1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7#include <linux/trace_recursion.h>
8#include <linux/trace_events.h>
9#include <linux/ring_buffer.h>
10#include <linux/trace_clock.h>
11#include <linux/sched/clock.h>
12#include <linux/trace_seq.h>
13#include <linux/spinlock.h>
14#include <linux/irq_work.h>
15#include <linux/security.h>
16#include <linux/uaccess.h>
17#include <linux/hardirq.h>
18#include <linux/kthread.h>	/* for self test */
19#include <linux/module.h>
20#include <linux/percpu.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/hash.h>
26#include <linux/list.h>
27#include <linux/cpu.h>
28#include <linux/oom.h>
29
30#include <asm/local64.h>
31#include <asm/local.h>
32
33/*
34 * The "absolute" timestamp in the buffer is only 59 bits.
35 * If a clock has the 5 MSBs set, it needs to be saved and
36 * reinserted.
37 */
38#define TS_MSB		(0xf8ULL << 56)
39#define ABS_TS_MASK	(~TS_MSB)
40
41static void update_pages_handler(struct work_struct *work);
42
43/*
44 * The ring buffer header is special. We must manually up keep it.
45 */
46int ring_buffer_print_entry_header(struct trace_seq *s)
47{
48	trace_seq_puts(s, "# compressed entry header\n");
49	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
50	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
51	trace_seq_puts(s, "\tarray       :   32 bits\n");
52	trace_seq_putc(s, '\n');
53	trace_seq_printf(s, "\tpadding     : type == %d\n",
54			 RINGBUF_TYPE_PADDING);
55	trace_seq_printf(s, "\ttime_extend : type == %d\n",
56			 RINGBUF_TYPE_TIME_EXTEND);
57	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
58			 RINGBUF_TYPE_TIME_STAMP);
59	trace_seq_printf(s, "\tdata max type_len  == %d\n",
60			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
61
62	return !trace_seq_has_overflowed(s);
63}
64
65/*
66 * The ring buffer is made up of a list of pages. A separate list of pages is
67 * allocated for each CPU. A writer may only write to a buffer that is
68 * associated with the CPU it is currently executing on.  A reader may read
69 * from any per cpu buffer.
70 *
71 * The reader is special. For each per cpu buffer, the reader has its own
72 * reader page. When a reader has read the entire reader page, this reader
73 * page is swapped with another page in the ring buffer.
74 *
75 * Now, as long as the writer is off the reader page, the reader can do what
76 * ever it wants with that page. The writer will never write to that page
77 * again (as long as it is out of the ring buffer).
78 *
79 * Here's some silly ASCII art.
80 *
81 *   +------+
82 *   |reader|          RING BUFFER
83 *   |page  |
84 *   +------+        +---+   +---+   +---+
85 *                   |   |-->|   |-->|   |
86 *                   +---+   +---+   +---+
87 *                     ^               |
88 *                     |               |
89 *                     +---------------+
90 *
91 *
92 *   +------+
93 *   |reader|          RING BUFFER
94 *   |page  |------------------v
95 *   +------+        +---+   +---+   +---+
96 *                   |   |-->|   |-->|   |
97 *                   +---+   +---+   +---+
98 *                     ^               |
99 *                     |               |
100 *                     +---------------+
101 *
102 *
103 *   +------+
104 *   |reader|          RING BUFFER
105 *   |page  |------------------v
106 *   +------+        +---+   +---+   +---+
107 *      ^            |   |-->|   |-->|   |
108 *      |            +---+   +---+   +---+
109 *      |                              |
110 *      |                              |
111 *      +------------------------------+
112 *
113 *
114 *   +------+
115 *   |buffer|          RING BUFFER
116 *   |page  |------------------v
117 *   +------+        +---+   +---+   +---+
118 *      ^            |   |   |   |-->|   |
119 *      |   New      +---+   +---+   +---+
120 *      |  Reader------^               |
121 *      |   page                       |
122 *      +------------------------------+
123 *
124 *
125 * After we make this swap, the reader can hand this page off to the splice
126 * code and be done with it. It can even allocate a new page if it needs to
127 * and swap that into the ring buffer.
128 *
129 * We will be using cmpxchg soon to make all this lockless.
130 *
131 */
132
133/* Used for individual buffers (after the counter) */
134#define RB_BUFFER_OFF		(1 << 20)
135
136#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
137
138#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
139#define RB_ALIGNMENT		4U
140#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
141#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
142
143#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
144# define RB_FORCE_8BYTE_ALIGNMENT	0
145# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
146#else
147# define RB_FORCE_8BYTE_ALIGNMENT	1
148# define RB_ARCH_ALIGNMENT		8U
149#endif
150
151#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
152
153/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
154#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
155
156enum {
157	RB_LEN_TIME_EXTEND = 8,
158	RB_LEN_TIME_STAMP =  8,
159};
160
161#define skip_time_extend(event) \
162	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
163
164#define extended_time(event) \
165	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
166
167static inline bool rb_null_event(struct ring_buffer_event *event)
168{
169	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
170}
171
172static void rb_event_set_padding(struct ring_buffer_event *event)
173{
174	/* padding has a NULL time_delta */
175	event->type_len = RINGBUF_TYPE_PADDING;
176	event->time_delta = 0;
177}
178
179static unsigned
180rb_event_data_length(struct ring_buffer_event *event)
181{
182	unsigned length;
183
184	if (event->type_len)
185		length = event->type_len * RB_ALIGNMENT;
186	else
187		length = event->array[0];
188	return length + RB_EVNT_HDR_SIZE;
189}
190
191/*
192 * Return the length of the given event. Will return
193 * the length of the time extend if the event is a
194 * time extend.
195 */
196static inline unsigned
197rb_event_length(struct ring_buffer_event *event)
198{
199	switch (event->type_len) {
200	case RINGBUF_TYPE_PADDING:
201		if (rb_null_event(event))
202			/* undefined */
203			return -1;
204		return  event->array[0] + RB_EVNT_HDR_SIZE;
205
206	case RINGBUF_TYPE_TIME_EXTEND:
207		return RB_LEN_TIME_EXTEND;
208
209	case RINGBUF_TYPE_TIME_STAMP:
210		return RB_LEN_TIME_STAMP;
211
212	case RINGBUF_TYPE_DATA:
213		return rb_event_data_length(event);
214	default:
215		WARN_ON_ONCE(1);
216	}
217	/* not hit */
218	return 0;
219}
220
221/*
222 * Return total length of time extend and data,
223 *   or just the event length for all other events.
224 */
225static inline unsigned
226rb_event_ts_length(struct ring_buffer_event *event)
227{
228	unsigned len = 0;
229
230	if (extended_time(event)) {
231		/* time extends include the data event after it */
232		len = RB_LEN_TIME_EXTEND;
233		event = skip_time_extend(event);
234	}
235	return len + rb_event_length(event);
236}
237
238/**
239 * ring_buffer_event_length - return the length of the event
240 * @event: the event to get the length of
241 *
242 * Returns the size of the data load of a data event.
243 * If the event is something other than a data event, it
244 * returns the size of the event itself. With the exception
245 * of a TIME EXTEND, where it still returns the size of the
246 * data load of the data event after it.
247 */
248unsigned ring_buffer_event_length(struct ring_buffer_event *event)
249{
250	unsigned length;
251
252	if (extended_time(event))
253		event = skip_time_extend(event);
254
255	length = rb_event_length(event);
256	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
257		return length;
258	length -= RB_EVNT_HDR_SIZE;
259	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
260                length -= sizeof(event->array[0]);
261	return length;
262}
263EXPORT_SYMBOL_GPL(ring_buffer_event_length);
264
265/* inline for ring buffer fast paths */
266static __always_inline void *
267rb_event_data(struct ring_buffer_event *event)
268{
269	if (extended_time(event))
270		event = skip_time_extend(event);
271	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
272	/* If length is in len field, then array[0] has the data */
273	if (event->type_len)
274		return (void *)&event->array[0];
275	/* Otherwise length is in array[0] and array[1] has the data */
276	return (void *)&event->array[1];
277}
278
279/**
280 * ring_buffer_event_data - return the data of the event
281 * @event: the event to get the data from
282 */
283void *ring_buffer_event_data(struct ring_buffer_event *event)
284{
285	return rb_event_data(event);
286}
287EXPORT_SYMBOL_GPL(ring_buffer_event_data);
288
289#define for_each_buffer_cpu(buffer, cpu)		\
290	for_each_cpu(cpu, buffer->cpumask)
291
292#define for_each_online_buffer_cpu(buffer, cpu)		\
293	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
294
295#define TS_SHIFT	27
296#define TS_MASK		((1ULL << TS_SHIFT) - 1)
297#define TS_DELTA_TEST	(~TS_MASK)
298
299static u64 rb_event_time_stamp(struct ring_buffer_event *event)
300{
301	u64 ts;
302
303	ts = event->array[0];
304	ts <<= TS_SHIFT;
305	ts += event->time_delta;
306
307	return ts;
308}
309
310/* Flag when events were overwritten */
311#define RB_MISSED_EVENTS	(1 << 31)
312/* Missed count stored at end */
313#define RB_MISSED_STORED	(1 << 30)
314
315struct buffer_data_page {
316	u64		 time_stamp;	/* page time stamp */
317	local_t		 commit;	/* write committed index */
318	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
319};
320
321struct buffer_data_read_page {
322	unsigned		order;	/* order of the page */
323	struct buffer_data_page	*data;	/* actual data, stored in this page */
324};
325
326/*
327 * Note, the buffer_page list must be first. The buffer pages
328 * are allocated in cache lines, which means that each buffer
329 * page will be at the beginning of a cache line, and thus
330 * the least significant bits will be zero. We use this to
331 * add flags in the list struct pointers, to make the ring buffer
332 * lockless.
333 */
334struct buffer_page {
335	struct list_head list;		/* list of buffer pages */
336	local_t		 write;		/* index for next write */
337	unsigned	 read;		/* index for next read */
338	local_t		 entries;	/* entries on this page */
339	unsigned long	 real_end;	/* real end of data */
340	unsigned	 order;		/* order of the page */
341	struct buffer_data_page *page;	/* Actual data page */
342};
343
344/*
345 * The buffer page counters, write and entries, must be reset
346 * atomically when crossing page boundaries. To synchronize this
347 * update, two counters are inserted into the number. One is
348 * the actual counter for the write position or count on the page.
349 *
350 * The other is a counter of updaters. Before an update happens
351 * the update partition of the counter is incremented. This will
352 * allow the updater to update the counter atomically.
353 *
354 * The counter is 20 bits, and the state data is 12.
355 */
356#define RB_WRITE_MASK		0xfffff
357#define RB_WRITE_INTCNT		(1 << 20)
358
359static void rb_init_page(struct buffer_data_page *bpage)
360{
361	local_set(&bpage->commit, 0);
362}
363
364static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
365{
366	return local_read(&bpage->page->commit);
367}
368
369static void free_buffer_page(struct buffer_page *bpage)
370{
371	free_pages((unsigned long)bpage->page, bpage->order);
372	kfree(bpage);
373}
374
375/*
376 * We need to fit the time_stamp delta into 27 bits.
377 */
378static inline bool test_time_stamp(u64 delta)
379{
380	return !!(delta & TS_DELTA_TEST);
381}
382
383struct rb_irq_work {
384	struct irq_work			work;
385	wait_queue_head_t		waiters;
386	wait_queue_head_t		full_waiters;
387	atomic_t			seq;
388	bool				waiters_pending;
389	bool				full_waiters_pending;
390	bool				wakeup_full;
391};
392
393/*
394 * Structure to hold event state and handle nested events.
395 */
396struct rb_event_info {
397	u64			ts;
398	u64			delta;
399	u64			before;
400	u64			after;
401	unsigned long		length;
402	struct buffer_page	*tail_page;
403	int			add_timestamp;
404};
405
406/*
407 * Used for the add_timestamp
408 *  NONE
409 *  EXTEND - wants a time extend
410 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
411 *  FORCE - force a full time stamp.
412 */
413enum {
414	RB_ADD_STAMP_NONE		= 0,
415	RB_ADD_STAMP_EXTEND		= BIT(1),
416	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
417	RB_ADD_STAMP_FORCE		= BIT(3)
418};
419/*
420 * Used for which event context the event is in.
421 *  TRANSITION = 0
422 *  NMI     = 1
423 *  IRQ     = 2
424 *  SOFTIRQ = 3
425 *  NORMAL  = 4
426 *
427 * See trace_recursive_lock() comment below for more details.
428 */
429enum {
430	RB_CTX_TRANSITION,
431	RB_CTX_NMI,
432	RB_CTX_IRQ,
433	RB_CTX_SOFTIRQ,
434	RB_CTX_NORMAL,
435	RB_CTX_MAX
436};
437
438struct rb_time_struct {
439	local64_t	time;
440};
441typedef struct rb_time_struct rb_time_t;
442
443#define MAX_NEST	5
444
445/*
446 * head_page == tail_page && head == tail then buffer is empty.
447 */
448struct ring_buffer_per_cpu {
449	int				cpu;
450	atomic_t			record_disabled;
451	atomic_t			resize_disabled;
452	struct trace_buffer	*buffer;
453	raw_spinlock_t			reader_lock;	/* serialize readers */
454	arch_spinlock_t			lock;
455	struct lock_class_key		lock_key;
456	struct buffer_data_page		*free_page;
457	unsigned long			nr_pages;
458	unsigned int			current_context;
459	struct list_head		*pages;
460	struct buffer_page		*head_page;	/* read from head */
461	struct buffer_page		*tail_page;	/* write to tail */
462	struct buffer_page		*commit_page;	/* committed pages */
463	struct buffer_page		*reader_page;
464	unsigned long			lost_events;
465	unsigned long			last_overrun;
466	unsigned long			nest;
467	local_t				entries_bytes;
468	local_t				entries;
469	local_t				overrun;
470	local_t				commit_overrun;
471	local_t				dropped_events;
472	local_t				committing;
473	local_t				commits;
474	local_t				pages_touched;
475	local_t				pages_lost;
476	local_t				pages_read;
477	long				last_pages_touch;
478	size_t				shortest_full;
479	unsigned long			read;
480	unsigned long			read_bytes;
481	rb_time_t			write_stamp;
482	rb_time_t			before_stamp;
483	u64				event_stamp[MAX_NEST];
484	u64				read_stamp;
485	/* pages removed since last reset */
486	unsigned long			pages_removed;
487	/* ring buffer pages to update, > 0 to add, < 0 to remove */
488	long				nr_pages_to_update;
489	struct list_head		new_pages; /* new pages to add */
490	struct work_struct		update_pages_work;
491	struct completion		update_done;
492
493	struct rb_irq_work		irq_work;
494};
495
496struct trace_buffer {
497	unsigned			flags;
498	int				cpus;
499	atomic_t			record_disabled;
500	atomic_t			resizing;
501	cpumask_var_t			cpumask;
502
503	struct lock_class_key		*reader_lock_key;
504
505	struct mutex			mutex;
506
507	struct ring_buffer_per_cpu	**buffers;
508
509	struct hlist_node		node;
510	u64				(*clock)(void);
511
512	struct rb_irq_work		irq_work;
513	bool				time_stamp_abs;
514
515	unsigned int			subbuf_size;
516	unsigned int			subbuf_order;
517	unsigned int			max_data_size;
518};
519
520struct ring_buffer_iter {
521	struct ring_buffer_per_cpu	*cpu_buffer;
522	unsigned long			head;
523	unsigned long			next_event;
524	struct buffer_page		*head_page;
525	struct buffer_page		*cache_reader_page;
526	unsigned long			cache_read;
527	unsigned long			cache_pages_removed;
528	u64				read_stamp;
529	u64				page_stamp;
530	struct ring_buffer_event	*event;
531	size_t				event_size;
532	int				missed_events;
533};
534
535int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
536{
537	struct buffer_data_page field;
538
539	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
540			 "offset:0;\tsize:%u;\tsigned:%u;\n",
541			 (unsigned int)sizeof(field.time_stamp),
542			 (unsigned int)is_signed_type(u64));
543
544	trace_seq_printf(s, "\tfield: local_t commit;\t"
545			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
546			 (unsigned int)offsetof(typeof(field), commit),
547			 (unsigned int)sizeof(field.commit),
548			 (unsigned int)is_signed_type(long));
549
550	trace_seq_printf(s, "\tfield: int overwrite;\t"
551			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
552			 (unsigned int)offsetof(typeof(field), commit),
553			 1,
554			 (unsigned int)is_signed_type(long));
555
556	trace_seq_printf(s, "\tfield: char data;\t"
557			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
558			 (unsigned int)offsetof(typeof(field), data),
559			 (unsigned int)buffer->subbuf_size,
560			 (unsigned int)is_signed_type(char));
561
562	return !trace_seq_has_overflowed(s);
563}
564
565static inline void rb_time_read(rb_time_t *t, u64 *ret)
566{
567	*ret = local64_read(&t->time);
568}
569static void rb_time_set(rb_time_t *t, u64 val)
570{
571	local64_set(&t->time, val);
572}
573
574/*
575 * Enable this to make sure that the event passed to
576 * ring_buffer_event_time_stamp() is not committed and also
577 * is on the buffer that it passed in.
578 */
579//#define RB_VERIFY_EVENT
580#ifdef RB_VERIFY_EVENT
581static struct list_head *rb_list_head(struct list_head *list);
582static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
583			 void *event)
584{
585	struct buffer_page *page = cpu_buffer->commit_page;
586	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
587	struct list_head *next;
588	long commit, write;
589	unsigned long addr = (unsigned long)event;
590	bool done = false;
591	int stop = 0;
592
593	/* Make sure the event exists and is not committed yet */
594	do {
595		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
596			done = true;
597		commit = local_read(&page->page->commit);
598		write = local_read(&page->write);
599		if (addr >= (unsigned long)&page->page->data[commit] &&
600		    addr < (unsigned long)&page->page->data[write])
601			return;
602
603		next = rb_list_head(page->list.next);
604		page = list_entry(next, struct buffer_page, list);
605	} while (!done);
606	WARN_ON_ONCE(1);
607}
608#else
609static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
610			 void *event)
611{
612}
613#endif
614
615/*
616 * The absolute time stamp drops the 5 MSBs and some clocks may
617 * require them. The rb_fix_abs_ts() will take a previous full
618 * time stamp, and add the 5 MSB of that time stamp on to the
619 * saved absolute time stamp. Then they are compared in case of
620 * the unlikely event that the latest time stamp incremented
621 * the 5 MSB.
622 */
623static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
624{
625	if (save_ts & TS_MSB) {
626		abs |= save_ts & TS_MSB;
627		/* Check for overflow */
628		if (unlikely(abs < save_ts))
629			abs += 1ULL << 59;
630	}
631	return abs;
632}
633
634static inline u64 rb_time_stamp(struct trace_buffer *buffer);
635
636/**
637 * ring_buffer_event_time_stamp - return the event's current time stamp
638 * @buffer: The buffer that the event is on
639 * @event: the event to get the time stamp of
640 *
641 * Note, this must be called after @event is reserved, and before it is
642 * committed to the ring buffer. And must be called from the same
643 * context where the event was reserved (normal, softirq, irq, etc).
644 *
645 * Returns the time stamp associated with the current event.
646 * If the event has an extended time stamp, then that is used as
647 * the time stamp to return.
648 * In the highly unlikely case that the event was nested more than
649 * the max nesting, then the write_stamp of the buffer is returned,
650 * otherwise  current time is returned, but that really neither of
651 * the last two cases should ever happen.
652 */
653u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
654				 struct ring_buffer_event *event)
655{
656	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
657	unsigned int nest;
658	u64 ts;
659
660	/* If the event includes an absolute time, then just use that */
661	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
662		ts = rb_event_time_stamp(event);
663		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
664	}
665
666	nest = local_read(&cpu_buffer->committing);
667	verify_event(cpu_buffer, event);
668	if (WARN_ON_ONCE(!nest))
669		goto fail;
670
671	/* Read the current saved nesting level time stamp */
672	if (likely(--nest < MAX_NEST))
673		return cpu_buffer->event_stamp[nest];
674
675	/* Shouldn't happen, warn if it does */
676	WARN_ONCE(1, "nest (%d) greater than max", nest);
677
678 fail:
679	rb_time_read(&cpu_buffer->write_stamp, &ts);
680
681	return ts;
682}
683
684/**
685 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
686 * @buffer: The ring_buffer to get the number of pages from
687 * @cpu: The cpu of the ring_buffer to get the number of pages from
688 *
689 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
690 */
691size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
692{
693	return buffer->buffers[cpu]->nr_pages;
694}
695
696/**
697 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
698 * @buffer: The ring_buffer to get the number of pages from
699 * @cpu: The cpu of the ring_buffer to get the number of pages from
700 *
701 * Returns the number of pages that have content in the ring buffer.
702 */
703size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
704{
705	size_t read;
706	size_t lost;
707	size_t cnt;
708
709	read = local_read(&buffer->buffers[cpu]->pages_read);
710	lost = local_read(&buffer->buffers[cpu]->pages_lost);
711	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
712
713	if (WARN_ON_ONCE(cnt < lost))
714		return 0;
715
716	cnt -= lost;
717
718	/* The reader can read an empty page, but not more than that */
719	if (cnt < read) {
720		WARN_ON_ONCE(read > cnt + 1);
721		return 0;
722	}
723
724	return cnt - read;
725}
726
727static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
728{
729	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
730	size_t nr_pages;
731	size_t dirty;
732
733	nr_pages = cpu_buffer->nr_pages;
734	if (!nr_pages || !full)
735		return true;
736
737	/*
738	 * Add one as dirty will never equal nr_pages, as the sub-buffer
739	 * that the writer is on is not counted as dirty.
740	 * This is needed if "buffer_percent" is set to 100.
741	 */
742	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
743
744	return (dirty * 100) >= (full * nr_pages);
745}
746
747/*
748 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
749 *
750 * Schedules a delayed work to wake up any task that is blocked on the
751 * ring buffer waiters queue.
752 */
753static void rb_wake_up_waiters(struct irq_work *work)
754{
755	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
756
757	/* For waiters waiting for the first wake up */
758	(void)atomic_fetch_inc_release(&rbwork->seq);
759
760	wake_up_all(&rbwork->waiters);
761	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
762		/* Only cpu_buffer sets the above flags */
763		struct ring_buffer_per_cpu *cpu_buffer =
764			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
765
766		/* Called from interrupt context */
767		raw_spin_lock(&cpu_buffer->reader_lock);
768		rbwork->wakeup_full = false;
769		rbwork->full_waiters_pending = false;
770
771		/* Waking up all waiters, they will reset the shortest full */
772		cpu_buffer->shortest_full = 0;
773		raw_spin_unlock(&cpu_buffer->reader_lock);
774
775		wake_up_all(&rbwork->full_waiters);
776	}
777}
778
779/**
780 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
781 * @buffer: The ring buffer to wake waiters on
782 * @cpu: The CPU buffer to wake waiters on
783 *
784 * In the case of a file that represents a ring buffer is closing,
785 * it is prudent to wake up any waiters that are on this.
