1// SPDX-License-Identifier: GPL-2.0
2/*
3 * trace_events_filter - generic event filtering
4 *
5 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6 */
7
8#include <linux/uaccess.h>
9#include <linux/module.h>
10#include <linux/ctype.h>
11#include <linux/mutex.h>
12#include <linux/perf_event.h>
13#include <linux/slab.h>
14
15#include "trace.h"
16#include "trace_output.h"
17
18#define DEFAULT_SYS_FILTER_MESSAGE					\
19	"### global filter ###\n"					\
20	"# Use this to set filters for multiple events.\n"		\
21	"# Only events with the given fields will be affected.\n"	\
22	"# If no events are modified, an error message will be displayed here"
23
24/* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25#define OPS					\
26	C( OP_GLOB,	"~"  ),			\
27	C( OP_NE,	"!=" ),			\
28	C( OP_EQ,	"==" ),			\
29	C( OP_LE,	"<=" ),			\
30	C( OP_LT,	"<"  ),			\
31	C( OP_GE,	">=" ),			\
32	C( OP_GT,	">"  ),			\
33	C( OP_BAND,	"&"  ),			\
34	C( OP_MAX,	NULL )
35
36#undef C
37#define C(a, b)	a
38
39enum filter_op_ids { OPS };
40
41#undef C
42#define C(a, b)	b
43
44static const char * ops[] = { OPS };
45
46enum filter_pred_fn {
47	FILTER_PRED_FN_NOP,
48	FILTER_PRED_FN_64,
49	FILTER_PRED_FN_64_CPUMASK,
50	FILTER_PRED_FN_S64,
51	FILTER_PRED_FN_U64,
52	FILTER_PRED_FN_32,
53	FILTER_PRED_FN_32_CPUMASK,
54	FILTER_PRED_FN_S32,
55	FILTER_PRED_FN_U32,
56	FILTER_PRED_FN_16,
57	FILTER_PRED_FN_16_CPUMASK,
58	FILTER_PRED_FN_S16,
59	FILTER_PRED_FN_U16,
60	FILTER_PRED_FN_8,
61	FILTER_PRED_FN_8_CPUMASK,
62	FILTER_PRED_FN_S8,
63	FILTER_PRED_FN_U8,
64	FILTER_PRED_FN_COMM,
65	FILTER_PRED_FN_STRING,
66	FILTER_PRED_FN_STRLOC,
67	FILTER_PRED_FN_STRRELLOC,
68	FILTER_PRED_FN_PCHAR_USER,
69	FILTER_PRED_FN_PCHAR,
70	FILTER_PRED_FN_CPU,
71	FILTER_PRED_FN_CPU_CPUMASK,
72	FILTER_PRED_FN_CPUMASK,
73	FILTER_PRED_FN_CPUMASK_CPU,
74	FILTER_PRED_FN_FUNCTION,
75	FILTER_PRED_FN_,
76	FILTER_PRED_TEST_VISITED,
77};
78
79struct filter_pred {
80	struct regex		*regex;
81	struct cpumask          *mask;
82	unsigned short		*ops;
83	struct ftrace_event_field *field;
84	u64			val;
85	u64			val2;
86	enum filter_pred_fn	fn_num;
87	int			offset;
88	int			not;
89	int			op;
90};
91
92/*
93 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
94 * pred_funcs_##type below must match the order of them above.
95 */
96#define PRED_FUNC_START			OP_LE
97#define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
98
99#define ERRORS								\
100	C(NONE,			"No error"),				\
101	C(INVALID_OP,		"Invalid operator"),			\
102	C(TOO_MANY_OPEN,	"Too many '('"),			\
103	C(TOO_MANY_CLOSE,	"Too few '('"),				\
104	C(MISSING_QUOTE,	"Missing matching quote"),		\
105	C(MISSING_BRACE_OPEN,   "Missing '{'"),				\
106	C(MISSING_BRACE_CLOSE,  "Missing '}'"),				\
107	C(OPERAND_TOO_LONG,	"Operand too long"),			\
108	C(EXPECT_STRING,	"Expecting string field"),		\
109	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
110	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
111	C(FIELD_NOT_FOUND,	"Field not found"),			\
112	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
113	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
114	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
115	C(INVALID_FILTER,	"Meaningless filter expression"),	\
116	C(INVALID_CPULIST,	"Invalid cpulist"),	\
117	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
118	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
119	C(NO_FUNCTION,		"Function not found"),			\
120	C(ERRNO,		"Error"),				\
121	C(NO_FILTER,		"No filter found")
122
123#undef C
124#define C(a, b)		FILT_ERR_##a
125
126enum { ERRORS };
127
128#undef C
129#define C(a, b)		b
130
131static const char *err_text[] = { ERRORS };
132
133/* Called after a '!' character but "!=" and "!~" are not "not"s */
134static bool is_not(const char *str)
135{
136	switch (str[1]) {
137	case '=':
138	case '~':
139		return false;
140	}
141	return true;
142}
143
144/**
145 * struct prog_entry - a singe entry in the filter program
146 * @target:	     Index to jump to on a branch (actually one minus the index)
147 * @when_to_branch:  The value of the result of the predicate to do a branch
148 * @pred:	     The predicate to execute.
149 */
150struct prog_entry {
151	int			target;
152	int			when_to_branch;
153	struct filter_pred	*pred;
154};
155
156/**
157 * update_preds - assign a program entry a label target
158 * @prog: The program array
159 * @N: The index of the current entry in @prog
160 * @invert: What to assign a program entry for its branch condition
161 *
162 * The program entry at @N has a target that points to the index of a program
163 * entry that can have its target and when_to_branch fields updated.
164 * Update the current program entry denoted by index @N target field to be
165 * that of the updated entry. This will denote the entry to update if
166 * we are processing an "||" after an "&&".
167 */
168static void update_preds(struct prog_entry *prog, int N, int invert)
169{
170	int t, s;
171
172	t = prog[N].target;
173	s = prog[t].target;
174	prog[t].when_to_branch = invert;
175	prog[t].target = N;
176	prog[N].target = s;
177}
178
179struct filter_parse_error {
180	int lasterr;
181	int lasterr_pos;
182};
183
184static void parse_error(struct filter_parse_error *pe, int err, int pos)
185{
186	pe->lasterr = err;
187	pe->lasterr_pos = pos;
188}
189
190typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
191			     struct filter_parse_error *pe,
192			     struct filter_pred **pred);
193
194enum {
195	INVERT		= 1,
196	PROCESS_AND	= 2,
197	PROCESS_OR	= 4,
198};
199
200static void free_predicate(struct filter_pred *pred)
201{
202	if (pred) {
203		kfree(pred->regex);
204		kfree(pred->mask);
205		kfree(pred);
206	}
207}
208
209/*
210 * Without going into a formal proof, this explains the method that is used in
211 * parsing the logical expressions.
212 *
213 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
214 * The first pass will convert it into the following program:
215 *
216 * n1: r=a;       l1: if (!r) goto l4;
217 * n2: r=b;       l2: if (!r) goto l4;
218 * n3: r=c; r=!r; l3: if (r) goto l4;
219 * n4: r=g; r=!r; l4: if (r) goto l5;
220 * n5: r=d;       l5: if (r) goto T
221 * n6: r=e;       l6: if (!r) goto l7;
222 * n7: r=f; r=!r; l7: if (!r) goto F
223 * T: return TRUE
224 * F: return FALSE
225 *
226 * To do this, we use a data structure to represent each of the above
227 * predicate and conditions that has:
228 *
229 *  predicate, when_to_branch, invert, target
230 *
231 * The "predicate" will hold the function to determine the result "r".
232 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
233 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
234 * The "invert" holds whether the value should be reversed before testing.
235 * The "target" contains the label "l#" to jump to.
236 *
237 * A stack is created to hold values when parentheses are used.
238 *
239 * To simplify the logic, the labels will start at 0 and not 1.
240 *
241 * The possible invert values are 1 and 0. The number of "!"s that are in scope
242 * before the predicate determines the invert value, if the number is odd then
243 * the invert value is 1 and 0 otherwise. This means the invert value only
244 * needs to be toggled when a new "!" is introduced compared to what is stored
245 * on the stack, where parentheses were used.
246 *
247 * The top of the stack and "invert" are initialized to zero.
248 *
249 * ** FIRST PASS **
250 *
251 * #1 A loop through all the tokens is done:
252 *
253 * #2 If the token is an "(", the stack is push, and the current stack value
254 *    gets the current invert value, and the loop continues to the next token.
255 *    The top of the stack saves the "invert" value to keep track of what
256 *    the current inversion is. As "!(a && !b || c)" would require all
257 *    predicates being affected separately by the "!" before the parentheses.
258 *    And that would end up being equivalent to "(!a || b) && !c"
259 *
260 * #3 If the token is an "!", the current "invert" value gets inverted, and
261 *    the loop continues. Note, if the next token is a predicate, then
262 *    this "invert" value is only valid for the current program entry,
263 *    and does not affect other predicates later on.
264 *
265 * The only other acceptable token is the predicate string.
266 *
267 * #4 A new entry into the program is added saving: the predicate and the
268 *    current value of "invert". The target is currently assigned to the
269 *    previous program index (this will not be its final value).
270 *
271 * #5 We now enter another loop and look at the next token. The only valid
272 *    tokens are ")", "&&", "||" or end of the input string "\0".
273 *
274 * #6 The invert variable is reset to the current value saved on the top of
275 *    the stack.
276 *
277 * #7 The top of the stack holds not only the current invert value, but also
278 *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
279 *    precedence than "||". That is "a && b || c && d" is equivalent to
280 *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
281 *    to be processed. This is the case if an "&&" was the last token. If it was
282 *    then we call update_preds(). This takes the program, the current index in
283 *    the program, and the current value of "invert".  More will be described
284 *    below about this function.
285 *
286 * #8 If the next token is "&&" then we set a flag in the top of the stack
287 *    that denotes that "&&" needs to be processed, break out of this loop
288 *    and continue with the outer loop.
289 *
290 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
291 *    This is called with the program, the current index in the program, but
292 *    this time with an inverted value of "invert" (that is !invert). This is
293 *    because the value taken will become the "when_to_branch" value of the
294 *    program.
295 *    Note, this is called when the next token is not an "&&". As stated before,
296 *    "&&" takes higher precedence, and "||" should not be processed yet if the
297 *    next logical operation is "&&".
298 *
299 * #10 If the next token is "||" then we set a flag in the top of the stack
300 *     that denotes that "||" needs to be processed, break out of this loop
301 *     and continue with the outer loop.
302 *
303 * #11 If this is the end of the input string "\0" then we break out of both
304 *     loops.
305 *
306 * #12 Otherwise, the next token is ")", where we pop the stack and continue
307 *     this inner loop.
