarg)
2387{
2388	struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2389	struct user_reg reg;
2390	struct user_event *user;
2391	struct user_event_enabler *enabler;
2392	char *name;
2393	long ret;
2394	int write_result;
2395
2396	ret = user_reg_get(ureg, &reg);
2397
2398	if (ret)
2399		return ret;
2400
2401	/*
2402	 * Prevent users from using the same address and bit multiple times
2403	 * within the same mm address space. This can cause unexpected behavior
2404	 * for user processes that is far easier to debug if this is explictly
2405	 * an error upon registering.
2406	 */
2407	if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
2408					      reg.enable_bit))
2409		return -EADDRINUSE;
2410
2411	name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2412			    MAX_EVENT_DESC);
2413
2414	if (IS_ERR(name)) {
2415		ret = PTR_ERR(name);
2416		return ret;
2417	}
2418
2419	ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
2420
2421	if (ret) {
2422		kfree(name);
2423		return ret;
2424	}
2425
2426	ret = user_events_ref_add(info, user);
2427
2428	/* No longer need parse ref, ref_add either worked or not */
2429	user_event_put(user, false);
2430
2431	/* Positive number is index and valid */
2432	if (ret < 0)
2433		return ret;
2434
2435	/*
2436	 * user_events_ref_add succeeded:
2437	 * At this point we have a user_event, it's lifetime is bound by the
2438	 * reference count, not this file. If anything fails, the user_event
2439	 * still has a reference until the file is released. During release
2440	 * any remaining references (from user_events_ref_add) are decremented.
2441	 *
2442	 * Attempt to create an enabler, which too has a lifetime tied in the
2443	 * same way for the event. Once the task that caused the enabler to be
2444	 * created exits or issues exec() then the enablers it has created
2445	 * will be destroyed and the ref to the event will be decremented.
2446	 */
2447	enabler = user_event_enabler_create(&reg, user, &write_result);
2448
2449	if (!enabler)
2450		return -ENOMEM;
2451
2452	/* Write failed/faulted, give error back to caller */
2453	if (write_result)
2454		return write_result;
2455
2456	put_user((u32)ret, &ureg->write_index);
2457
2458	return 0;
2459}
2460
2461/*
2462 * Deletes a user_event on behalf of a user process.
2463 */
2464static long user_events_ioctl_del(struct user_event_file_info *info,
2465				  unsigned long uarg)
2466{
2467	void __user *ubuf = (void __user *)uarg;
2468	char *name;
2469	long ret;
2470
2471	name = strndup_user(ubuf, MAX_EVENT_DESC);
2472
2473	if (IS_ERR(name))
2474		return PTR_ERR(name);
2475
2476	/* event_mutex prevents dyn_event from racing */
2477	mutex_lock(&event_mutex);
2478	ret = delete_user_event(info->group, name);
2479	mutex_unlock(&event_mutex);
2480
2481	kfree(name);
2482
2483	return ret;
2484}
2485
2486static long user_unreg_get(struct user_unreg __user *ureg,
2487			   struct user_unreg *kreg)
2488{
2489	u32 size;
2490	long ret;
2491
2492	ret = get_user(size, &ureg->size);
2493
2494	if (ret)
2495		return ret;
2496
2497	if (size > PAGE_SIZE)
2498		return -E2BIG;
2499
2500	if (size < offsetofend(struct user_unreg, disable_addr))
2501		return -EINVAL;
2502
2503	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2504
2505	/* Ensure no reserved values, since we don't support any yet */
2506	if (kreg->__reserved || kreg->__reserved2)
2507		return -EINVAL;
2508
2509	return ret;
2510}
2511
2512static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2513				   unsigned long uaddr, unsigned char bit,
2514				   unsigned long flags)
2515{
2516	struct user_event_enabler enabler;
2517	int result;
2518	int attempt = 0;
2519
2520	memset(&enabler, 0, sizeof(enabler));
2521	enabler.addr = uaddr;
2522	enabler.values = bit | flags;
2523retry:
2524	/* Prevents state changes from racing with new enablers */
2525	mutex_lock(&event_mutex);
2526
2527	/* Force the bit to be cleared, since no event is attached */
2528	mmap_read_lock(user_mm->mm);
2529	result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
2530	mmap_read_unlock(user_mm->mm);
2531
2532	mutex_unlock(&event_mutex);
2533
2534	if (result) {
2535		/* Attempt to fault-in and retry if it worked */
2536		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
2537			goto retry;
2538	}
2539
2540	return result;
2541}
2542
2543/*
2544 * Unregisters an enablement address/bit within a task/user mm.