786 */
787void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
788{
789	struct ring_buffer_per_cpu *cpu_buffer;
790	struct rb_irq_work *rbwork;
791
792	if (!buffer)
793		return;
794
795	if (cpu == RING_BUFFER_ALL_CPUS) {
796
797		/* Wake up individual ones too. One level recursion */
798		for_each_buffer_cpu(buffer, cpu)
799			ring_buffer_wake_waiters(buffer, cpu);
800
801		rbwork = &buffer->irq_work;
802	} else {
803		if (WARN_ON_ONCE(!buffer->buffers))
804			return;
805		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
806			return;
807
808		cpu_buffer = buffer->buffers[cpu];
809		/* The CPU buffer may not have been initialized yet */
810		if (!cpu_buffer)
811			return;
812		rbwork = &cpu_buffer->irq_work;
813	}
814
815	/* This can be called in any context */
816	irq_work_queue(&rbwork->work);
817}
818
819static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
820{
821	struct ring_buffer_per_cpu *cpu_buffer;
822	bool ret = false;
823
824	/* Reads of all CPUs always waits for any data */
825	if (cpu == RING_BUFFER_ALL_CPUS)
826		return !ring_buffer_empty(buffer);
827
828	cpu_buffer = buffer->buffers[cpu];
829
830	if (!ring_buffer_empty_cpu(buffer, cpu)) {
831		unsigned long flags;
832		bool pagebusy;
833
834		if (!full)
835			return true;
836
837		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
838		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
839		ret = !pagebusy && full_hit(buffer, cpu, full);
840
841		if (!ret && (!cpu_buffer->shortest_full ||
842			     cpu_buffer->shortest_full > full)) {
843		    cpu_buffer->shortest_full = full;
844		}
845		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
846	}
847	return ret;
848}
849
850static inline bool
851rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
852	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
853{
854	if (rb_watermark_hit(buffer, cpu, full))
855		return true;
856
857	if (cond(data))
858		return true;
859
860	/*
861	 * The events can happen in critical sections where
862	 * checking a work queue can cause deadlocks.
863	 * After adding a task to the queue, this flag is set
864	 * only to notify events to try to wake up the queue
865	 * using irq_work.
866	 *
867	 * We don't clear it even if the buffer is no longer
868	 * empty. The flag only causes the next event to run
869	 * irq_work to do the work queue wake up. The worse
870	 * that can happen if we race with !trace_empty() is that
871	 * an event will cause an irq_work to try to wake up
872	 * an empty queue.
873	 *
874	 * There's no reason to protect this flag either, as
875	 * the work queue and irq_work logic will do the necessary
876	 * synchronization for the wake ups. The only thing
877	 * that is necessary is that the wake up happens after
878	 * a task has been queued. It's OK for spurious wake ups.
879	 */
880	if (full)
881		rbwork->full_waiters_pending = true;
882	else
883		rbwork->waiters_pending = true;
884
885	return false;
886}
887
888struct rb_wait_data {
889	struct rb_irq_work		*irq_work;
890	int				seq;
891};
892
893/*
894 * The default wait condition for ring_buffer_wait() is to just to exit the
895 * wait loop the first time it is woken up.
896 */
897static bool rb_wait_once(void *data)
898{
899	struct rb_wait_data *rdata = data;
900	struct rb_irq_work *rbwork = rdata->irq_work;
901
902	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
903}
904
905/**
906 * ring_buffer_wait - wait for input to the ring buffer
907 * @buffer: buffer to wait on
908 * @cpu: the cpu buffer to wait on
909 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
910 * @cond: condition function to break out of wait (NULL to run once)
911 * @data: the data to pass to @cond.
912 *
913 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
914 * as data is added to any of the @buffer's cpu buffers. Otherwise
915 * it will wait for data to be added to a specific cpu buffer.
916 */
917int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
918		     ring_buffer_cond_fn cond, void *data)
919{
920	struct ring_buffer_per_cpu *cpu_buffer;
921	struct wait_queue_head *waitq;
922	struct rb_irq_work *rbwork;
923	struct rb_wait_data rdata;
924	int ret = 0;
925
926	/*
927	 * Depending on what the caller is waiting for, either any
928	 * data in any cpu buffer, or a specific buffer, put the
929	 * caller on the appropriate wait queue.
930	 */
931	if (cpu == RING_BUFFER_ALL_CPUS) {
932		rbwork = &buffer->irq_work;
933		/* Full only makes sense on per cpu reads */
934		full = 0;
935	} else {
936		if (!cpumask_test_cpu(cpu, buffer->cpumask))
937			return -ENODEV;
938		cpu_buffer = buffer->buffers[cpu];
939		rbwork = &cpu_buffer->irq_work;
940	}
941
942	if (full)
943		waitq = &rbwork->full_waiters;
944	else
945		waitq = &rbwork->waiters;
946
947	/* Set up to exit loop as soon as it is woken */
948	if (!cond) {
949		cond = rb_wait_once;
950		rdata.irq_work = rbwork;
951		rdata.seq = atomic_read_acquire(&rbwork->seq);
952		data = &rdata;
953	}
954
955	ret = wait_event_interruptible((*waitq),
956				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
957
958	return ret;
959}
960
961/**
962 * ring_buffer_poll_wait - poll on buffer input
963 * @buffer: buffer to wait on
964 * @cpu: the cpu buffer to wait on
965 * @filp: the file descriptor
966 * @poll_table: The poll descriptor
967 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
968 *
969 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
970 * as data is added to any of the @buffer's cpu buffers. Otherwise
971 * it will wait for data to be added to a specific cpu buffer.
972 *
973 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
974 * zero otherwise.
975 */
976__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
977			  struct file *filp, poll_table *poll_table, int full)
978{
979	struct ring_buffer_per_cpu *cpu_buffer;
980	struct rb_irq_work *rbwork;
981
982	if (cpu == RING_BUFFER_ALL_CPUS) {
983		rbwork = &buffer->irq_work;
984		full = 0;
985	} else {
986		if (!cpumask_test_cpu(cpu, buffer->cpumask))
987			return EPOLLERR;
988
989		cpu_buffer = buffer->buffers[cpu];
990		rbwork = &cpu_buffer->irq_work;
991	}
992
993	if (full) {
994		poll_wait(filp, &rbwork->full_waiters, poll_table);
995
996		if (rb_watermark_hit(buffer, cpu, full))
997			return EPOLLIN | EPOLLRDNORM;
998		/*
999		 * Only allow full_waiters_pending update to be seen after
1000		 * the shortest_full is set (in rb_watermark_hit). If the
1001		 * writer sees the full_waiters_pending flag set, it will
1002		 * compare the amount in the ring buffer to shortest_full.
1003		 * If the amount in the ring buffer is greater than the
1004		 * shortest_full percent, it will call the irq_work handler
1005		 * to wake up this list. The irq_handler will reset shortest_full
1006		 * back to zero. That's done under the reader_lock, but
1007		 * the below smp_mb() makes sure that the update to
1008		 * full_waiters_pending doesn't leak up into the above.
1009		 */
1010		smp_mb();
1011		rbwork->full_waiters_pending = true;
1012		return 0;
1013	}
1014
1015	poll_wait(filp, &rbwork->waiters, poll_table);
1016	rbwork->waiters_pending = true;
1017
1018	/*
1019	 * There's a tight race between setting the waiters_pending and
1020	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1021	 * is set, the next event will wake the task up, but we can get stuck
1022	 * if there's only a single event in.
1023	 *
1024	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1025	 * but adding a memory barrier to all events will cause too much of a
1026	 * performance hit in the fast path.  We only need a memory barrier when
1027	 * the buffer goes from empty to having content.  But as this race is
1028	 * extremely small, and it's not a problem if another event comes in, we
1029	 * will fix it later.
1030	 */
1031	smp_mb();
1032
1033	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1034	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1035		return EPOLLIN | EPOLLRDNORM;
1036	return 0;
1037}
1038
1039/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1040#define RB_WARN_ON(b, cond)						\
1041	({								\
1042		int _____ret = unlikely(cond);				\
1043		if (_____ret) {						\
1044			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1045				struct ring_buffer_per_cpu *__b =	\
1046					(void *)b;			\
1047				atomic_inc(&__b->buffer->record_disabled); \
1048			} else						\
1049				atomic_inc(&b->record_disabled);	\
1050			WARN_ON(1);					\
1051		}							\
1052		_____ret;						\
1053	})
1054
1055/* Up this if you want to test the TIME_EXTENTS and normalization */
1056#define DEBUG_SHIFT 0
1057
1058static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1059{
1060	u64 ts;
1061
1062	/* Skip retpolines :-( */
1063	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1064		ts = trace_clock_local();
1065	else
1066		ts = buffer->clock();
1067
1068	/* shift to debug/test normalization and TIME_EXTENTS */
1069	return ts << DEBUG_SHIFT;
1070}
1071
1072u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1073{
1074	u64 time;
1075
1076	preempt_disable_notrace();
1077	time = rb_time_stamp(buffer);
1078	preempt_enable_notrace();
1079
1080	return time;
1081}
1082EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1083
1084void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1085				      int cpu, u64 *ts)
1086{
1087	/* Just stupid testing the normalize function and deltas */
1088	*ts >>= DEBUG_SHIFT;
1089}
1090EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1091
1092/*
1093 * Making the ring buffer lockless makes things tricky.
1094 * Although writes only happen on the CPU that they are on,
1095 * and they only need to worry about interrupts. Reads can
1096 * happen on any CPU.
1097 *
1098 * The reader page is always off the ring buffer, but when the
1099 * reader finishes with a page, it needs to swap its page with
1100 * a new one from the buffer. The reader needs to take from
1101 * the head (writes go to the tail). But if a writer is in overwrite
1102 * mode and wraps, it must push the head page forward.
1103 *
1104 * Here lies the problem.
1105 *
1106 * The reader must be careful to replace only the head page, and
1107 * not another one. As described at the top of the file in the
1108 * ASCII art, the reader sets its old page to point to the next
1109 * page after head. It then sets the page after head to point to
1110 * the old reader page. But if the writer moves the head page
1111 * during this operation, the reader could end up with the tail.
1112 *
1113 * We use cmpxchg to help prevent this race. We also do something
1114 * special with the page before head. We set the LSB to 1.
1115 *
1116 * When the writer must push the page forward, it will clear the
1117 * bit that points to the head page, move the head, and then set
1118 * the bit that points to the new head page.
1119 *
1120 * We also don't want an interrupt coming in and moving the head
1121 * page on another writer. Thus we use the second LSB to catch
1122 * that too. Thus:
1123 *
1124 * head->list->prev->next        bit 1          bit 0
1125 *                              -------        -------
1126 * Normal page                     0              0
1127 * Points to head page             0              1
1128 * New head page                   1              0
1129 *
1130 * Note we can not trust the prev pointer of the head page, because:
1131 *
1132 * +----+       +-----+        +-----+
1133 * |    |------>|  T  |---X--->|  N  |
1134 * |    |<------|     |        |     |
1135 * +----+       +-----+        +-----+
1136 *   ^                           ^ |
1137 *   |          +-----+          | |
1138 *   +----------|  R  |----------+ |
1139 *              |     |<-----------+
1140 *              +-----+
1141 *
1142 * Key:  ---X-->  HEAD flag set in pointer
1143 *         T      Tail page
1144 *         R      Reader page
1145 *         N      Next page
1146 *
1147 * (see __rb_reserve_next() to see where this happens)
1148 *
1149 *  What the above shows is that the reader just swapped out
1150 *  the reader page with a page in the buffer, but before it
1151 *  could make the new header point back to the new page added
1152 *  it was preempted by a writer. The writer moved forward onto
1153 *  the new page added by the reader and is about to move forward
1154 *  again.
1155 *
1156 *  You can see, it is legitimate for the previous pointer of
1157 *  the head (or any page) not to point back to itself. But only
1158 *  temporarily.
1159 */
1160
1161#define RB_PAGE_NORMAL		0UL
1162#define RB_PAGE_HEAD		1UL
1163#define RB_PAGE_UPDATE		2UL
1164
1165
1166#define RB_FLAG_MASK		3UL
1167
1168/* PAGE_MOVED is not part of the mask */
1169#define RB_PAGE_MOVED		4UL
1170
1171/*
1172 * rb_list_head - remove any bit
1173 */
1174static struct list_head *rb_list_head(struct list_head *list)
1175{
1176	unsigned long val = (unsigned long)list;
1177
1178	return (struct list_head *)(val & ~RB_FLAG_MASK);
1179}
1180
1181/*
1182 * rb_is_head_page - test if the given page is the head page
1183 *
1184 * Because the reader may move the head_page pointer, we can
1185 * not trust what the head page is (it may be pointing to
1186 * the reader page). But if the next page is a header page,
1187 * its flags will be non zero.
1188 */
1189static inline int
1190rb_is_head_page(struct buffer_page *page, struct list_head *list)
1191{
1192	unsigned long val;
1193
1194	val = (unsigned long)list->next;
1195
1196	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1197		return RB_PAGE_MOVED;
1198
1199	return val & RB_FLAG_MASK;
1200}
1201
1202/*
1203 * rb_is_reader_page
1204 *
1205 * The unique thing about the reader page, is that, if the
1206 * writer is ever on it, the previous pointer never points
1207 * back to the reader page.
1208 */
1209static bool rb_is_reader_page(struct buffer_page *page)
1210{
1211	struct list_head *list = page->list.prev;
1212
1213	return rb_list_head(list->next) != &page->list;
1214}
1215
1216/*
1217 * rb_set_list_to_head - set a list_head to be pointing to head.
1218 */
1219static void rb_set_list_to_head(struct list_head *list)
1220{
1221	unsigned long *ptr;
1222
1223	ptr = (unsigned long *)&list->next;
1224	*ptr |= RB_PAGE_HEAD;
1225	*ptr &= ~RB_PAGE_UPDATE;
1226}
1227
1228/*
1229 * rb_head_page_activate - sets up head page
1230 */
1231static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1232{
1233	struct buffer_page *head;
1234
1235	head = cpu_buffer->head_page;
1236	if (!head)
1237		return;
1238
1239	/*
1240	 * Set the previous list pointer to have the HEAD flag.
1241	 */
1242	rb_set_list_to_head(head->list.prev);
1243}
1244
1245static void rb_list_head_clear(struct list_head *list)
1246{
1247	unsigned long *ptr = (unsigned long *)&list->next;
1248
1249	*ptr &= ~RB_FLAG_MASK;
1250}
1251
1252/*
1253 * rb_head_page_deactivate - clears head page ptr (for free list)
1254 */
1255static void
1256rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1257{
1258	struct list_head *hd;
1259
1260	/* Go through the whole list and clear any pointers found. */
1261	rb_list_head_clear(cpu_buffer->pages);
1262
1263	list_for_each(hd, cpu_buffer->pages)
1264		rb_list_head_clear(hd);
1265}
1266
1267static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1268			    struct buffer_page *head,
1269			    struct buffer_page *prev,
1270			    int old_flag, int new_flag)
1271{
1272	struct list_head *list;
1273	unsigned long val = (unsigned long)&head->list;
1274	unsigned long ret;
1275
1276	list = &prev->list;
1277
1278	val &= ~RB_FLAG_MASK;
1279
1280	ret = cmpxchg((unsigned long *)&list->next,
1281		      val | old_flag, val | new_flag);
1282
1283	/* check if the reader took the page */
1284	if ((ret & ~RB_FLAG_MASK) != val)
1285		return RB_PAGE_MOVED;
1286
1287	return ret & RB_FLAG_MASK;
1288}
1289
1290static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1291				   struct buffer_page *head,
1292				   struct buffer_page *prev,
1293				   int old_flag)
1294{
1295	return rb_head_page_set(cpu_buffer, head, prev,
1296				old_flag, RB_PAGE_UPDATE);
1297}
1298
1299static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1300				 struct buffer_page *head,
1301				 struct buffer_page *prev,
1302				 int old_flag)
1303{
1304	return rb_head_page_set(cpu_buffer, head, prev,
1305				old_flag, RB_PAGE_HEAD);
1306}
1307
1308static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1309				   struct buffer_page *head,
1310				   struct buffer_page *prev,
1311				   int old_flag)
1312{
1313	return rb_head_page_set(cpu_buffer, head, prev,
1314				old_flag, RB_PAGE_NORMAL);
1315}
1316
1317static inline void rb_inc_page(struct buffer_page **bpage)
1318{
1319	struct list_head *p = rb_list_head((*bpage)->list.next);
1320
1321	*bpage = list_entry(p, struct buffer_page, list);
1322}
1323
1324static struct buffer_page *
1325rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1326{
1327	struct buffer_page *head;
1328	struct buffer_page *page;
1329	struct list_head *list;
1330	int i;
1331
1332	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1333		return NULL;
1334
1335	/* sanity check */
1336	list = cpu_buffer->pages;
1337	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1338		return NULL;
1339
1340	page = head = cpu_buffer->head_page;
1341	/*
1342	 * It is possible that the writer moves the header behind
1343	 * where we started, and we miss in one loop.
1344	 * A second loop should grab the header, but we'll do
1345	 * three loops just because I'm paranoid.
1346	 */
1347	for (i = 0; i < 3; i++) {
1348		do {
1349			if (rb_is_head_page(page, page->list.prev)) {
1350				cpu_buffer->head_page = page;
1351				return page;
1352			}
1353			rb_inc_page(&page);
1354		} while (page != head);
1355	}
1356
1357	RB_WARN_ON(cpu_buffer, 1);
1358
1359	return NULL;
1360}
1361
1362static bool rb_head_page_replace(struct buffer_page *old,
1363				struct buffer_page *new)
1364{
1365	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1366	unsigned long val;
1367
1368	val = *ptr & ~RB_FLAG_MASK;
1369	val |= RB_PAGE_HEAD;
1370
1371	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1372}
1373
1374/*
1375 * rb_tail_page_update - move the tail page forward
1376 */
1377static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1378			       struct buffer_page *tail_page,
1379			       struct buffer_page *next_page)
1380{
1381	unsigned long old_entries;
1382	unsigned long old_write;
1383
1384	/*
1385	 * The tail page now needs to be moved forward.
1386	 *
1387	 * We need to reset the tail page, but without messing
1388	 * with possible erasing of data brought in by interrupts
1389	 * that have moved the tail page and are currently on it.
1390	 *
1391	 * We add a counter to the write field to denote this.
1392	 */
1393	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1394	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1395
1396	/*
1397	 * Just make sure we have seen our old_write and synchronize
1398	 * with any interrupts that come in.
1399	 */
1400	barrier();
1401
1402	/*
1403	 * If the tail page is still the same as what we think
1404	 * it is, then it is up to us to update the tail
1405	 * pointer.
1406	 */
1407	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1408		/* Zero the write counter */
1409		unsigned long val = old_write & ~RB_WRITE_MASK;
1410		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1411
1412		/*
1413		 * This will only succeed if an interrupt did
1414		 * not come in and change it. In which case, we
1415		 * do not want to modify it.
1416		 *
1417		 * We add (void) to let the compiler know that we do not care
1418		 * about the return value of these functions. We use the
1419		 * cmpxchg to only update if an interrupt did not already
1420		 * do it for us. If the cmpxchg fails, we don't care.
1421		 */
1422		(void)local_cmpxchg(&next_page->write, old_write, val);
1423		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1424
1425		/*
1426		 * No need to worry about races with clearing out the commit.
1427		 * it only can increment when a commit takes place. But that
1428		 * only happens in the outer most nested commit.
1429		 */
1430		local_set(&next_page->page->commit, 0);
1431
1432		/* Either we update tail_page or an interrupt does */
1433		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1434			local_inc(&cpu_buffer->pages_touched);
1435	}
1436}
1437
1438static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1439			  struct buffer_page *bpage)
1440{
1441	unsigned long val = (unsigned long)bpage;
1442
1443	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1444}
1445
1446/**
1447 * rb_check_pages - integrity check of buffer pages
1448 * @cpu_buffer: CPU buffer with pages to test
1449 *
1450 * As a safety measure we check to make sure the data pages have not
1451 * been corrupted.
1452 */
1453static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1454{
1455	struct list_head *head = rb_list_head(cpu_buffer->pages);
1456	struct list_head *tmp;
1457
1458	if (RB_WARN_ON(cpu_buffer,
1459			rb_list_head(rb_list_head(head->next)->prev) != head))
1460		return;
1461
1462	if (RB_WARN_ON(cpu_buffer,
1463			rb_list_head(rb_list_head(head->prev)->next) != head))
1464		return;
1465
1466	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1467		if (RB_WARN_ON(cpu_buffer,
1468				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1469			return;
1470
1471		if (RB_WARN_ON(cpu_buffer,
1472				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1473			return;
1474	}
1475}
1476
1477static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1478		long nr_pages, struct list_head *pages)
1479{
1480	struct buffer_page *bpage, *tmp;
1481	bool user_thread = current->mm != NULL;
1482	gfp_t mflags;
1483	long i;
1484
1485	/*
1486	 * Check if the available memory is there first.
1487	 * Note, si_mem_available() only gives us a rough estimate of available
1488	 * memory. It may not be accurate. But we don't care, we just want
1489	 * to prevent doing any allocation when it is obvious that it is
1490	 * not going to succeed.
1491	 */
1492	i = si_mem_available();
1493	if (i < nr_pages)
1494		return -ENOMEM;
1495
1496	/*
1497	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1498	 * gracefully without invoking oom-killer and the system is not
1499	 * destabilized.
1500	 */
1501	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1502
1503	/*
1504	 * If a user thread allocates too much, and si_mem_available()
1505	 * reports there's enough memory, even though there is not.
1506	 * Make sure the OOM killer kills this thread. This can happen
1507	 * even with RETRY_MAYFAIL because another task may be doing
1508	 * an allocation after this task has taken all memory.
1509	 * This is the task the OOM killer needs to take out during this
1510	 * loop, even if it was triggered by an allocation somewhere else.
1511	 */
1512	if (user_thread)
1513		set_current_oom_origin();
1514	for (i = 0; i < nr_pages; i++) {
1515		struct page *page;
1516
1517		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1518				    mflags, cpu_to_node(cpu_buffer->cpu));
1519		if (!bpage)
1520			goto free_pages;
1521
1522		rb_check_bpage(cpu_buffer, bpage);
1523
1524		list_add(&bpage->list, pages);
1525
1526		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1527					mflags | __GFP_ZERO,
1528					cpu_buffer->buffer->subbuf_order);
1529		if (!page)
1530			goto free_pages;
1531		bpage->page = page_address(page);
1532		bpage->order = cpu_buffer->buffer->subbuf_order;
1533		rb_init_page(bpage->page);
1534
1535		if (user_thread && fatal_signal_pending(current))
1536			goto free_pages;
1537	}
1538	if (user_thread)
1539		clear_current_oom_origin();
1540
1541	return 0;
1542
1543free_pages:
1544	list_for_each_entry_safe(bpage, tmp, pages, list) {
1545		list_del_init(&bpage->list);
1546		free_buffer_page(bpage);
1547	}
1548	if (user_thread)
1549		clear_current_oom_origin();
1550
1551	return -ENOMEM;
1552}
1553
1554static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1555			     unsigned long nr_pages)
1556{
1557	LIST_HEAD(pages);
1558
1559	WARN_ON(!nr_pages);
1560
1561	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1562		return -ENOMEM;
1563
1564	/*
1565	 * The ring buffer page list is a circular list that does not
1566	 * start and end with a list head. All page list items point to
1567	 * other pages.