308 *
309 * Now to discuss the update_pred() function, as that is key to the setting up
310 * of the program. Remember the "target" of the program is initialized to the
311 * previous index and not the "l" label. The target holds the index into the
312 * program that gets affected by the operand. Thus if we have something like
313 *  "a || b && c", when we process "a" the target will be "-1" (undefined).
314 * When we process "b", its target is "0", which is the index of "a", as that's
315 * the predicate that is affected by "||". But because the next token after "b"
316 * is "&&" we don't call update_preds(). Instead continue to "c". As the
317 * next token after "c" is not "&&" but the end of input, we first process the
318 * "&&" by calling update_preds() for the "&&" then we process the "||" by
319 * calling updates_preds() with the values for processing "||".
320 *
321 * What does that mean? What update_preds() does is to first save the "target"
322 * of the program entry indexed by the current program entry's "target"
323 * (remember the "target" is initialized to previous program entry), and then
324 * sets that "target" to the current index which represents the label "l#".
325 * That entry's "when_to_branch" is set to the value passed in (the "invert"
326 * or "!invert"). Then it sets the current program entry's target to the saved
327 * "target" value (the old value of the program that had its "target" updated
328 * to the label).
329 *
330 * Looking back at "a || b && c", we have the following steps:
331 *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
332 *  "||" - flag that we need to process "||"; continue outer loop
333 *  "b"  - prog[1] = { "b", X, 0 }
334 *  "&&" - flag that we need to process "&&"; continue outer loop
335 * (Notice we did not process "||")
336 *  "c"  - prog[2] = { "c", X, 1 }
337 *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
338 *    t = prog[2].target; // t = 1
339 *    s = prog[t].target; // s = 0
340 *    prog[t].target = 2; // Set target to "l2"
341 *    prog[t].when_to_branch = 0;
342 *    prog[2].target = s;
343 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
344 *    t = prog[2].target; // t = 0
345 *    s = prog[t].target; // s = -1
346 *    prog[t].target = 2; // Set target to "l2"
347 *    prog[t].when_to_branch = 1;
348 *    prog[2].target = s;
349 *
350 * #13 Which brings us to the final step of the first pass, which is to set
351 *     the last program entry's when_to_branch and target, which will be
352 *     when_to_branch = 0; target = N; ( the label after the program entry after
353 *     the last program entry processed above).
354 *
355 * If we denote "TRUE" to be the entry after the last program entry processed,
356 * and "FALSE" the program entry after that, we are now done with the first
357 * pass.
358 *
359 * Making the above "a || b && c" have a program of:
360 *  prog[0] = { "a", 1, 2 }
361 *  prog[1] = { "b", 0, 2 }
362 *  prog[2] = { "c", 0, 3 }
363 *
364 * Which translates into:
365 * n0: r = a; l0: if (r) goto l2;
366 * n1: r = b; l1: if (!r) goto l2;
367 * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
368 * T: return TRUE; l3:
369 * F: return FALSE
370 *
371 * Although, after the first pass, the program is correct, it is
372 * inefficient. The simple sample of "a || b && c" could be easily been
373 * converted into:
374 * n0: r = a; if (r) goto T
375 * n1: r = b; if (!r) goto F
376 * n2: r = c; if (!r) goto F
377 * T: return TRUE;
378 * F: return FALSE;
379 *
380 * The First Pass is over the input string. The next too passes are over
381 * the program itself.
382 *
383 * ** SECOND PASS **
384 *
385 * Which brings us to the second pass. If a jump to a label has the
386 * same condition as that label, it can instead jump to its target.
387 * The original example of "a && !(!b || (c && g)) || d || e && !f"
388 * where the first pass gives us:
389 *
390 * n1: r=a;       l1: if (!r) goto l4;
391 * n2: r=b;       l2: if (!r) goto l4;
392 * n3: r=c; r=!r; l3: if (r) goto l4;
393 * n4: r=g; r=!r; l4: if (r) goto l5;
394 * n5: r=d;       l5: if (r) goto T
395 * n6: r=e;       l6: if (!r) goto l7;
396 * n7: r=f; r=!r; l7: if (!r) goto F:
397 * T: return TRUE;
398 * F: return FALSE
399 *
400 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
401 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
402 * to go directly to T. To accomplish this, we start from the last
403 * entry in the program and work our way back. If the target of the entry
404 * has the same "when_to_branch" then we could use that entry's target.
405 * Doing this, the above would end up as:
406 *
407 * n1: r=a;       l1: if (!r) goto l4;
408 * n2: r=b;       l2: if (!r) goto l4;
409 * n3: r=c; r=!r; l3: if (r) goto T;
410 * n4: r=g; r=!r; l4: if (r) goto T;
411 * n5: r=d;       l5: if (r) goto T;
412 * n6: r=e;       l6: if (!r) goto F;
413 * n7: r=f; r=!r; l7: if (!r) goto F;
414 * T: return TRUE
415 * F: return FALSE
416 *
417 * In that same pass, if the "when_to_branch" doesn't match, we can simply
418 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
419 * where "l4: if (r) goto T;", then we can convert l2 to be:
420 * "l2: if (!r) goto n5;".
421 *
422 * This will have the second pass give us:
423 * n1: r=a;       l1: if (!r) goto n5;
424 * n2: r=b;       l2: if (!r) goto n5;
425 * n3: r=c; r=!r; l3: if (r) goto T;
426 * n4: r=g; r=!r; l4: if (r) goto T;
427 * n5: r=d;       l5: if (r) goto T
428 * n6: r=e;       l6: if (!r) goto F;
429 * n7: r=f; r=!r; l7: if (!r) goto F
430 * T: return TRUE
431 * F: return FALSE
432 *
433 * Notice, all the "l#" labels are no longer used, and they can now
434 * be discarded.
435 *
436 * ** THIRD PASS **
437 *
438 * For the third pass we deal with the inverts. As they simply just
439 * make the "when_to_branch" get inverted, a simple loop over the
440 * program to that does: "when_to_branch ^= invert;" will do the
441 * job, leaving us with:
442 * n1: r=a; if (!r) goto n5;
443 * n2: r=b; if (!r) goto n5;
444 * n3: r=c: if (!r) goto T;
445 * n4: r=g; if (!r) goto T;
446 * n5: r=d; if (r) goto T
447 * n6: r=e; if (!r) goto F;
448 * n7: r=f; if (r) goto F
449 * T: return TRUE
450 * F: return FALSE
451 *
452 * As "r = a; if (!r) goto n5;" is obviously the same as
453 * "if (!a) goto n5;" without doing anything we can interpret the
454 * program as:
455 * n1: if (!a) goto n5;
456 * n2: if (!b) goto n5;
457 * n3: if (!c) goto T;
458 * n4: if (!g) goto T;
459 * n5: if (d) goto T
460 * n6: if (!e) goto F;
461 * n7: if (f) goto F
462 * T: return TRUE
463 * F: return FALSE
464 *
465 * Since the inverts are discarded at the end, there's no reason to store
466 * them in the program array (and waste memory). A separate array to hold
467 * the inverts is used and freed at the end.
468 */
469static struct prog_entry *
470predicate_parse(const char *str, int nr_parens, int nr_preds,
471		parse_pred_fn parse_pred, void *data,
472		struct filter_parse_error *pe)
473{
474	struct prog_entry *prog_stack;
475	struct prog_entry *prog;
476	const char *ptr = str;
477	char *inverts = NULL;
478	int *op_stack;
479	int *top;
480	int invert = 0;
481	int ret = -ENOMEM;
482	int len;
483	int N = 0;
484	int i;
485
486	nr_preds += 2; /* For TRUE and FALSE */
487
488	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
489	if (!op_stack)
490		return ERR_PTR(-ENOMEM);
491	prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
492	if (!prog_stack) {
493		parse_error(pe, -ENOMEM, 0);
494		goto out_free;
495	}
496	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
497	if (!inverts) {
498		parse_error(pe, -ENOMEM, 0);
499		goto out_free;
500	}
501
502	top = op_stack;
503	prog = prog_stack;
504	*top = 0;
505
506	/* First pass */
507	while (*ptr) {						/* #1 */
508		const char *next = ptr++;
509
510		if (isspace(*next))
511			continue;
512
513		switch (*next) {
514		case '(':					/* #2 */
515			if (top - op_stack > nr_parens) {
516				ret = -EINVAL;
517				goto out_free;
518			}
519			*(++top) = invert;
520			continue;
521		case '!':					/* #3 */
522			if (!is_not(next))
523				break;
524			invert = !invert;
525			continue;
526		}
527
528		if (N >= nr_preds) {
529			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
530			goto out_free;
531		}
532
533		inverts[N] = invert;				/* #4 */
534		prog[N].target = N-1;
535
536		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
537		if (len < 0) {
538			ret = len;
539			goto out_free;
540		}
541		ptr = next + len;
542
543		N++;
544
545		ret = -1;
546		while (1) {					/* #5 */
547			next = ptr++;
548			if (isspace(*next))
549				continue;
550
551			switch (*next) {
552			case ')':
553			case '\0':
554				break;
555			case '&':
556			case '|':
557				/* accepting only "&&" or "||" */
558				if (next[1] == next[0]) {
559					ptr++;
560					break;
561				}
562				fallthrough;
563			default:
564				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
565					    next - str);
566				goto out_free;
567			}
568
569			invert = *top & INVERT;
570
571			if (*top & PROCESS_AND) {		/* #7 */
572				update_preds(prog, N - 1, invert);
573				*top &= ~PROCESS_AND;
574			}
575			if (*next == '&') {			/* #8 */
576				*top |= PROCESS_AND;
577				break;
578			}
579			if (*top & PROCESS_OR) {		/* #9 */
580				update_preds(prog, N - 1, !invert);
581				*top &= ~PROCESS_OR;
582			}
583			if (*next == '|') {			/* #10 */
584				*top |= PROCESS_OR;
585				break;
586			}
587			if (!*next)				/* #11 */
588				goto out;
589
590			if (top == op_stack) {
591				ret = -1;
592				/* Too few '(' */
593				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
594				goto out_free;
595			}
596			top--;					/* #12 */
597		}
598	}
599 out:
600	if (top != op_stack) {
601		/* Too many '(' */
602		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
603		goto out_free;
604	}
605
606	if (!N) {
607		/* No program? */
608		ret = -EINVAL;
609		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
610		goto out_free;
611	}
612
613	prog[N].pred = NULL;					/* #13 */
614	prog[N].target = 1;		/* TRUE */
615	prog[N+1].pred = NULL;
616	prog[N+1].target = 0;		/* FALSE */
617	prog[N-1].target = N;
618	prog[N-1].when_to_branch = false;
619
620	/* Second Pass */
621	for (i = N-1 ; i--; ) {
622		int target = prog[i].target;
623		if (prog[i].when_to_branch == prog[target].when_to_branch)
624			prog[i].target = prog[target].target;
625	}
626
627	/* Third Pass */
628	for (i = 0; i < N; i++) {
629		invert = inverts[i] ^ prog[i].when_to_branch;
630		prog[i].when_to_branch = invert;
631		/* Make sure the program always moves forward */
632		if (WARN_ON(prog[i].target <= i)) {
633			ret = -EINVAL;
634			goto out_free;
635		}
636	}
637
638	kfree(op_stack);
639	kfree(inverts);
640	return prog;
641out_free:
642	kfree(op_stack);
643	kfree(inverts);
644	if (prog_stack) {
645		for (i = 0; prog_stack[i].pred; i++)
646			free_predicate(prog_stack[i].pred);
647		kfree(prog_stack);
648	}
649	return ERR_PTR(ret);
650}
651
652static inline int
653do_filter_cpumask(int op, const struct cpumask *mask, const struct cpumask *cmp)
654{
655	switch (op) {
656	case OP_EQ:
657		return cpumask_equal(mask, cmp);
658	case OP_NE:
659		return !cpumask_equal(mask, cmp);
660	case OP_BAND:
661		return cpumask_intersects(mask, cmp);
662	default:
663		return 0;
664	}
665}
666
667/* Optimisation of do_filter_cpumask() for scalar fields */
668static inline int
669do_filter_scalar_cpumask(int op, unsigned int cpu, const struct cpumask *mask)
670{
671	/*
672	 * Per the weight-of-one cpumask optimisations, the mask passed in this
673	 * function has a weight >= 2, so it is never equal to a single scalar.
