1284345Ssjg// SPDX-License-Identifier: GPL-2.0
2284345Ssjg/*
3284345Ssjg *  Kernel internal timers
4284345Ssjg *
5284345Ssjg *  Copyright (C) 1991, 1992  Linus Torvalds
6284345Ssjg *
7284345Ssjg *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8284345Ssjg *
9284345Ssjg *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10284345Ssjg *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11284345Ssjg *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12284345Ssjg *              serialize accesses to xtime/lost_ticks).
13284345Ssjg *                              Copyright (C) 1998  Andrea Arcangeli
14284345Ssjg *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15284345Ssjg *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16284345Ssjg *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17284345Ssjg *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18284345Ssjg *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19284345Ssjg */
20284345Ssjg
21284345Ssjg#include <linux/kernel_stat.h>
22284345Ssjg#include <linux/export.h>
23#include <linux/interrupt.h>
24#include <linux/percpu.h>
25#include <linux/init.h>
26#include <linux/mm.h>
27#include <linux/swap.h>
28#include <linux/pid_namespace.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
36#include <linux/delay.h>
37#include <linux/tick.h>
38#include <linux/kallsyms.h>
39#include <linux/irq_work.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/sysctl.h>
42#include <linux/sched/nohz.h>
43#include <linux/sched/debug.h>
44#include <linux/slab.h>
45#include <linux/compat.h>
46#include <linux/random.h>
47#include <linux/sysctl.h>
48
49#include <linux/uaccess.h>
50#include <asm/unistd.h>
51#include <asm/div64.h>
52#include <asm/timex.h>
53#include <asm/io.h>
54
55#include "tick-internal.h"
56#include "timer_migration.h"
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/timer.h>
60
61__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
62
63EXPORT_SYMBOL(jiffies_64);
64
65/*
66 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
67 * LVL_SIZE buckets. Each level is driven by its own clock and therefore each
68 * level has a different granularity.
69 *
70 * The level granularity is:		LVL_CLK_DIV ^ level
71 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
72 *
73 * The array level of a newly armed timer depends on the relative expiry
74 * time. The farther the expiry time is away the higher the array level and
75 * therefore the granularity becomes.
76 *
77 * Contrary to the original timer wheel implementation, which aims for 'exact'
78 * expiry of the timers, this implementation removes the need for recascading
79 * the timers into the lower array levels. The previous 'classic' timer wheel
80 * implementation of the kernel already violated the 'exact' expiry by adding
81 * slack to the expiry time to provide batched expiration. The granularity
82 * levels provide implicit batching.
83 *
84 * This is an optimization of the original timer wheel implementation for the
85 * majority of the timer wheel use cases: timeouts. The vast majority of
86 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
87 * the timeout expires it indicates that normal operation is disturbed, so it
88 * does not matter much whether the timeout comes with a slight delay.
89 *
90 * The only exception to this are networking timers with a small expiry
91 * time. They rely on the granularity. Those fit into the first wheel level,
92 * which has HZ granularity.
93 *
94 * We don't have cascading anymore. timers with a expiry time above the
95 * capacity of the last wheel level are force expired at the maximum timeout
96 * value of the last wheel level. From data sampling we know that the maximum
97 * value observed is 5 days (network connection tracking), so this should not
98 * be an issue.
99 *
100 * The currently chosen array constants values are a good compromise between
101 * array size and granularity.
102 *
103 * This results in the following granularity and range levels:
104 *
105 * HZ 1000 steps
106 * Level Offset  Granularity            Range
107 *  0      0         1 ms                0 ms -         63 ms
108 *  1     64         8 ms               64 ms -        511 ms
109 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
110 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
111 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
112 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
113 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
114 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
115 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
116 *
117 * HZ  300
118 * Level Offset  Granularity            Range
119 *  0	   0         3 ms                0 ms -        210 ms
120 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
121 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
122 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
123 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
124 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
125 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
126 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
127 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
128 *
129 * HZ  250
130 * Level Offset  Granularity            Range
131 *  0	   0         4 ms                0 ms -        255 ms
132 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
133 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
134 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
135 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
136 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
137 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
138 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
139 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
140 *
141 * HZ  100
142 * Level Offset  Granularity            Range
143 *  0	   0         10 ms               0 ms -        630 ms
144 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
145 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
146 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
147 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
148 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
149 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
150 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
151 */
152
153/* Clock divisor for the next level */
154#define LVL_CLK_SHIFT	3
155#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
156#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
157#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
158#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
159
160/*
161 * The time start value for each level to select the bucket at enqueue
162 * time. We start from the last possible delta of the previous level
163 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
164 */
165#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
166
167/* Size of each clock level */
168#define LVL_BITS	6
169#define LVL_SIZE	(1UL << LVL_BITS)
170#define LVL_MASK	(LVL_SIZE - 1)
171#define LVL_OFFS(n)	((n) * LVL_SIZE)
172
173/* Level depth */
174#if HZ > 100
175# define LVL_DEPTH	9
176# else
177# define LVL_DEPTH	8
178#endif
179
180/* The cutoff (max. capacity of the wheel) */
181#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
182#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
183
184/*
185 * The resulting wheel size. If NOHZ is configured we allocate two
186 * wheels so we have a separate storage for the deferrable timers.
187 */
188#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
189
190#ifdef CONFIG_NO_HZ_COMMON
191/*
192 * If multiple bases need to be locked, use the base ordering for lock
193 * nesting, i.e. lowest number first.
194 */
195# define NR_BASES	3
196# define BASE_LOCAL	0
197# define BASE_GLOBAL	1
198# define BASE_DEF	2
199#else
200# define NR_BASES	1
201# define BASE_LOCAL	0
202# define BASE_GLOBAL	0
203# define BASE_DEF	0
204#endif
205
206/**
207 * struct timer_base - Per CPU timer base (number of base depends on config)
208 * @lock:		Lock protecting the timer_base
209 * @running_timer:	When expiring timers, the lock is dropped. To make
210 *			sure not to race against deleting/modifying a
211 *			currently running timer, the pointer is set to the
212 *			timer, which expires at the moment. If no timer is
213 *			running, the pointer is NULL.