2545 */
2546static long user_events_ioctl_unreg(unsigned long uarg)
2547{
2548	struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2549	struct user_event_mm *mm = current->user_event_mm;
2550	struct user_event_enabler *enabler, *next;
2551	struct user_unreg reg;
2552	unsigned long flags;
2553	long ret;
2554
2555	ret = user_unreg_get(ureg, &reg);
2556
2557	if (ret)
2558		return ret;
2559
2560	if (!mm)
2561		return -ENOENT;
2562
2563	flags = 0;
2564	ret = -ENOENT;
2565
2566	/*
2567	 * Flags freeing and faulting are used to indicate if the enabler is in
2568	 * use at all. When faulting is set a page-fault is occurring asyncly.
2569	 * During async fault if freeing is set, the enabler will be destroyed.
2570	 * If no async fault is happening, we can destroy it now since we hold
2571	 * the event_mutex during these checks.
2572	 */
2573	mutex_lock(&event_mutex);
2574
2575	list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
2576		if (enabler->addr == reg.disable_addr &&
2577		    ENABLE_BIT(enabler) == reg.disable_bit) {
2578			set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2579
2580			/* We must keep compat flags for the clear */
2581			flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
2582
2583			if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
2584				user_event_enabler_destroy(enabler, true);
2585
2586			/* Removed at least one */
2587			ret = 0;
2588		}
2589	}
2590
2591	mutex_unlock(&event_mutex);
2592
2593	/* Ensure bit is now cleared for user, regardless of event status */
2594	if (!ret)
2595		ret = user_event_mm_clear_bit(mm, reg.disable_addr,
2596					      reg.disable_bit, flags);
2597
2598	return ret;
2599}
2600
2601/*
2602 * Handles the ioctl from user mode to register or alter operations.
2603 */
2604static long user_events_ioctl(struct file *file, unsigned int cmd,
2605			      unsigned long uarg)
2606{
2607	struct user_event_file_info *info = file->private_data;
2608	struct user_event_group *group = info->group;
2609	long ret = -ENOTTY;
2610
2611	switch (cmd) {
2612	case DIAG_IOCSREG:
2613		mutex_lock(&group->reg_mutex);
2614		ret = user_events_ioctl_reg(info, uarg);
2615		mutex_unlock(&group->reg_mutex);
2616		break;
2617
2618	case DIAG_IOCSDEL:
2619		mutex_lock(&group->reg_mutex);
2620		ret = user_events_ioctl_del(info, uarg);
2621		mutex_unlock(&group->reg_mutex);
2622		break;
2623
2624	case DIAG_IOCSUNREG:
2625		mutex_lock(&group->reg_mutex);
2626		ret = user_events_ioctl_unreg(uarg);
2627		mutex_unlock(&group->reg_mutex);
2628		break;
2629	}
2630
2631	return ret;
2632}
2633
2634/*
2635 * Handles the final close of the file from user mode.
2636 */
2637static int user_events_release(struct inode *node, struct file *file)
2638{
2639	struct user_event_file_info *info = file->private_data;
2640	struct user_event_group *group;
2641	struct user_event_refs *refs;
2642	int i;
2643
2644	if (!info)
2645		return -EINVAL;
2646
2647	group = info->group;
2648
2649	/*
2650	 * Ensure refs cannot change under any situation by taking the
2651	 * register mutex during the final freeing of the references.
2652	 */
2653	mutex_lock(&group->reg_mutex);
2654
2655	refs = info->refs;
2656
2657	if (!refs)
2658		goto out;
2659
2660	/*
2661	 * The lifetime of refs has reached an end, it's tied to this file.
2662	 * The underlying user_events are ref counted, and cannot be freed.
2663	 * After this decrement, the user_events may be freed elsewhere.