674	 */
675	switch (op) {
676	case OP_EQ:
677		return false;
678	case OP_NE:
679		return true;
680	case OP_BAND:
681		return cpumask_test_cpu(cpu, mask);
682	default:
683		return 0;
684	}
685}
686
687static inline int
688do_filter_cpumask_scalar(int op, const struct cpumask *mask, unsigned int cpu)
689{
690	switch (op) {
691	case OP_EQ:
692		return cpumask_test_cpu(cpu, mask) &&
693			cpumask_nth(1, mask) >= nr_cpu_ids;
694	case OP_NE:
695		return !cpumask_test_cpu(cpu, mask) ||
696			cpumask_nth(1, mask) < nr_cpu_ids;
697	case OP_BAND:
698		return cpumask_test_cpu(cpu, mask);
699	default:
700		return 0;
701	}
702}
703
704enum pred_cmp_types {
705	PRED_CMP_TYPE_NOP,
706	PRED_CMP_TYPE_LT,
707	PRED_CMP_TYPE_LE,
708	PRED_CMP_TYPE_GT,
709	PRED_CMP_TYPE_GE,
710	PRED_CMP_TYPE_BAND,
711};
712
713#define DEFINE_COMPARISON_PRED(type)					\
714static int filter_pred_##type(struct filter_pred *pred, void *event)	\
715{									\
716	switch (pred->op) {						\
717	case OP_LT: {							\
718		type *addr = (type *)(event + pred->offset);		\
719		type val = (type)pred->val;				\
720		return *addr < val;					\
721	}								\
722	case OP_LE: {					\
723		type *addr = (type *)(event + pred->offset);		\
724		type val = (type)pred->val;				\
725		return *addr <= val;					\
726	}								\
727	case OP_GT: {					\
728		type *addr = (type *)(event + pred->offset);		\
729		type val = (type)pred->val;				\
730		return *addr > val;					\
731	}								\
732	case OP_GE: {					\
733		type *addr = (type *)(event + pred->offset);		\
734		type val = (type)pred->val;				\
735		return *addr >= val;					\
736	}								\
737	case OP_BAND: {					\
738		type *addr = (type *)(event + pred->offset);		\
739		type val = (type)pred->val;				\
740		return !!(*addr & val);					\
741	}								\
742	default:							\
743		return 0;						\
744	}								\
745}
746
747#define DEFINE_CPUMASK_COMPARISON_PRED(size)					\
748static int filter_pred_##size##_cpumask(struct filter_pred *pred, void *event)	\
749{										\
750	u##size *addr = (u##size *)(event + pred->offset);			\
751	unsigned int cpu = *addr;						\
752										\
753	if (cpu >= nr_cpu_ids)							\
754		return 0;							\
755										\
756	return do_filter_scalar_cpumask(pred->op, cpu, pred->mask);		\
757}
758
759#define DEFINE_EQUALITY_PRED(size)					\
760static int filter_pred_##size(struct filter_pred *pred, void *event)	\
761{									\
762	u##size *addr = (u##size *)(event + pred->offset);		\
763	u##size val = (u##size)pred->val;				\
764	int match;							\
765									\
766	match = (val == *addr) ^ pred->not;				\
767									\
768	return match;							\
769}
770
771DEFINE_COMPARISON_PRED(s64);
772DEFINE_COMPARISON_PRED(u64);
773DEFINE_COMPARISON_PRED(s32);
774DEFINE_COMPARISON_PRED(u32);
775DEFINE_COMPARISON_PRED(s16);
776DEFINE_COMPARISON_PRED(u16);
777DEFINE_COMPARISON_PRED(s8);
778DEFINE_COMPARISON_PRED(u8);
779
780DEFINE_CPUMASK_COMPARISON_PRED(64);
781DEFINE_CPUMASK_COMPARISON_PRED(32);
782DEFINE_CPUMASK_COMPARISON_PRED(16);
783DEFINE_CPUMASK_COMPARISON_PRED(8);
784
785DEFINE_EQUALITY_PRED(64);
786DEFINE_EQUALITY_PRED(32);
787DEFINE_EQUALITY_PRED(16);
788DEFINE_EQUALITY_PRED(8);
789
790/* user space strings temp buffer */
791#define USTRING_BUF_SIZE	1024
792
793struct ustring_buffer {
794	char		buffer[USTRING_BUF_SIZE];
795};
796
797static __percpu struct ustring_buffer *ustring_per_cpu;
798
799static __always_inline char *test_string(char *str)
800{
801	struct ustring_buffer *ubuf;
802	char *kstr;
803
804	if (!ustring_per_cpu)
805		return NULL;
806
807	ubuf = this_cpu_ptr(ustring_per_cpu);
808	kstr = ubuf->buffer;
809
810	/* For safety, do not trust the string pointer */
811	if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
812		return NULL;
813	return kstr;
814}
815
816static __always_inline char *test_ustring(char *str)
817{
818	struct ustring_buffer *ubuf;
819	char __user *ustr;
820	char *kstr;
821
822	if (!ustring_per_cpu)
823		return NULL;
824
825	ubuf = this_cpu_ptr(ustring_per_cpu);
826	kstr = ubuf->buffer;
827
828	/* user space address? */
829	ustr = (char __user *)str;
830	if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
831		return NULL;
832
833	return kstr;
834}
835
836/* Filter predicate for fixed sized arrays of characters */
837static int filter_pred_string(struct filter_pred *pred, void *event)
838{
839	char *addr = (char *)(event + pred->offset);
840	int cmp, match;
841
842	cmp = pred->regex->match(addr, pred->regex, pred->regex->field_len);
843
844	match = cmp ^ pred->not;
845
846	return match;
847}
848
849static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
850{
851	int cmp, match;
852	int len;
853
854	len = strlen(str) + 1;	/* including tailing '\0' */
855	cmp = pred->regex->match(str, pred->regex, len);
856
857	match = cmp ^ pred->not;
858
859	return match;
860}
861/* Filter predicate for char * pointers */
862static int filter_pred_pchar(struct filter_pred *pred, void *event)
863{
864	char **addr = (char **)(event + pred->offset);
865	char *str;
866
867	str = test_string(*addr);
868	if (!str)
869		return 0;
870
871	return filter_pchar(pred, str);
872}
873
874/* Filter predicate for char * pointers in user space*/
875static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
876{
877	char **addr = (char **)(event + pred->offset);
878	char *str;
879
880	str = test_ustring(*addr);
881	if (!str)
882		return 0;
883
884	return filter_pchar(pred, str);
885}
886
887/*
888 * Filter predicate for dynamic sized arrays of characters.
889 * These are implemented through a list of strings at the end
890 * of the entry.
891 * Also each of these strings have a field in the entry which
892 * contains its offset from the beginning of the entry.
893 * We have then first to get this field, dereference it
894 * and add it to the address of the entry, and at last we have
895 * the address of the string.
896 */
897static int filter_pred_strloc(struct filter_pred *pred, void *event)
898{
899	u32 str_item = *(u32 *)(event + pred->offset);
900	int str_loc = str_item & 0xffff;
901	int str_len = str_item >> 16;
902	char *addr = (char *)(event + str_loc);
903	int cmp, match;
904
905	cmp = pred->regex->match(addr, pred->regex, str_len);
906
907	match = cmp ^ pred->not;
908
909	return match;
910}
911
912/*
913 * Filter predicate for relative dynamic sized arrays of characters.
914 * These are implemented through a list of strings at the end
915 * of the entry as same as dynamic string.
916 * The difference is that the relative one records the location offset
917 * from the field itself, not the event entry.
918 */
919static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
920{
921	u32 *item = (u32 *)(event + pred->offset);
922	u32 str_item = *item;
923	int str_loc = str_item & 0xffff;
924	int str_len = str_item >> 16;
925	char *addr = (char *)(&item[1]) + str_loc;
926	int cmp, match;
927
928	cmp = pred->regex->match(addr, pred->regex, str_len);
929
930	match = cmp ^ pred->not;
931
932	return match;
933}
934
935/* Filter predicate for CPUs. */
936static int filter_pred_cpu(struct filter_pred *pred, void *event)
937{
938	int cpu, cmp;
939
940	cpu = raw_smp_processor_id();
941	cmp = pred->val;
942
943	switch (pred->op) {
944	case OP_EQ:
945		return cpu == cmp;
946	case OP_NE:
947		return cpu != cmp;
948	case OP_LT:
949		return cpu < cmp;
950	case OP_LE:
951		return cpu <= cmp;
952	case OP_GT:
953		return cpu > cmp;
954	case OP_GE:
955		return cpu >= cmp;
956	default:
957		return 0;
958	}
959}
960
961/* Filter predicate for current CPU vs user-provided cpumask */
962static int filter_pred_cpu_cpumask(struct filter_pred *pred, void *event)
963{
964	int cpu = raw_smp_processor_id();
965
966	return do_filter_scalar_cpumask(pred->op, cpu, pred->mask);
967}
968
969/* Filter predicate for cpumask field vs user-provided cpumask */
970static int filter_pred_cpumask(struct filter_pred *pred, void *event)
971{
972	u32 item = *(u32 *)(event + pred->offset);
973	int loc = item & 0xffff;
974	const struct cpumask *mask = (event + loc);
975	const struct cpumask *cmp = pred->mask;
976
977	return do_filter_cpumask(pred->op, mask, cmp);
978}
979
980/* Filter predicate for cpumask field vs user-provided scalar  */
981static int filter_pred_cpumask_cpu(struct filter_pred *pred, void *event)
982{
983	u32 item = *(u32 *)(event + pred->offset);
984	int loc = item & 0xffff;
985	const struct cpumask *mask = (event + loc);
986	unsigned int cpu = pred->val;
987
988	return do_filter_cpumask_scalar(pred->op, mask, cpu);
989}
990
991/* Filter predicate for COMM. */
992static int filter_pred_comm(struct filter_pred *pred, void *event)
993{
994	int cmp;
995
996	cmp = pred->regex->match(current->comm, pred->regex,
997				TASK_COMM_LEN);
998	return cmp ^ pred->not;
999}
1000
1001/* Filter predicate for functions. */
1002static int filter_pred_function(struct filter_pred *pred, void *event)
1003{
1004	unsigned long *addr = (unsigned long *)(event + pred->offset);
1005	unsigned long start = (unsigned long)pred->val;
1006	unsigned long end = (unsigned long)pred->val2;
1007	int ret = *addr >= start && *addr < end;
1008
1009	return pred->op == OP_EQ ? ret : !ret;
1010}
1011
1012/*
1013 * regex_match_foo - Basic regex callbacks
1014 *
1015 * @str: the string to be searched
1016 * @r:   the regex structure containing the pattern string
1017 * @len: the length of the string to be searched (including '\0')
1018 *
1019 * Note:
1020 * - @str might not be NULL-terminated if it's of type DYN_STRING
1021 *   RDYN_STRING, or STATIC_STRING, unless @len is zero.