214 * @expiry_lock:	PREEMPT_RT only: Lock is taken in softirq around
215 *			timer expiry callback execution and when trying to
216 *			delete a running timer and it wasn't successful in
217 *			the first glance. It prevents priority inversion
218 *			when callback was preempted on a remote CPU and a
219 *			caller tries to delete the running timer. It also
220 *			prevents a life lock, when the task which tries to
221 *			delete a timer preempted the softirq thread which
222 *			is running the timer callback function.
223 * @timer_waiters:	PREEMPT_RT only: Tells, if there is a waiter
224 *			waiting for the end of the timer callback function
225 *			execution.
226 * @clk:		clock of the timer base; is updated before enqueue
227 *			of a timer; during expiry, it is 1 offset ahead of
228 *			jiffies to avoid endless requeuing to current
229 *			jiffies
230 * @next_expiry:	expiry value of the first timer; it is updated when
231 *			finding the next timer and during enqueue; the
232 *			value is not valid, when next_expiry_recalc is set
233 * @cpu:		Number of CPU the timer base belongs to
234 * @next_expiry_recalc: States, whether a recalculation of next_expiry is
235 *			required. Value is set true, when a timer was
236 *			deleted.
237 * @is_idle:		Is set, when timer_base is idle. It is triggered by NOHZ
238 *			code. This state is only used in standard
239 *			base. Deferrable timers, which are enqueued remotely
240 *			never wake up an idle CPU. So no matter of supporting it
241 *			for this base.
242 * @timers_pending:	Is set, when a timer is pending in the base. It is only
243 *			reliable when next_expiry_recalc is not set.
244 * @pending_map:	bitmap of the timer wheel; each bit reflects a
245 *			bucket of the wheel. When a bit is set, at least a
246 *			single timer is enqueued in the related bucket.
247 * @vectors:		Array of lists; Each array member reflects a bucket
248 *			of the timer wheel. The list contains all timers
249 *			which are enqueued into a specific bucket.
250 */
251struct timer_base {
252	raw_spinlock_t		lock;
253	struct timer_list	*running_timer;
254#ifdef CONFIG_PREEMPT_RT
255	spinlock_t		expiry_lock;
256	atomic_t		timer_waiters;
257#endif
258	unsigned long		clk;
259	unsigned long		next_expiry;
260	unsigned int		cpu;
261	bool			next_expiry_recalc;
262	bool			is_idle;
263	bool			timers_pending;
264	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
265	struct hlist_head	vectors[WHEEL_SIZE];
266} ____cacheline_aligned;
267
268static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
269
270#ifdef CONFIG_NO_HZ_COMMON
271
272static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
273static DEFINE_MUTEX(timer_keys_mutex);
274
275static void timer_update_keys(struct work_struct *work);
276static DECLARE_WORK(timer_update_work, timer_update_keys);
277
278#ifdef CONFIG_SMP
279static unsigned int sysctl_timer_migration = 1;
280
281DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
282
283static void timers_update_migration(void)
284{
285	if (sysctl_timer_migration && tick_nohz_active)
286		static_branch_enable(&timers_migration_enabled);
287	else
288		static_branch_disable(&timers_migration_enabled);
289}
290
291#ifdef CONFIG_SYSCTL
292static int timer_migration_handler(struct ctl_table *table, int write,
293			    void *buffer, size_t *lenp, loff_t *ppos)
294{
295	int ret;
296
297	mutex_lock(&timer_keys_mutex);
298	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
299	if (!ret && write)
300		timers_update_migration();
301	mutex_unlock(&timer_keys_mutex);
302	return ret;
303}
304
305static struct ctl_table timer_sysctl[] = {
306	{
307		.procname	= "timer_migration",
308		.data		= &sysctl_timer_migration,
309		.maxlen		= sizeof(unsigned int),
310		.mode		= 0644,
311		.proc_handler	= timer_migration_handler,
312		.extra1		= SYSCTL_ZERO,
313		.extra2		= SYSCTL_ONE,
314	},
315	{}
316};
317
318static int __init timer_sysctl_init(void)
319{
320	register_sysctl("kernel", timer_sysctl);
321	return 0;
322}
323device_initcall(timer_sysctl_init);
324#endif /* CONFIG_SYSCTL */
325#else /* CONFIG_SMP */
326static inline void timers_update_migration(void) { }
327#endif /* !CONFIG_SMP */
328
329static void timer_update_keys(struct work_struct *work)
330{
331	mutex_lock(&timer_keys_mutex);
332	timers_update_migration();
333	static_branch_enable(&timers_nohz_active);
334	mutex_unlock(&timer_keys_mutex);
335}
336
337void timers_update_nohz(void)
338{
339	schedule_work(&timer_update_work);
340}
341
342static inline bool is_timers_nohz_active(void)
343{
344	return static_branch_unlikely(&timers_nohz_active);
345}
346#else
347static inline bool is_timers_nohz_active(void) { return false; }
348#endif /* NO_HZ_COMMON */
349
350static unsigned long round_jiffies_common(unsigned long j, int cpu,
351		bool force_up)
352{
353	int rem;
354	unsigned long original = j;
355
356	/*
357	 * We don't want all cpus firing their timers at once hitting the
358	 * same lock or cachelines, so we skew each extra cpu with an extra
359	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
360	 * already did this.
361	 * The skew is done by adding 3*cpunr, then round, then subtract this
362	 * extra offset again.
363	 */
364	j += cpu * 3;
365
366	rem = j % HZ;
367
368	/*
369	 * If the target jiffie is just after a whole second (which can happen
370	 * due to delays of the timer irq, long irq off times etc etc) then
371	 * we should round down to the whole second, not up. Use 1/4th second
372	 * as cutoff for this rounding as an extreme upper bound for this.
373	 * But never round down if @force_up is set.