1568	 */
1569	cpu_buffer->pages = pages.next;
1570	list_del(&pages);
1571
1572	cpu_buffer->nr_pages = nr_pages;
1573
1574	rb_check_pages(cpu_buffer);
1575
1576	return 0;
1577}
1578
1579static struct ring_buffer_per_cpu *
1580rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1581{
1582	struct ring_buffer_per_cpu *cpu_buffer;
1583	struct buffer_page *bpage;
1584	struct page *page;
1585	int ret;
1586
1587	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1588				  GFP_KERNEL, cpu_to_node(cpu));
1589	if (!cpu_buffer)
1590		return NULL;
1591
1592	cpu_buffer->cpu = cpu;
1593	cpu_buffer->buffer = buffer;
1594	raw_spin_lock_init(&cpu_buffer->reader_lock);
1595	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1596	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1597	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1598	init_completion(&cpu_buffer->update_done);
1599	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1600	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1601	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1602
1603	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1604			    GFP_KERNEL, cpu_to_node(cpu));
1605	if (!bpage)
1606		goto fail_free_buffer;
1607
1608	rb_check_bpage(cpu_buffer, bpage);
1609
1610	cpu_buffer->reader_page = bpage;
1611
1612	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_ZERO,
1613				cpu_buffer->buffer->subbuf_order);
1614	if (!page)
1615		goto fail_free_reader;
1616	bpage->page = page_address(page);
1617	rb_init_page(bpage->page);
1618
1619	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1620	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1621
1622	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1623	if (ret < 0)
1624		goto fail_free_reader;
1625
1626	cpu_buffer->head_page
1627		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1628	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1629
1630	rb_head_page_activate(cpu_buffer);
1631
1632	return cpu_buffer;
1633
1634 fail_free_reader:
1635	free_buffer_page(cpu_buffer->reader_page);
1636
1637 fail_free_buffer:
1638	kfree(cpu_buffer);
1639	return NULL;
1640}
1641
1642static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1643{
1644	struct list_head *head = cpu_buffer->pages;
1645	struct buffer_page *bpage, *tmp;
1646
1647	irq_work_sync(&cpu_buffer->irq_work.work);
1648
1649	free_buffer_page(cpu_buffer->reader_page);
1650
1651	if (head) {
1652		rb_head_page_deactivate(cpu_buffer);
1653
1654		list_for_each_entry_safe(bpage, tmp, head, list) {
1655			list_del_init(&bpage->list);
1656			free_buffer_page(bpage);
1657		}
1658		bpage = list_entry(head, struct buffer_page, list);
1659		free_buffer_page(bpage);
1660	}
1661
1662	free_page((unsigned long)cpu_buffer->free_page);
1663
1664	kfree(cpu_buffer);
1665}
1666
1667/**
1668 * __ring_buffer_alloc - allocate a new ring_buffer
1669 * @size: the size in bytes per cpu that is needed.
1670 * @flags: attributes to set for the ring buffer.
1671 * @key: ring buffer reader_lock_key.
1672 *
1673 * Currently the only flag that is available is the RB_FL_OVERWRITE
1674 * flag. This flag means that the buffer will overwrite old data
1675 * when the buffer wraps. If this flag is not set, the buffer will
1676 * drop data when the tail hits the head.
1677 */
1678struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1679					struct lock_class_key *key)
1680{
1681	struct trace_buffer *buffer;
1682	long nr_pages;
1683	int bsize;
1684	int cpu;
1685	int ret;
1686
1687	/* keep it in its own cache line */
1688	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1689			 GFP_KERNEL);
1690	if (!buffer)
1691		return NULL;
1692
1693	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1694		goto fail_free_buffer;
1695
1696	/* Default buffer page size - one system page */
1697	buffer->subbuf_order = 0;
1698	buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1699
1700	/* Max payload is buffer page size - header (8bytes) */
1701	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1702
1703	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1704	buffer->flags = flags;
1705	buffer->clock = trace_clock_local;
1706	buffer->reader_lock_key = key;
1707
1708	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1709	init_waitqueue_head(&buffer->irq_work.waiters);
1710
1711	/* need at least two pages */
1712	if (nr_pages < 2)
1713		nr_pages = 2;
1714
1715	buffer->cpus = nr_cpu_ids;
1716
1717	bsize = sizeof(void *) * nr_cpu_ids;
1718	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1719				  GFP_KERNEL);
1720	if (!buffer->buffers)
1721		goto fail_free_cpumask;
1722
1723	cpu = raw_smp_processor_id();
1724	cpumask_set_cpu(cpu, buffer->cpumask);
1725	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1726	if (!buffer->buffers[cpu])
1727		goto fail_free_buffers;
1728
1729	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1730	if (ret < 0)
1731		goto fail_free_buffers;
1732
1733	mutex_init(&buffer->mutex);
1734
1735	return buffer;
1736
1737 fail_free_buffers:
1738	for_each_buffer_cpu(buffer, cpu) {
1739		if (buffer->buffers[cpu])
1740			rb_free_cpu_buffer(buffer->buffers[cpu]);
1741	}
1742	kfree(buffer->buffers);
1743
1744 fail_free_cpumask:
1745	free_cpumask_var(buffer->cpumask);
1746
1747 fail_free_buffer:
1748	kfree(buffer);
1749	return NULL;
1750}
1751EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1752
1753/**
1754 * ring_buffer_free - free a ring buffer.
1755 * @buffer: the buffer to free.
1756 */
1757void
1758ring_buffer_free(struct trace_buffer *buffer)
1759{
1760	int cpu;
1761
1762	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1763
1764	irq_work_sync(&buffer->irq_work.work);
1765
1766	for_each_buffer_cpu(buffer, cpu)
1767		rb_free_cpu_buffer(buffer->buffers[cpu]);
1768
1769	kfree(buffer->buffers);
1770	free_cpumask_var(buffer->cpumask);
1771
1772	kfree(buffer);
1773}
1774EXPORT_SYMBOL_GPL(ring_buffer_free);
1775
1776void ring_buffer_set_clock(struct trace_buffer *buffer,
1777			   u64 (*clock)(void))
1778{
1779	buffer->clock = clock;
1780}
1781
1782void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1783{
1784	buffer->time_stamp_abs = abs;
1785}
1786
1787bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1788{
1789	return buffer->time_stamp_abs;
1790}
1791
1792static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1793
1794static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1795{
1796	return local_read(&bpage->entries) & RB_WRITE_MASK;
1797}
1798
1799static inline unsigned long rb_page_write(struct buffer_page *bpage)
1800{
1801	return local_read(&bpage->write) & RB_WRITE_MASK;
1802}
1803
1804static bool
1805rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1806{
1807	struct list_head *tail_page, *to_remove, *next_page;
1808	struct buffer_page *to_remove_page, *tmp_iter_page;
1809	struct buffer_page *last_page, *first_page;
1810	unsigned long nr_removed;
1811	unsigned long head_bit;
1812	int page_entries;
1813
1814	head_bit = 0;
1815
1816	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1817	atomic_inc(&cpu_buffer->record_disabled);
1818	/*
1819	 * We don't race with the readers since we have acquired the reader
1820	 * lock. We also don't race with writers after disabling recording.
1821	 * This makes it easy to figure out the first and the last page to be
1822	 * removed from the list. We unlink all the pages in between including
1823	 * the first and last pages. This is done in a busy loop so that we
1824	 * lose the least number of traces.
1825	 * The pages are freed after we restart recording and unlock readers.
1826	 */
1827	tail_page = &cpu_buffer->tail_page->list;
1828
1829	/*
1830	 * tail page might be on reader page, we remove the next page
1831	 * from the ring buffer
1832	 */
1833	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1834		tail_page = rb_list_head(tail_page->next);
1835	to_remove = tail_page;
1836
1837	/* start of pages to remove */
1838	first_page = list_entry(rb_list_head(to_remove->next),
1839				struct buffer_page, list);
1840
1841	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1842		to_remove = rb_list_head(to_remove)->next;
1843		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1844	}
1845	/* Read iterators need to reset themselves when some pages removed */
1846	cpu_buffer->pages_removed += nr_removed;
1847
1848	next_page = rb_list_head(to_remove)->next;
1849
1850	/*
1851	 * Now we remove all pages between tail_page and next_page.
1852	 * Make sure that we have head_bit value preserved for the
1853	 * next page
1854	 */
1855	tail_page->next = (struct list_head *)((unsigned long)next_page |
1856						head_bit);
1857	next_page = rb_list_head(next_page);
1858	next_page->prev = tail_page;
1859
1860	/* make sure pages points to a valid page in the ring buffer */
1861	cpu_buffer->pages = next_page;
1862
1863	/* update head page */
1864	if (head_bit)
1865		cpu_buffer->head_page = list_entry(next_page,
1866						struct buffer_page, list);
1867
1868	/* pages are removed, resume tracing and then free the pages */
1869	atomic_dec(&cpu_buffer->record_disabled);
1870	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1871
1872	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1873
1874	/* last buffer page to remove */
1875	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1876				list);
1877	tmp_iter_page = first_page;
1878
1879	do {
1880		cond_resched();
1881
1882		to_remove_page = tmp_iter_page;
1883		rb_inc_page(&tmp_iter_page);
1884
1885		/* update the counters */
1886		page_entries = rb_page_entries(to_remove_page);
1887		if (page_entries) {
1888			/*
1889			 * If something was added to this page, it was full
1890			 * since it is not the tail page. So we deduct the
1891			 * bytes consumed in ring buffer from here.
1892			 * Increment overrun to account for the lost events.
1893			 */
1894			local_add(page_entries, &cpu_buffer->overrun);
1895			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1896			local_inc(&cpu_buffer->pages_lost);
1897		}
1898
1899		/*
1900		 * We have already removed references to this list item, just
1901		 * free up the buffer_page and its page
1902		 */
1903		free_buffer_page(to_remove_page);
1904		nr_removed--;
1905
1906	} while (to_remove_page != last_page);
1907
1908	RB_WARN_ON(cpu_buffer, nr_removed);
1909
1910	return nr_removed == 0;
1911}
1912
1913static bool
1914rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1915{
1916	struct list_head *pages = &cpu_buffer->new_pages;
1917	unsigned long flags;
1918	bool success;
1919	int retries;
1920
1921	/* Can be called at early boot up, where interrupts must not been enabled */
1922	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1923	/*
1924	 * We are holding the reader lock, so the reader page won't be swapped
1925	 * in the ring buffer. Now we are racing with the writer trying to
1926	 * move head page and the tail page.
1927	 * We are going to adapt the reader page update process where:
1928	 * 1. We first splice the start and end of list of new pages between
1929	 *    the head page and its previous page.
1930	 * 2. We cmpxchg the prev_page->next to point from head page to the
1931	 *    start of new pages list.
1932	 * 3. Finally, we update the head->prev to the end of new list.
1933	 *
1934	 * We will try this process 10 times, to make sure that we don't keep
1935	 * spinning.
1936	 */
1937	retries = 10;
1938	success = false;
1939	while (retries--) {
1940		struct list_head *head_page, *prev_page;
1941		struct list_head *last_page, *first_page;
1942		struct list_head *head_page_with_bit;
1943		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1944
1945		if (!hpage)
1946			break;
1947		head_page = &hpage->list;
1948		prev_page = head_page->prev;
1949
1950		first_page = pages->next;
1951		last_page  = pages->prev;
1952
1953		head_page_with_bit = (struct list_head *)
1954				     ((unsigned long)head_page | RB_PAGE_HEAD);
1955
1956		last_page->next = head_page_with_bit;
1957		first_page->prev = prev_page;
1958
1959		/* caution: head_page_with_bit gets updated on cmpxchg failure */
1960		if (try_cmpxchg(&prev_page->next,
1961				&head_page_with_bit, first_page)) {
1962			/*
1963			 * yay, we replaced the page pointer to our new list,
1964			 * now, we just have to update to head page's prev
1965			 * pointer to point to end of list
1966			 */
1967			head_page->prev = last_page;
1968			success = true;
1969			break;
1970		}
1971	}
1972
1973	if (success)
1974		INIT_LIST_HEAD(pages);
1975	/*
1976	 * If we weren't successful in adding in new pages, warn and stop
1977	 * tracing
1978	 */
1979	RB_WARN_ON(cpu_buffer, !success);
1980	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1981
1982	/* free pages if they weren't inserted */
1983	if (!success) {
1984		struct buffer_page *bpage, *tmp;
1985		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1986					 list) {
1987			list_del_init(&bpage->list);
1988			free_buffer_page(bpage);
1989		}
1990	}
1991	return success;
1992}
1993
1994static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1995{
1996	bool success;
1997
1998	if (cpu_buffer->nr_pages_to_update > 0)
1999		success = rb_insert_pages(cpu_buffer);
2000	else
2001		success = rb_remove_pages(cpu_buffer,
2002					-cpu_buffer->nr_pages_to_update);
2003
2004	if (success)
2005		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2006}
2007
2008static void update_pages_handler(struct work_struct *work)
2009{
2010	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2011			struct ring_buffer_per_cpu, update_pages_work);
2012	rb_update_pages(cpu_buffer);
2013	complete(&cpu_buffer->update_done);
2014}
2015
2016/**
2017 * ring_buffer_resize - resize the ring buffer
2018 * @buffer: the buffer to resize.
2019 * @size: the new size.
2020 * @cpu_id: the cpu buffer to resize
2021 *
2022 * Minimum size is 2 * buffer->subbuf_size.
2023 *
2024 * Returns 0 on success and < 0 on failure.
2025 */
2026int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2027			int cpu_id)
2028{
2029	struct ring_buffer_per_cpu *cpu_buffer;
2030	unsigned long nr_pages;
2031	int cpu, err;
2032
2033	/*
2034	 * Always succeed at resizing a non-existent buffer:
2035	 */
2036	if (!buffer)
2037		return 0;
2038
2039	/* Make sure the requested buffer exists */
2040	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2041	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2042		return 0;
2043
2044	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2045
2046	/* we need a minimum of two pages */
2047	if (nr_pages < 2)
2048		nr_pages = 2;
2049
2050	/* prevent another thread from changing buffer sizes */
2051	mutex_lock(&buffer->mutex);
2052	atomic_inc(&buffer->resizing);
2053
2054	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2055		/*
2056		 * Don't succeed if resizing is disabled, as a reader might be
2057		 * manipulating the ring buffer and is expecting a sane state while
2058		 * this is true.
2059		 */
2060		for_each_buffer_cpu(buffer, cpu) {
2061			cpu_buffer = buffer->buffers[cpu];
2062			if (atomic_read(&cpu_buffer->resize_disabled)) {
2063				err = -EBUSY;
2064				goto out_err_unlock;
2065			}
2066		}
2067
2068		/* calculate the pages to update */
2069		for_each_buffer_cpu(buffer, cpu) {
2070			cpu_buffer = buffer->buffers[cpu];
2071
2072			cpu_buffer->nr_pages_to_update = nr_pages -
2073							cpu_buffer->nr_pages;
2074			/*
2075			 * nothing more to do for removing pages or no update
2076			 */
2077			if (cpu_buffer->nr_pages_to_update <= 0)
2078				continue;
2079			/*
2080			 * to add pages, make sure all new pages can be
2081			 * allocated without receiving ENOMEM
2082			 */
2083			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2084			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2085						&cpu_buffer->new_pages)) {
2086				/* not enough memory for new pages */
2087				err = -ENOMEM;
2088				goto out_err;
2089			}
2090
2091			cond_resched();
2092		}
2093
2094		cpus_read_lock();
2095		/*
2096		 * Fire off all the required work handlers
2097		 * We can't schedule on offline CPUs, but it's not necessary
2098		 * since we can change their buffer sizes without any race.
2099		 */
2100		for_each_buffer_cpu(buffer, cpu) {
2101			cpu_buffer = buffer->buffers[cpu];
2102			if (!cpu_buffer->nr_pages_to_update)
2103				continue;
2104
2105			/* Can't run something on an offline CPU. */
2106			if (!cpu_online(cpu)) {
2107				rb_update_pages(cpu_buffer);
2108				cpu_buffer->nr_pages_to_update = 0;
2109			} else {
2110				/* Run directly if possible. */
2111				migrate_disable();
2112				if (cpu != smp_processor_id()) {
2113					migrate_enable();
2114					schedule_work_on(cpu,
2115							 &cpu_buffer->update_pages_work);
2116				} else {
2117					update_pages_handler(&cpu_buffer->update_pages_work);
2118					migrate_enable();
2119				}
2120			}
2121		}
2122
2123		/* wait for all the updates to complete */
2124		for_each_buffer_cpu(buffer, cpu) {
2125			cpu_buffer = buffer->buffers[cpu];
2126			if (!cpu_buffer->nr_pages_to_update)
2127				continue;
2128
2129			if (cpu_online(cpu))
2130				wait_for_completion(&cpu_buffer->update_done);
2131			cpu_buffer->nr_pages_to_update = 0;
2132		}
2133
2134		cpus_read_unlock();
2135	} else {
2136		cpu_buffer = buffer->buffers[cpu_id];
2137
2138		if (nr_pages == cpu_buffer->nr_pages)
2139			goto out;
2140
2141		/*
2142		 * Don't succeed if resizing is disabled, as a reader might be
2143		 * manipulating the ring buffer and is expecting a sane state while
2144		 * this is true.
2145		 */
2146		if (atomic_read(&cpu_buffer->resize_disabled)) {
2147			err = -EBUSY;
2148			goto out_err_unlock;
2149		}
2150
2151		cpu_buffer->nr_pages_to_update = nr_pages -
2152						cpu_buffer->nr_pages;
2153
2154		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2155		if (cpu_buffer->nr_pages_to_update > 0 &&
2156			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2157					    &cpu_buffer->new_pages)) {
2158			err = -ENOMEM;
2159			goto out_err;
2160		}
2161
2162		cpus_read_lock();
2163
2164		/* Can't run something on an offline CPU. */
2165		if (!cpu_online(cpu_id))
2166			rb_update_pages(cpu_buffer);
2167		else {
2168			/* Run directly if possible. */
2169			migrate_disable();
2170			if (cpu_id == smp_processor_id()) {
2171				rb_update_pages(cpu_buffer);
2172				migrate_enable();
2173			} else {
2174				migrate_enable();
2175				schedule_work_on(cpu_id,
2176						 &cpu_buffer->update_pages_work);
2177				wait_for_completion(&cpu_buffer->update_done);
2178			}
2179		}
2180
2181		cpu_buffer->nr_pages_to_update = 0;
2182		cpus_read_unlock();
2183	}
2184
2185 out:
2186	/*
2187	 * The ring buffer resize can happen with the ring buffer
2188	 * enabled, so that the update disturbs the tracing as little
2189	 * as possible. But if the buffer is disabled, we do not need
2190	 * to worry about that, and we can take the time to verify
2191	 * that the buffer is not corrupt.
2192	 */
2193	if (atomic_read(&buffer->record_disabled)) {
2194		atomic_inc(&buffer->record_disabled);
2195		/*
2196		 * Even though the buffer was disabled, we must make sure
2197		 * that it is truly disabled before calling rb_check_pages.
2198		 * There could have been a race between checking
2199		 * record_disable and incrementing it.
2200		 */
2201		synchronize_rcu();
2202		for_each_buffer_cpu(buffer, cpu) {
2203			cpu_buffer = buffer->buffers[cpu];
2204			rb_check_pages(cpu_buffer);
2205		}
2206		atomic_dec(&buffer->record_disabled);
2207	}
2208
2209	atomic_dec(&buffer->resizing);
2210	mutex_unlock(&buffer->mutex);
2211	return 0;
2212
2213 out_err:
2214	for_each_buffer_cpu(buffer, cpu) {
2215		struct buffer_page *bpage, *tmp;
2216
2217		cpu_buffer = buffer->buffers[cpu];
2218		cpu_buffer->nr_pages_to_update = 0;
2219
2220		if (list_empty(&cpu_buffer->new_pages))
2221			continue;
2222
2223		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2224					list) {
2225			list_del_init(&bpage->list);
2226			free_buffer_page(bpage);
2227		}
2228	}
2229 out_err_unlock:
2230	atomic_dec(&buffer->resizing);
2231	mutex_unlock(&buffer->mutex);
2232	return err;
2233}
2234EXPORT_SYMBOL_GPL(ring_buffer_resize);
2235
2236void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2237{
2238	mutex_lock(&buffer->mutex);
2239	if (val)
2240		buffer->flags |= RB_FL_OVERWRITE;
2241	else
2242		buffer->flags &= ~RB_FL_OVERWRITE;
2243	mutex_unlock(&buffer->mutex);
2244}
2245EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2246
2247static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2248{
2249	return bpage->page->data + index;
2250}
2251
2252static __always_inline struct ring_buffer_event *
2253rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2254{
2255	return __rb_page_index(cpu_buffer->reader_page,
2256			       cpu_buffer->reader_page->read);
2257}
2258
2259static struct ring_buffer_event *
2260rb_iter_head_event(struct ring_buffer_iter *iter)
2261{
2262	struct ring_buffer_event *event;
2263	struct buffer_page *iter_head_page = iter->head_page;
2264	unsigned long commit;
2265	unsigned length;
2266
2267	if (iter->head != iter->next_event)
2268		return iter->event;
2269
2270	/*
2271	 * When the writer goes across pages, it issues a cmpxchg which
2272	 * is a mb(), which will synchronize with the rmb here.
2273	 * (see rb_tail_page_update() and __rb_reserve_next())
2274	 */
2275	commit = rb_page_commit(iter_head_page);
2276	smp_rmb();
2277
2278	/* An event needs to be at least 8 bytes in size */
2279	if (iter->head > commit - 8)
2280		goto reset;
2281
2282	event = __rb_page_index(iter_head_page, iter->head);
2283	length = rb_event_length(event);
2284
2285	/*
2286	 * READ_ONCE() doesn't work on functions and we don't want the
2287	 * compiler doing any crazy optimizations with length.
2288	 */
2289	barrier();
2290
2291	if ((iter->head + length) > commit || length > iter->event_size)
2292		/* Writer corrupted the read? */
2293		goto reset;
2294
2295	memcpy(iter->event, event, length);
2296	/*
2297	 * If the page stamp is still the same after this rmb() then the
2298	 * event was safely copied without the writer entering the page.
2299	 */
2300	smp_rmb();
2301
2302	/* Make sure the page didn't change since we read this */
2303	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2304	    commit > rb_page_commit(iter_head_page))
2305		goto reset;
2306
2307	iter->next_event = iter->head + length;
2308	return iter->event;
2309 reset:
2310	/* Reset to the beginning */
2311	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2312	iter->head = 0;
2313	iter->next_event = 0;
2314	iter->missed_events = 1;
2315	return NULL;
2316}
2317
2318/* Size is determined by what has been committed */
2319static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2320{
2321	return rb_page_commit(bpage);
2322}
2323
2324static __always_inline unsigned
2325rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2326{
2327	return rb_page_commit(cpu_buffer->commit_page);
2328}
2329
2330static __always_inline unsigned
2331rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2332{
2333	unsigned long addr = (unsigned long)event;
2334
2335	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2336
2337	return addr - BUF_PAGE_HDR_SIZE;
2338}
2339
2340static void rb_inc_iter(struct ring_buffer_iter *iter)
2341{
2342	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2343
2344	/*
2345	 * The iterator could be on the reader page (it starts there).
2346	 * But the head could have moved, since the reader was
2347	 * found. Check for this case and assign the iterator
2348	 * to the head page instead of next.
2349	 */
2350	if (iter->head_page == cpu_buffer->reader_page)
2351		iter->head_page = rb_set_head_page(cpu_buffer);
2352	else
2353		rb_inc_page(&iter->head_page);
2354
2355	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2356	iter->head = 0;
2357	iter->next_event = 0;
2358}
2359
2360/*
2361 * rb_handle_head_page - writer hit the head page
2362 *
2363 * Returns: +1 to retry page
2364 *           0 to continue
2365 *          -1 on error
2366 */
2367static int
2368rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2369		    struct buffer_page *tail_page,
2370		    struct buffer_page *next_page)
2371{
2372	struct buffer_page *new_head;
2373	int entries;
2374	int type;
2375	int ret;
2376
2377	entries = rb_page_entries(next_page);
2378
2379	/*
2380	 * The hard part is here. We need to move the head
2381	 * forward, and protect against both readers on
2382	 * other CPUs and writers coming in via interrupts.
2383	 */
2384	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2385				       RB_PAGE_HEAD);
2386
2387	/*
2388	 * type can be one of four:
2389	 *  NORMAL - an interrupt already moved it for us
2390	 *  HEAD   - we are the first to get here.
2391	 *  UPDATE - we are the interrupt interrupting
2392	 *           a current move.
2393	 *  MOVED  - a reader on another CPU moved the next
2394	 *           pointer to its reader page. Give up
2395	 *           and try again.
2396	 */
2397
2398	switch (type) {
2399	case RB_PAGE_HEAD:
2400		/*
2401		 * We changed the head to UPDATE, thus
2402		 * it is our responsibility to update
2403		 * the counters.
2404		 */
2405		local_add(entries, &cpu_buffer->overrun);
2406		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2407		local_inc(&cpu_buffer->pages_lost);
2408
2409		/*
2410		 * The entries will be zeroed out when we move the
2411		 * tail page.