1022 */
1023
1024static int regex_match_full(char *str, struct regex *r, int len)
1025{
1026	/* len of zero means str is dynamic and ends with '\0' */
1027	if (!len)
1028		return strcmp(str, r->pattern) == 0;
1029
1030	return strncmp(str, r->pattern, len) == 0;
1031}
1032
1033static int regex_match_front(char *str, struct regex *r, int len)
1034{
1035	if (len && len < r->len)
1036		return 0;
1037
1038	return strncmp(str, r->pattern, r->len) == 0;
1039}
1040
1041static int regex_match_middle(char *str, struct regex *r, int len)
1042{
1043	if (!len)
1044		return strstr(str, r->pattern) != NULL;
1045
1046	return strnstr(str, r->pattern, len) != NULL;
1047}
1048
1049static int regex_match_end(char *str, struct regex *r, int len)
1050{
1051	int strlen = len - 1;
1052
1053	if (strlen >= r->len &&
1054	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
1055		return 1;
1056	return 0;
1057}
1058
1059static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
1060{
1061	if (glob_match(r->pattern, str))
1062		return 1;
1063	return 0;
1064}
1065
1066/**
1067 * filter_parse_regex - parse a basic regex
1068 * @buff:   the raw regex
1069 * @len:    length of the regex
1070 * @search: will point to the beginning of the string to compare
1071 * @not:    tell whether the match will have to be inverted
1072 *
1073 * This passes in a buffer containing a regex and this function will
1074 * set search to point to the search part of the buffer and
1075 * return the type of search it is (see enum above).
1076 * This does modify buff.
1077 *
1078 * Returns enum type.
1079 *  search returns the pointer to use for comparison.
1080 *  not returns 1 if buff started with a '!'
1081 *     0 otherwise.
1082 */
1083enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
1084{
1085	int type = MATCH_FULL;
1086	int i;
1087
1088	if (buff[0] == '!') {
1089		*not = 1;
1090		buff++;
1091		len--;
1092	} else
1093		*not = 0;
1094
1095	*search = buff;
1096
1097	if (isdigit(buff[0]))
1098		return MATCH_INDEX;
1099
1100	for (i = 0; i < len; i++) {
1101		if (buff[i] == '*') {
1102			if (!i) {
1103				type = MATCH_END_ONLY;
1104			} else if (i == len - 1) {
1105				if (type == MATCH_END_ONLY)
1106					type = MATCH_MIDDLE_ONLY;
1107				else
1108					type = MATCH_FRONT_ONLY;
1109				buff[i] = 0;
1110				break;
1111			} else {	/* pattern continues, use full glob */
1112				return MATCH_GLOB;
1113			}
1114		} else if (strchr("[?\\", buff[i])) {
1115			return MATCH_GLOB;
1116		}
1117	}
1118	if (buff[0] == '*')
1119		*search = buff + 1;
1120
1121	return type;
1122}
1123
1124static void filter_build_regex(struct filter_pred *pred)
1125{
1126	struct regex *r = pred->regex;
1127	char *search;
1128	enum regex_type type = MATCH_FULL;
1129
1130	if (pred->op == OP_GLOB) {
1131		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
1132		r->len = strlen(search);
1133		memmove(r->pattern, search, r->len+1);
1134	}
1135
1136	switch (type) {
1137	/* MATCH_INDEX should not happen, but if it does, match full */
1138	case MATCH_INDEX:
1139	case MATCH_FULL:
1140		r->match = regex_match_full;
1141		break;
1142	case MATCH_FRONT_ONLY:
1143		r->match = regex_match_front;
1144		break;
1145	case MATCH_MIDDLE_ONLY:
1146		r->match = regex_match_middle;
1147		break;
1148	case MATCH_END_ONLY:
1149		r->match = regex_match_end;
1150		break;
1151	case MATCH_GLOB:
1152		r->match = regex_match_glob;
1153		break;
1154	}
1155}
1156
1157
1158#ifdef CONFIG_FTRACE_STARTUP_TEST
1159static int test_pred_visited_fn(struct filter_pred *pred, void *event);
1160#else
1161static int test_pred_visited_fn(struct filter_pred *pred, void *event)
1162{
1163	return 0;
1164}
1165#endif
1166
1167
1168static int filter_pred_fn_call(struct filter_pred *pred, void *event);
1169
1170/* return 1 if event matches, 0 otherwise (discard) */
1171int filter_match_preds(struct event_filter *filter, void *rec)
1172{
1173	struct prog_entry *prog;
1174	int i;
1175
1176	/* no filter is considered a match */
1177	if (!filter)
1178		return 1;
1179
1180	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
1181	prog = rcu_dereference_raw(filter->prog);
1182	if (!prog)
1183		return 1;
1184
1185	for (i = 0; prog[i].pred; i++) {
1186		struct filter_pred *pred = prog[i].pred;
1187		int match = filter_pred_fn_call(pred, rec);
1188		if (match == prog[i].when_to_branch)
1189			i = prog[i].target;
1190	}
1191	return prog[i].target;
1192}
1193EXPORT_SYMBOL_GPL(filter_match_preds);
1194
1195static void remove_filter_string(struct event_filter *filter)
1196{
1197	if (!filter)
1198		return;
1199
1200	kfree(filter->filter_string);
1201	filter->filter_string = NULL;
1202}
1203
1204static void append_filter_err(struct trace_array *tr,
1205			      struct filter_parse_error *pe,
1206			      struct event_filter *filter)
1207{
1208	struct trace_seq *s;
1209	int pos = pe->lasterr_pos;
1210	char *buf;
1211	int len;
1212
1213	if (WARN_ON(!filter->filter_string))
1214		return;
1215
1216	s = kmalloc(sizeof(*s), GFP_KERNEL);
1217	if (!s)
1218		return;
1219	trace_seq_init(s);
1220
1221	len = strlen(filter->filter_string);
1222	if (pos > len)
1223		pos = len;
1224
1225	/* indexing is off by one */
1226	if (pos)
1227		pos++;
1228
1229	trace_seq_puts(s, filter->filter_string);
1230	if (pe->lasterr > 0) {
1231		trace_seq_printf(s, "\n%*s", pos, "^");
1232		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1233		tracing_log_err(tr, "event filter parse error",
1234				filter->filter_string, err_text,
1235				pe->lasterr, pe->lasterr_pos);
1236	} else {
1237		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1238		tracing_log_err(tr, "event filter parse error",
1239				filter->filter_string, err_text,
1240				FILT_ERR_ERRNO, 0);
1241	}
1242	trace_seq_putc(s, 0);
1243	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1244	if (buf) {
1245		kfree(filter->filter_string);
1246		filter->filter_string = buf;
1247	}
1248	kfree(s);
1249}
1250
1251static inline struct event_filter *event_filter(struct trace_event_file *file)
1252{
1253	return file->filter;
1254}
1255
1256/* caller must hold event_mutex */
1257void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1258{
1259	struct event_filter *filter = event_filter(file);
1260
1261	if (filter && filter->filter_string)
1262		trace_seq_printf(s, "%s\n", filter->filter_string);
1263	else
1264		trace_seq_puts(s, "none\n");
1265}
1266
1267void print_subsystem_event_filter(struct event_subsystem *system,
1268				  struct trace_seq *s)
1269{
1270	struct event_filter *filter;
1271
1272	mutex_lock(&event_mutex);
1273	filter = system->filter;
1274	if (filter && filter->filter_string)
1275		trace_seq_printf(s, "%s\n", filter->filter_string);
1276	else
1277		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1278	mutex_unlock(&event_mutex);
1279}
1280
1281static void free_prog(struct event_filter *filter)
1282{
1283	struct prog_entry *prog;
1284	int i;
1285
1286	prog = rcu_access_pointer(filter->prog);
1287	if (!prog)
1288		return;
1289
1290	for (i = 0; prog[i].pred; i++)
1291		free_predicate(prog[i].pred);
1292	kfree(prog);
1293}
1294
1295static void filter_disable(struct trace_event_file *file)
1296{
1297	unsigned long old_flags = file->flags;
1298
1299	file->flags &= ~EVENT_FILE_FL_FILTERED;
1300
1301	if (old_flags != file->flags)
1302		trace_buffered_event_disable();
1303}
1304
1305static void __free_filter(struct event_filter *filter)
1306{
1307	if (!filter)
1308		return;
1309
1310	free_prog(filter);
1311	kfree(filter->filter_string);
1312	kfree(filter);
1313}
1314
1315void free_event_filter(struct event_filter *filter)
1316{
1317	__free_filter(filter);
1318}
1319
1320static inline void __remove_filter(struct trace_event_file *file)
1321{
1322	filter_disable(file);
1323	remove_filter_string(file->filter);
1324}
1325
1326static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1327					struct trace_array *tr)
1328{
1329	struct trace_event_file *file;
1330
1331	list_for_each_entry(file, &tr->events, list) {
1332		if (file->system != dir)
1333			continue;
1334		__remove_filter(file);
1335	}
1336}
1337
1338static inline void __free_subsystem_filter(struct trace_event_file *file)
1339{
1340	__free_filter(file->filter);
1341	file->filter = NULL;
1342}
1343
1344static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1345					  struct trace_array *tr)
1346{
1347	struct trace_event_file *file;
1348
1349	list_for_each_entry(file, &tr->events, list) {
1350		if (file->system != dir)
1351			continue;
1352		__free_subsystem_filter(file);
1353	}
1354}
1355
1356int filter_assign_type(const char *type)
1357{
1358	if (strstr(type, "__data_loc")) {
1359		if (strstr(type, "char"))
1360			return FILTER_DYN_STRING;
1361		if (strstr(type, "cpumask_t"))