374	 */
375	if (rem < HZ/4 && !force_up) /* round down */
376		j = j - rem;
377	else /* round up */
378		j = j - rem + HZ;
379
380	/* now that we have rounded, subtract the extra skew again */
381	j -= cpu * 3;
382
383	/*
384	 * Make sure j is still in the future. Otherwise return the
385	 * unmodified value.
386	 */
387	return time_is_after_jiffies(j) ? j : original;
388}
389
390/**
391 * __round_jiffies - function to round jiffies to a full second
392 * @j: the time in (absolute) jiffies that should be rounded
393 * @cpu: the processor number on which the timeout will happen
394 *
395 * __round_jiffies() rounds an absolute time in the future (in jiffies)
396 * up or down to (approximately) full seconds. This is useful for timers
397 * for which the exact time they fire does not matter too much, as long as
398 * they fire approximately every X seconds.
399 *
400 * By rounding these timers to whole seconds, all such timers will fire
401 * at the same time, rather than at various times spread out. The goal
402 * of this is to have the CPU wake up less, which saves power.
403 *
404 * The exact rounding is skewed for each processor to avoid all
405 * processors firing at the exact same time, which could lead
406 * to lock contention or spurious cache line bouncing.
407 *
408 * The return value is the rounded version of the @j parameter.
409 */
410unsigned long __round_jiffies(unsigned long j, int cpu)
411{
412	return round_jiffies_common(j, cpu, false);
413}
414EXPORT_SYMBOL_GPL(__round_jiffies);
415
416/**
417 * __round_jiffies_relative - function to round jiffies to a full second
418 * @j: the time in (relative) jiffies that should be rounded
419 * @cpu: the processor number on which the timeout will happen
420 *
421 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
422 * up or down to (approximately) full seconds. This is useful for timers
423 * for which the exact time they fire does not matter too much, as long as
424 * they fire approximately every X seconds.
425 *
426 * By rounding these timers to whole seconds, all such timers will fire
427 * at the same time, rather than at various times spread out. The goal
428 * of this is to have the CPU wake up less, which saves power.
429 *
430 * The exact rounding is skewed for each processor to avoid all
431 * processors firing at the exact same time, which could lead
432 * to lock contention or spurious cache line bouncing.
433 *
434 * The return value is the rounded version of the @j parameter.
435 */
436unsigned long __round_jiffies_relative(unsigned long j, int cpu)
437{
438	unsigned long j0 = jiffies;
439
440	/* Use j0 because jiffies might change while we run */
441	return round_jiffies_common(j + j0, cpu, false) - j0;
442}
443EXPORT_SYMBOL_GPL(__round_jiffies_relative);
444
445/**
446 * round_jiffies - function to round jiffies to a full second
447 * @j: the time in (absolute) jiffies that should be rounded
448 *
449 * round_jiffies() rounds an absolute time in the future (in jiffies)
450 * up or down to (approximately) full seconds. This is useful for timers
451 * for which the exact time they fire does not matter too much, as long as
452 * they fire approximately every X seconds.
453 *
454 * By rounding these timers to whole seconds, all such timers will fire
455 * at the same time, rather than at various times spread out. The goal
456 * of this is to have the CPU wake up less, which saves power.
457 *
458 * The return value is the rounded version of the @j parameter.
459 */
460unsigned long round_jiffies(unsigned long j)
461{
462	return round_jiffies_common(j, raw_smp_processor_id(), false);
463}
464EXPORT_SYMBOL_GPL(round_jiffies);
465
466/**
467 * round_jiffies_relative - function to round jiffies to a full second
468 * @j: the time in (relative) jiffies that should be rounded
469 *
470 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
471 * up or down to (approximately) full seconds. This is useful for timers
472 * for which the exact time they fire does not matter too much, as long as
473 * they fire approximately every X seconds.
474 *
475 * By rounding these timers to whole seconds, all such timers will fire
476 * at the same time, rather than at various times spread out. The goal
477 * of this is to have the CPU wake up less, which saves power.
478 *
479 * The return value is the rounded version of the @j parameter.
480 */
481unsigned long round_jiffies_relative(unsigned long j)
482{
483	return __round_jiffies_relative(j, raw_smp_processor_id());
484}
485EXPORT_SYMBOL_GPL(round_jiffies_relative);
486
487/**
488 * __round_jiffies_up - function to round jiffies up to a full second
489 * @j: the time in (absolute) jiffies that should be rounded
490 * @cpu: the processor number on which the timeout will happen
491 *
492 * This is the same as __round_jiffies() except that it will never
493 * round down.  This is useful for timeouts for which the exact time
494 * of firing does not matter too much, as long as they don't fire too
495 * early.
496 */
497unsigned long __round_jiffies_up(unsigned long j, int cpu)
498{
499	return round_jiffies_common(j, cpu, true);
500}
501EXPORT_SYMBOL_GPL(__round_jiffies_up);
502
503/**
504 * __round_jiffies_up_relative - function to round jiffies up to a full second
505 * @j: the time in (relative) jiffies that should be rounded
506 * @cpu: the processor number on which the timeout will happen
507 *
508 * This is the same as __round_jiffies_relative() except that it will never
509 * round down.  This is useful for timeouts for which the exact time
510 * of firing does not matter too much, as long as they don't fire too
511 * early.
512 */
513unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
514{
515	unsigned long j0 = jiffies;
516
517	/* Use j0 because jiffies might change while we run */
518	return round_jiffies_common(j + j0, cpu, true) - j0;
519}
520EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
521
522/**
523 * round_jiffies_up - function to round jiffies up to a full second
524 * @j: the time in (absolute) jiffies that should be rounded
525 *
526 * This is the same as round_jiffies() except that it will never
527 * round down.  This is useful for timeouts for which the exact time
528 * of firing does not matter too much, as long as they don't fire too
529 * early.