2412		 */
2413
2414		/* still more to do */
2415		break;
2416
2417	case RB_PAGE_UPDATE:
2418		/*
2419		 * This is an interrupt that interrupt the
2420		 * previous update. Still more to do.
2421		 */
2422		break;
2423	case RB_PAGE_NORMAL:
2424		/*
2425		 * An interrupt came in before the update
2426		 * and processed this for us.
2427		 * Nothing left to do.
2428		 */
2429		return 1;
2430	case RB_PAGE_MOVED:
2431		/*
2432		 * The reader is on another CPU and just did
2433		 * a swap with our next_page.
2434		 * Try again.
2435		 */
2436		return 1;
2437	default:
2438		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2439		return -1;
2440	}
2441
2442	/*
2443	 * Now that we are here, the old head pointer is
2444	 * set to UPDATE. This will keep the reader from
2445	 * swapping the head page with the reader page.
2446	 * The reader (on another CPU) will spin till
2447	 * we are finished.
2448	 *
2449	 * We just need to protect against interrupts
2450	 * doing the job. We will set the next pointer
2451	 * to HEAD. After that, we set the old pointer
2452	 * to NORMAL, but only if it was HEAD before.
2453	 * otherwise we are an interrupt, and only
2454	 * want the outer most commit to reset it.
2455	 */
2456	new_head = next_page;
2457	rb_inc_page(&new_head);
2458
2459	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2460				    RB_PAGE_NORMAL);
2461
2462	/*
2463	 * Valid returns are:
2464	 *  HEAD   - an interrupt came in and already set it.
2465	 *  NORMAL - One of two things:
2466	 *            1) We really set it.
2467	 *            2) A bunch of interrupts came in and moved
2468	 *               the page forward again.
2469	 */
2470	switch (ret) {
2471	case RB_PAGE_HEAD:
2472	case RB_PAGE_NORMAL:
2473		/* OK */
2474		break;
2475	default:
2476		RB_WARN_ON(cpu_buffer, 1);
2477		return -1;
2478	}
2479
2480	/*
2481	 * It is possible that an interrupt came in,
2482	 * set the head up, then more interrupts came in
2483	 * and moved it again. When we get back here,
2484	 * the page would have been set to NORMAL but we
2485	 * just set it back to HEAD.
2486	 *
2487	 * How do you detect this? Well, if that happened
2488	 * the tail page would have moved.
2489	 */
2490	if (ret == RB_PAGE_NORMAL) {
2491		struct buffer_page *buffer_tail_page;
2492
2493		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2494		/*
2495		 * If the tail had moved passed next, then we need
2496		 * to reset the pointer.
2497		 */
2498		if (buffer_tail_page != tail_page &&
2499		    buffer_tail_page != next_page)
2500			rb_head_page_set_normal(cpu_buffer, new_head,
2501						next_page,
2502						RB_PAGE_HEAD);
2503	}
2504
2505	/*
2506	 * If this was the outer most commit (the one that
2507	 * changed the original pointer from HEAD to UPDATE),
2508	 * then it is up to us to reset it to NORMAL.
2509	 */
2510	if (type == RB_PAGE_HEAD) {
2511		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2512					      tail_page,
2513					      RB_PAGE_UPDATE);
2514		if (RB_WARN_ON(cpu_buffer,
2515			       ret != RB_PAGE_UPDATE))
2516			return -1;
2517	}
2518
2519	return 0;
2520}
2521
2522static inline void
2523rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2524	      unsigned long tail, struct rb_event_info *info)
2525{
2526	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2527	struct buffer_page *tail_page = info->tail_page;
2528	struct ring_buffer_event *event;
2529	unsigned long length = info->length;
2530
2531	/*
2532	 * Only the event that crossed the page boundary
2533	 * must fill the old tail_page with padding.
2534	 */
2535	if (tail >= bsize) {
2536		/*
2537		 * If the page was filled, then we still need
2538		 * to update the real_end. Reset it to zero
2539		 * and the reader will ignore it.
2540		 */
2541		if (tail == bsize)
2542			tail_page->real_end = 0;
2543
2544		local_sub(length, &tail_page->write);
2545		return;
2546	}
2547
2548	event = __rb_page_index(tail_page, tail);
2549
2550	/*
2551	 * Save the original length to the meta data.
2552	 * This will be used by the reader to add lost event
2553	 * counter.
2554	 */
2555	tail_page->real_end = tail;
2556
2557	/*
2558	 * If this event is bigger than the minimum size, then
2559	 * we need to be careful that we don't subtract the
2560	 * write counter enough to allow another writer to slip
2561	 * in on this page.
2562	 * We put in a discarded commit instead, to make sure
2563	 * that this space is not used again, and this space will
2564	 * not be accounted into 'entries_bytes'.
2565	 *
2566	 * If we are less than the minimum size, we don't need to
2567	 * worry about it.
2568	 */
2569	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2570		/* No room for any events */
2571
2572		/* Mark the rest of the page with padding */
2573		rb_event_set_padding(event);
2574
2575		/* Make sure the padding is visible before the write update */
2576		smp_wmb();
2577
2578		/* Set the write back to the previous setting */
2579		local_sub(length, &tail_page->write);
2580		return;
2581	}
2582
2583	/* Put in a discarded event */
2584	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2585	event->type_len = RINGBUF_TYPE_PADDING;
2586	/* time delta must be non zero */
2587	event->time_delta = 1;
2588
2589	/* account for padding bytes */
2590	local_add(bsize - tail, &cpu_buffer->entries_bytes);
2591
2592	/* Make sure the padding is visible before the tail_page->write update */
2593	smp_wmb();
2594
2595	/* Set write to end of buffer */
2596	length = (tail + length) - bsize;
2597	local_sub(length, &tail_page->write);
2598}
2599
2600static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2601
2602/*
2603 * This is the slow path, force gcc not to inline it.
2604 */
2605static noinline struct ring_buffer_event *
2606rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2607	     unsigned long tail, struct rb_event_info *info)
2608{
2609	struct buffer_page *tail_page = info->tail_page;
2610	struct buffer_page *commit_page = cpu_buffer->commit_page;
2611	struct trace_buffer *buffer = cpu_buffer->buffer;
2612	struct buffer_page *next_page;
2613	int ret;
2614
2615	next_page = tail_page;
2616
2617	rb_inc_page(&next_page);
2618
2619	/*
2620	 * If for some reason, we had an interrupt storm that made
2621	 * it all the way around the buffer, bail, and warn
2622	 * about it.
2623	 */
2624	if (unlikely(next_page == commit_page)) {
2625		local_inc(&cpu_buffer->commit_overrun);
2626		goto out_reset;
2627	}
2628
2629	/*
2630	 * This is where the fun begins!
2631	 *
2632	 * We are fighting against races between a reader that
2633	 * could be on another CPU trying to swap its reader
2634	 * page with the buffer head.
2635	 *
2636	 * We are also fighting against interrupts coming in and
2637	 * moving the head or tail on us as well.
2638	 *
2639	 * If the next page is the head page then we have filled
2640	 * the buffer, unless the commit page is still on the
2641	 * reader page.
2642	 */
2643	if (rb_is_head_page(next_page, &tail_page->list)) {
2644
2645		/*
2646		 * If the commit is not on the reader page, then
2647		 * move the header page.
2648		 */
2649		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2650			/*
2651			 * If we are not in overwrite mode,
2652			 * this is easy, just stop here.
2653			 */
2654			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2655				local_inc(&cpu_buffer->dropped_events);
2656				goto out_reset;
2657			}
2658
2659			ret = rb_handle_head_page(cpu_buffer,
2660						  tail_page,
2661						  next_page);
2662			if (ret < 0)
2663				goto out_reset;
2664			if (ret)
2665				goto out_again;
2666		} else {
2667			/*
2668			 * We need to be careful here too. The
2669			 * commit page could still be on the reader
2670			 * page. We could have a small buffer, and
2671			 * have filled up the buffer with events
2672			 * from interrupts and such, and wrapped.
2673			 *
2674			 * Note, if the tail page is also on the
2675			 * reader_page, we let it move out.
2676			 */
2677			if (unlikely((cpu_buffer->commit_page !=
2678				      cpu_buffer->tail_page) &&
2679				     (cpu_buffer->commit_page ==
2680				      cpu_buffer->reader_page))) {
2681				local_inc(&cpu_buffer->commit_overrun);
2682				goto out_reset;
2683			}
2684		}
2685	}
2686
2687	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2688
2689 out_again:
2690
2691	rb_reset_tail(cpu_buffer, tail, info);
2692
2693	/* Commit what we have for now. */
2694	rb_end_commit(cpu_buffer);
2695	/* rb_end_commit() decs committing */
2696	local_inc(&cpu_buffer->committing);
2697
2698	/* fail and let the caller try again */
2699	return ERR_PTR(-EAGAIN);
2700
2701 out_reset:
2702	/* reset write */
2703	rb_reset_tail(cpu_buffer, tail, info);
2704
2705	return NULL;
2706}
2707
2708/* Slow path */
2709static struct ring_buffer_event *
2710rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2711		  struct ring_buffer_event *event, u64 delta, bool abs)
2712{
2713	if (abs)
2714		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2715	else
2716		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2717
2718	/* Not the first event on the page, or not delta? */
2719	if (abs || rb_event_index(cpu_buffer, event)) {
2720		event->time_delta = delta & TS_MASK;
2721		event->array[0] = delta >> TS_SHIFT;
2722	} else {
2723		/* nope, just zero it */
2724		event->time_delta = 0;
2725		event->array[0] = 0;
2726	}
2727
2728	return skip_time_extend(event);
2729}
2730
2731#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2732static inline bool sched_clock_stable(void)
2733{
2734	return true;
2735}
2736#endif
2737
2738static void
2739rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2740		   struct rb_event_info *info)
2741{
2742	u64 write_stamp;
2743
2744	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2745		  (unsigned long long)info->delta,
2746		  (unsigned long long)info->ts,
2747		  (unsigned long long)info->before,
2748		  (unsigned long long)info->after,
2749		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2750		  sched_clock_stable() ? "" :
2751		  "If you just came from a suspend/resume,\n"
2752		  "please switch to the trace global clock:\n"
2753		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2754		  "or add trace_clock=global to the kernel command line\n");
2755}
2756
2757static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2758				      struct ring_buffer_event **event,
2759				      struct rb_event_info *info,
2760				      u64 *delta,
2761				      unsigned int *length)
2762{
2763	bool abs = info->add_timestamp &
2764		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2765
2766	if (unlikely(info->delta > (1ULL << 59))) {
2767		/*
2768		 * Some timers can use more than 59 bits, and when a timestamp
2769		 * is added to the buffer, it will lose those bits.
2770		 */
2771		if (abs && (info->ts & TS_MSB)) {
2772			info->delta &= ABS_TS_MASK;
2773
2774		/* did the clock go backwards */
2775		} else if (info->before == info->after && info->before > info->ts) {
2776			/* not interrupted */
2777			static int once;
2778
2779			/*
2780			 * This is possible with a recalibrating of the TSC.
2781			 * Do not produce a call stack, but just report it.
2782			 */
2783			if (!once) {
2784				once++;
2785				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2786					info->before, info->ts);
2787			}
2788		} else
2789			rb_check_timestamp(cpu_buffer, info);
2790		if (!abs)
2791			info->delta = 0;
2792	}
2793	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2794	*length -= RB_LEN_TIME_EXTEND;
2795	*delta = 0;
2796}
2797
2798/**
2799 * rb_update_event - update event type and data
2800 * @cpu_buffer: The per cpu buffer of the @event
2801 * @event: the event to update
2802 * @info: The info to update the @event with (contains length and delta)
2803 *
2804 * Update the type and data fields of the @event. The length
2805 * is the actual size that is written to the ring buffer,
2806 * and with this, we can determine what to place into the
2807 * data field.
2808 */
2809static void
2810rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2811		struct ring_buffer_event *event,
2812		struct rb_event_info *info)
2813{
2814	unsigned length = info->length;
2815	u64 delta = info->delta;
2816	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2817
2818	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2819		cpu_buffer->event_stamp[nest] = info->ts;
2820
2821	/*
2822	 * If we need to add a timestamp, then we
2823	 * add it to the start of the reserved space.
2824	 */
2825	if (unlikely(info->add_timestamp))
2826		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2827
2828	event->time_delta = delta;
2829	length -= RB_EVNT_HDR_SIZE;
2830	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2831		event->type_len = 0;
2832		event->array[0] = length;
2833	} else
2834		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2835}
2836
2837static unsigned rb_calculate_event_length(unsigned length)
2838{
2839	struct ring_buffer_event event; /* Used only for sizeof array */
2840
2841	/* zero length can cause confusions */
2842	if (!length)
2843		length++;
2844
2845	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2846		length += sizeof(event.array[0]);
2847
2848	length += RB_EVNT_HDR_SIZE;
2849	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2850
2851	/*
2852	 * In case the time delta is larger than the 27 bits for it
2853	 * in the header, we need to add a timestamp. If another
2854	 * event comes in when trying to discard this one to increase
2855	 * the length, then the timestamp will be added in the allocated
2856	 * space of this event. If length is bigger than the size needed
2857	 * for the TIME_EXTEND, then padding has to be used. The events
2858	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2859	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2860	 * As length is a multiple of 4, we only need to worry if it
2861	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2862	 */
2863	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2864		length += RB_ALIGNMENT;
2865
2866	return length;
2867}
2868
2869static inline bool
2870rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2871		  struct ring_buffer_event *event)
2872{
2873	unsigned long new_index, old_index;
2874	struct buffer_page *bpage;
2875	unsigned long addr;
2876
2877	new_index = rb_event_index(cpu_buffer, event);
2878	old_index = new_index + rb_event_ts_length(event);
2879	addr = (unsigned long)event;
2880	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2881
2882	bpage = READ_ONCE(cpu_buffer->tail_page);
2883
2884	/*
2885	 * Make sure the tail_page is still the same and
2886	 * the next write location is the end of this event
2887	 */
2888	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2889		unsigned long write_mask =
2890			local_read(&bpage->write) & ~RB_WRITE_MASK;
2891		unsigned long event_length = rb_event_length(event);
2892
2893		/*
2894		 * For the before_stamp to be different than the write_stamp
2895		 * to make sure that the next event adds an absolute
2896		 * value and does not rely on the saved write stamp, which
2897		 * is now going to be bogus.
2898		 *
2899		 * By setting the before_stamp to zero, the next event
2900		 * is not going to use the write_stamp and will instead
2901		 * create an absolute timestamp. This means there's no
2902		 * reason to update the wirte_stamp!
2903		 */
2904		rb_time_set(&cpu_buffer->before_stamp, 0);
2905
2906		/*
2907		 * If an event were to come in now, it would see that the
2908		 * write_stamp and the before_stamp are different, and assume
2909		 * that this event just added itself before updating
2910		 * the write stamp. The interrupting event will fix the
2911		 * write stamp for us, and use an absolute timestamp.
2912		 */
2913
2914		/*
2915		 * This is on the tail page. It is possible that
2916		 * a write could come in and move the tail page
2917		 * and write to the next page. That is fine
2918		 * because we just shorten what is on this page.
2919		 */
2920		old_index += write_mask;
2921		new_index += write_mask;
2922
2923		/* caution: old_index gets updated on cmpxchg failure */
2924		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2925			/* update counters */
2926			local_sub(event_length, &cpu_buffer->entries_bytes);
2927			return true;
2928		}
2929	}
2930
2931	/* could not discard */
2932	return false;
2933}
2934
2935static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2936{
2937	local_inc(&cpu_buffer->committing);
2938	local_inc(&cpu_buffer->commits);
2939}
2940
2941static __always_inline void
2942rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2943{
2944	unsigned long max_count;
2945
2946	/*
2947	 * We only race with interrupts and NMIs on this CPU.
2948	 * If we own the commit event, then we can commit
2949	 * all others that interrupted us, since the interruptions
2950	 * are in stack format (they finish before they come
2951	 * back to us). This allows us to do a simple loop to
2952	 * assign the commit to the tail.
2953	 */
2954 again:
2955	max_count = cpu_buffer->nr_pages * 100;
2956
2957	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2958		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2959			return;
2960		if (RB_WARN_ON(cpu_buffer,
2961			       rb_is_reader_page(cpu_buffer->tail_page)))
2962			return;
2963		/*
2964		 * No need for a memory barrier here, as the update
2965		 * of the tail_page did it for this page.
2966		 */
2967		local_set(&cpu_buffer->commit_page->page->commit,
2968			  rb_page_write(cpu_buffer->commit_page));
2969		rb_inc_page(&cpu_buffer->commit_page);
2970		/* add barrier to keep gcc from optimizing too much */
2971		barrier();
2972	}
2973	while (rb_commit_index(cpu_buffer) !=
2974	       rb_page_write(cpu_buffer->commit_page)) {
2975
2976		/* Make sure the readers see the content of what is committed. */
2977		smp_wmb();
2978		local_set(&cpu_buffer->commit_page->page->commit,
2979			  rb_page_write(cpu_buffer->commit_page));
2980		RB_WARN_ON(cpu_buffer,
2981			   local_read(&cpu_buffer->commit_page->page->commit) &
2982			   ~RB_WRITE_MASK);
2983		barrier();
2984	}
2985
2986	/* again, keep gcc from optimizing */
2987	barrier();
2988
2989	/*
2990	 * If an interrupt came in just after the first while loop
2991	 * and pushed the tail page forward, we will be left with
2992	 * a dangling commit that will never go forward.
2993	 */
2994	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2995		goto again;
2996}
2997
2998static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2999{
3000	unsigned long commits;
3001
3002	if (RB_WARN_ON(cpu_buffer,
3003		       !local_read(&cpu_buffer->committing)))
3004		return;
3005
3006 again:
3007	commits = local_read(&cpu_buffer->commits);
3008	/* synchronize with interrupts */
3009	barrier();
3010	if (local_read(&cpu_buffer->committing) == 1)
3011		rb_set_commit_to_write(cpu_buffer);
3012
3013	local_dec(&cpu_buffer->committing);
3014
3015	/* synchronize with interrupts */
3016	barrier();
3017
3018	/*
3019	 * Need to account for interrupts coming in between the
3020	 * updating of the commit page and the clearing of the
3021	 * committing counter.
3022	 */
3023	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3024	    !local_read(&cpu_buffer->committing)) {
3025		local_inc(&cpu_buffer->committing);
3026		goto again;
3027	}
3028}
3029
3030static inline void rb_event_discard(struct ring_buffer_event *event)
3031{
3032	if (extended_time(event))
3033		event = skip_time_extend(event);
3034
3035	/* array[0] holds the actual length for the discarded event */
3036	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3037	event->type_len = RINGBUF_TYPE_PADDING;
3038	/* time delta must be non zero */
3039	if (!event->time_delta)
3040		event->time_delta = 1;
3041}
3042
3043static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3044{
3045	local_inc(&cpu_buffer->entries);
3046	rb_end_commit(cpu_buffer);
3047}
3048
3049static __always_inline void
3050rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3051{
3052	if (buffer->irq_work.waiters_pending) {
3053		buffer->irq_work.waiters_pending = false;
3054		/* irq_work_queue() supplies it's own memory barriers */
3055		irq_work_queue(&buffer->irq_work.work);
3056	}
3057
3058	if (cpu_buffer->irq_work.waiters_pending) {
3059		cpu_buffer->irq_work.waiters_pending = false;
3060		/* irq_work_queue() supplies it's own memory barriers */
3061		irq_work_queue(&cpu_buffer->irq_work.work);
3062	}
3063
3064	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3065		return;
3066
3067	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3068		return;
3069
3070	if (!cpu_buffer->irq_work.full_waiters_pending)
3071		return;
3072
3073	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3074
3075	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3076		return;
3077
3078	cpu_buffer->irq_work.wakeup_full = true;
3079	cpu_buffer->irq_work.full_waiters_pending = false;
3080	/* irq_work_queue() supplies it's own memory barriers */
3081	irq_work_queue(&cpu_buffer->irq_work.work);
3082}
3083
3084#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3085# define do_ring_buffer_record_recursion()	\
3086	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3087#else
3088# define do_ring_buffer_record_recursion() do { } while (0)
3089#endif
3090
3091/*
3092 * The lock and unlock are done within a preempt disable section.
3093 * The current_context per_cpu variable can only be modified
3094 * by the current task between lock and unlock. But it can
3095 * be modified more than once via an interrupt. To pass this
3096 * information from the lock to the unlock without having to
3097 * access the 'in_interrupt()' functions again (which do show
3098 * a bit of overhead in something as critical as function tracing,
3099 * we use a bitmask trick.
3100 *
3101 *  bit 1 =  NMI context
3102 *  bit 2 =  IRQ context
3103 *  bit 3 =  SoftIRQ context
3104 *  bit 4 =  normal context.
3105 *
3106 * This works because this is the order of contexts that can
3107 * preempt other contexts. A SoftIRQ never preempts an IRQ
3108 * context.
3109 *
3110 * When the context is determined, the corresponding bit is
3111 * checked and set (if it was set, then a recursion of that context
3112 * happened).
3113 *
3114 * On unlock, we need to clear this bit. To do so, just subtract
3115 * 1 from the current_context and AND it to itself.
3116 *
3117 * (binary)
3118 *  101 - 1 = 100
3119 *  101 & 100 = 100 (clearing bit zero)
3120 *
3121 *  1010 - 1 = 1001
3122 *  1010 & 1001 = 1000 (clearing bit 1)
3123 *
3124 * The least significant bit can be cleared this way, and it
3125 * just so happens that it is the same bit corresponding to
3126 * the current context.
3127 *
3128 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3129 * is set when a recursion is detected at the current context, and if
3130 * the TRANSITION bit is already set, it will fail the recursion.
3131 * This is needed because there's a lag between the changing of
3132 * interrupt context and updating the preempt count. In this case,
3133 * a false positive will be found. To handle this, one extra recursion
3134 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3135 * bit is already set, then it is considered a recursion and the function
3136 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3137 *
3138 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3139 * to be cleared. Even if it wasn't the context that set it. That is,
3140 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3141 * is called before preempt_count() is updated, since the check will
3142 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3143 * NMI then comes in, it will set the NMI bit, but when the NMI code
3144 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3145 * and leave the NMI bit set. But this is fine, because the interrupt
3146 * code that set the TRANSITION bit will then clear the NMI bit when it
3147 * calls trace_recursive_unlock(). If another NMI comes in, it will
3148 * set the TRANSITION bit and continue.
3149 *
3150 * Note: The TRANSITION bit only handles a single transition between context.
3151 */
3152
3153static __always_inline bool
3154trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3155{
3156	unsigned int val = cpu_buffer->current_context;
3157	int bit = interrupt_context_level();
3158
3159	bit = RB_CTX_NORMAL - bit;
3160
3161	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3162		/*
3163		 * It is possible that this was called by transitioning
3164		 * between interrupt context, and preempt_count() has not
3165		 * been updated yet. In this case, use the TRANSITION bit.
3166		 */
3167		bit = RB_CTX_TRANSITION;
3168		if (val & (1 << (bit + cpu_buffer->nest))) {
3169			do_ring_buffer_record_recursion();
3170			return true;
3171		}
3172	}
3173
3174	val |= (1 << (bit + cpu_buffer->nest));
3175	cpu_buffer->current_context = val;
3176
3177	return false;
3178}
3179
3180static __always_inline void
3181trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3182{
3183	cpu_buffer->current_context &=
3184		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3185}
3186
3187/* The recursive locking above uses 5 bits */
3188#define NESTED_BITS 5
3189
3190/**
3191 * ring_buffer_nest_start - Allow to trace while nested
3192 * @buffer: The ring buffer to modify
3193 *
3194 * The ring buffer has a safety mechanism to prevent recursion.
3195 * But there may be a case where a trace needs to be done while
3196 * tracing something else. In this case, calling this function
3197 * will allow this function to nest within a currently active
3198 * ring_buffer_lock_reserve().