1362			return FILTER_CPUMASK;
1363	}
1364
1365	if (strstr(type, "__rel_loc") && strstr(type, "char"))
1366		return FILTER_RDYN_STRING;
1367
1368	if (strchr(type, '[') && strstr(type, "char"))
1369		return FILTER_STATIC_STRING;
1370
1371	if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1372		return FILTER_PTR_STRING;
1373
1374	return FILTER_OTHER;
1375}
1376
1377static enum filter_pred_fn select_comparison_fn(enum filter_op_ids op,
1378						int field_size, int field_is_signed)
1379{
1380	enum filter_pred_fn fn = FILTER_PRED_FN_NOP;
1381	int pred_func_index = -1;
1382
1383	switch (op) {
1384	case OP_EQ:
1385	case OP_NE:
1386		break;
1387	default:
1388		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1389			return fn;
1390		pred_func_index = op - PRED_FUNC_START;
1391		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1392			return fn;
1393	}
1394
1395	switch (field_size) {
1396	case 8:
1397		if (pred_func_index < 0)
1398			fn = FILTER_PRED_FN_64;
1399		else if (field_is_signed)
1400			fn = FILTER_PRED_FN_S64;
1401		else
1402			fn = FILTER_PRED_FN_U64;
1403		break;
1404	case 4:
1405		if (pred_func_index < 0)
1406			fn = FILTER_PRED_FN_32;
1407		else if (field_is_signed)
1408			fn = FILTER_PRED_FN_S32;
1409		else
1410			fn = FILTER_PRED_FN_U32;
1411		break;
1412	case 2:
1413		if (pred_func_index < 0)
1414			fn = FILTER_PRED_FN_16;
1415		else if (field_is_signed)
1416			fn = FILTER_PRED_FN_S16;
1417		else
1418			fn = FILTER_PRED_FN_U16;
1419		break;
1420	case 1:
1421		if (pred_func_index < 0)
1422			fn = FILTER_PRED_FN_8;
1423		else if (field_is_signed)
1424			fn = FILTER_PRED_FN_S8;
1425		else
1426			fn = FILTER_PRED_FN_U8;
1427		break;
1428	}
1429
1430	return fn;
1431}
1432
1433
1434static int filter_pred_fn_call(struct filter_pred *pred, void *event)
1435{
1436	switch (pred->fn_num) {
1437	case FILTER_PRED_FN_64:
1438		return filter_pred_64(pred, event);
1439	case FILTER_PRED_FN_64_CPUMASK:
1440		return filter_pred_64_cpumask(pred, event);
1441	case FILTER_PRED_FN_S64:
1442		return filter_pred_s64(pred, event);
1443	case FILTER_PRED_FN_U64:
1444		return filter_pred_u64(pred, event);
1445	case FILTER_PRED_FN_32:
1446		return filter_pred_32(pred, event);
1447	case FILTER_PRED_FN_32_CPUMASK:
1448		return filter_pred_32_cpumask(pred, event);
1449	case FILTER_PRED_FN_S32:
1450		return filter_pred_s32(pred, event);
1451	case FILTER_PRED_FN_U32:
1452		return filter_pred_u32(pred, event);
1453	case FILTER_PRED_FN_16:
1454		return filter_pred_16(pred, event);
1455	case FILTER_PRED_FN_16_CPUMASK:
1456		return filter_pred_16_cpumask(pred, event);
1457	case FILTER_PRED_FN_S16:
1458		return filter_pred_s16(pred, event);
1459	case FILTER_PRED_FN_U16:
1460		return filter_pred_u16(pred, event);
1461	case FILTER_PRED_FN_8:
1462		return filter_pred_8(pred, event);
1463	case FILTER_PRED_FN_8_CPUMASK:
1464		return filter_pred_8_cpumask(pred, event);
1465	case FILTER_PRED_FN_S8:
1466		return filter_pred_s8(pred, event);
1467	case FILTER_PRED_FN_U8:
1468		return filter_pred_u8(pred, event);
1469	case FILTER_PRED_FN_COMM:
1470		return filter_pred_comm(pred, event);
1471	case FILTER_PRED_FN_STRING:
1472		return filter_pred_string(pred, event);
1473	case FILTER_PRED_FN_STRLOC:
1474		return filter_pred_strloc(pred, event);
1475	case FILTER_PRED_FN_STRRELLOC:
1476		return filter_pred_strrelloc(pred, event);
1477	case FILTER_PRED_FN_PCHAR_USER:
1478		return filter_pred_pchar_user(pred, event);
1479	case FILTER_PRED_FN_PCHAR:
1480		return filter_pred_pchar(pred, event);
1481	case FILTER_PRED_FN_CPU:
1482		return filter_pred_cpu(pred, event);
1483	case FILTER_PRED_FN_CPU_CPUMASK:
1484		return filter_pred_cpu_cpumask(pred, event);
1485	case FILTER_PRED_FN_CPUMASK:
1486		return filter_pred_cpumask(pred, event);
1487	case FILTER_PRED_FN_CPUMASK_CPU:
1488		return filter_pred_cpumask_cpu(pred, event);
1489	case FILTER_PRED_FN_FUNCTION:
1490		return filter_pred_function(pred, event);
1491	case FILTER_PRED_TEST_VISITED:
1492		return test_pred_visited_fn(pred, event);
1493	default:
1494		return 0;
1495	}
1496}
1497
1498/* Called when a predicate is encountered by predicate_parse() */
1499static int parse_pred(const char *str, void *data,
1500		      int pos, struct filter_parse_error *pe,
1501		      struct filter_pred **pred_ptr)
1502{
1503	struct trace_event_call *call = data;
1504	struct ftrace_event_field *field;
1505	struct filter_pred *pred = NULL;
1506	unsigned long offset;
1507	unsigned long size;
1508	unsigned long ip;
1509	char num_buf[24];	/* Big enough to hold an address */
1510	char *field_name;
1511	char *name;
1512	bool function = false;
1513	bool ustring = false;
1514	char q;
1515	u64 val;
1516	int len;
1517	int ret;
1518	int op;
1519	int s;
1520	int i = 0;
1521
1522	/* First find the field to associate to */
1523	while (isspace(str[i]))
1524		i++;
1525	s = i;
1526
1527	while (isalnum(str[i]) || str[i] == '_')
1528		i++;
1529
1530	len = i - s;
1531
1532	if (!len)
1533		return -1;
1534
1535	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1536	if (!field_name)
1537		return -ENOMEM;
1538
1539	/* Make sure that the field exists */
1540
1541	field = trace_find_event_field(call, field_name);
1542	kfree(field_name);
1543	if (!field) {
1544		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1545		return -EINVAL;
1546	}
1547
1548	/* See if the field is a user space string */
1549	if ((len = str_has_prefix(str + i, ".ustring"))) {
1550		ustring = true;
1551		i += len;
1552	}
1553
1554	/* See if the field is a kernel function name */
1555	if ((len = str_has_prefix(str + i, ".function"))) {
1556		function = true;
1557		i += len;
1558	}
1559
1560	while (isspace(str[i]))
1561		i++;
1562
1563	/* Make sure this op is supported */
1564	for (op = 0; ops[op]; op++) {
1565		/* This is why '<=' must come before '<' in ops[] */
1566		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1567			break;
1568	}
1569
1570	if (!ops[op]) {
1571		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1572		goto err_free;
1573	}
1574
1575	i += strlen(ops[op]);
1576
1577	while (isspace(str[i]))
1578		i++;
1579
1580	s = i;
1581
1582	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1583	if (!pred)
1584		return -ENOMEM;
1585
1586	pred->field = field;
1587	pred->offset = field->offset;
1588	pred->op = op;
1589
1590	if (function) {
1591		/* The field must be the same size as long */
1592		if (field->size != sizeof(long)) {
1593			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1594			goto err_free;
1595		}
1596
1597		/* Function only works with '==' or '!=' and an unquoted string */
1598		switch (op) {
1599		case OP_NE:
1600		case OP_EQ:
1601			break;
1602		default:
1603			parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1604			goto err_free;
1605		}
1606
1607		if (isdigit(str[i])) {
1608			/* We allow 0xDEADBEEF */
1609			while (isalnum(str[i]))
1610				i++;
1611
1612			len = i - s;
1613			/* 0xfeedfacedeadbeef is 18 chars max */
1614			if (len >= sizeof(num_buf)) {
1615				parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1616				goto err_free;
1617			}
1618
1619			strncpy(num_buf, str + s, len);
1620			num_buf[len] = 0;
1621
1622			ret = kstrtoul(num_buf, 0, &ip);
1623			if (ret) {
1624				parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1625				goto err_free;
1626			}
1627		} else {
1628			s = i;
1629			for (; str[i] && !isspace(str[i]); i++)
1630				;
1631
1632			len = i - s;
1633			name = kmemdup_nul(str + s, len, GFP_KERNEL);
1634			if (!name)
1635				goto err_mem;
1636			ip = kallsyms_lookup_name(name);
1637			kfree(name);
1638			if (!ip) {
1639				parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1640				goto err_free;
1641			}
1642		}
1643
1644		/* Now find the function start and end address */
1645		if (!kallsyms_lookup_size_offset(ip, &size, &offset)) {
1646			parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1647			goto err_free;
1648		}
1649
1650		pred->fn_num = FILTER_PRED_FN_FUNCTION;
1651		pred->val = ip - offset;
1652		pred->val2 = pred->val + size;
1653
1654	} else if (ftrace_event_is_function(call)) {
1655		/*
1656		 * Perf does things different with function events.
1657		 * It only allows an "ip" field, and expects a string.
1658		 * But the string does not need to be surrounded by quotes.
1659		 * If it is a string, the assigned function as a nop,
1660		 * (perf doesn't use it) and grab everything.
1661		 */
1662		if (strcmp(field->name, "ip") != 0) {
1663			parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1664			goto err_free;
1665		}
1666		pred->fn_num = FILTER_PRED_FN_NOP;
1667
1668		/*
1669		 * Quotes are not required, but if they exist then we need
1670		 * to read them till we hit a matching one.