530 */
531unsigned long round_jiffies_up(unsigned long j)
532{
533	return round_jiffies_common(j, raw_smp_processor_id(), true);
534}
535EXPORT_SYMBOL_GPL(round_jiffies_up);
536
537/**
538 * round_jiffies_up_relative - function to round jiffies up to a full second
539 * @j: the time in (relative) jiffies that should be rounded
540 *
541 * This is the same as round_jiffies_relative() except that it will never
542 * round down.  This is useful for timeouts for which the exact time
543 * of firing does not matter too much, as long as they don't fire too
544 * early.
545 */
546unsigned long round_jiffies_up_relative(unsigned long j)
547{
548	return __round_jiffies_up_relative(j, raw_smp_processor_id());
549}
550EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
551
552
553static inline unsigned int timer_get_idx(struct timer_list *timer)
554{
555	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
556}
557
558static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
559{
560	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
561			idx << TIMER_ARRAYSHIFT;
562}
563
564/*
565 * Helper function to calculate the array index for a given expiry
566 * time.
567 */
568static inline unsigned calc_index(unsigned long expires, unsigned lvl,
569				  unsigned long *bucket_expiry)
570{
571
572	/*
573	 * The timer wheel has to guarantee that a timer does not fire
574	 * early. Early expiry can happen due to:
575	 * - Timer is armed at the edge of a tick
576	 * - Truncation of the expiry time in the outer wheel levels
577	 *
578	 * Round up with level granularity to prevent this.
579	 */
580	expires = (expires >> LVL_SHIFT(lvl)) + 1;
581	*bucket_expiry = expires << LVL_SHIFT(lvl);
582	return LVL_OFFS(lvl) + (expires & LVL_MASK);
583}
584
585static int calc_wheel_index(unsigned long expires, unsigned long clk,
586			    unsigned long *bucket_expiry)
587{
588	unsigned long delta = expires - clk;
589	unsigned int idx;
590
591	if (delta < LVL_START(1)) {
592		idx = calc_index(expires, 0, bucket_expiry);
593	} else if (delta < LVL_START(2)) {
594		idx = calc_index(expires, 1, bucket_expiry);
595	} else if (delta < LVL_START(3)) {
596		idx = calc_index(expires, 2, bucket_expiry);
597	} else if (delta < LVL_START(4)) {
598		idx = calc_index(expires, 3, bucket_expiry);
599	} else if (delta < LVL_START(5)) {
600		idx = calc_index(expires, 4, bucket_expiry);
601	} else if (delta < LVL_START(6)) {
602		idx = calc_index(expires, 5, bucket_expiry);
603	} else if (delta < LVL_START(7)) {
604		idx = calc_index(expires, 6, bucket_expiry);
605	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
606		idx = calc_index(expires, 7, bucket_expiry);
607	} else if ((long) delta < 0) {
608		idx = clk & LVL_MASK;
609		*bucket_expiry = clk;
610	} else {
611		/*
612		 * Force expire obscene large timeouts to expire at the
613		 * capacity limit of the wheel.
614		 */
615		if (delta >= WHEEL_TIMEOUT_CUTOFF)
616			expires = clk + WHEEL_TIMEOUT_MAX;
617
618		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
619	}
620	return idx;
621}
622
623static void
624trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
625{
626	/*
627	 * Deferrable timers do not prevent the CPU from entering dynticks and
628	 * are not taken into account on the idle/nohz_full path. An IPI when a
629	 * new deferrable timer is enqueued will wake up the remote CPU but
630	 * nothing will be done with the deferrable timer base. Therefore skip
631	 * the remote IPI for deferrable timers completely.
632	 */
633	if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
634		return;
635
636	/*
637	 * We might have to IPI the remote CPU if the base is idle and the
638	 * timer is pinned. If it is a non pinned timer, it is only queued
639	 * on the remote CPU, when timer was running during queueing. Then
640	 * everything is handled by remote CPU anyway. If the other CPU is
641	 * on the way to idle then it can't set base->is_idle as we hold
642	 * the base lock:
643	 */
644	if (base->is_idle) {
645		WARN_ON_ONCE(!(timer->flags & TIMER_PINNED ||
646			       tick_nohz_full_cpu(base->cpu)));
647		wake_up_nohz_cpu(base->cpu);
648	}
649}
650
651/*
652 * Enqueue the timer into the hash bucket, mark it pending in
653 * the bitmap, store the index in the timer flags then wake up
654 * the target CPU if needed.
655 */
656static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
657			  unsigned int idx, unsigned long bucket_expiry)
658{
659
660	hlist_add_head(&timer->entry, base->vectors + idx);
661	__set_bit(idx, base->pending_map);
662	timer_set_idx(timer, idx);
663
664	trace_timer_start(timer, bucket_expiry);
665
666	/*
667	 * Check whether this is the new first expiring timer. The
668	 * effective expiry time of the timer is required here
669	 * (bucket_expiry) instead of timer->expires.