3199 *
3200 * Call this function before calling another ring_buffer_lock_reserve() and
3201 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3202 */
3203void ring_buffer_nest_start(struct trace_buffer *buffer)
3204{
3205	struct ring_buffer_per_cpu *cpu_buffer;
3206	int cpu;
3207
3208	/* Enabled by ring_buffer_nest_end() */
3209	preempt_disable_notrace();
3210	cpu = raw_smp_processor_id();
3211	cpu_buffer = buffer->buffers[cpu];
3212	/* This is the shift value for the above recursive locking */
3213	cpu_buffer->nest += NESTED_BITS;
3214}
3215
3216/**
3217 * ring_buffer_nest_end - Allow to trace while nested
3218 * @buffer: The ring buffer to modify
3219 *
3220 * Must be called after ring_buffer_nest_start() and after the
3221 * ring_buffer_unlock_commit().
3222 */
3223void ring_buffer_nest_end(struct trace_buffer *buffer)
3224{
3225	struct ring_buffer_per_cpu *cpu_buffer;
3226	int cpu;
3227
3228	/* disabled by ring_buffer_nest_start() */
3229	cpu = raw_smp_processor_id();
3230	cpu_buffer = buffer->buffers[cpu];
3231	/* This is the shift value for the above recursive locking */
3232	cpu_buffer->nest -= NESTED_BITS;
3233	preempt_enable_notrace();
3234}
3235
3236/**
3237 * ring_buffer_unlock_commit - commit a reserved
3238 * @buffer: The buffer to commit to
3239 *
3240 * This commits the data to the ring buffer, and releases any locks held.
3241 *
3242 * Must be paired with ring_buffer_lock_reserve.
3243 */
3244int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3245{
3246	struct ring_buffer_per_cpu *cpu_buffer;
3247	int cpu = raw_smp_processor_id();
3248
3249	cpu_buffer = buffer->buffers[cpu];
3250
3251	rb_commit(cpu_buffer);
3252
3253	rb_wakeups(buffer, cpu_buffer);
3254
3255	trace_recursive_unlock(cpu_buffer);
3256
3257	preempt_enable_notrace();
3258
3259	return 0;
3260}
3261EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3262
3263/* Special value to validate all deltas on a page. */
3264#define CHECK_FULL_PAGE		1L
3265
3266#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3267
3268static const char *show_irq_str(int bits)
3269{
3270	const char *type[] = {
3271		".",	// 0
3272		"s",	// 1
3273		"h",	// 2
3274		"Hs",	// 3
3275		"n",	// 4
3276		"Ns",	// 5
3277		"Nh",	// 6
3278		"NHs",	// 7
3279	};
3280
3281	return type[bits];
3282}
3283
3284/* Assume this is an trace event */
3285static const char *show_flags(struct ring_buffer_event *event)
3286{
3287	struct trace_entry *entry;
3288	int bits = 0;
3289
3290	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3291		return "X";
3292
3293	entry = ring_buffer_event_data(event);
3294
3295	if (entry->flags & TRACE_FLAG_SOFTIRQ)
3296		bits |= 1;
3297
3298	if (entry->flags & TRACE_FLAG_HARDIRQ)
3299		bits |= 2;
3300
3301	if (entry->flags & TRACE_FLAG_NMI)
3302		bits |= 4;
3303
3304	return show_irq_str(bits);
3305}
3306
3307static const char *show_irq(struct ring_buffer_event *event)
3308{
3309	struct trace_entry *entry;
3310
3311	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3312		return "";
3313
3314	entry = ring_buffer_event_data(event);
3315	if (entry->flags & TRACE_FLAG_IRQS_OFF)
3316		return "d";
3317	return "";
3318}
3319
3320static const char *show_interrupt_level(void)
3321{
3322	unsigned long pc = preempt_count();
3323	unsigned char level = 0;
3324
3325	if (pc & SOFTIRQ_OFFSET)
3326		level |= 1;
3327
3328	if (pc & HARDIRQ_MASK)
3329		level |= 2;
3330
3331	if (pc & NMI_MASK)
3332		level |= 4;
3333
3334	return show_irq_str(level);
3335}
3336
3337static void dump_buffer_page(struct buffer_data_page *bpage,
3338			     struct rb_event_info *info,
3339			     unsigned long tail)
3340{
3341	struct ring_buffer_event *event;
3342	u64 ts, delta;
3343	int e;
3344
3345	ts = bpage->time_stamp;
3346	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3347
3348	for (e = 0; e < tail; e += rb_event_length(event)) {
3349
3350		event = (struct ring_buffer_event *)(bpage->data + e);
3351
3352		switch (event->type_len) {
3353
3354		case RINGBUF_TYPE_TIME_EXTEND:
3355			delta = rb_event_time_stamp(event);
3356			ts += delta;
3357			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3358				e, ts, delta);
3359			break;
3360
3361		case RINGBUF_TYPE_TIME_STAMP:
3362			delta = rb_event_time_stamp(event);
3363			ts = rb_fix_abs_ts(delta, ts);
3364			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
3365				e, ts, delta);
3366			break;
3367
3368		case RINGBUF_TYPE_PADDING:
3369			ts += event->time_delta;
3370			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
3371				e, ts, event->time_delta);
3372			break;
3373
3374		case RINGBUF_TYPE_DATA:
3375			ts += event->time_delta;
3376			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
3377				e, ts, event->time_delta,
3378				show_flags(event), show_irq(event));
3379			break;
3380
3381		default:
3382			break;
3383		}
3384	}
3385	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3386}
3387
3388static DEFINE_PER_CPU(atomic_t, checking);
3389static atomic_t ts_dump;
3390
3391#define buffer_warn_return(fmt, ...)					\
3392	do {								\
3393		/* If another report is happening, ignore this one */	\
3394		if (atomic_inc_return(&ts_dump) != 1) {			\
3395			atomic_dec(&ts_dump);				\
3396			goto out;					\
3397		}							\
3398		atomic_inc(&cpu_buffer->record_disabled);		\
3399		pr_warn(fmt, ##__VA_ARGS__);				\
3400		dump_buffer_page(bpage, info, tail);			\
3401		atomic_dec(&ts_dump);					\
3402		/* There's some cases in boot up that this can happen */ \
3403		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
3404			/* Do not re-enable checking */			\
3405			return;						\
3406	} while (0)
3407
3408/*
3409 * Check if the current event time stamp matches the deltas on
3410 * the buffer page.
3411 */
3412static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3413			 struct rb_event_info *info,
3414			 unsigned long tail)
3415{
3416	struct ring_buffer_event *event;
3417	struct buffer_data_page *bpage;
3418	u64 ts, delta;
3419	bool full = false;
3420	int e;
3421
3422	bpage = info->tail_page->page;
3423
3424	if (tail == CHECK_FULL_PAGE) {
3425		full = true;
3426		tail = local_read(&bpage->commit);
3427	} else if (info->add_timestamp &
3428		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3429		/* Ignore events with absolute time stamps */
3430		return;
3431	}
3432
3433	/*
3434	 * Do not check the first event (skip possible extends too).
3435	 * Also do not check if previous events have not been committed.
3436	 */
3437	if (tail <= 8 || tail > local_read(&bpage->commit))
3438		return;
3439
3440	/*
3441	 * If this interrupted another event,
3442	 */
3443	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3444		goto out;
3445
3446	ts = bpage->time_stamp;
3447
3448	for (e = 0; e < tail; e += rb_event_length(event)) {
3449
3450		event = (struct ring_buffer_event *)(bpage->data + e);
3451
3452		switch (event->type_len) {
3453
3454		case RINGBUF_TYPE_TIME_EXTEND:
3455			delta = rb_event_time_stamp(event);
3456			ts += delta;
3457			break;
3458
3459		case RINGBUF_TYPE_TIME_STAMP:
3460			delta = rb_event_time_stamp(event);
3461			delta = rb_fix_abs_ts(delta, ts);
3462			if (delta < ts) {
3463				buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3464						   cpu_buffer->cpu, ts, delta);
3465			}
3466			ts = delta;
3467			break;
3468
3469		case RINGBUF_TYPE_PADDING:
3470			if (event->time_delta == 1)
3471				break;
3472			fallthrough;
3473		case RINGBUF_TYPE_DATA:
3474			ts += event->time_delta;
3475			break;
3476
3477		default:
3478			RB_WARN_ON(cpu_buffer, 1);
3479		}
3480	}
3481	if ((full && ts > info->ts) ||
3482	    (!full && ts + info->delta != info->ts)) {
3483		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3484				   cpu_buffer->cpu,
3485				   ts + info->delta, info->ts, info->delta,
3486				   info->before, info->after,
3487				   full ? " (full)" : "", show_interrupt_level());
3488	}
3489out:
3490	atomic_dec(this_cpu_ptr(&checking));
3491}
3492#else
3493static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3494			 struct rb_event_info *info,
3495			 unsigned long tail)
3496{
3497}
3498#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3499
3500static struct ring_buffer_event *
3501__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3502		  struct rb_event_info *info)
3503{
3504	struct ring_buffer_event *event;
3505	struct buffer_page *tail_page;
3506	unsigned long tail, write, w;
3507
3508	/* Don't let the compiler play games with cpu_buffer->tail_page */
3509	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3510
3511 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3512	barrier();
3513	rb_time_read(&cpu_buffer->before_stamp, &info->before);
3514	rb_time_read(&cpu_buffer->write_stamp, &info->after);
3515	barrier();
3516	info->ts = rb_time_stamp(cpu_buffer->buffer);
3517
3518	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3519		info->delta = info->ts;
3520	} else {
3521		/*
3522		 * If interrupting an event time update, we may need an
3523		 * absolute timestamp.
3524		 * Don't bother if this is the start of a new page (w == 0).
3525		 */
3526		if (!w) {
3527			/* Use the sub-buffer timestamp */
3528			info->delta = 0;
3529		} else if (unlikely(info->before != info->after)) {
3530			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3531			info->length += RB_LEN_TIME_EXTEND;
3532		} else {
3533			info->delta = info->ts - info->after;
3534			if (unlikely(test_time_stamp(info->delta))) {
3535				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3536				info->length += RB_LEN_TIME_EXTEND;
3537			}
3538		}
3539	}
3540
3541 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3542
3543 /*C*/	write = local_add_return(info->length, &tail_page->write);
3544
3545	/* set write to only the index of the write */
3546	write &= RB_WRITE_MASK;
3547
3548	tail = write - info->length;
3549
3550	/* See if we shot pass the end of this buffer page */
3551	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3552		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3553		return rb_move_tail(cpu_buffer, tail, info);
3554	}
3555
3556	if (likely(tail == w)) {
3557		/* Nothing interrupted us between A and C */
3558 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3559		/*
3560		 * If something came in between C and D, the write stamp
3561		 * may now not be in sync. But that's fine as the before_stamp
3562		 * will be different and then next event will just be forced
3563		 * to use an absolute timestamp.
3564		 */
3565		if (likely(!(info->add_timestamp &
3566			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3567			/* This did not interrupt any time update */
3568			info->delta = info->ts - info->after;
3569		else
3570			/* Just use full timestamp for interrupting event */
3571			info->delta = info->ts;
3572		check_buffer(cpu_buffer, info, tail);
3573	} else {
3574		u64 ts;
3575		/* SLOW PATH - Interrupted between A and C */
3576
3577		/* Save the old before_stamp */
3578		rb_time_read(&cpu_buffer->before_stamp, &info->before);
3579
3580		/*
3581		 * Read a new timestamp and update the before_stamp to make
3582		 * the next event after this one force using an absolute
3583		 * timestamp. This is in case an interrupt were to come in
3584		 * between E and F.
3585		 */
3586		ts = rb_time_stamp(cpu_buffer->buffer);
3587		rb_time_set(&cpu_buffer->before_stamp, ts);
3588
3589		barrier();
3590 /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
3591		barrier();
3592 /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3593		    info->after == info->before && info->after < ts) {
3594			/*
3595			 * Nothing came after this event between C and F, it is
3596			 * safe to use info->after for the delta as it
3597			 * matched info->before and is still valid.
3598			 */
3599			info->delta = ts - info->after;
3600		} else {
3601			/*
3602			 * Interrupted between C and F:
3603			 * Lost the previous events time stamp. Just set the
3604			 * delta to zero, and this will be the same time as
3605			 * the event this event interrupted. And the events that
3606			 * came after this will still be correct (as they would
3607			 * have built their delta on the previous event.
3608			 */
3609			info->delta = 0;
3610		}
3611		info->ts = ts;
3612		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3613	}
3614
3615	/*
3616	 * If this is the first commit on the page, then it has the same
3617	 * timestamp as the page itself.
3618	 */
3619	if (unlikely(!tail && !(info->add_timestamp &
3620				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3621		info->delta = 0;
3622
3623	/* We reserved something on the buffer */
3624
3625	event = __rb_page_index(tail_page, tail);
3626	rb_update_event(cpu_buffer, event, info);
3627
3628	local_inc(&tail_page->entries);
3629
3630	/*
3631	 * If this is the first commit on the page, then update
3632	 * its timestamp.
3633	 */
3634	if (unlikely(!tail))
3635		tail_page->page->time_stamp = info->ts;
3636
3637	/* account for these added bytes */
3638	local_add(info->length, &cpu_buffer->entries_bytes);
3639
3640	return event;
3641}
3642
3643static __always_inline struct ring_buffer_event *
3644rb_reserve_next_event(struct trace_buffer *buffer,
3645		      struct ring_buffer_per_cpu *cpu_buffer,
3646		      unsigned long length)
3647{
3648	struct ring_buffer_event *event;
3649	struct rb_event_info info;
3650	int nr_loops = 0;
3651	int add_ts_default;
3652
3653	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3654	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3655	    (unlikely(in_nmi()))) {
3656		return NULL;
3657	}
3658
3659	rb_start_commit(cpu_buffer);
3660	/* The commit page can not change after this */
3661
3662#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3663	/*
3664	 * Due to the ability to swap a cpu buffer from a buffer
3665	 * it is possible it was swapped before we committed.
3666	 * (committing stops a swap). We check for it here and
3667	 * if it happened, we have to fail the write.
3668	 */
3669	barrier();
3670	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3671		local_dec(&cpu_buffer->committing);
3672		local_dec(&cpu_buffer->commits);
3673		return NULL;
3674	}
3675#endif
3676
3677	info.length = rb_calculate_event_length(length);
3678
3679	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3680		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3681		info.length += RB_LEN_TIME_EXTEND;
3682		if (info.length > cpu_buffer->buffer->max_data_size)
3683			goto out_fail;
3684	} else {
3685		add_ts_default = RB_ADD_STAMP_NONE;
3686	}
3687
3688 again:
3689	info.add_timestamp = add_ts_default;
3690	info.delta = 0;
3691
3692	/*
3693	 * We allow for interrupts to reenter here and do a trace.
3694	 * If one does, it will cause this original code to loop
3695	 * back here. Even with heavy interrupts happening, this
3696	 * should only happen a few times in a row. If this happens
3697	 * 1000 times in a row, there must be either an interrupt
3698	 * storm or we have something buggy.
3699	 * Bail!
3700	 */
3701	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3702		goto out_fail;
3703
3704	event = __rb_reserve_next(cpu_buffer, &info);
3705
3706	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3707		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3708			info.length -= RB_LEN_TIME_EXTEND;
3709		goto again;
3710	}
3711
3712	if (likely(event))
3713		return event;
3714 out_fail:
3715	rb_end_commit(cpu_buffer);
3716	return NULL;
3717}
3718
3719/**
3720 * ring_buffer_lock_reserve - reserve a part of the buffer
3721 * @buffer: the ring buffer to reserve from
3722 * @length: the length of the data to reserve (excluding event header)
3723 *
3724 * Returns a reserved event on the ring buffer to copy directly to.
3725 * The user of this interface will need to get the body to write into
3726 * and can use the ring_buffer_event_data() interface.
3727 *
3728 * The length is the length of the data needed, not the event length
3729 * which also includes the event header.
3730 *
3731 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3732 * If NULL is returned, then nothing has been allocated or locked.
3733 */
3734struct ring_buffer_event *
3735ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3736{
3737	struct ring_buffer_per_cpu *cpu_buffer;
3738	struct ring_buffer_event *event;
3739	int cpu;
3740
3741	/* If we are tracing schedule, we don't want to recurse */
3742	preempt_disable_notrace();
3743
3744	if (unlikely(atomic_read(&buffer->record_disabled)))
3745		goto out;
3746
3747	cpu = raw_smp_processor_id();
3748
3749	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3750		goto out;
3751
3752	cpu_buffer = buffer->buffers[cpu];
3753
3754	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3755		goto out;
3756
3757	if (unlikely(length > buffer->max_data_size))
3758		goto out;
3759
3760	if (unlikely(trace_recursive_lock(cpu_buffer)))
3761		goto out;
3762
3763	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3764	if (!event)
3765		goto out_unlock;
3766
3767	return event;
3768
3769 out_unlock:
3770	trace_recursive_unlock(cpu_buffer);
3771 out:
3772	preempt_enable_notrace();
3773	return NULL;
3774}
3775EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3776
3777/*
3778 * Decrement the entries to the page that an event is on.
3779 * The event does not even need to exist, only the pointer
3780 * to the page it is on. This may only be called before the commit
3781 * takes place.
3782 */
3783static inline void
3784rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3785		   struct ring_buffer_event *event)
3786{
3787	unsigned long addr = (unsigned long)event;
3788	struct buffer_page *bpage = cpu_buffer->commit_page;
3789	struct buffer_page *start;
3790
3791	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3792
3793	/* Do the likely case first */
3794	if (likely(bpage->page == (void *)addr)) {
3795		local_dec(&bpage->entries);
3796		return;
3797	}
3798
3799	/*
3800	 * Because the commit page may be on the reader page we
3801	 * start with the next page and check the end loop there.
3802	 */
3803	rb_inc_page(&bpage);
3804	start = bpage;
3805	do {
3806		if (bpage->page == (void *)addr) {
3807			local_dec(&bpage->entries);
3808			return;
3809		}
3810		rb_inc_page(&bpage);
3811	} while (bpage != start);
3812
3813	/* commit not part of this buffer?? */
3814	RB_WARN_ON(cpu_buffer, 1);
3815}
3816
3817/**
3818 * ring_buffer_discard_commit - discard an event that has not been committed
3819 * @buffer: the ring buffer
3820 * @event: non committed event to discard
3821 *
3822 * Sometimes an event that is in the ring buffer needs to be ignored.
3823 * This function lets the user discard an event in the ring buffer
3824 * and then that event will not be read later.
3825 *
3826 * This function only works if it is called before the item has been
3827 * committed. It will try to free the event from the ring buffer
3828 * if another event has not been added behind it.
3829 *
3830 * If another event has been added behind it, it will set the event
3831 * up as discarded, and perform the commit.
3832 *
3833 * If this function is called, do not call ring_buffer_unlock_commit on
3834 * the event.
3835 */
3836void ring_buffer_discard_commit(struct trace_buffer *buffer,
3837				struct ring_buffer_event *event)
3838{
3839	struct ring_buffer_per_cpu *cpu_buffer;
3840	int cpu;
3841
3842	/* The event is discarded regardless */
3843	rb_event_discard(event);
3844
3845	cpu = smp_processor_id();
3846	cpu_buffer = buffer->buffers[cpu];
3847
3848	/*
3849	 * This must only be called if the event has not been
3850	 * committed yet. Thus we can assume that preemption
3851	 * is still disabled.
3852	 */
3853	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3854
3855	rb_decrement_entry(cpu_buffer, event);
3856	if (rb_try_to_discard(cpu_buffer, event))
3857		goto out;
3858
3859 out:
3860	rb_end_commit(cpu_buffer);
3861
3862	trace_recursive_unlock(cpu_buffer);
3863
3864	preempt_enable_notrace();
3865
3866}
3867EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3868
3869/**
3870 * ring_buffer_write - write data to the buffer without reserving
3871 * @buffer: The ring buffer to write to.
3872 * @length: The length of the data being written (excluding the event header)
3873 * @data: The data to write to the buffer.
3874 *
3875 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3876 * one function. If you already have the data to write to the buffer, it
3877 * may be easier to simply call this function.
3878 *
3879 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3880 * and not the length of the event which would hold the header.
3881 */
3882int ring_buffer_write(struct trace_buffer *buffer,
3883		      unsigned long length,
3884		      void *data)
3885{
3886	struct ring_buffer_per_cpu *cpu_buffer;
3887	struct ring_buffer_event *event;
3888	void *body;
3889	int ret = -EBUSY;
3890	int cpu;
3891
3892	preempt_disable_notrace();
3893
3894	if (atomic_read(&buffer->record_disabled))
3895		goto out;
3896
3897	cpu = raw_smp_processor_id();
3898
3899	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3900		goto out;
3901
3902	cpu_buffer = buffer->buffers[cpu];
3903
3904	if (atomic_read(&cpu_buffer->record_disabled))
3905		goto out;
3906
3907	if (length > buffer->max_data_size)
3908		goto out;
3909
3910	if (unlikely(trace_recursive_lock(cpu_buffer)))
3911		goto out;
3912
3913	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3914	if (!event)
3915		goto out_unlock;
3916
3917	body = rb_event_data(event);
3918
3919	memcpy(body, data, length);
3920
3921	rb_commit(cpu_buffer);
3922
3923	rb_wakeups(buffer, cpu_buffer);
3924
3925	ret = 0;
3926
3927 out_unlock:
3928	trace_recursive_unlock(cpu_buffer);
3929
3930 out:
3931	preempt_enable_notrace();
3932
3933	return ret;
3934}
3935EXPORT_SYMBOL_GPL(ring_buffer_write);
3936
3937static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3938{
3939	struct buffer_page *reader = cpu_buffer->reader_page;
3940	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3941	struct buffer_page *commit = cpu_buffer->commit_page;
3942
3943	/* In case of error, head will be NULL */
3944	if (unlikely(!head))
3945		return true;
3946
3947	/* Reader should exhaust content in reader page */
3948	if (reader->read != rb_page_commit(reader))
3949		return false;
3950
3951	/*
3952	 * If writers are committing on the reader page, knowing all
3953	 * committed content has been read, the ring buffer is empty.
3954	 */
3955	if (commit == reader)
3956		return true;
3957
3958	/*
3959	 * If writers are committing on a page other than reader page
3960	 * and head page, there should always be content to read.
3961	 */
3962	if (commit != head)
3963		return false;
3964
3965	/*
3966	 * Writers are committing on the head page, we just need
3967	 * to care about there're committed data, and the reader will
3968	 * swap reader page with head page when it is to read data.
3969	 */
3970	return rb_page_commit(commit) == 0;
3971}
3972
3973/**
3974 * ring_buffer_record_disable - stop all writes into the buffer
3975 * @buffer: The ring buffer to stop writes to.
3976 *
3977 * This prevents all writes to the buffer. Any attempt to write
3978 * to the buffer after this will fail and return NULL.
3979 *
3980 * The caller should call synchronize_rcu() after this.
3981 */
3982void ring_buffer_record_disable(struct trace_buffer *buffer)
3983{
3984	atomic_inc(&buffer->record_disabled);
3985}
3986EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3987
3988/**
3989 * ring_buffer_record_enable - enable writes to the buffer
3990 * @buffer: The ring buffer to enable writes
3991 *
3992 * Note, multiple disables will need the same number of enables
3993 * to truly enable the writing (much like preempt_disable).
3994 */
3995void ring_buffer_record_enable(struct trace_buffer *buffer)
3996{
3997	atomic_dec(&buffer->record_disabled);
3998}
3999EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4000
4001/**
4002 * ring_buffer_record_off - stop all writes into the buffer
4003 * @buffer: The ring buffer to stop writes to.
4004 *
4005 * This prevents all writes to the buffer. Any attempt to write
4006 * to the buffer after this will fail and return NULL.
4007 *
4008 * This is different than ring_buffer_record_disable() as
4009 * it works like an on/off switch, where as the disable() version
4010 * must be paired with a enable().