1671		 */
1672		if (str[i] == '\'' || str[i] == '"')
1673			q = str[i];
1674		else
1675			q = 0;
1676
1677		for (i++; str[i]; i++) {
1678			if (q && str[i] == q)
1679				break;
1680			if (!q && (str[i] == ')' || str[i] == '&' ||
1681				   str[i] == '|'))
1682				break;
1683		}
1684		/* Skip quotes */
1685		if (q)
1686			s++;
1687		len = i - s;
1688		if (len >= MAX_FILTER_STR_VAL) {
1689			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1690			goto err_free;
1691		}
1692
1693		pred->regex = kzalloc(sizeof(*pred->regex), GFP_KERNEL);
1694		if (!pred->regex)
1695			goto err_mem;
1696		pred->regex->len = len;
1697		strncpy(pred->regex->pattern, str + s, len);
1698		pred->regex->pattern[len] = 0;
1699
1700	} else if (!strncmp(str + i, "CPUS", 4)) {
1701		unsigned int maskstart;
1702		bool single;
1703		char *tmp;
1704
1705		switch (field->filter_type) {
1706		case FILTER_CPUMASK:
1707		case FILTER_CPU:
1708		case FILTER_OTHER:
1709			break;
1710		default:
1711			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1712			goto err_free;
1713		}
1714
1715		switch (op) {
1716		case OP_EQ:
1717		case OP_NE:
1718		case OP_BAND:
1719			break;
1720		default:
1721			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1722			goto err_free;
1723		}
1724
1725		/* Skip CPUS */
1726		i += 4;
1727		if (str[i++] != '{') {
1728			parse_error(pe, FILT_ERR_MISSING_BRACE_OPEN, pos + i);
1729			goto err_free;
1730		}
1731		maskstart = i;
1732
1733		/* Walk the cpulist until closing } */
1734		for (; str[i] && str[i] != '}'; i++)
1735			;
1736
1737		if (str[i] != '}') {
1738			parse_error(pe, FILT_ERR_MISSING_BRACE_CLOSE, pos + i);
1739			goto err_free;
1740		}
1741
1742		if (maskstart == i) {
1743			parse_error(pe, FILT_ERR_INVALID_CPULIST, pos + i);
1744			goto err_free;
1745		}
1746
1747		/* Copy the cpulist between { and } */
1748		tmp = kmalloc((i - maskstart) + 1, GFP_KERNEL);
1749		if (!tmp)
1750			goto err_mem;
1751
1752		strscpy(tmp, str + maskstart, (i - maskstart) + 1);
1753		pred->mask = kzalloc(cpumask_size(), GFP_KERNEL);
1754		if (!pred->mask) {
1755			kfree(tmp);
1756			goto err_mem;
1757		}
1758
1759		/* Now parse it */
1760		if (cpulist_parse(tmp, pred->mask)) {
1761			kfree(tmp);
1762			parse_error(pe, FILT_ERR_INVALID_CPULIST, pos + i);
1763			goto err_free;
1764		}
1765		kfree(tmp);
1766
1767		/* Move along */
1768		i++;
1769
1770		/*
1771		 * Optimisation: if the user-provided mask has a weight of one
1772		 * then we can treat it as a scalar input.
1773		 */
1774		single = cpumask_weight(pred->mask) == 1;
1775		if (single) {
1776			pred->val = cpumask_first(pred->mask);
1777			kfree(pred->mask);
1778			pred->mask = NULL;
1779		}
1780
1781		if (field->filter_type == FILTER_CPUMASK) {
1782			pred->fn_num = single ?
1783				FILTER_PRED_FN_CPUMASK_CPU :
1784				FILTER_PRED_FN_CPUMASK;
1785		} else if (field->filter_type == FILTER_CPU) {
1786			if (single) {
1787				if (pred->op == OP_BAND)
1788					pred->op = OP_EQ;
1789
1790				pred->fn_num = FILTER_PRED_FN_CPU;
1791			} else {
1792				pred->fn_num = FILTER_PRED_FN_CPU_CPUMASK;
1793			}
1794		} else if (single) {
1795			if (pred->op == OP_BAND)
1796				pred->op = OP_EQ;
1797
1798			pred->fn_num = select_comparison_fn(pred->op, field->size, false);
1799			if (pred->op == OP_NE)
1800				pred->not = 1;
1801		} else {
1802			switch (field->size) {
1803			case 8:
1804				pred->fn_num = FILTER_PRED_FN_64_CPUMASK;
1805				break;
1806			case 4:
1807				pred->fn_num = FILTER_PRED_FN_32_CPUMASK;
1808				break;
1809			case 2:
1810				pred->fn_num = FILTER_PRED_FN_16_CPUMASK;
1811				break;
1812			case 1:
1813				pred->fn_num = FILTER_PRED_FN_8_CPUMASK;
1814				break;
1815			}
1816		}
1817
1818	/* This is either a string, or an integer */
1819	} else if (str[i] == '\'' || str[i] == '"') {
1820		char q = str[i];
1821
1822		/* Make sure the op is OK for strings */
1823		switch (op) {
1824		case OP_NE:
1825			pred->not = 1;
1826			fallthrough;
1827		case OP_GLOB:
1828		case OP_EQ:
1829			break;
1830		default:
1831			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1832			goto err_free;
1833		}
1834
1835		/* Make sure the field is OK for strings */
1836		if (!is_string_field(field)) {
1837			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1838			goto err_free;
1839		}
1840
1841		for (i++; str[i]; i++) {
1842			if (str[i] == q)
1843				break;
1844		}
1845		if (!str[i]) {
1846			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1847			goto err_free;
1848		}
1849
1850		/* Skip quotes */
1851		s++;
1852		len = i - s;
1853		if (len >= MAX_FILTER_STR_VAL) {
1854			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1855			goto err_free;
1856		}
1857
1858		pred->regex = kzalloc(sizeof(*pred->regex), GFP_KERNEL);
1859		if (!pred->regex)
1860			goto err_mem;
1861		pred->regex->len = len;
1862		strncpy(pred->regex->pattern, str + s, len);
1863		pred->regex->pattern[len] = 0;
1864
1865		filter_build_regex(pred);
1866
1867		if (field->filter_type == FILTER_COMM) {
1868			pred->fn_num = FILTER_PRED_FN_COMM;
1869
1870		} else if (field->filter_type == FILTER_STATIC_STRING) {
1871			pred->fn_num = FILTER_PRED_FN_STRING;
1872			pred->regex->field_len = field->size;
1873
1874		} else if (field->filter_type == FILTER_DYN_STRING) {
1875			pred->fn_num = FILTER_PRED_FN_STRLOC;
1876		} else if (field->filter_type == FILTER_RDYN_STRING)
1877			pred->fn_num = FILTER_PRED_FN_STRRELLOC;
1878		else {
1879
1880			if (!ustring_per_cpu) {
1881				/* Once allocated, keep it around for good */
1882				ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1883				if (!ustring_per_cpu)
1884					goto err_mem;
1885			}
1886
1887			if (ustring)
1888				pred->fn_num = FILTER_PRED_FN_PCHAR_USER;
1889			else
1890				pred->fn_num = FILTER_PRED_FN_PCHAR;
1891		}
1892		/* go past the last quote */
1893		i++;
1894
1895	} else if (isdigit(str[i]) || str[i] == '-') {
1896
1897		/* Make sure the field is not a string */
1898		if (is_string_field(field)) {
1899			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1900			goto err_free;
1901		}
1902
1903		if (op == OP_GLOB) {
1904			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1905			goto err_free;
1906		}
1907
1908		if (str[i] == '-')
1909			i++;
1910
1911		/* We allow 0xDEADBEEF */
1912		while (isalnum(str[i]))
1913			i++;
1914
1915		len = i - s;
1916		/* 0xfeedfacedeadbeef is 18 chars max */
1917		if (len >= sizeof(num_buf)) {
1918			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1919			goto err_free;
1920		}
1921
1922		strncpy(num_buf, str + s, len);
1923		num_buf[len] = 0;
1924
1925		/* Make sure it is a value */
1926		if (field->is_signed)
1927			ret = kstrtoll(num_buf, 0, &val);
1928		else
1929			ret = kstrtoull(num_buf, 0, &val);
1930		if (ret) {
1931			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1932			goto err_free;
1933		}
1934
1935		pred->val = val;
1936
1937		if (field->filter_type == FILTER_CPU)
1938			pred->fn_num = FILTER_PRED_FN_CPU;
1939		else {
1940			pred->fn_num = select_comparison_fn(pred->op, field->size,
1941							    field->is_signed);
1942			if (pred->op == OP_NE)
1943				pred->not = 1;
1944		}
1945
1946	} else {
1947		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1948		goto err_free;
1949	}
1950
1951	*pred_ptr = pred;
1952	return i;
1953
1954err_free:
1955	free_predicate(pred);
1956	return -EINVAL;
1957err_mem:
1958	free_predicate(pred);
1959	return -ENOMEM;
1960}
1961
1962enum {
1963	TOO_MANY_CLOSE		= -1,
1964	TOO_MANY_OPEN		= -2,
1965	MISSING_QUOTE		= -3,
1966};
1967
1968/*
1969 * Read the filter string once to calculate the number of predicates
1970 * as well as how deep the parentheses go.