670	 */
671	if (time_before(bucket_expiry, base->next_expiry)) {
672		/*
673		 * Set the next expiry time and kick the CPU so it
674		 * can reevaluate the wheel:
675		 */
676		base->next_expiry = bucket_expiry;
677		base->timers_pending = true;
678		base->next_expiry_recalc = false;
679		trigger_dyntick_cpu(base, timer);
680	}
681}
682
683static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
684{
685	unsigned long bucket_expiry;
686	unsigned int idx;
687
688	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
689	enqueue_timer(base, timer, idx, bucket_expiry);
690}
691
692#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
693
694static const struct debug_obj_descr timer_debug_descr;
695
696struct timer_hint {
697	void	(*function)(struct timer_list *t);
698	long	offset;
699};
700
701#define TIMER_HINT(fn, container, timr, hintfn)			\
702	{							\
703		.function = fn,					\
704		.offset	  = offsetof(container, hintfn) -	\
705			    offsetof(container, timr)		\
706	}
707
708static const struct timer_hint timer_hints[] = {
709	TIMER_HINT(delayed_work_timer_fn,
710		   struct delayed_work, timer, work.func),
711	TIMER_HINT(kthread_delayed_work_timer_fn,
712		   struct kthread_delayed_work, timer, work.func),
713};
714
715static void *timer_debug_hint(void *addr)
716{
717	struct timer_list *timer = addr;
718	int i;
719
720	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
721		if (timer_hints[i].function == timer->function) {
722			void (**fn)(void) = addr + timer_hints[i].offset;
723
724			return *fn;
725		}
726	}
727
728	return timer->function;
729}
730
731static bool timer_is_static_object(void *addr)
732{
733	struct timer_list *timer = addr;
734
735	return (timer->entry.pprev == NULL &&
736		timer->entry.next == TIMER_ENTRY_STATIC);
737}
738
739/*
740 * timer_fixup_init is called when:
741 * - an active object is initialized
742 */
743static bool timer_fixup_init(void *addr, enum debug_obj_state state)
744{
745	struct timer_list *timer = addr;
746
747	switch (state) {
748	case ODEBUG_STATE_ACTIVE:
749		del_timer_sync(timer);
750		debug_object_init(timer, &timer_debug_descr);
751		return true;
752	default:
753		return false;
754	}
755}
756
757/* Stub timer callback for improperly used timers. */
758static void stub_timer(struct timer_list *unused)
759{
760	WARN_ON(1);
761}
762
763/*
764 * timer_fixup_activate is called when:
765 * - an active object is activated
766 * - an unknown non-static object is activated
767 */
768static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
769{
770	struct timer_list *timer = addr;
771
772	switch (state) {
773	case ODEBUG_STATE_NOTAVAILABLE:
774		timer_setup(timer, stub_timer, 0);
775		return true;
776
777	case ODEBUG_STATE_ACTIVE:
778		WARN_ON(1);
779		fallthrough;
780	default:
781		return false;
782	}
783}
784
785/*
786 * timer_fixup_free is called when:
787 * - an active object is freed
788 */
789static bool timer_fixup_free(void *addr, enum debug_obj_state state)
790{
791	struct timer_list *timer = addr;
792
793	switch (state) {
794	case ODEBUG_STATE_ACTIVE:
795		del_timer_sync(timer);
796		debug_object_free(timer, &timer_debug_descr);
797		return true;
798	default:
799		return false;
800	}
801}
802
803/*
804 * timer_fixup_assert_init is called when:
805 * - an untracked/uninit-ed object is found
806 */
807static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
808{
809	struct timer_list *timer = addr;
810
811	switch (state) {
812	case ODEBUG_STATE_NOTAVAILABLE:
813		timer_setup(timer, stub_timer, 0);
814		return true;
815	default:
816		return false;
817	}
818}
819
820static const struct debug_obj_descr timer_debug_descr = {
821	.name			= "timer_list",
822	.debug_hint		= timer_debug_hint,
823	.is_static_object	= timer_is_static_object,
824	.fixup_init		= timer_fixup_init,
825	.fixup_activate		= timer_fixup_activate,
826	.fixup_free		= timer_fixup_free,
827	.fixup_assert_init	= timer_fixup_assert_init,
828};
829
830static inline void debug_timer_init(struct timer_list *timer)
831{
832	debug_object_init(timer, &timer_debug_descr);
833}
834
835static inline void debug_timer_activate(struct timer_list *timer)
836{
837	debug_object_activate(timer, &timer_debug_descr);
838}
839
840static inline void debug_timer_deactivate(struct timer_list *timer)
841{
842	debug_object_deactivate(timer, &timer_debug_descr);
843}
844
845static inline void debug_timer_assert_init(struct timer_list *timer)
846{
847	debug_object_assert_init(timer, &timer_debug_descr);
848}
849
850static void do_init_timer(struct timer_list *timer,
851			  void (*func)(struct timer_list *),
852			  unsigned int flags,
853			  const char *name, struct lock_class_key *key);
854
855void init_timer_on_stack_key(struct timer_list *timer,
856			     void (*func)(struct timer_list *),
857			     unsigned int flags,
858			     const char *name, struct lock_class_key *key)
859{
860	debug_object_init_on_stack(timer, &timer_debug_descr);
861	do_init_timer(timer, func, flags, name, key);
862}
863EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
864
865void destroy_timer_on_stack(struct timer_list *timer)
866{
867	debug_object_free(timer, &timer_debug_descr);
868}
869EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
870
871#else
872static inline void debug_timer_init(struct timer_list *timer) { }
873static inline void debug_timer_activate(struct timer_list *timer) { }
874static inline void debug_timer_deactivate(struct timer_list *timer) { }
875static inline void debug_timer_assert_init(struct timer_list *timer) { }
876#endif
877
878static inline void debug_init(struct timer_list *timer)
879{
880	debug_timer_init(timer);
881	trace_timer_init(timer);
882}
883
884static inline void debug_deactivate(struct timer_list *timer)
885{
886	debug_timer_deactivate(timer);
887	trace_timer_cancel(timer);
888}
889
890static inline void debug_assert_init(struct timer_list *timer)
891{
892	debug_timer_assert_init(timer);
893}
894
895static void do_init_timer(struct timer_list *timer,
896			  void (*func)(struct timer_list *),
897			  unsigned int flags,
898			  const char *name, struct lock_class_key *key)
899{
900	timer->entry.pprev = NULL;
901	timer->function = func;
902	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
903		flags &= TIMER_INIT_FLAGS;
904	timer->flags = flags | raw_smp_processor_id();
905	lockdep_init_map(&timer->lockdep_map, name, key, 0);
906}
907
908/**
909 * init_timer_key - initialize a timer
910 * @timer: the timer to be initialized
911 * @func: timer callback function
912 * @flags: timer flags
913 * @name: name of the timer
914 * @key: lockdep class key of the fake lock used for tracking timer
915 *       sync lock dependencies
916 *
917 * init_timer_key() must be done to a timer prior to calling *any* of the
918 * other timer functions.