4011 */
4012void ring_buffer_record_off(struct trace_buffer *buffer)
4013{
4014	unsigned int rd;
4015	unsigned int new_rd;
4016
4017	rd = atomic_read(&buffer->record_disabled);
4018	do {
4019		new_rd = rd | RB_BUFFER_OFF;
4020	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4021}
4022EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4023
4024/**
4025 * ring_buffer_record_on - restart writes into the buffer
4026 * @buffer: The ring buffer to start writes to.
4027 *
4028 * This enables all writes to the buffer that was disabled by
4029 * ring_buffer_record_off().
4030 *
4031 * This is different than ring_buffer_record_enable() as
4032 * it works like an on/off switch, where as the enable() version
4033 * must be paired with a disable().
4034 */
4035void ring_buffer_record_on(struct trace_buffer *buffer)
4036{
4037	unsigned int rd;
4038	unsigned int new_rd;
4039
4040	rd = atomic_read(&buffer->record_disabled);
4041	do {
4042		new_rd = rd & ~RB_BUFFER_OFF;
4043	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4044}
4045EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4046
4047/**
4048 * ring_buffer_record_is_on - return true if the ring buffer can write
4049 * @buffer: The ring buffer to see if write is enabled
4050 *
4051 * Returns true if the ring buffer is in a state that it accepts writes.
4052 */
4053bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4054{
4055	return !atomic_read(&buffer->record_disabled);
4056}
4057
4058/**
4059 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4060 * @buffer: The ring buffer to see if write is set enabled
4061 *
4062 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4063 * Note that this does NOT mean it is in a writable state.
4064 *
4065 * It may return true when the ring buffer has been disabled by
4066 * ring_buffer_record_disable(), as that is a temporary disabling of
4067 * the ring buffer.
4068 */
4069bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4070{
4071	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4072}
4073
4074/**
4075 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4076 * @buffer: The ring buffer to stop writes to.
4077 * @cpu: The CPU buffer to stop
4078 *
4079 * This prevents all writes to the buffer. Any attempt to write
4080 * to the buffer after this will fail and return NULL.
4081 *
4082 * The caller should call synchronize_rcu() after this.
4083 */
4084void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4085{
4086	struct ring_buffer_per_cpu *cpu_buffer;
4087
4088	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4089		return;
4090
4091	cpu_buffer = buffer->buffers[cpu];
4092	atomic_inc(&cpu_buffer->record_disabled);
4093}
4094EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4095
4096/**
4097 * ring_buffer_record_enable_cpu - enable writes to the buffer
4098 * @buffer: The ring buffer to enable writes
4099 * @cpu: The CPU to enable.
4100 *
4101 * Note, multiple disables will need the same number of enables
4102 * to truly enable the writing (much like preempt_disable).
4103 */
4104void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4105{
4106	struct ring_buffer_per_cpu *cpu_buffer;
4107
4108	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4109		return;
4110
4111	cpu_buffer = buffer->buffers[cpu];
4112	atomic_dec(&cpu_buffer->record_disabled);
4113}
4114EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4115
4116/*
4117 * The total entries in the ring buffer is the running counter
4118 * of entries entered into the ring buffer, minus the sum of
4119 * the entries read from the ring buffer and the number of
4120 * entries that were overwritten.
4121 */
4122static inline unsigned long
4123rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4124{
4125	return local_read(&cpu_buffer->entries) -
4126		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4127}
4128
4129/**
4130 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4131 * @buffer: The ring buffer
4132 * @cpu: The per CPU buffer to read from.
4133 */
4134u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4135{
4136	unsigned long flags;
4137	struct ring_buffer_per_cpu *cpu_buffer;
4138	struct buffer_page *bpage;
4139	u64 ret = 0;
4140
4141	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4142		return 0;
4143
4144	cpu_buffer = buffer->buffers[cpu];
4145	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4146	/*
4147	 * if the tail is on reader_page, oldest time stamp is on the reader
4148	 * page
4149	 */
4150	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4151		bpage = cpu_buffer->reader_page;
4152	else
4153		bpage = rb_set_head_page(cpu_buffer);
4154	if (bpage)
4155		ret = bpage->page->time_stamp;
4156	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4157
4158	return ret;
4159}
4160EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4161
4162/**
4163 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4164 * @buffer: The ring buffer
4165 * @cpu: The per CPU buffer to read from.
4166 */
4167unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4168{
4169	struct ring_buffer_per_cpu *cpu_buffer;
4170	unsigned long ret;
4171
4172	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4173		return 0;
4174
4175	cpu_buffer = buffer->buffers[cpu];
4176	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4177
4178	return ret;
4179}
4180EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4181
4182/**
4183 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4184 * @buffer: The ring buffer
4185 * @cpu: The per CPU buffer to get the entries from.
4186 */
4187unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4188{
4189	struct ring_buffer_per_cpu *cpu_buffer;
4190
4191	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4192		return 0;
4193
4194	cpu_buffer = buffer->buffers[cpu];
4195
4196	return rb_num_of_entries(cpu_buffer);
4197}
4198EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4199
4200/**
4201 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4202 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4203 * @buffer: The ring buffer
4204 * @cpu: The per CPU buffer to get the number of overruns from
4205 */
4206unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4207{
4208	struct ring_buffer_per_cpu *cpu_buffer;
4209	unsigned long ret;
4210
4211	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4212		return 0;
4213
4214	cpu_buffer = buffer->buffers[cpu];
4215	ret = local_read(&cpu_buffer->overrun);
4216
4217	return ret;
4218}
4219EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4220
4221/**
4222 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4223 * commits failing due to the buffer wrapping around while there are uncommitted
4224 * events, such as during an interrupt storm.
4225 * @buffer: The ring buffer
4226 * @cpu: The per CPU buffer to get the number of overruns from
4227 */
4228unsigned long
4229ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4230{
4231	struct ring_buffer_per_cpu *cpu_buffer;
4232	unsigned long ret;
4233
4234	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4235		return 0;
4236
4237	cpu_buffer = buffer->buffers[cpu];
4238	ret = local_read(&cpu_buffer->commit_overrun);
4239
4240	return ret;
4241}
4242EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4243
4244/**
4245 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4246 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4247 * @buffer: The ring buffer
4248 * @cpu: The per CPU buffer to get the number of overruns from
4249 */
4250unsigned long
4251ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4252{
4253	struct ring_buffer_per_cpu *cpu_buffer;
4254	unsigned long ret;
4255
4256	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4257		return 0;
4258
4259	cpu_buffer = buffer->buffers[cpu];
4260	ret = local_read(&cpu_buffer->dropped_events);
4261
4262	return ret;
4263}
4264EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4265
4266/**
4267 * ring_buffer_read_events_cpu - get the number of events successfully read
4268 * @buffer: The ring buffer
4269 * @cpu: The per CPU buffer to get the number of events read
4270 */
4271unsigned long
4272ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4273{
4274	struct ring_buffer_per_cpu *cpu_buffer;
4275
4276	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4277		return 0;
4278
4279	cpu_buffer = buffer->buffers[cpu];
4280	return cpu_buffer->read;
4281}
4282EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4283
4284/**
4285 * ring_buffer_entries - get the number of entries in a buffer
4286 * @buffer: The ring buffer
4287 *
4288 * Returns the total number of entries in the ring buffer
4289 * (all CPU entries)
4290 */
4291unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4292{
4293	struct ring_buffer_per_cpu *cpu_buffer;
4294	unsigned long entries = 0;
4295	int cpu;
4296
4297	/* if you care about this being correct, lock the buffer */
4298	for_each_buffer_cpu(buffer, cpu) {
4299		cpu_buffer = buffer->buffers[cpu];
4300		entries += rb_num_of_entries(cpu_buffer);
4301	}
4302
4303	return entries;
4304}
4305EXPORT_SYMBOL_GPL(ring_buffer_entries);
4306
4307/**
4308 * ring_buffer_overruns - get the number of overruns in buffer
4309 * @buffer: The ring buffer
4310 *
4311 * Returns the total number of overruns in the ring buffer
4312 * (all CPU entries)
4313 */
4314unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4315{
4316	struct ring_buffer_per_cpu *cpu_buffer;
4317	unsigned long overruns = 0;
4318	int cpu;
4319
4320	/* if you care about this being correct, lock the buffer */
4321	for_each_buffer_cpu(buffer, cpu) {
4322		cpu_buffer = buffer->buffers[cpu];
4323		overruns += local_read(&cpu_buffer->overrun);
4324	}
4325
4326	return overruns;
4327}
4328EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4329
4330static void rb_iter_reset(struct ring_buffer_iter *iter)
4331{
4332	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4333
4334	/* Iterator usage is expected to have record disabled */
4335	iter->head_page = cpu_buffer->reader_page;
4336	iter->head = cpu_buffer->reader_page->read;
4337	iter->next_event = iter->head;
4338
4339	iter->cache_reader_page = iter->head_page;
4340	iter->cache_read = cpu_buffer->read;
4341	iter->cache_pages_removed = cpu_buffer->pages_removed;
4342
4343	if (iter->head) {
4344		iter->read_stamp = cpu_buffer->read_stamp;
4345		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4346	} else {
4347		iter->read_stamp = iter->head_page->page->time_stamp;
4348		iter->page_stamp = iter->read_stamp;
4349	}
4350}
4351
4352/**
4353 * ring_buffer_iter_reset - reset an iterator
4354 * @iter: The iterator to reset
4355 *
4356 * Resets the iterator, so that it will start from the beginning
4357 * again.
4358 */
4359void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4360{
4361	struct ring_buffer_per_cpu *cpu_buffer;
4362	unsigned long flags;
4363
4364	if (!iter)
4365		return;
4366
4367	cpu_buffer = iter->cpu_buffer;
4368
4369	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4370	rb_iter_reset(iter);
4371	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4372}
4373EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4374
4375/**
4376 * ring_buffer_iter_empty - check if an iterator has no more to read
4377 * @iter: The iterator to check
4378 */
4379int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4380{
4381	struct ring_buffer_per_cpu *cpu_buffer;
4382	struct buffer_page *reader;
4383	struct buffer_page *head_page;
4384	struct buffer_page *commit_page;
4385	struct buffer_page *curr_commit_page;
4386	unsigned commit;
4387	u64 curr_commit_ts;
4388	u64 commit_ts;
4389
4390	cpu_buffer = iter->cpu_buffer;
4391	reader = cpu_buffer->reader_page;
4392	head_page = cpu_buffer->head_page;
4393	commit_page = READ_ONCE(cpu_buffer->commit_page);
4394	commit_ts = commit_page->page->time_stamp;
4395
4396	/*
4397	 * When the writer goes across pages, it issues a cmpxchg which
4398	 * is a mb(), which will synchronize with the rmb here.
4399	 * (see rb_tail_page_update())
4400	 */
4401	smp_rmb();
4402	commit = rb_page_commit(commit_page);
4403	/* We want to make sure that the commit page doesn't change */
4404	smp_rmb();
4405
4406	/* Make sure commit page didn't change */
4407	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4408	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4409
4410	/* If the commit page changed, then there's more data */
4411	if (curr_commit_page != commit_page ||
4412	    curr_commit_ts != commit_ts)
4413		return 0;
4414
4415	/* Still racy, as it may return a false positive, but that's OK */
4416	return ((iter->head_page == commit_page && iter->head >= commit) ||
4417		(iter->head_page == reader && commit_page == head_page &&
4418		 head_page->read == commit &&
4419		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4420}
4421EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4422
4423static void
4424rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4425		     struct ring_buffer_event *event)
4426{
4427	u64 delta;
4428
4429	switch (event->type_len) {
4430	case RINGBUF_TYPE_PADDING:
4431		return;
4432
4433	case RINGBUF_TYPE_TIME_EXTEND:
4434		delta = rb_event_time_stamp(event);
4435		cpu_buffer->read_stamp += delta;
4436		return;
4437
4438	case RINGBUF_TYPE_TIME_STAMP:
4439		delta = rb_event_time_stamp(event);
4440		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4441		cpu_buffer->read_stamp = delta;
4442		return;
4443
4444	case RINGBUF_TYPE_DATA:
4445		cpu_buffer->read_stamp += event->time_delta;
4446		return;
4447
4448	default:
4449		RB_WARN_ON(cpu_buffer, 1);
4450	}
4451}
4452
4453static void
4454rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4455			  struct ring_buffer_event *event)
4456{
4457	u64 delta;
4458
4459	switch (event->type_len) {
4460	case RINGBUF_TYPE_PADDING:
4461		return;
4462
4463	case RINGBUF_TYPE_TIME_EXTEND:
4464		delta = rb_event_time_stamp(event);
4465		iter->read_stamp += delta;
4466		return;
4467
4468	case RINGBUF_TYPE_TIME_STAMP:
4469		delta = rb_event_time_stamp(event);
4470		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4471		iter->read_stamp = delta;
4472		return;
4473
4474	case RINGBUF_TYPE_DATA:
4475		iter->read_stamp += event->time_delta;
4476		return;
4477
4478	default:
4479		RB_WARN_ON(iter->cpu_buffer, 1);
4480	}
4481}
4482
4483static struct buffer_page *
4484rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4485{
4486	struct buffer_page *reader = NULL;
4487	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4488	unsigned long overwrite;
4489	unsigned long flags;
4490	int nr_loops = 0;
4491	bool ret;
4492
4493	local_irq_save(flags);
4494	arch_spin_lock(&cpu_buffer->lock);
4495
4496 again:
4497	/*
4498	 * This should normally only loop twice. But because the
4499	 * start of the reader inserts an empty page, it causes
4500	 * a case where we will loop three times. There should be no
4501	 * reason to loop four times (that I know of).
4502	 */
4503	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4504		reader = NULL;
4505		goto out;
4506	}
4507
4508	reader = cpu_buffer->reader_page;
4509
4510	/* If there's more to read, return this page */
4511	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4512		goto out;
4513
4514	/* Never should we have an index greater than the size */
4515	if (RB_WARN_ON(cpu_buffer,
4516		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4517		goto out;
4518
4519	/* check if we caught up to the tail */
4520	reader = NULL;
4521	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4522		goto out;
4523
4524	/* Don't bother swapping if the ring buffer is empty */
4525	if (rb_num_of_entries(cpu_buffer) == 0)
4526		goto out;
4527
4528	/*
4529	 * Reset the reader page to size zero.
4530	 */
4531	local_set(&cpu_buffer->reader_page->write, 0);
4532	local_set(&cpu_buffer->reader_page->entries, 0);
4533	local_set(&cpu_buffer->reader_page->page->commit, 0);
4534	cpu_buffer->reader_page->real_end = 0;
4535
4536 spin:
4537	/*
4538	 * Splice the empty reader page into the list around the head.
4539	 */
4540	reader = rb_set_head_page(cpu_buffer);
4541	if (!reader)
4542		goto out;
4543	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4544	cpu_buffer->reader_page->list.prev = reader->list.prev;
4545
4546	/*
4547	 * cpu_buffer->pages just needs to point to the buffer, it
4548	 *  has no specific buffer page to point to. Lets move it out
4549	 *  of our way so we don't accidentally swap it.
4550	 */
4551	cpu_buffer->pages = reader->list.prev;
4552
4553	/* The reader page will be pointing to the new head */
4554	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4555
4556	/*
4557	 * We want to make sure we read the overruns after we set up our
4558	 * pointers to the next object. The writer side does a
4559	 * cmpxchg to cross pages which acts as the mb on the writer
4560	 * side. Note, the reader will constantly fail the swap
4561	 * while the writer is updating the pointers, so this
4562	 * guarantees that the overwrite recorded here is the one we
4563	 * want to compare with the last_overrun.
4564	 */
4565	smp_mb();
4566	overwrite = local_read(&(cpu_buffer->overrun));
4567
4568	/*
4569	 * Here's the tricky part.
4570	 *
4571	 * We need to move the pointer past the header page.
4572	 * But we can only do that if a writer is not currently
4573	 * moving it. The page before the header page has the
4574	 * flag bit '1' set if it is pointing to the page we want.
4575	 * but if the writer is in the process of moving it
4576	 * than it will be '2' or already moved '0'.
4577	 */
4578
4579	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4580
4581	/*
4582	 * If we did not convert it, then we must try again.
4583	 */
4584	if (!ret)
4585		goto spin;
4586
4587	/*
4588	 * Yay! We succeeded in replacing the page.
4589	 *
4590	 * Now make the new head point back to the reader page.
4591	 */
4592	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4593	rb_inc_page(&cpu_buffer->head_page);
4594
4595	local_inc(&cpu_buffer->pages_read);
4596
4597	/* Finally update the reader page to the new head */
4598	cpu_buffer->reader_page = reader;
4599	cpu_buffer->reader_page->read = 0;
4600
4601	if (overwrite != cpu_buffer->last_overrun) {
4602		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4603		cpu_buffer->last_overrun = overwrite;
4604	}
4605
4606	goto again;
4607
4608 out:
4609	/* Update the read_stamp on the first event */
4610	if (reader && reader->read == 0)
4611		cpu_buffer->read_stamp = reader->page->time_stamp;
4612
4613	arch_spin_unlock(&cpu_buffer->lock);
4614	local_irq_restore(flags);
4615
4616	/*
4617	 * The writer has preempt disable, wait for it. But not forever
4618	 * Although, 1 second is pretty much "forever"
4619	 */
4620#define USECS_WAIT	1000000
4621        for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4622		/* If the write is past the end of page, a writer is still updating it */
4623		if (likely(!reader || rb_page_write(reader) <= bsize))
4624			break;
4625
4626		udelay(1);
4627
4628		/* Get the latest version of the reader write value */
4629		smp_rmb();
4630	}
4631
4632	/* The writer is not moving forward? Something is wrong */
4633	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4634		reader = NULL;
4635
4636	/*
4637	 * Make sure we see any padding after the write update
4638	 * (see rb_reset_tail()).
4639	 *
4640	 * In addition, a writer may be writing on the reader page
4641	 * if the page has not been fully filled, so the read barrier
4642	 * is also needed to make sure we see the content of what is
4643	 * committed by the writer (see rb_set_commit_to_write()).
4644	 */
4645	smp_rmb();
4646
4647
4648	return reader;
4649}
4650
4651static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4652{
4653	struct ring_buffer_event *event;
4654	struct buffer_page *reader;
4655	unsigned length;
4656
4657	reader = rb_get_reader_page(cpu_buffer);
4658
4659	/* This function should not be called when buffer is empty */
4660	if (RB_WARN_ON(cpu_buffer, !reader))
4661		return;
4662
4663	event = rb_reader_event(cpu_buffer);
4664
4665	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4666		cpu_buffer->read++;
4667
4668	rb_update_read_stamp(cpu_buffer, event);
4669
4670	length = rb_event_length(event);
4671	cpu_buffer->reader_page->read += length;
4672	cpu_buffer->read_bytes += length;
4673}
4674
4675static void rb_advance_iter(struct ring_buffer_iter *iter)
4676{
4677	struct ring_buffer_per_cpu *cpu_buffer;
4678
4679	cpu_buffer = iter->cpu_buffer;
4680
4681	/* If head == next_event then we need to jump to the next event */
4682	if (iter->head == iter->next_event) {
4683		/* If the event gets overwritten again, there's nothing to do */
4684		if (rb_iter_head_event(iter) == NULL)
4685			return;
4686	}
4687
4688	iter->head = iter->next_event;
4689
4690	/*
4691	 * Check if we are at the end of the buffer.
4692	 */
4693	if (iter->next_event >= rb_page_size(iter->head_page)) {
4694		/* discarded commits can make the page empty */
4695		if (iter->head_page == cpu_buffer->commit_page)
4696			return;
4697		rb_inc_iter(iter);
4698		return;
4699	}
4700
4701	rb_update_iter_read_stamp(iter, iter->event);
4702}
4703
4704static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4705{
4706	return cpu_buffer->lost_events;
4707}
4708
4709static struct ring_buffer_event *
4710rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4711	       unsigned long *lost_events)
4712{
4713	struct ring_buffer_event *event;
4714	struct buffer_page *reader;
4715	int nr_loops = 0;
4716
4717	if (ts)
4718		*ts = 0;
4719 again:
4720	/*
4721	 * We repeat when a time extend is encountered.
4722	 * Since the time extend is always attached to a data event,
4723	 * we should never loop more than once.
4724	 * (We never hit the following condition more than twice).
4725	 */
4726	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4727		return NULL;
4728
4729	reader = rb_get_reader_page(cpu_buffer);
4730	if (!reader)
4731		return NULL;
4732
4733	event = rb_reader_event(cpu_buffer);
4734
4735	switch (event->type_len) {
4736	case RINGBUF_TYPE_PADDING:
4737		if (rb_null_event(event))
4738			RB_WARN_ON(cpu_buffer, 1);
4739		/*
4740		 * Because the writer could be discarding every
4741		 * event it creates (which would probably be bad)
4742		 * if we were to go back to "again" then we may never
4743		 * catch up, and will trigger the warn on, or lock
4744		 * the box. Return the padding, and we will release
4745		 * the current locks, and try again.
4746		 */
4747		return event;
4748
4749	case RINGBUF_TYPE_TIME_EXTEND:
4750		/* Internal data, OK to advance */
4751		rb_advance_reader(cpu_buffer);
4752		goto again;
4753
4754	case RINGBUF_TYPE_TIME_STAMP:
4755		if (ts) {
4756			*ts = rb_event_time_stamp(event);
4757			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4758			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4759							 cpu_buffer->cpu, ts);
4760		}
4761		/* Internal data, OK to advance */
4762		rb_advance_reader(cpu_buffer);
4763		goto again;
4764
4765	case RINGBUF_TYPE_DATA:
4766		if (ts && !(*ts)) {
4767			*ts = cpu_buffer->read_stamp + event->time_delta;
4768			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4769							 cpu_buffer->cpu, ts);
4770		}
4771		if (lost_events)
4772			*lost_events = rb_lost_events(cpu_buffer);
4773		return event;
4774
4775	default:
4776		RB_WARN_ON(cpu_buffer, 1);
4777	}
4778
4779	return NULL;
4780}
4781EXPORT_SYMBOL_GPL(ring_buffer_peek);
4782
4783static struct ring_buffer_event *
4784rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4785{
4786	struct trace_buffer *buffer;
4787	struct ring_buffer_per_cpu *cpu_buffer;
4788	struct ring_buffer_event *event;
4789	int nr_loops = 0;
4790
4791	if (ts)
4792		*ts = 0;
4793
4794	cpu_buffer = iter->cpu_buffer;
4795	buffer = cpu_buffer->buffer;
4796
4797	/*
4798	 * Check if someone performed a consuming read to the buffer
4799	 * or removed some pages from the buffer. In these cases,
4800	 * iterator was invalidated and we need to reset it.
4801	 */
4802	if (unlikely(iter->cache_read != cpu_buffer->read ||
4803		     iter->cache_reader_page != cpu_buffer->reader_page ||
4804		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4805		rb_iter_reset(iter);
4806
4807 again:
4808	if (ring_buffer_iter_empty(iter))
4809		return NULL;
4810
4811	/*
4812	 * As the writer can mess with what the iterator is trying
4813	 * to read, just give up if we fail to get an event after
4814	 * three tries. The iterator is not as reliable when reading
4815	 * the ring buffer with an active write as the consumer is.
4816	 * Do not warn if the three failures is reached.