1971 *
1972 * Returns:
1973 *   0 - everything is fine (err is undefined)
1974 *  -1 - too many ')'
1975 *  -2 - too many '('
1976 *  -3 - No matching quote
1977 */
1978static int calc_stack(const char *str, int *parens, int *preds, int *err)
1979{
1980	bool is_pred = false;
1981	int nr_preds = 0;
1982	int open = 1; /* Count the expression as "(E)" */
1983	int last_quote = 0;
1984	int max_open = 1;
1985	int quote = 0;
1986	int i;
1987
1988	*err = 0;
1989
1990	for (i = 0; str[i]; i++) {
1991		if (isspace(str[i]))
1992			continue;
1993		if (quote) {
1994			if (str[i] == quote)
1995			       quote = 0;
1996			continue;
1997		}
1998
1999		switch (str[i]) {
2000		case '\'':
2001		case '"':
2002			quote = str[i];
2003			last_quote = i;
2004			break;
2005		case '|':
2006		case '&':
2007			if (str[i+1] != str[i])
2008				break;
2009			is_pred = false;
2010			continue;
2011		case '(':
2012			is_pred = false;
2013			open++;
2014			if (open > max_open)
2015				max_open = open;
2016			continue;
2017		case ')':
2018			is_pred = false;
2019			if (open == 1) {
2020				*err = i;
2021				return TOO_MANY_CLOSE;
2022			}
2023			open--;
2024			continue;
2025		}
2026		if (!is_pred) {
2027			nr_preds++;
2028			is_pred = true;
2029		}
2030	}
2031
2032	if (quote) {
2033		*err = last_quote;
2034		return MISSING_QUOTE;
2035	}
2036
2037	if (open != 1) {
2038		int level = open;
2039
2040		/* find the bad open */
2041		for (i--; i; i--) {
2042			if (quote) {
2043				if (str[i] == quote)
2044					quote = 0;
2045				continue;
2046			}
2047			switch (str[i]) {
2048			case '(':
2049				if (level == open) {
2050					*err = i;
2051					return TOO_MANY_OPEN;
2052				}
2053				level--;
2054				break;
2055			case ')':
2056				level++;
2057				break;
2058			case '\'':
2059			case '"':
2060				quote = str[i];
2061				break;
2062			}
2063		}
2064		/* First character is the '(' with missing ')' */
2065		*err = 0;
2066		return TOO_MANY_OPEN;
2067	}
2068
2069	/* Set the size of the required stacks */
2070	*parens = max_open;
2071	*preds = nr_preds;
2072	return 0;
2073}
2074
2075static int process_preds(struct trace_event_call *call,
2076			 const char *filter_string,
2077			 struct event_filter *filter,
2078			 struct filter_parse_error *pe)
2079{
2080	struct prog_entry *prog;
2081	int nr_parens;
2082	int nr_preds;
2083	int index;
2084	int ret;
2085
2086	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
2087	if (ret < 0) {
2088		switch (ret) {
2089		case MISSING_QUOTE:
2090			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
2091			break;
2092		case TOO_MANY_OPEN:
2093			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
2094			break;
2095		default:
2096			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
2097		}
2098		return ret;
2099	}
2100
2101	if (!nr_preds)
2102		return -EINVAL;
2103
2104	prog = predicate_parse(filter_string, nr_parens, nr_preds,
2105			       parse_pred, call, pe);
2106	if (IS_ERR(prog))
2107		return PTR_ERR(prog);
2108
2109	rcu_assign_pointer(filter->prog, prog);
2110	return 0;
2111}
2112
2113static inline void event_set_filtered_flag(struct trace_event_file *file)
2114{
2115	unsigned long old_flags = file->flags;
2116
2117	file->flags |= EVENT_FILE_FL_FILTERED;
2118
2119	if (old_flags != file->flags)
2120		trace_buffered_event_enable();
2121}
2122
2123static inline void event_set_filter(struct trace_event_file *file,
2124				    struct event_filter *filter)
2125{
2126	rcu_assign_pointer(file->filter, filter);
2127}
2128
2129static inline void event_clear_filter(struct trace_event_file *file)
2130{
2131	RCU_INIT_POINTER(file->filter, NULL);
2132}
2133
2134struct filter_list {
2135	struct list_head	list;
2136	struct event_filter	*filter;
2137};
2138
2139static int process_system_preds(struct trace_subsystem_dir *dir,
2140				struct trace_array *tr,
2141				struct filter_parse_error *pe,
2142				char *filter_string)
2143{
2144	struct trace_event_file *file;
2145	struct filter_list *filter_item;
2146	struct event_filter *filter = NULL;
2147	struct filter_list *tmp;
2148	LIST_HEAD(filter_list);
2149	bool fail = true;
2150	int err;
2151
2152	list_for_each_entry(file, &tr->events, list) {
2153
2154		if (file->system != dir)
2155			continue;
2156
2157		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2158		if (!filter)
2159			goto fail_mem;
2160
2161		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
2162		if (!filter->filter_string)
2163			goto fail_mem;
2164
2165		err = process_preds(file->event_call, filter_string, filter, pe);
2166		if (err) {
2167			filter_disable(file);
2168			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
2169			append_filter_err(tr, pe, filter);
2170		} else
2171			event_set_filtered_flag(file);
2172
2173
2174		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
2175		if (!filter_item)
2176			goto fail_mem;
2177
2178		list_add_tail(&filter_item->list, &filter_list);
2179		/*
2180		 * Regardless of if this returned an error, we still
2181		 * replace the filter for the call.
2182		 */
2183		filter_item->filter = event_filter(file);
2184		event_set_filter(file, filter);
2185		filter = NULL;
2186
2187		fail = false;
2188	}
2189
2190	if (fail)
2191		goto fail;
2192
2193	/*
2194	 * The calls can still be using the old filters.
2195	 * Do a synchronize_rcu() and to ensure all calls are
2196	 * done with them before we free them.
2197	 */
2198	tracepoint_synchronize_unregister();
2199	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
2200		__free_filter(filter_item->filter);
2201		list_del(&filter_item->list);
2202		kfree(filter_item);
2203	}
2204	return 0;
2205 fail:
2206	/* No call succeeded */
2207	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
2208		list_del(&filter_item->list);
2209		kfree(filter_item);
2210	}
2211	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
2212	return -EINVAL;
2213 fail_mem:
2214	__free_filter(filter);
2215	/* If any call succeeded, we still need to sync */
2216	if (!fail)
2217		tracepoint_synchronize_unregister();
2218	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
2219		__free_filter(filter_item->filter);
2220		list_del(&filter_item->list);
2221		kfree(filter_item);
2222	}
2223	return -ENOMEM;
2224}
2225
2226static int create_filter_start(char *filter_string, bool set_str,
2227			       struct filter_parse_error **pse,
2228			       struct event_filter **filterp)
2229{
2230	struct event_filter *filter;
2231	struct filter_parse_error *pe = NULL;
2232	int err = 0;
2233
2234	if (WARN_ON_ONCE(*pse || *filterp))
2235		return -EINVAL;
2236
2237	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2238	if (filter && set_str) {
2239		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
2240		if (!filter->filter_string)
2241			err = -ENOMEM;
2242	}
2243
2244	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2245
2246	if (!filter || !pe || err) {
2247		kfree(pe);
2248		__free_filter(filter);
2249		return -ENOMEM;
2250	}
2251
2252	/* we're committed to creating a new filter */
2253	*filterp = filter;
2254	*pse = pe;
2255
2256	return 0;
2257}
2258
2259static void create_filter_finish(struct filter_parse_error *pe)
2260{
2261	kfree(pe);
2262}
2263
2264/**
2265 * create_filter - create a filter for a trace_event_call
2266 * @tr: the trace array associated with these events
2267 * @call: trace_event_call to create a filter for
2268 * @filter_string: filter string
2269 * @set_str: remember @filter_str and enable detailed error in filter
2270 * @filterp: out param for created filter (always updated on return)
2271 *           Must be a pointer that references a NULL pointer.
2272 *
2273 * Creates a filter for @call with @filter_str.  If @set_str is %true,
2274 * @filter_str is copied and recorded in the new filter.
2275 *
2276 * On success, returns 0 and *@filterp points to the new filter.  On
2277 * failure, returns -errno and *@filterp may point to %NULL or to a new
2278 * filter.  In the latter case, the returned filter contains error
2279 * information if @set_str is %true and the caller is responsible for
2280 * freeing it.
2281 */
2282static int create_filter(struct trace_array *tr,
2283			 struct trace_event_call *call,
2284			 char *filter_string, bool set_str,
2285			 struct event_filter **filterp)
2286{
2287	struct filter_parse_error *pe = NULL;
2288	int err;
2289
2290	/* filterp must point to NULL */
2291	if (WARN_ON(*filterp))
2292		*filterp = NULL;
2293
2294	err = create_filter_start(filter_string, set_str, &pe, filterp);
2295	if (err)
2296		return err;
2297
2298	err = process_preds(call, filter_string, *filterp, pe);
2299	if (err && set_str)
2300		append_filter_err(tr, pe, *filterp);
2301	create_filter_finish(pe);
2302
2303	return err;
2304}
2305
2306int create_event_filter(struct trace_array *tr,
2307			struct trace_event_call *call,
2308			char *filter_str, bool set_str,
2309			struct event_filter **filterp)
2310{
2311	return create_filter(tr, call, filter_str, set_str, filterp);
2312}
2313
2314/**
2315 * create_system_filter - create a filter for an event subsystem
2316 * @dir: the descriptor for the subsystem directory
2317 * @filter_str: filter string
2318 * @filterp: out param for created filter (always updated on return)
2319 *
2320 * Identical to create_filter() except that it creates a subsystem filter
2321 * and always remembers @filter_str.
2322 */
2323static int create_system_filter(struct trace_subsystem_dir *dir,
2324				char *filter_str, struct event_filter **filterp)
2325{
2326	struct filter_parse_error *pe = NULL;
2327	int err;
2328
2329	err = create_filter_start(filter_str, true, &pe, filterp);
2330	if (!err) {
2331		err = process_system_preds(dir, dir->tr, pe, filter_str);
2332		if (!err) {
2333			/* System filters just show a default message */
2334			kfree((*filterp)->filter_string);
2335			(*filterp)->filter_string = NULL;
2336		} else {
2337			append_filter_err(dir->tr, pe, *filterp);
2338		}
2339	}
2340	create_filter_finish(pe);
2341
2342	return err;
2343}
2344
2345/* caller must hold event_mutex */
2346int apply_event_filter(struct trace_event_file *file, char *filter_string)
2347{
2348	struct trace_event_call *call = file->event_call;
2349	struct event_filter *filter = NULL;
2350	int err;
2351
2352	if (file->flags & EVENT_FILE_FL_FREED)
2353		return -ENODEV;
2354
2355	if (!strcmp(strstrip(filter_string), "0")) {
2356		filter_disable(file);
2357		filter = event_filter(file);
2358
2359		if (!filter)
2360			return 0;
2361
2362		event_clear_filter(file);
2363
2364		/* Make sure the filter is not being used */
2365		tracepoint_synchronize_unregister();
2366		__free_filter(filter);
2367
2368		return 0;
2369	}
2370
2371	err = create_filter(file->tr, call, filter_string, true, &filter);
2372
2373	/*
2374	 * Always swap the call filter with the new filter
2375	 * even if there was an error. If there was an error
2376	 * in the filter, we disable the filter and show the error
2377	 * string
2378	 */
2379	if (filter) {
2380		struct event_filter *tmp;
2381
2382		tmp = event_filter(file);
2383		if (!err)
2384			event_set_filtered_flag(file);
2385		else
2386			filter_disable(file);
2387
2388		event_set_filter(file, filter);
2389
2390		if (tmp) {
2391			/* Make sure the call is done with the filter */
2392			tracepoint_synchronize_unregister();
2393			__free_filter(tmp);
2394		}
2395	}
2396
2397	return err;
2398}
2399
2400int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
2401				 char *filter_string)
2402{
2403	struct event_subsystem *system = dir->subsystem;
2404	struct trace_array *tr = dir->tr;
2405	struct event_filter *filter = NULL;
2406	int err = 0;
2407
2408	mutex_lock(&event_mutex);
2409
2410	/* Make sure the system still has events */
2411	if (!dir->nr_events) {
2412		err = -ENODEV;
2413		goto out_unlock;
2414	}
2415
2416	if (!strcmp(strstrip(filter_string), "0")) {
2417		filter_free_subsystem_preds(dir, tr);
2418		remove_filter_string(system->filter);
2419		filter = system->filter;
2420		system->filter = NULL;
2421		/* Ensure all filters are no longer used */
2422		tracepoint_synchronize_unregister();
2423		filter_free_subsystem_filters(dir, tr);
2424		__free_filter(filter);
2425		goto out_unlock;
2426	}
2427
2428	err = create_system_filter(dir, filter_string, &filter);
2429	if (filter) {
2430		/*
2431		 * No event actually uses the system filter
2432		 * we can free it without synchronize_rcu().