2664	 */
2665	for (i = 0; i < refs->count; ++i)
2666		user_event_put(refs->events[i], false);
2667
2668out:
2669	file->private_data = NULL;
2670
2671	mutex_unlock(&group->reg_mutex);
2672
2673	kfree(refs);
2674	kfree(info);
2675
2676	return 0;
2677}
2678
2679static const struct file_operations user_data_fops = {
2680	.open		= user_events_open,
2681	.write		= user_events_write,
2682	.write_iter	= user_events_write_iter,
2683	.unlocked_ioctl	= user_events_ioctl,
2684	.release	= user_events_release,
2685};
2686
2687static void *user_seq_start(struct seq_file *m, loff_t *pos)
2688{
2689	if (*pos)
2690		return NULL;
2691
2692	return (void *)1;
2693}
2694
2695static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2696{
2697	++*pos;
2698	return NULL;
2699}
2700
2701static void user_seq_stop(struct seq_file *m, void *p)
2702{
2703}
2704
2705static int user_seq_show(struct seq_file *m, void *p)
2706{
2707	struct user_event_group *group = m->private;
2708	struct user_event *user;
2709	char status;
2710	int i, active = 0, busy = 0;
2711
2712	if (!group)
2713		return -EINVAL;
2714
2715	mutex_lock(&group->reg_mutex);
2716
2717	hash_for_each(group->register_table, i, user, node) {
2718		status = user->status;
2719
2720		seq_printf(m, "%s", EVENT_TP_NAME(user));
2721
2722		if (status != 0)
2723			seq_puts(m, " #");
2724
2725		if (status != 0) {
2726			seq_puts(m, " Used by");
2727			if (status & EVENT_STATUS_FTRACE)
2728				seq_puts(m, " ftrace");
2729			if (status & EVENT_STATUS_PERF)
2730				seq_puts(m, " perf");
2731			if (status & EVENT_STATUS_OTHER)
2732				seq_puts(m, " other");
2733			busy++;
2734		}
2735
2736		seq_puts(m, "\n");
2737		active++;
2738	}
2739
2740	mutex_unlock(&group->reg_mutex);
2741
2742	seq_puts(m, "\n");
2743	seq_printf(m, "Active: %d\n", active);
2744	seq_printf(m, "Busy: %d\n", busy);
2745
2746	return 0;
2747}
2748
2749static const struct seq_operations user_seq_ops = {
2750	.start	= user_seq_start,
2751	.next	= user_seq_next,
2752	.stop	= user_seq_stop,
2753	.show	= user_seq_show,
2754};
2755
2756static int user_status_open(struct inode *node, struct file *file)
2757{
2758	struct user_event_group *group;
2759	int ret;
2760
2761	group = current_user_event_group();
2762
2763	if (!group)
2764		return -ENOENT;
2765
2766	ret = seq_open(file, &user_seq_ops);
2767
2768	if (!ret) {
2769		/* Chain group to seq_file */
2770		struct seq_file *m = file->private_data;
2771
2772		m->private = group;
2773	}
2774
2775	return ret;
2776}
2777
2778static const struct file_operations user_status_fops = {
2779	.open		= user_status_open,
2780	.read		= seq_read,
2781	.llseek		= seq_lseek,
2782	.release	= seq_release,
2783};
2784
2785/*
2786 * Creates a set of tracefs files to allow user mode interactions.
2787 */
2788static int create_user_tracefs(void)
2789{
2790	struct dentry *edata, *emmap;
2791
2792	edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
2793				    NULL, NULL, &user_data_fops);
2794
2795	if (!edata) {
2796		pr_warn("Could not create tracefs 'user_events_data' entry\n");
2797		goto err;
2798	}
2799
2800	emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
2801				    NULL, NULL, &user_status_fops);
2802
2803	if (!emmap) {
2804		tracefs_remove(edata);
2805		pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2806		goto err;
2807	}
2808
2809	return 0;
2810err:
2811	return -ENODEV;
2812}
2813
2814static int set_max_user_events_sysctl(struct ctl_table *table, int write,
2815				      void *buffer, size_t *lenp, loff_t *ppos)
2816{
2817	int ret;
2818
2819	mutex_lock(&event_mutex);
2820
2821	ret = proc_douintvec(table, write, buffer, lenp, ppos);
2822
2823	mutex_unlock(&event_mutex);
2824
2825	return ret;
2826}
2827
2828static struct ctl_table user_event_sysctls[] = {
2829	{
2830		.procname	= "user_events_max",
2831		.data		= &max_user_events,
2832		.maxlen		= sizeof(unsigned int),
2833		.mode		= 0644,
2834		.proc_handler	= set_max_user_events_sysctl,
2835	},
2836	{}
2837};
2838
2839static int __init trace_events_user_init(void)
2840{
2841	int ret;
2842
2843	fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2844
2845	if (!fault_cache)
2846		return -ENOMEM;
2847
2848	init_group = user_event_group_create();
2849
2850	if (!init_group) {
2851		kmem_cache_destroy(fault_cache);
2852		return -ENOMEM;
2853	}
2854
2855	ret = create_user_tracefs();
2856
2857	if (ret) {
2858		pr_warn("user_events could not register with tracefs\n");
2859		user_event_group_destroy(init_group);
2860		kmem_cache_destroy(fault_cache);
2861		init_group = NULL;
2862		return ret;
2863	}
2864
2865	if (dyn_event_register(&user_event_dops))
2866		pr_warn("user_events could not register with dyn_events\n");
2867
2868	register_sysctl_init("kernel", user_event_sysctls);
2869
2870	return 0;
2871}
2872
2873fs_initcall(trace_events_user_init);
2874