4817	 */
4818	if (++nr_loops > 3)
4819		return NULL;
4820
4821	if (rb_per_cpu_empty(cpu_buffer))
4822		return NULL;
4823
4824	if (iter->head >= rb_page_size(iter->head_page)) {
4825		rb_inc_iter(iter);
4826		goto again;
4827	}
4828
4829	event = rb_iter_head_event(iter);
4830	if (!event)
4831		goto again;
4832
4833	switch (event->type_len) {
4834	case RINGBUF_TYPE_PADDING:
4835		if (rb_null_event(event)) {
4836			rb_inc_iter(iter);
4837			goto again;
4838		}
4839		rb_advance_iter(iter);
4840		return event;
4841
4842	case RINGBUF_TYPE_TIME_EXTEND:
4843		/* Internal data, OK to advance */
4844		rb_advance_iter(iter);
4845		goto again;
4846
4847	case RINGBUF_TYPE_TIME_STAMP:
4848		if (ts) {
4849			*ts = rb_event_time_stamp(event);
4850			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4851			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4852							 cpu_buffer->cpu, ts);
4853		}
4854		/* Internal data, OK to advance */
4855		rb_advance_iter(iter);
4856		goto again;
4857
4858	case RINGBUF_TYPE_DATA:
4859		if (ts && !(*ts)) {
4860			*ts = iter->read_stamp + event->time_delta;
4861			ring_buffer_normalize_time_stamp(buffer,
4862							 cpu_buffer->cpu, ts);
4863		}
4864		return event;
4865
4866	default:
4867		RB_WARN_ON(cpu_buffer, 1);
4868	}
4869
4870	return NULL;
4871}
4872EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4873
4874static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4875{
4876	if (likely(!in_nmi())) {
4877		raw_spin_lock(&cpu_buffer->reader_lock);
4878		return true;
4879	}
4880
4881	/*
4882	 * If an NMI die dumps out the content of the ring buffer
4883	 * trylock must be used to prevent a deadlock if the NMI
4884	 * preempted a task that holds the ring buffer locks. If
4885	 * we get the lock then all is fine, if not, then continue
4886	 * to do the read, but this can corrupt the ring buffer,
4887	 * so it must be permanently disabled from future writes.
4888	 * Reading from NMI is a oneshot deal.
4889	 */
4890	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4891		return true;
4892
4893	/* Continue without locking, but disable the ring buffer */
4894	atomic_inc(&cpu_buffer->record_disabled);
4895	return false;
4896}
4897
4898static inline void
4899rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4900{
4901	if (likely(locked))
4902		raw_spin_unlock(&cpu_buffer->reader_lock);
4903}
4904
4905/**
4906 * ring_buffer_peek - peek at the next event to be read
4907 * @buffer: The ring buffer to read
4908 * @cpu: The cpu to peak at
4909 * @ts: The timestamp counter of this event.
4910 * @lost_events: a variable to store if events were lost (may be NULL)
4911 *
4912 * This will return the event that will be read next, but does
4913 * not consume the data.
4914 */
4915struct ring_buffer_event *
4916ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4917		 unsigned long *lost_events)
4918{
4919	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4920	struct ring_buffer_event *event;
4921	unsigned long flags;
4922	bool dolock;
4923
4924	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4925		return NULL;
4926
4927 again:
4928	local_irq_save(flags);
4929	dolock = rb_reader_lock(cpu_buffer);
4930	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4931	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4932		rb_advance_reader(cpu_buffer);
4933	rb_reader_unlock(cpu_buffer, dolock);
4934	local_irq_restore(flags);
4935
4936	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4937		goto again;
4938
4939	return event;
4940}
4941
4942/** ring_buffer_iter_dropped - report if there are dropped events
4943 * @iter: The ring buffer iterator
4944 *
4945 * Returns true if there was dropped events since the last peek.
4946 */
4947bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4948{
4949	bool ret = iter->missed_events != 0;
4950
4951	iter->missed_events = 0;
4952	return ret;
4953}
4954EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4955
4956/**
4957 * ring_buffer_iter_peek - peek at the next event to be read
4958 * @iter: The ring buffer iterator
4959 * @ts: The timestamp counter of this event.
4960 *
4961 * This will return the event that will be read next, but does
4962 * not increment the iterator.
4963 */
4964struct ring_buffer_event *
4965ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4966{
4967	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4968	struct ring_buffer_event *event;
4969	unsigned long flags;
4970
4971 again:
4972	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4973	event = rb_iter_peek(iter, ts);
4974	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4975
4976	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4977		goto again;
4978
4979	return event;
4980}
4981
4982/**
4983 * ring_buffer_consume - return an event and consume it
4984 * @buffer: The ring buffer to get the next event from
4985 * @cpu: the cpu to read the buffer from
4986 * @ts: a variable to store the timestamp (may be NULL)
4987 * @lost_events: a variable to store if events were lost (may be NULL)
4988 *
4989 * Returns the next event in the ring buffer, and that event is consumed.
4990 * Meaning, that sequential reads will keep returning a different event,
4991 * and eventually empty the ring buffer if the producer is slower.
4992 */
4993struct ring_buffer_event *
4994ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4995		    unsigned long *lost_events)
4996{
4997	struct ring_buffer_per_cpu *cpu_buffer;
4998	struct ring_buffer_event *event = NULL;
4999	unsigned long flags;
5000	bool dolock;
5001
5002 again:
5003	/* might be called in atomic */
5004	preempt_disable();
5005
5006	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5007		goto out;
5008
5009	cpu_buffer = buffer->buffers[cpu];
5010	local_irq_save(flags);
5011	dolock = rb_reader_lock(cpu_buffer);
5012
5013	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5014	if (event) {
5015		cpu_buffer->lost_events = 0;
5016		rb_advance_reader(cpu_buffer);
5017	}
5018
5019	rb_reader_unlock(cpu_buffer, dolock);
5020	local_irq_restore(flags);
5021
5022 out:
5023	preempt_enable();
5024
5025	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5026		goto again;
5027
5028	return event;
5029}
5030EXPORT_SYMBOL_GPL(ring_buffer_consume);
5031
5032/**
5033 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5034 * @buffer: The ring buffer to read from
5035 * @cpu: The cpu buffer to iterate over
5036 * @flags: gfp flags to use for memory allocation
5037 *
5038 * This performs the initial preparations necessary to iterate
5039 * through the buffer.  Memory is allocated, buffer recording
5040 * is disabled, and the iterator pointer is returned to the caller.
5041 *
5042 * Disabling buffer recording prevents the reading from being
5043 * corrupted. This is not a consuming read, so a producer is not
5044 * expected.
5045 *
5046 * After a sequence of ring_buffer_read_prepare calls, the user is
5047 * expected to make at least one call to ring_buffer_read_prepare_sync.
5048 * Afterwards, ring_buffer_read_start is invoked to get things going
5049 * for real.
5050 *
5051 * This overall must be paired with ring_buffer_read_finish.
5052 */
5053struct ring_buffer_iter *
5054ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5055{
5056	struct ring_buffer_per_cpu *cpu_buffer;
5057	struct ring_buffer_iter *iter;
5058
5059	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5060		return NULL;
5061
5062	iter = kzalloc(sizeof(*iter), flags);
5063	if (!iter)
5064		return NULL;
5065
5066	/* Holds the entire event: data and meta data */
5067	iter->event_size = buffer->subbuf_size;
5068	iter->event = kmalloc(iter->event_size, flags);
5069	if (!iter->event) {
5070		kfree(iter);
5071		return NULL;
5072	}
5073
5074	cpu_buffer = buffer->buffers[cpu];
5075
5076	iter->cpu_buffer = cpu_buffer;
5077
5078	atomic_inc(&cpu_buffer->resize_disabled);
5079
5080	return iter;
5081}
5082EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5083
5084/**
5085 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5086 *
5087 * All previously invoked ring_buffer_read_prepare calls to prepare
5088 * iterators will be synchronized.  Afterwards, read_buffer_read_start
5089 * calls on those iterators are allowed.
5090 */
5091void
5092ring_buffer_read_prepare_sync(void)
5093{
5094	synchronize_rcu();
5095}
5096EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5097
5098/**
5099 * ring_buffer_read_start - start a non consuming read of the buffer
5100 * @iter: The iterator returned by ring_buffer_read_prepare
5101 *
5102 * This finalizes the startup of an iteration through the buffer.
5103 * The iterator comes from a call to ring_buffer_read_prepare and
5104 * an intervening ring_buffer_read_prepare_sync must have been
5105 * performed.
5106 *
5107 * Must be paired with ring_buffer_read_finish.
5108 */
5109void
5110ring_buffer_read_start(struct ring_buffer_iter *iter)
5111{
5112	struct ring_buffer_per_cpu *cpu_buffer;
5113	unsigned long flags;
5114
5115	if (!iter)
5116		return;
5117
5118	cpu_buffer = iter->cpu_buffer;
5119
5120	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5121	arch_spin_lock(&cpu_buffer->lock);
5122	rb_iter_reset(iter);
5123	arch_spin_unlock(&cpu_buffer->lock);
5124	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5125}
5126EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5127
5128/**
5129 * ring_buffer_read_finish - finish reading the iterator of the buffer
5130 * @iter: The iterator retrieved by ring_buffer_start
5131 *
5132 * This re-enables the recording to the buffer, and frees the
5133 * iterator.
5134 */
5135void
5136ring_buffer_read_finish(struct ring_buffer_iter *iter)
5137{
5138	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5139	unsigned long flags;
5140
5141	/*
5142	 * Ring buffer is disabled from recording, here's a good place
5143	 * to check the integrity of the ring buffer.
5144	 * Must prevent readers from trying to read, as the check
5145	 * clears the HEAD page and readers require it.
5146	 */
5147	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5148	rb_check_pages(cpu_buffer);
5149	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5150
5151	atomic_dec(&cpu_buffer->resize_disabled);
5152	kfree(iter->event);
5153	kfree(iter);
5154}
5155EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5156
5157/**
5158 * ring_buffer_iter_advance - advance the iterator to the next location
5159 * @iter: The ring buffer iterator
5160 *
5161 * Move the location of the iterator such that the next read will
5162 * be the next location of the iterator.
5163 */
5164void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5165{
5166	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5167	unsigned long flags;
5168
5169	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5170
5171	rb_advance_iter(iter);
5172
5173	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5174}
5175EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5176
5177/**
5178 * ring_buffer_size - return the size of the ring buffer (in bytes)
5179 * @buffer: The ring buffer.
5180 * @cpu: The CPU to get ring buffer size from.
5181 */
5182unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5183{
5184	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5185		return 0;
5186
5187	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5188}
5189EXPORT_SYMBOL_GPL(ring_buffer_size);
5190
5191/**
5192 * ring_buffer_max_event_size - return the max data size of an event
5193 * @buffer: The ring buffer.
5194 *
5195 * Returns the maximum size an event can be.
5196 */
5197unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5198{
5199	/* If abs timestamp is requested, events have a timestamp too */
5200	if (ring_buffer_time_stamp_abs(buffer))
5201		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5202	return buffer->max_data_size;
5203}
5204EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5205
5206static void rb_clear_buffer_page(struct buffer_page *page)
5207{
5208	local_set(&page->write, 0);
5209	local_set(&page->entries, 0);
5210	rb_init_page(page->page);
5211	page->read = 0;
5212}
5213
5214static void
5215rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5216{
5217	struct buffer_page *page;
5218
5219	rb_head_page_deactivate(cpu_buffer);
5220
5221	cpu_buffer->head_page
5222		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5223	rb_clear_buffer_page(cpu_buffer->head_page);
5224	list_for_each_entry(page, cpu_buffer->pages, list) {
5225		rb_clear_buffer_page(page);
5226	}
5227
5228	cpu_buffer->tail_page = cpu_buffer->head_page;
5229	cpu_buffer->commit_page = cpu_buffer->head_page;
5230
5231	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5232	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5233	rb_clear_buffer_page(cpu_buffer->reader_page);
5234
5235	local_set(&cpu_buffer->entries_bytes, 0);
5236	local_set(&cpu_buffer->overrun, 0);
5237	local_set(&cpu_buffer->commit_overrun, 0);
5238	local_set(&cpu_buffer->dropped_events, 0);
5239	local_set(&cpu_buffer->entries, 0);
5240	local_set(&cpu_buffer->committing, 0);
5241	local_set(&cpu_buffer->commits, 0);
5242	local_set(&cpu_buffer->pages_touched, 0);
5243	local_set(&cpu_buffer->pages_lost, 0);
5244	local_set(&cpu_buffer->pages_read, 0);
5245	cpu_buffer->last_pages_touch = 0;
5246	cpu_buffer->shortest_full = 0;
5247	cpu_buffer->read = 0;
5248	cpu_buffer->read_bytes = 0;
5249
5250	rb_time_set(&cpu_buffer->write_stamp, 0);
5251	rb_time_set(&cpu_buffer->before_stamp, 0);
5252
5253	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5254
5255	cpu_buffer->lost_events = 0;
5256	cpu_buffer->last_overrun = 0;
5257
5258	rb_head_page_activate(cpu_buffer);
5259	cpu_buffer->pages_removed = 0;
5260}
5261
5262/* Must have disabled the cpu buffer then done a synchronize_rcu */
5263static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5264{
5265	unsigned long flags;
5266
5267	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5268
5269	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5270		goto out;
5271
5272	arch_spin_lock(&cpu_buffer->lock);
5273
5274	rb_reset_cpu(cpu_buffer);
5275
5276	arch_spin_unlock(&cpu_buffer->lock);
5277
5278 out:
5279	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5280}
5281
5282/**
5283 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5284 * @buffer: The ring buffer to reset a per cpu buffer of
5285 * @cpu: The CPU buffer to be reset
5286 */
5287void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5288{
5289	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5290
5291	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5292		return;
5293
5294	/* prevent another thread from changing buffer sizes */
5295	mutex_lock(&buffer->mutex);
5296
5297	atomic_inc(&cpu_buffer->resize_disabled);
5298	atomic_inc(&cpu_buffer->record_disabled);
5299
5300	/* Make sure all commits have finished */
5301	synchronize_rcu();
5302
5303	reset_disabled_cpu_buffer(cpu_buffer);
5304
5305	atomic_dec(&cpu_buffer->record_disabled);
5306	atomic_dec(&cpu_buffer->resize_disabled);
5307
5308	mutex_unlock(&buffer->mutex);
5309}
5310EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5311
5312/* Flag to ensure proper resetting of atomic variables */
5313#define RESET_BIT	(1 << 30)
5314
5315/**
5316 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5317 * @buffer: The ring buffer to reset a per cpu buffer of
5318 */
5319void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5320{
5321	struct ring_buffer_per_cpu *cpu_buffer;
5322	int cpu;
5323
5324	/* prevent another thread from changing buffer sizes */
5325	mutex_lock(&buffer->mutex);
5326
5327	for_each_online_buffer_cpu(buffer, cpu) {
5328		cpu_buffer = buffer->buffers[cpu];
5329
5330		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5331		atomic_inc(&cpu_buffer->record_disabled);
5332	}
5333
5334	/* Make sure all commits have finished */
5335	synchronize_rcu();
5336
5337	for_each_buffer_cpu(buffer, cpu) {
5338		cpu_buffer = buffer->buffers[cpu];
5339
5340		/*
5341		 * If a CPU came online during the synchronize_rcu(), then
5342		 * ignore it.
5343		 */
5344		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5345			continue;
5346
5347		reset_disabled_cpu_buffer(cpu_buffer);
5348
5349		atomic_dec(&cpu_buffer->record_disabled);
5350		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5351	}
5352
5353	mutex_unlock(&buffer->mutex);
5354}
5355
5356/**
5357 * ring_buffer_reset - reset a ring buffer
5358 * @buffer: The ring buffer to reset all cpu buffers
5359 */
5360void ring_buffer_reset(struct trace_buffer *buffer)
5361{
5362	struct ring_buffer_per_cpu *cpu_buffer;
5363	int cpu;
5364
5365	/* prevent another thread from changing buffer sizes */
5366	mutex_lock(&buffer->mutex);
5367
5368	for_each_buffer_cpu(buffer, cpu) {
5369		cpu_buffer = buffer->buffers[cpu];
5370
5371		atomic_inc(&cpu_buffer->resize_disabled);
5372		atomic_inc(&cpu_buffer->record_disabled);
5373	}
5374
5375	/* Make sure all commits have finished */
5376	synchronize_rcu();
5377
5378	for_each_buffer_cpu(buffer, cpu) {
5379		cpu_buffer = buffer->buffers[cpu];
5380
5381		reset_disabled_cpu_buffer(cpu_buffer);
5382
5383		atomic_dec(&cpu_buffer->record_disabled);
5384		atomic_dec(&cpu_buffer->resize_disabled);
5385	}
5386
5387	mutex_unlock(&buffer->mutex);
5388}
5389EXPORT_SYMBOL_GPL(ring_buffer_reset);
5390
5391/**
5392 * ring_buffer_empty - is the ring buffer empty?
5393 * @buffer: The ring buffer to test
5394 */
5395bool ring_buffer_empty(struct trace_buffer *buffer)
5396{
5397	struct ring_buffer_per_cpu *cpu_buffer;
5398	unsigned long flags;
5399	bool dolock;
5400	bool ret;
5401	int cpu;
5402
5403	/* yes this is racy, but if you don't like the race, lock the buffer */
5404	for_each_buffer_cpu(buffer, cpu) {
5405		cpu_buffer = buffer->buffers[cpu];
5406		local_irq_save(flags);
5407		dolock = rb_reader_lock(cpu_buffer);
5408		ret = rb_per_cpu_empty(cpu_buffer);
5409		rb_reader_unlock(cpu_buffer, dolock);
5410		local_irq_restore(flags);
5411
5412		if (!ret)
5413			return false;
5414	}
5415
5416	return true;
5417}
5418EXPORT_SYMBOL_GPL(ring_buffer_empty);
5419
5420/**
5421 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5422 * @buffer: The ring buffer
5423 * @cpu: The CPU buffer to test
5424 */
5425bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5426{
5427	struct ring_buffer_per_cpu *cpu_buffer;
5428	unsigned long flags;
5429	bool dolock;
5430	bool ret;
5431
5432	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5433		return true;
5434
5435	cpu_buffer = buffer->buffers[cpu];
5436	local_irq_save(flags);
5437	dolock = rb_reader_lock(cpu_buffer);
5438	ret = rb_per_cpu_empty(cpu_buffer);
5439	rb_reader_unlock(cpu_buffer, dolock);
5440	local_irq_restore(flags);
5441
5442	return ret;
5443}
5444EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5445
5446#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5447/**
5448 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5449 * @buffer_a: One buffer to swap with
5450 * @buffer_b: The other buffer to swap with
5451 * @cpu: the CPU of the buffers to swap
5452 *
5453 * This function is useful for tracers that want to take a "snapshot"
5454 * of a CPU buffer and has another back up buffer lying around.
5455 * it is expected that the tracer handles the cpu buffer not being
5456 * used at the moment.
5457 */
5458int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5459			 struct trace_buffer *buffer_b, int cpu)
5460{
5461	struct ring_buffer_per_cpu *cpu_buffer_a;
5462	struct ring_buffer_per_cpu *cpu_buffer_b;
5463	int ret = -EINVAL;
5464
5465	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5466	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5467		goto out;
5468
5469	cpu_buffer_a = buffer_a->buffers[cpu];
5470	cpu_buffer_b = buffer_b->buffers[cpu];
5471
5472	/* At least make sure the two buffers are somewhat the same */
5473	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5474		goto out;
5475
5476	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5477		goto out;
5478
5479	ret = -EAGAIN;
5480
5481	if (atomic_read(&buffer_a->record_disabled))
5482		goto out;
5483
5484	if (atomic_read(&buffer_b->record_disabled))
5485		goto out;
5486
5487	if (atomic_read(&cpu_buffer_a->record_disabled))
5488		goto out;
5489
5490	if (atomic_read(&cpu_buffer_b->record_disabled))
5491		goto out;
5492
5493	/*
5494	 * We can't do a synchronize_rcu here because this
5495	 * function can be called in atomic context.
5496	 * Normally this will be called from the same CPU as cpu.
5497	 * If not it's up to the caller to protect this.
5498	 */
5499	atomic_inc(&cpu_buffer_a->record_disabled);
5500	atomic_inc(&cpu_buffer_b->record_disabled);
5501
5502	ret = -EBUSY;
5503	if (local_read(&cpu_buffer_a->committing))
5504		goto out_dec;
5505	if (local_read(&cpu_buffer_b->committing))
5506		goto out_dec;
5507
5508	/*
5509	 * When resize is in progress, we cannot swap it because
5510	 * it will mess the state of the cpu buffer.
5511	 */
5512	if (atomic_read(&buffer_a->resizing))
5513		goto out_dec;
5514	if (atomic_read(&buffer_b->resizing))
5515		goto out_dec;
5516
5517	buffer_a->buffers[cpu] = cpu_buffer_b;
5518	buffer_b->buffers[cpu] = cpu_buffer_a;
5519
5520	cpu_buffer_b->buffer = buffer_a;
5521	cpu_buffer_a->buffer = buffer_b;
5522
5523	ret = 0;
5524
5525out_dec:
5526	atomic_dec(&cpu_buffer_a->record_disabled);
5527	atomic_dec(&cpu_buffer_b->record_disabled);
5528out:
5529	return ret;
5530}
5531EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5532#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5533
5534/**
5535 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5536 * @buffer: the buffer to allocate for.
5537 * @cpu: the cpu buffer to allocate.
5538 *
5539 * This function is used in conjunction with ring_buffer_read_page.
5540 * When reading a full page from the ring buffer, these functions
5541 * can be used to speed up the process. The calling function should
5542 * allocate a few pages first with this function. Then when it
5543 * needs to get pages from the ring buffer, it passes the result
5544 * of this function into ring_buffer_read_page, which will swap
5545 * the page that was allocated, with the read page of the buffer.
5546 *
5547 * Returns:
5548 *  The page allocated, or ERR_PTR
5549 */
5550struct buffer_data_read_page *
5551ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5552{
5553	struct ring_buffer_per_cpu *cpu_buffer;
5554	struct buffer_data_read_page *bpage = NULL;
5555	unsigned long flags;
5556	struct page *page;
5557
5558	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5559		return ERR_PTR(-ENODEV);
5560
5561	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5562	if (!bpage)
5563		return ERR_PTR(-ENOMEM);
5564
5565	bpage->order = buffer->subbuf_order;
5566	cpu_buffer = buffer->buffers[cpu];
5567	local_irq_save(flags);
5568	arch_spin_lock(&cpu_buffer->lock);
5569
5570	if (cpu_buffer->free_page) {
5571		bpage->data = cpu_buffer->free_page;
5572		cpu_buffer->free_page = NULL;
5573	}
5574
5575	arch_spin_unlock(&cpu_buffer->lock);
5576	local_irq_restore(flags);
5577
5578	if (bpage->data)
5579		goto out;
5580
5581	page = alloc_pages_node(cpu_to_node(cpu),
5582				GFP_KERNEL | __GFP_NORETRY | __GFP_ZERO,
5583				cpu_buffer->buffer->subbuf_order);
5584	if (!page) {
5585		kfree(bpage);
5586		return ERR_PTR(-ENOMEM);
5587	}
5588
5589	bpage->data = page_address(page);
5590
5591 out:
5592	rb_init_page(bpage->data);
5593
5594	return bpage;
5595}
5596EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5597
5598/**
5599 * ring_buffer_free_read_page - free an allocated read page
5600 * @buffer: the buffer the page was allocate for
5601 * @cpu: the cpu buffer the page came from
5602 * @data_page: the page to free
5603 *
5604 * Free a page allocated from ring_buffer_alloc_read_page.
5605 */
5606void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5607				struct buffer_data_read_page *data_page)
5608{
5609	struct ring_buffer_per_cpu *cpu_buffer;
5610	struct buffer_data_page *bpage = data_page->data;
5611	struct page *page = virt_to_page(bpage);
5612	unsigned long flags;
5613
5614	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5615		return;
5616
5617	cpu_buffer = buffer->buffers[cpu];
5618
5619	/*
5620	 * If the page is still in use someplace else, or order of the page
5621	 * is different from the subbuffer order of the buffer -
5622	 * we can't reuse it
5623	 */
5624	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5625		goto out;
5626
5627	local_irq_save(flags);
5628	arch_spin_lock(&cpu_buffer->lock);
5629
5630	if (!cpu_buffer->free_page) {
5631		cpu_buffer->free_page = bpage;
5632		bpage = NULL;
5633	}
5634
5635	arch_spin_unlock(&cpu_buffer->lock);
5636	local_irq_restore(flags);
5637
5638 out:
5639	free_pages((unsigned long)bpage, data_page->order);
5640	kfree(data_page);
5641}
5642EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5643
5644/**
5645 * ring_buffer_read_page - extract a page from the ring buffer
5646 * @buffer: buffer to extract from
5647 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5648 * @len: amount to extract
5649 * @cpu: the cpu of the buffer to extract
5650 * @full: should the extraction only happen when the page is full.