2433		 */
2434		__free_filter(system->filter);
2435		system->filter = filter;
2436	}
2437out_unlock:
2438	mutex_unlock(&event_mutex);
2439
2440	return err;
2441}
2442
2443#ifdef CONFIG_PERF_EVENTS
2444
2445void ftrace_profile_free_filter(struct perf_event *event)
2446{
2447	struct event_filter *filter = event->filter;
2448
2449	event->filter = NULL;
2450	__free_filter(filter);
2451}
2452
2453struct function_filter_data {
2454	struct ftrace_ops *ops;
2455	int first_filter;
2456	int first_notrace;
2457};
2458
2459#ifdef CONFIG_FUNCTION_TRACER
2460static char **
2461ftrace_function_filter_re(char *buf, int len, int *count)
2462{
2463	char *str, **re;
2464
2465	str = kstrndup(buf, len, GFP_KERNEL);
2466	if (!str)
2467		return NULL;
2468
2469	/*
2470	 * The argv_split function takes white space
2471	 * as a separator, so convert ',' into spaces.
2472	 */
2473	strreplace(str, ',', ' ');
2474
2475	re = argv_split(GFP_KERNEL, str, count);
2476	kfree(str);
2477	return re;
2478}
2479
2480static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2481				      int reset, char *re, int len)
2482{
2483	int ret;
2484
2485	if (filter)
2486		ret = ftrace_set_filter(ops, re, len, reset);
2487	else
2488		ret = ftrace_set_notrace(ops, re, len, reset);
2489
2490	return ret;
2491}
2492
2493static int __ftrace_function_set_filter(int filter, char *buf, int len,
2494					struct function_filter_data *data)
2495{
2496	int i, re_cnt, ret = -EINVAL;
2497	int *reset;
2498	char **re;
2499
2500	reset = filter ? &data->first_filter : &data->first_notrace;
2501
2502	/*
2503	 * The 'ip' field could have multiple filters set, separated
2504	 * either by space or comma. We first cut the filter and apply
2505	 * all pieces separately.
2506	 */
2507	re = ftrace_function_filter_re(buf, len, &re_cnt);
2508	if (!re)
2509		return -EINVAL;
2510
2511	for (i = 0; i < re_cnt; i++) {
2512		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2513						 re[i], strlen(re[i]));
2514		if (ret)
2515			break;
2516
2517		if (*reset)
2518			*reset = 0;
2519	}
2520
2521	argv_free(re);
2522	return ret;
2523}
2524
2525static int ftrace_function_check_pred(struct filter_pred *pred)
2526{
2527	struct ftrace_event_field *field = pred->field;
2528
2529	/*
2530	 * Check the predicate for function trace, verify:
2531	 *  - only '==' and '!=' is used
2532	 *  - the 'ip' field is used
2533	 */
2534	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2535		return -EINVAL;
2536
2537	if (strcmp(field->name, "ip"))
2538		return -EINVAL;
2539
2540	return 0;
2541}
2542
2543static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2544					   struct function_filter_data *data)
2545{
2546	int ret;
2547
2548	/* Checking the node is valid for function trace. */
2549	ret = ftrace_function_check_pred(pred);
2550	if (ret)
2551		return ret;
2552
2553	return __ftrace_function_set_filter(pred->op == OP_EQ,
2554					    pred->regex->pattern,
2555					    pred->regex->len,
2556					    data);
2557}
2558
2559static bool is_or(struct prog_entry *prog, int i)
2560{
2561	int target;
2562
2563	/*
2564	 * Only "||" is allowed for function events, thus,
2565	 * all true branches should jump to true, and any
2566	 * false branch should jump to false.
2567	 */
2568	target = prog[i].target + 1;
2569	/* True and false have NULL preds (all prog entries should jump to one */
2570	if (prog[target].pred)
2571		return false;
2572
2573	/* prog[target].target is 1 for TRUE, 0 for FALSE */
2574	return prog[i].when_to_branch == prog[target].target;
2575}
2576
2577static int ftrace_function_set_filter(struct perf_event *event,
2578				      struct event_filter *filter)
2579{
2580	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2581						lockdep_is_held(&event_mutex));
2582	struct function_filter_data data = {
2583		.first_filter  = 1,
2584		.first_notrace = 1,
2585		.ops           = &event->ftrace_ops,
2586	};
2587	int i;
2588
2589	for (i = 0; prog[i].pred; i++) {
2590		struct filter_pred *pred = prog[i].pred;
2591
2592		if (!is_or(prog, i))
2593			return -EINVAL;
2594
2595		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2596			return -EINVAL;
2597	}
2598	return 0;
2599}
2600#else
2601static int ftrace_function_set_filter(struct perf_event *event,
2602				      struct event_filter *filter)
2603{
2604	return -ENODEV;
2605}
2606#endif /* CONFIG_FUNCTION_TRACER */
2607
2608int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2609			      char *filter_str)
2610{
2611	int err;
2612	struct event_filter *filter = NULL;
2613	struct trace_event_call *call;
2614
2615	mutex_lock(&event_mutex);
2616
2617	call = event->tp_event;
2618
2619	err = -EINVAL;
2620	if (!call)
2621		goto out_unlock;
2622
2623	err = -EEXIST;
2624	if (event->filter)
2625		goto out_unlock;
2626
2627	err = create_filter(NULL, call, filter_str, false, &filter);
2628	if (err)
2629		goto free_filter;
2630
2631	if (ftrace_event_is_function(call))
2632		err = ftrace_function_set_filter(event, filter);
2633	else
2634		event->filter = filter;
2635
2636free_filter:
2637	if (err || ftrace_event_is_function(call))
2638		__free_filter(filter);
2639
2640out_unlock:
2641	mutex_unlock(&event_mutex);
2642
2643	return err;
2644}
2645
2646#endif /* CONFIG_PERF_EVENTS */
2647
2648#ifdef CONFIG_FTRACE_STARTUP_TEST
2649
2650#include <linux/types.h>
2651#include <linux/tracepoint.h>
2652
2653#define CREATE_TRACE_POINTS
2654#include "trace_events_filter_test.h"
2655
2656#define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2657{ \
2658	.filter = FILTER, \
2659	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2660		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2661	.match  = m, \
2662	.not_visited = nvisit, \
2663}
2664#define YES 1
2665#define NO  0
2666
2667static struct test_filter_data_t {
2668	char *filter;
2669	struct trace_event_raw_ftrace_test_filter rec;
2670	int match;
2671	char *not_visited;
2672} test_filter_data[] = {
2673#define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2674	       "e == 1 && f == 1 && g == 1 && h == 1"
2675	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2676	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2677	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2678#undef FILTER
2679#define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2680	       "e == 1 || f == 1 || g == 1 || h == 1"
2681	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2682	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2683	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2684#undef FILTER
2685#define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2686	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2687	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2688	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2689	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2690	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2691#undef FILTER
2692#define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2693	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2694	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2695	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2696	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2697#undef FILTER
2698#define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2699	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2700	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2701	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2702	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2703#undef FILTER
2704#define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2705	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2706	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2707	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2708	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2709#undef FILTER
2710#define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2711	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2712	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2713	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2714	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2715#undef FILTER
2716#define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2717	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2718	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2719	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2720	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2721};
2722
2723#undef DATA_REC
2724#undef FILTER
2725#undef YES
2726#undef NO
2727
2728#define DATA_CNT ARRAY_SIZE(test_filter_data)
2729
2730static int test_pred_visited;
2731
2732static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2733{
2734	struct ftrace_event_field *field = pred->field;
2735
2736	test_pred_visited = 1;
2737	printk(KERN_INFO "\npred visited %s\n", field->name);
2738	return 1;
2739}
2740
2741static void update_pred_fn(struct event_filter *filter, char *fields)
2742{
2743	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2744						lockdep_is_held(&event_mutex));
2745	int i;
2746
2747	for (i = 0; prog[i].pred; i++) {
2748		struct filter_pred *pred = prog[i].pred;
2749		struct ftrace_event_field *field = pred->field;
2750
2751		WARN_ON_ONCE(pred->fn_num == FILTER_PRED_FN_NOP);
2752
2753		if (!field) {
2754			WARN_ONCE(1, "all leafs should have field defined %d", i);
2755			continue;
2756		}
2757
2758		if (!strchr(fields, *field->name))
2759			continue;
2760
2761		pred->fn_num = FILTER_PRED_TEST_VISITED;
2762	}
2763}
2764
2765static __init int ftrace_test_event_filter(void)
2766{
2767	int i;
2768
2769	printk(KERN_INFO "Testing ftrace filter: ");
2770
2771	for (i = 0; i < DATA_CNT; i++) {
2772		struct event_filter *filter = NULL;
2773		struct test_filter_data_t *d = &test_filter_data[i];
2774		int err;
2775
2776		err = create_filter(NULL, &event_ftrace_test_filter,
2777				    d->filter, false, &filter);
2778		if (err) {
2779			printk(KERN_INFO
2780			       "Failed to get filter for '%s', err %d\n",
2781			       d->filter, err);
2782			__free_filter(filter);
2783			break;
2784		}
2785
2786		/* Needed to dereference filter->prog */
2787		mutex_lock(&event_mutex);
2788		/*
2789		 * The preemption disabling is not really needed for self
2790		 * tests, but the rcu dereference will complain without it.
2791		 */
2792		preempt_disable();
2793		if (*d->not_visited)
2794			update_pred_fn(filter, d->not_visited);
2795
2796		test_pred_visited = 0;
2797		err = filter_match_preds(filter, &d->rec);
2798		preempt_enable();
2799
2800		mutex_unlock(&event_mutex);
2801
2802		__free_filter(filter);
2803
2804		if (test_pred_visited) {
2805			printk(KERN_INFO
2806			       "Failed, unwanted pred visited for filter %s\n",
2807			       d->filter);
2808			break;
2809		}
2810
2811		if (err != d->match) {
2812			printk(KERN_INFO
2813			       "Failed to match filter '%s', expected %d\n",
2814			       d->filter, d->match);
2815			break;
2816		}
2817	}
2818
2819	if (i == DATA_CNT)
2820		printk(KERN_CONT "OK\n");
2821
2822	return 0;
2823}
2824
2825late_initcall(ftrace_test_event_filter);
2826
2827#endif /* CONFIG_FTRACE_STARTUP_TEST */
2828