919 */
920void init_timer_key(struct timer_list *timer,
921		    void (*func)(struct timer_list *), unsigned int flags,
922		    const char *name, struct lock_class_key *key)
923{
924	debug_init(timer);
925	do_init_timer(timer, func, flags, name, key);
926}
927EXPORT_SYMBOL(init_timer_key);
928
929static inline void detach_timer(struct timer_list *timer, bool clear_pending)
930{
931	struct hlist_node *entry = &timer->entry;
932
933	debug_deactivate(timer);
934
935	__hlist_del(entry);
936	if (clear_pending)
937		entry->pprev = NULL;
938	entry->next = LIST_POISON2;
939}
940
941static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
942			     bool clear_pending)
943{
944	unsigned idx = timer_get_idx(timer);
945
946	if (!timer_pending(timer))
947		return 0;
948
949	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
950		__clear_bit(idx, base->pending_map);
951		base->next_expiry_recalc = true;
952	}
953
954	detach_timer(timer, clear_pending);
955	return 1;
956}
957
958static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
959{
960	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
961	struct timer_base *base;
962
963	base = per_cpu_ptr(&timer_bases[index], cpu);
964
965	/*
966	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
967	 * to use the deferrable base.
968	 */
969	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
970		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
971	return base;
972}
973
974static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
975{
976	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
977	struct timer_base *base;
978
979	base = this_cpu_ptr(&timer_bases[index]);
980
981	/*
982	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
983	 * to use the deferrable base.
984	 */
985	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
986		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
987	return base;
988}
989
990static inline struct timer_base *get_timer_base(u32 tflags)
991{
992	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
993}
994
995static inline void __forward_timer_base(struct timer_base *base,
996					unsigned long basej)
997{
998	/*
999	 * Check whether we can forward the base. We can only do that when
1000	 * @basej is past base->clk otherwise we might rewind base->clk.
1001	 */
1002	if (time_before_eq(basej, base->clk))
1003		return;
1004
1005	/*
1006	 * If the next expiry value is > jiffies, then we fast forward to
1007	 * jiffies otherwise we forward to the next expiry value.
1008	 */
1009	if (time_after(base->next_expiry, basej)) {
1010		base->clk = basej;
1011	} else {
1012		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
1013			return;
1014		base->clk = base->next_expiry;
1015	}
1016
1017}
1018
1019static inline void forward_timer_base(struct timer_base *base)
1020{
1021	__forward_timer_base(base, READ_ONCE(jiffies));
1022}
1023
1024/*
1025 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
1026 * that all timers which are tied to this base are locked, and the base itself
1027 * is locked too.
1028 *
1029 * So __run_timers/migrate_timers can safely modify all timers which could
1030 * be found in the base->vectors array.
1031 *
1032 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
1033 * to wait until the migration is done.
1034 */
1035static struct timer_base *lock_timer_base(struct timer_list *timer,
1036					  unsigned long *flags)
1037	__acquires(timer->base->lock)
1038{
1039	for (;;) {
1040		struct timer_base *base;
1041		u32 tf;
1042
1043		/*
1044		 * We need to use READ_ONCE() here, otherwise the compiler
1045		 * might re-read @tf between the check for TIMER_MIGRATING
1046		 * and spin_lock().
1047		 */
1048		tf = READ_ONCE(timer->flags);
1049
1050		if (!(tf & TIMER_MIGRATING)) {
1051			base = get_timer_base(tf);
1052			raw_spin_lock_irqsave(&base->lock, *flags);
1053			if (timer->flags == tf)
1054				return base;
1055			raw_spin_unlock_irqrestore(&base->lock, *flags);
1056		}
1057		cpu_relax();
1058	}
1059}
1060
1061#define MOD_TIMER_PENDING_ONLY		0x01
1062#define MOD_TIMER_REDUCE		0x02
1063#define MOD_TIMER_NOTPENDING		0x04
1064
1065static inline int
1066__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1067{
1068	unsigned long clk = 0, flags, bucket_expiry;
1069	struct timer_base *base, *new_base;
1070	unsigned int idx = UINT_MAX;
1071	int ret = 0;
1072
1073	debug_assert_init(timer);
1074
1075	/*
1076	 * This is a common optimization triggered by the networking code - if
1077	 * the timer is re-modified to have the same timeout or ends up in the
1078	 * same array bucket then just return:
1079	 */
1080	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1081		/*
1082		 * The downside of this optimization is that it can result in
1083		 * larger granularity than you would get from adding a new
1084		 * timer with this expiry.
1085		 */
1086		long diff = timer->expires - expires;
1087
1088		if (!diff)
1089			return 1;
1090		if (options & MOD_TIMER_REDUCE && diff <= 0)
1091			return 1;
1092
1093		/*
1094		 * We lock timer base and calculate the bucket index right
1095		 * here. If the timer ends up in the same bucket, then we
1096		 * just update the expiry time and avoid the whole
1097		 * dequeue/enqueue dance.
1098		 */
1099		base = lock_timer_base(timer, &flags);
1100		/*
1101		 * Has @timer been shutdown? This needs to be evaluated
1102		 * while holding base lock to prevent a race against the
1103		 * shutdown code.
1104		 */
1105		if (!timer->function)
1106			goto out_unlock;
1107
1108		forward_timer_base(base);
1109
1110		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1111		    time_before_eq(timer->expires, expires)) {
1112			ret = 1;
1113			goto out_unlock;
1114		}
1115
1116		clk = base->clk;
1117		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1118
1119		/*
1120		 * Retrieve and compare the array index of the pending
1121		 * timer. If it matches set the expiry to the new value so a
1122		 * subsequent call will exit in the expires check above.
1123		 */
1124		if (idx == timer_get_idx(timer)) {
1125			if (!(options & MOD_TIMER_REDUCE))
1126				timer->expires = expires;
1127			else if (time_after(timer->expires, expires))
1128				timer->expires = expires;
1129			ret = 1;
1130			goto out_unlock;
1131		}
1132	} else {
1133		base = lock_timer_base(timer, &flags);
1134		/*
1135		 * Has @timer been shutdown? This needs to be evaluated
1136		 * while holding base lock to prevent a race against the
1137		 * shutdown code.