5651 *
5652 * This function will pull out a page from the ring buffer and consume it.
5653 * @data_page must be the address of the variable that was returned
5654 * from ring_buffer_alloc_read_page. This is because the page might be used
5655 * to swap with a page in the ring buffer.
5656 *
5657 * for example:
5658 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5659 *	if (IS_ERR(rpage))
5660 *		return PTR_ERR(rpage);
5661 *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5662 *	if (ret >= 0)
5663 *		process_page(ring_buffer_read_page_data(rpage), ret);
5664 *	ring_buffer_free_read_page(buffer, cpu, rpage);
5665 *
5666 * When @full is set, the function will not return true unless
5667 * the writer is off the reader page.
5668 *
5669 * Note: it is up to the calling functions to handle sleeps and wakeups.
5670 *  The ring buffer can be used anywhere in the kernel and can not
5671 *  blindly call wake_up. The layer that uses the ring buffer must be
5672 *  responsible for that.
5673 *
5674 * Returns:
5675 *  >=0 if data has been transferred, returns the offset of consumed data.
5676 *  <0 if no data has been transferred.
5677 */
5678int ring_buffer_read_page(struct trace_buffer *buffer,
5679			  struct buffer_data_read_page *data_page,
5680			  size_t len, int cpu, int full)
5681{
5682	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5683	struct ring_buffer_event *event;
5684	struct buffer_data_page *bpage;
5685	struct buffer_page *reader;
5686	unsigned long missed_events;
5687	unsigned long flags;
5688	unsigned int commit;
5689	unsigned int read;
5690	u64 save_timestamp;
5691	int ret = -1;
5692
5693	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5694		goto out;
5695
5696	/*
5697	 * If len is not big enough to hold the page header, then
5698	 * we can not copy anything.
5699	 */
5700	if (len <= BUF_PAGE_HDR_SIZE)
5701		goto out;
5702
5703	len -= BUF_PAGE_HDR_SIZE;
5704
5705	if (!data_page || !data_page->data)
5706		goto out;
5707	if (data_page->order != buffer->subbuf_order)
5708		goto out;
5709
5710	bpage = data_page->data;
5711	if (!bpage)
5712		goto out;
5713
5714	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5715
5716	reader = rb_get_reader_page(cpu_buffer);
5717	if (!reader)
5718		goto out_unlock;
5719
5720	event = rb_reader_event(cpu_buffer);
5721
5722	read = reader->read;
5723	commit = rb_page_commit(reader);
5724
5725	/* Check if any events were dropped */
5726	missed_events = cpu_buffer->lost_events;
5727
5728	/*
5729	 * If this page has been partially read or
5730	 * if len is not big enough to read the rest of the page or
5731	 * a writer is still on the page, then
5732	 * we must copy the data from the page to the buffer.
5733	 * Otherwise, we can simply swap the page with the one passed in.
5734	 */
5735	if (read || (len < (commit - read)) ||
5736	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5737		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5738		unsigned int rpos = read;
5739		unsigned int pos = 0;
5740		unsigned int size;
5741
5742		/*
5743		 * If a full page is expected, this can still be returned
5744		 * if there's been a previous partial read and the
5745		 * rest of the page can be read and the commit page is off
5746		 * the reader page.
5747		 */
5748		if (full &&
5749		    (!read || (len < (commit - read)) ||
5750		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5751			goto out_unlock;
5752
5753		if (len > (commit - read))
5754			len = (commit - read);
5755
5756		/* Always keep the time extend and data together */
5757		size = rb_event_ts_length(event);
5758
5759		if (len < size)
5760			goto out_unlock;
5761
5762		/* save the current timestamp, since the user will need it */
5763		save_timestamp = cpu_buffer->read_stamp;
5764
5765		/* Need to copy one event at a time */
5766		do {
5767			/* We need the size of one event, because
5768			 * rb_advance_reader only advances by one event,
5769			 * whereas rb_event_ts_length may include the size of
5770			 * one or two events.
5771			 * We have already ensured there's enough space if this
5772			 * is a time extend. */
5773			size = rb_event_length(event);
5774			memcpy(bpage->data + pos, rpage->data + rpos, size);
5775
5776			len -= size;
5777
5778			rb_advance_reader(cpu_buffer);
5779			rpos = reader->read;
5780			pos += size;
5781
5782			if (rpos >= commit)
5783				break;
5784
5785			event = rb_reader_event(cpu_buffer);
5786			/* Always keep the time extend and data together */
5787			size = rb_event_ts_length(event);
5788		} while (len >= size);
5789
5790		/* update bpage */
5791		local_set(&bpage->commit, pos);
5792		bpage->time_stamp = save_timestamp;
5793
5794		/* we copied everything to the beginning */
5795		read = 0;
5796	} else {
5797		/* update the entry counter */
5798		cpu_buffer->read += rb_page_entries(reader);
5799		cpu_buffer->read_bytes += rb_page_commit(reader);
5800
5801		/* swap the pages */
5802		rb_init_page(bpage);
5803		bpage = reader->page;
5804		reader->page = data_page->data;
5805		local_set(&reader->write, 0);
5806		local_set(&reader->entries, 0);
5807		reader->read = 0;
5808		data_page->data = bpage;
5809
5810		/*
5811		 * Use the real_end for the data size,
5812		 * This gives us a chance to store the lost events
5813		 * on the page.
5814		 */
5815		if (reader->real_end)
5816			local_set(&bpage->commit, reader->real_end);
5817	}
5818	ret = read;
5819
5820	cpu_buffer->lost_events = 0;
5821
5822	commit = local_read(&bpage->commit);
5823	/*
5824	 * Set a flag in the commit field if we lost events
5825	 */
5826	if (missed_events) {
5827		/* If there is room at the end of the page to save the
5828		 * missed events, then record it there.
5829		 */
5830		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5831			memcpy(&bpage->data[commit], &missed_events,
5832			       sizeof(missed_events));
5833			local_add(RB_MISSED_STORED, &bpage->commit);
5834			commit += sizeof(missed_events);
5835		}
5836		local_add(RB_MISSED_EVENTS, &bpage->commit);
5837	}
5838
5839	/*
5840	 * This page may be off to user land. Zero it out here.
5841	 */
5842	if (commit < buffer->subbuf_size)
5843		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5844
5845 out_unlock:
5846	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5847
5848 out:
5849	return ret;
5850}
5851EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5852
5853/**
5854 * ring_buffer_read_page_data - get pointer to the data in the page.
5855 * @page:  the page to get the data from
5856 *
5857 * Returns pointer to the actual data in this page.
5858 */
5859void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5860{
5861	return page->data;
5862}
5863EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5864
5865/**
5866 * ring_buffer_subbuf_size_get - get size of the sub buffer.
5867 * @buffer: the buffer to get the sub buffer size from
5868 *
5869 * Returns size of the sub buffer, in bytes.
5870 */
5871int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5872{
5873	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5874}
5875EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5876
5877/**
5878 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5879 * @buffer: The ring_buffer to get the system sub page order from
5880 *
5881 * By default, one ring buffer sub page equals to one system page. This parameter
5882 * is configurable, per ring buffer. The size of the ring buffer sub page can be
5883 * extended, but must be an order of system page size.
5884 *
5885 * Returns the order of buffer sub page size, in system pages:
5886 * 0 means the sub buffer size is 1 system page and so forth.
5887 * In case of an error < 0 is returned.
5888 */
5889int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5890{
5891	if (!buffer)
5892		return -EINVAL;
5893
5894	return buffer->subbuf_order;
5895}
5896EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5897
5898/**
5899 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5900 * @buffer: The ring_buffer to set the new page size.
5901 * @order: Order of the system pages in one sub buffer page
5902 *
5903 * By default, one ring buffer pages equals to one system page. This API can be
5904 * used to set new size of the ring buffer page. The size must be order of
5905 * system page size, that's why the input parameter @order is the order of
5906 * system pages that are allocated for one ring buffer page:
5907 *  0 - 1 system page
5908 *  1 - 2 system pages
5909 *  3 - 4 system pages
5910 *  ...
5911 *
5912 * Returns 0 on success or < 0 in case of an error.
5913 */
5914int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5915{
5916	struct ring_buffer_per_cpu *cpu_buffer;
5917	struct buffer_page *bpage, *tmp;
5918	int old_order, old_size;
5919	int nr_pages;
5920	int psize;
5921	int err;
5922	int cpu;
5923
5924	if (!buffer || order < 0)
5925		return -EINVAL;
5926
5927	if (buffer->subbuf_order == order)
5928		return 0;
5929
5930	psize = (1 << order) * PAGE_SIZE;
5931	if (psize <= BUF_PAGE_HDR_SIZE)
5932		return -EINVAL;
5933
5934	/* Size of a subbuf cannot be greater than the write counter */
5935	if (psize > RB_WRITE_MASK + 1)
5936		return -EINVAL;
5937
5938	old_order = buffer->subbuf_order;
5939	old_size = buffer->subbuf_size;
5940
5941	/* prevent another thread from changing buffer sizes */
5942	mutex_lock(&buffer->mutex);
5943	atomic_inc(&buffer->record_disabled);
5944
5945	/* Make sure all commits have finished */
5946	synchronize_rcu();
5947
5948	buffer->subbuf_order = order;
5949	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5950
5951	/* Make sure all new buffers are allocated, before deleting the old ones */
5952	for_each_buffer_cpu(buffer, cpu) {
5953
5954		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5955			continue;
5956
5957		cpu_buffer = buffer->buffers[cpu];
5958
5959		/* Update the number of pages to match the new size */
5960		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
5961		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
5962
5963		/* we need a minimum of two pages */
5964		if (nr_pages < 2)
5965			nr_pages = 2;
5966
5967		cpu_buffer->nr_pages_to_update = nr_pages;
5968
5969		/* Include the reader page */
5970		nr_pages++;
5971
5972		/* Allocate the new size buffer */
5973		INIT_LIST_HEAD(&cpu_buffer->new_pages);
5974		if (__rb_allocate_pages(cpu_buffer, nr_pages,
5975					&cpu_buffer->new_pages)) {
5976			/* not enough memory for new pages */
5977			err = -ENOMEM;
5978			goto error;
5979		}
5980	}
5981
5982	for_each_buffer_cpu(buffer, cpu) {
5983
5984		if (!cpumask_test_cpu(cpu, buffer->cpumask))
5985			continue;
5986
5987		cpu_buffer = buffer->buffers[cpu];
5988
5989		/* Clear the head bit to make the link list normal to read */
5990		rb_head_page_deactivate(cpu_buffer);
5991
5992		/* Now walk the list and free all the old sub buffers */
5993		list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
5994			list_del_init(&bpage->list);
5995			free_buffer_page(bpage);
5996		}
5997		/* The above loop stopped an the last page needing to be freed */
5998		bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
5999		free_buffer_page(bpage);
6000
6001		/* Free the current reader page */
6002		free_buffer_page(cpu_buffer->reader_page);
6003
6004		/* One page was allocated for the reader page */
6005		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6006						     struct buffer_page, list);
6007		list_del_init(&cpu_buffer->reader_page->list);
6008
6009		/* The cpu_buffer pages are a link list with no head */
6010		cpu_buffer->pages = cpu_buffer->new_pages.next;
6011		cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
6012		cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
6013
6014		/* Clear the new_pages list */
6015		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6016
6017		cpu_buffer->head_page
6018			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6019		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6020
6021		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6022		cpu_buffer->nr_pages_to_update = 0;
6023
6024		free_pages((unsigned long)cpu_buffer->free_page, old_order);
6025		cpu_buffer->free_page = NULL;
6026
6027		rb_head_page_activate(cpu_buffer);
6028
6029		rb_check_pages(cpu_buffer);
6030	}
6031
6032	atomic_dec(&buffer->record_disabled);
6033	mutex_unlock(&buffer->mutex);
6034
6035	return 0;
6036
6037error:
6038	buffer->subbuf_order = old_order;
6039	buffer->subbuf_size = old_size;
6040
6041	atomic_dec(&buffer->record_disabled);
6042	mutex_unlock(&buffer->mutex);
6043
6044	for_each_buffer_cpu(buffer, cpu) {
6045		cpu_buffer = buffer->buffers[cpu];
6046
6047		if (!cpu_buffer->nr_pages_to_update)
6048			continue;
6049
6050		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6051			list_del_init(&bpage->list);
6052			free_buffer_page(bpage);
6053		}
6054	}
6055
6056	return err;
6057}
6058EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6059
6060/*
6061 * We only allocate new buffers, never free them if the CPU goes down.
6062 * If we were to free the buffer, then the user would lose any trace that was in
6063 * the buffer.
6064 */
6065int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6066{
6067	struct trace_buffer *buffer;
6068	long nr_pages_same;
6069	int cpu_i;
6070	unsigned long nr_pages;
6071
6072	buffer = container_of(node, struct trace_buffer, node);
6073	if (cpumask_test_cpu(cpu, buffer->cpumask))
6074		return 0;
6075
6076	nr_pages = 0;
6077	nr_pages_same = 1;
6078	/* check if all cpu sizes are same */
6079	for_each_buffer_cpu(buffer, cpu_i) {
6080		/* fill in the size from first enabled cpu */
6081		if (nr_pages == 0)
6082			nr_pages = buffer->buffers[cpu_i]->nr_pages;
6083		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6084			nr_pages_same = 0;
6085			break;
6086		}
6087	}
6088	/* allocate minimum pages, user can later expand it */
6089	if (!nr_pages_same)
6090		nr_pages = 2;
6091	buffer->buffers[cpu] =
6092		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6093	if (!buffer->buffers[cpu]) {
6094		WARN(1, "failed to allocate ring buffer on CPU %u\n",
6095		     cpu);
6096		return -ENOMEM;
6097	}
6098	smp_wmb();
6099	cpumask_set_cpu(cpu, buffer->cpumask);
6100	return 0;
6101}
6102
6103#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6104/*
6105 * This is a basic integrity check of the ring buffer.
6106 * Late in the boot cycle this test will run when configured in.
6107 * It will kick off a thread per CPU that will go into a loop
6108 * writing to the per cpu ring buffer various sizes of data.
6109 * Some of the data will be large items, some small.
6110 *
6111 * Another thread is created that goes into a spin, sending out
6112 * IPIs to the other CPUs to also write into the ring buffer.
6113 * this is to test the nesting ability of the buffer.
6114 *
6115 * Basic stats are recorded and reported. If something in the
6116 * ring buffer should happen that's not expected, a big warning
6117 * is displayed and all ring buffers are disabled.
6118 */
6119static struct task_struct *rb_threads[NR_CPUS] __initdata;
6120
6121struct rb_test_data {
6122	struct trace_buffer *buffer;
6123	unsigned long		events;
6124	unsigned long		bytes_written;
6125	unsigned long		bytes_alloc;
6126	unsigned long		bytes_dropped;
6127	unsigned long		events_nested;
6128	unsigned long		bytes_written_nested;
6129	unsigned long		bytes_alloc_nested;
6130	unsigned long		bytes_dropped_nested;
6131	int			min_size_nested;
6132	int			max_size_nested;
6133	int			max_size;
6134	int			min_size;
6135	int			cpu;
6136	int			cnt;
6137};
6138
6139static struct rb_test_data rb_data[NR_CPUS] __initdata;
6140
6141/* 1 meg per cpu */
6142#define RB_TEST_BUFFER_SIZE	1048576
6143
6144static char rb_string[] __initdata =
6145	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6146	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6147	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6148
6149static bool rb_test_started __initdata;
6150
6151struct rb_item {
6152	int size;
6153	char str[];
6154};
6155
6156static __init int rb_write_something(struct rb_test_data *data, bool nested)
6157{
6158	struct ring_buffer_event *event;
6159	struct rb_item *item;
6160	bool started;
6161	int event_len;
6162	int size;
6163	int len;
6164	int cnt;
6165
6166	/* Have nested writes different that what is written */
6167	cnt = data->cnt + (nested ? 27 : 0);
6168
6169	/* Multiply cnt by ~e, to make some unique increment */
6170	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6171
6172	len = size + sizeof(struct rb_item);
6173
6174	started = rb_test_started;
6175	/* read rb_test_started before checking buffer enabled */
6176	smp_rmb();
6177
6178	event = ring_buffer_lock_reserve(data->buffer, len);
6179	if (!event) {
6180		/* Ignore dropped events before test starts. */
6181		if (started) {
6182			if (nested)
6183				data->bytes_dropped += len;
6184			else
6185				data->bytes_dropped_nested += len;
6186		}
6187		return len;
6188	}
6189
6190	event_len = ring_buffer_event_length(event);
6191
6192	if (RB_WARN_ON(data->buffer, event_len < len))
6193		goto out;
6194
6195	item = ring_buffer_event_data(event);
6196	item->size = size;
6197	memcpy(item->str, rb_string, size);
6198
6199	if (nested) {
6200		data->bytes_alloc_nested += event_len;
6201		data->bytes_written_nested += len;
6202		data->events_nested++;
6203		if (!data->min_size_nested || len < data->min_size_nested)
6204			data->min_size_nested = len;
6205		if (len > data->max_size_nested)
6206			data->max_size_nested = len;
6207	} else {
6208		data->bytes_alloc += event_len;
6209		data->bytes_written += len;
6210		data->events++;
6211		if (!data->min_size || len < data->min_size)
6212			data->max_size = len;
6213		if (len > data->max_size)
6214			data->max_size = len;
6215	}
6216
6217 out:
6218	ring_buffer_unlock_commit(data->buffer);
6219
6220	return 0;
6221}
6222
6223static __init int rb_test(void *arg)
6224{
6225	struct rb_test_data *data = arg;
6226
6227	while (!kthread_should_stop()) {
6228		rb_write_something(data, false);
6229		data->cnt++;
6230
6231		set_current_state(TASK_INTERRUPTIBLE);
6232		/* Now sleep between a min of 100-300us and a max of 1ms */
6233		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6234	}
6235
6236	return 0;
6237}
6238
6239static __init void rb_ipi(void *ignore)
6240{
6241	struct rb_test_data *data;
6242	int cpu = smp_processor_id();
6243
6244	data = &rb_data[cpu];
6245	rb_write_something(data, true);
6246}
6247
6248static __init int rb_hammer_test(void *arg)
6249{
6250	while (!kthread_should_stop()) {
6251
6252		/* Send an IPI to all cpus to write data! */
6253		smp_call_function(rb_ipi, NULL, 1);
6254		/* No sleep, but for non preempt, let others run */
6255		schedule();
6256	}
6257
6258	return 0;
6259}
6260
6261static __init int test_ringbuffer(void)
6262{
6263	struct task_struct *rb_hammer;
6264	struct trace_buffer *buffer;
6265	int cpu;
6266	int ret = 0;
6267
6268	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6269		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6270		return 0;
6271	}
6272
6273	pr_info("Running ring buffer tests...\n");
6274
6275	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6276	if (WARN_ON(!buffer))
6277		return 0;
6278
6279	/* Disable buffer so that threads can't write to it yet */
6280	ring_buffer_record_off(buffer);
6281
6282	for_each_online_cpu(cpu) {
6283		rb_data[cpu].buffer = buffer;
6284		rb_data[cpu].cpu = cpu;
6285		rb_data[cpu].cnt = cpu;
6286		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6287						     cpu, "rbtester/%u");
6288		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6289			pr_cont("FAILED\n");
6290			ret = PTR_ERR(rb_threads[cpu]);
6291			goto out_free;
6292		}
6293	}
6294
6295	/* Now create the rb hammer! */
6296	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6297	if (WARN_ON(IS_ERR(rb_hammer))) {
6298		pr_cont("FAILED\n");
6299		ret = PTR_ERR(rb_hammer);
6300		goto out_free;
6301	}
6302
6303	ring_buffer_record_on(buffer);
6304	/*
6305	 * Show buffer is enabled before setting rb_test_started.
6306	 * Yes there's a small race window where events could be
6307	 * dropped and the thread wont catch it. But when a ring
6308	 * buffer gets enabled, there will always be some kind of
6309	 * delay before other CPUs see it. Thus, we don't care about
6310	 * those dropped events. We care about events dropped after
6311	 * the threads see that the buffer is active.
6312	 */
6313	smp_wmb();
6314	rb_test_started = true;
6315
6316	set_current_state(TASK_INTERRUPTIBLE);
6317	/* Just run for 10 seconds */;
6318	schedule_timeout(10 * HZ);
6319
6320	kthread_stop(rb_hammer);
6321
6322 out_free:
6323	for_each_online_cpu(cpu) {
6324		if (!rb_threads[cpu])
6325			break;
6326		kthread_stop(rb_threads[cpu]);
6327	}
6328	if (ret) {
6329		ring_buffer_free(buffer);
6330		return ret;
6331	}
6332
6333	/* Report! */
6334	pr_info("finished\n");
6335	for_each_online_cpu(cpu) {
6336		struct ring_buffer_event *event;
6337		struct rb_test_data *data = &rb_data[cpu];
6338		struct rb_item *item;
6339		unsigned long total_events;
6340		unsigned long total_dropped;
6341		unsigned long total_written;
6342		unsigned long total_alloc;
6343		unsigned long total_read = 0;
6344		unsigned long total_size = 0;
6345		unsigned long total_len = 0;
6346		unsigned long total_lost = 0;
6347		unsigned long lost;
6348		int big_event_size;
6349		int small_event_size;
6350
6351		ret = -1;
6352
6353		total_events = data->events + data->events_nested;
6354		total_written = data->bytes_written + data->bytes_written_nested;
6355		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6356		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6357
6358		big_event_size = data->max_size + data->max_size_nested;
6359		small_event_size = data->min_size + data->min_size_nested;
6360
6361		pr_info("CPU %d:\n", cpu);
6362		pr_info("              events:    %ld\n", total_events);
6363		pr_info("       dropped bytes:    %ld\n", total_dropped);
6364		pr_info("       alloced bytes:    %ld\n", total_alloc);
6365		pr_info("       written bytes:    %ld\n", total_written);
6366		pr_info("       biggest event:    %d\n", big_event_size);
6367		pr_info("      smallest event:    %d\n", small_event_size);
6368
6369		if (RB_WARN_ON(buffer, total_dropped))
6370			break;
6371
6372		ret = 0;
6373
6374		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6375			total_lost += lost;
6376			item = ring_buffer_event_data(event);
6377			total_len += ring_buffer_event_length(event);
6378			total_size += item->size + sizeof(struct rb_item);
6379			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6380				pr_info("FAILED!\n");
6381				pr_info("buffer had: %.*s\n", item->size, item->str);
6382				pr_info("expected:   %.*s\n", item->size, rb_string);
6383				RB_WARN_ON(buffer, 1);
6384				ret = -1;
6385				break;
6386			}
6387			total_read++;
6388		}
6389		if (ret)
6390			break;
6391
6392		ret = -1;
6393
6394		pr_info("         read events:   %ld\n", total_read);
6395		pr_info("         lost events:   %ld\n", total_lost);
6396		pr_info("        total events:   %ld\n", total_lost + total_read);
6397		pr_info("  recorded len bytes:   %ld\n", total_len);
6398		pr_info(" recorded size bytes:   %ld\n", total_size);
6399		if (total_lost) {
6400			pr_info(" With dropped events, record len and size may not match\n"
6401				" alloced and written from above\n");
6402		} else {
6403			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6404				       total_size != total_written))
6405				break;
6406		}
6407		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6408			break;
6409
6410		ret = 0;
6411	}
6412	if (!ret)
6413		pr_info("Ring buffer PASSED!\n");
6414
6415	ring_buffer_free(buffer);
6416	return 0;
6417}
6418
6419late_initcall(test_ringbuffer);
6420#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6421