1138		 */
1139		if (!timer->function)
1140			goto out_unlock;
1141
1142		forward_timer_base(base);
1143	}
1144
1145	ret = detach_if_pending(timer, base, false);
1146	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1147		goto out_unlock;
1148
1149	new_base = get_timer_this_cpu_base(timer->flags);
1150
1151	if (base != new_base) {
1152		/*
1153		 * We are trying to schedule the timer on the new base.
1154		 * However we can't change timer's base while it is running,
1155		 * otherwise timer_delete_sync() can't detect that the timer's
1156		 * handler yet has not finished. This also guarantees that the
1157		 * timer is serialized wrt itself.
1158		 */
1159		if (likely(base->running_timer != timer)) {
1160			/* See the comment in lock_timer_base() */
1161			timer->flags |= TIMER_MIGRATING;
1162
1163			raw_spin_unlock(&base->lock);
1164			base = new_base;
1165			raw_spin_lock(&base->lock);
1166			WRITE_ONCE(timer->flags,
1167				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1168			forward_timer_base(base);
1169		}
1170	}
1171
1172	debug_timer_activate(timer);
1173
1174	timer->expires = expires;
1175	/*
1176	 * If 'idx' was calculated above and the base time did not advance
1177	 * between calculating 'idx' and possibly switching the base, only
1178	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1179	 * the wheel index via internal_add_timer().
1180	 */
1181	if (idx != UINT_MAX && clk == base->clk)
1182		enqueue_timer(base, timer, idx, bucket_expiry);
1183	else
1184		internal_add_timer(base, timer);
1185
1186out_unlock:
1187	raw_spin_unlock_irqrestore(&base->lock, flags);
1188
1189	return ret;
1190}
1191
1192/**
1193 * mod_timer_pending - Modify a pending timer's timeout
1194 * @timer:	The pending timer to be modified
1195 * @expires:	New absolute timeout in jiffies
1196 *
1197 * mod_timer_pending() is the same for pending timers as mod_timer(), but
1198 * will not activate inactive timers.
1199 *
1200 * If @timer->function == NULL then the start operation is silently
1201 * discarded.
1202 *
1203 * Return:
1204 * * %0 - The timer was inactive and not modified or was in
1205 *	  shutdown state and the operation was discarded
1206 * * %1 - The timer was active and requeued to expire at @expires
1207 */
1208int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1209{
1210	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1211}
1212EXPORT_SYMBOL(mod_timer_pending);
1213
1214/**
1215 * mod_timer - Modify a timer's timeout
1216 * @timer:	The timer to be modified
1217 * @expires:	New absolute timeout in jiffies
1218 *
1219 * mod_timer(timer, expires) is equivalent to:
1220 *
1221 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1222 *
1223 * mod_timer() is more efficient than the above open coded sequence. In
1224 * case that the timer is inactive, the del_timer() part is a NOP. The
1225 * timer is in any case activated with the new expiry time @expires.
1226 *
1227 * Note that if there are multiple unserialized concurrent users of the
1228 * same timer, then mod_timer() is the only safe way to modify the timeout,
1229 * since add_timer() cannot modify an already running timer.
1230 *
1231 * If @timer->function == NULL then the start operation is silently
1232 * discarded. In this case the return value is 0 and meaningless.
1233 *
1234 * Return:
1235 * * %0 - The timer was inactive and started or was in shutdown
1236 *	  state and the operation was discarded
1237 * * %1 - The timer was active and requeued to expire at @expires or
1238 *	  the timer was active and not modified because @expires did
1239 *	  not change the effective expiry time
1240 */
1241int mod_timer(struct timer_list *timer, unsigned long expires)
1242{
1243	return __mod_timer(timer, expires, 0);
1244}
1245EXPORT_SYMBOL(mod_timer);
1246
1247/**
1248 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1249 * @timer:	The timer to be modified
1250 * @expires:	New absolute timeout in jiffies
1251 *
1252 * timer_reduce() is very similar to mod_timer(), except that it will only
1253 * modify an enqueued timer if that would reduce the expiration time. If
1254 * @timer is not enqueued it starts the timer.
1255 *
1256 * If @timer->function == NULL then the start operation is silently
1257 * discarded.
1258 *
1259 * Return:
1260 * * %0 - The timer was inactive and started or was in shutdown
1261 *	  state and the operation was discarded
1262 * * %1 - The timer was active and requeued to expire at @expires or
1263 *	  the timer was active and not modified because @expires
1264 *	  did not change the effective expiry time such that the
1265 *	  timer would expire earlier than already scheduled
1266 */
1267int timer_reduce(struct timer_list *timer, unsigned long expires)
1268{
1269	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1270}
1271EXPORT_SYMBOL(timer_reduce);
1272
1273/**
1274 * add_timer - Start a timer
1275 * @timer:	The timer to be started
1276 *
1277 * Start @timer to expire at @timer->expires in the future. @timer->expires
1278 * is the absolute expiry time measured in 'jiffies'. When the timer expires
1279 * timer->function(timer) will be invoked from soft interrupt context.
1280 *
1281 * The @timer->expires and @timer->function fields must be set prior
1282 * to calling this function.
1283 *
1284 * If @timer->function == NULL then the start operation is silently
1285 * discarded.
1286 *
1287 * If @timer->expires is already in the past @timer will be queued to
1288 * expire at the next timer tick.
1289 *
1290 * This can only operate on an inactive timer. Attempts to invoke this on
1291 * an active timer are rejected with a warning.
1292 */
1293void add_timer(struct timer_list *timer)
1294{
1295	if (WARN_ON_ONCE(timer_pending(timer)))
1296		return;
1297	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1298}
1299EXPORT_SYMBOL(add_timer);
1300
1301/**
1302 * add_timer_local() - Start a timer on the local CPU
1303 * @timer:	The timer to be started
1304 *
1305 * Same as add_timer() except that the timer flag TIMER_PINNED is set.
1306 *
1307 * See add_timer() for further details.
1308 */
1309void add_timer_local(struct timer_list *timer)
1310{
1311	if (WARN_ON_ONCE(timer_pending(timer)))
1312		return;
1313	timer->flags |= TIMER_PINNED;
1314	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1315}
1316EXPORT_SYMBOL(add_timer_local);
1317
1318/**
1319 * add_timer_global() - Start a timer without TIMER_PINNED flag set
1320 * @timer:	The timer to be started
1321 *
1322 * Same as add_timer() except that the timer flag TIMER_PINNED is unset.
1323 *
1324 * See add_timer() for further details.
1325 */
1326void add_timer_global(struct timer_list *timer)
1327{
1328	if (WARN_ON_ONCE(timer_pending(timer)))
1329		return;
1330	timer->flags &= ~TIMER_PINNED;
1331	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1332}
1333EXPORT_SYMBOL(add_timer_global);
1334
1335/**
1336 * add_timer_on - Start a timer on a particular CPU
1337 * @timer:	The timer to be started
1338 * @cpu:	The CPU to start it on
1339 *
1340 * Same as add_timer() except that it starts the timer on the given CPU and
1341 * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
1342 * the next round, add_timer_global() should be used instead as it unsets
1343 * the TIMER_PINNED flag.
1344 *
1345 * See add_timer() for further details.
1346 */
1347void add_timer_on(struct timer_list *timer, int cpu)
1348{
1349	struct timer_base *new_base, *base;
1350	unsigned long flags;
1351
1352	debug_assert_init(timer);
1353
1354	if (WARN_ON_ONCE(timer_pending(timer)))
1355		return;
1356
1357	/* Make sure timer flags have TIMER_PINNED flag set */
1358	timer->flags |= TIMER_PINNED;
1359
1360	new_base = get_timer_cpu_base(timer->flags, cpu);
1361
1362	/*
1363	 * If @timer was on a different CPU, it should be migrated with the
1364	 * old base locked to prevent other operations proceeding with the
1365	 * wrong base locked.  See lock_timer_base().
1366	 */
1367	base = lock_timer_base(timer, &flags);
1368	/*
1369	 * Has @timer been shutdown? This needs to be evaluated while
1370	 * holding base lock to prevent a race against the shutdown code.
1371	 */
1372	if (!timer->function)
1373		goto out_unlock;
1374
1375	if (base != new_base) {
1376		timer->flags |= TIMER_MIGRATING;
1377
1378		raw_spin_unlock(&base->lock);
1379		base = new_base;
1380		raw_spin_lock(&base->lock);
1381		WRITE_ONCE(timer->flags,
1382			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1383	}
1384	forward_timer_base(base);
1385
1386	debug_timer_activate(timer);
1387	internal_add_timer(base, timer);
1388out_unlock:
1389	raw_spin_unlock_irqrestore(&base->lock, flags);
1390}
1391EXPORT_SYMBOL_GPL(add_timer_on);
1392
1393/**
1394 * __timer_delete - Internal function: Deactivate a timer
1395 * @timer:	The timer to be deactivated
1396 * @shutdown:	If true, this indicates that the timer is about to be
1397 *		shutdown permanently.
1398 *
1399 * If @shutdown is true then @timer->function is set to NULL under the
1400 * timer base lock which prevents further rearming of the time. In that
1401 * case any attempt to rearm @timer after this function returns will be
1402 * silently ignored.
1403 *
1404 * Return:
1405 * * %0 - The timer was not pending
1406 * * %1 - The timer was pending and deactivated
1407 */
1408static int __timer_delete(struct timer_list *timer, bool shutdown)
1409{
1410	struct timer_base *base;
1411	unsigned long flags;
1412	int ret = 0;
1413
1414	debug_assert_init(timer);
1415
1416	/*
1417	 * If @shutdown is set then the lock has to be taken whether the
1418	 * timer is pending or not to protect against a concurrent rearm
1419	 * which might hit between the lockless pending check and the lock
1420	 * acquisition. By taking the lock it is ensured that such a newly
1421	 * enqueued timer is dequeued and cannot end up with
1422	 * timer->function == NULL in the expiry code.
1423	 *
1424	 * If timer->function is currently executed, then this makes sure
1425	 * that the callback cannot requeue the timer.
1426	 */
1427	if (timer_pending(timer) || shutdown) {
1428		base = lock_timer_base(timer, &flags);
1429		ret = detach_if_pending(timer, base, true);
1430		if (shutdown)
1431			timer->function = NULL;
1432		raw_spin_unlock_irqrestore(&base->lock, flags);
1433	}
1434
1435	return ret;
1436}
1437
1438/**
1439 * timer_delete - Deactivate a timer
1440 * @timer:	The timer to be deactivated
1441 *
1442 * The function only deactivates a pending timer, but contrary to
1443 * timer_delete_sync() it does not take into account whether the timer's
1444 * callback function is concurrently executed on a different CPU or not.
1445 * It neither prevents rearming of the timer.  If @timer can be rearmed
1446 * concurrently then the return value of this function is meaningless.
1447 *
1448 * Return:
1449 * * %0 - The timer was not pending
1450 * * %1 - The timer was pending and deactivated
1451 */
1452int timer_delete(struct timer_list *timer)
1453{
1454	return __timer_delete(timer, false);
1455}
1456EXPORT_SYMBOL(timer_delete);
1457
1458/**
1459 * timer_shutdown - Deactivate a timer and prevent rearming
1460 * @timer:	The timer to be deactivated
1461 *
1462 * The function does not wait for an eventually running timer callback on a
1463 * different CPU but it prevents rearming of the timer. Any attempt to arm
1464 * @timer after this function returns will be silently ignored.
1465 *
1466 * This function is useful for teardown code and should only be used when
1467 * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1468 *
1469 * Return:
1470 * * %0 - The timer was not pending
1471 * * %1 - The timer was pending
1472 */
1473int timer_shutdown(struct timer_list *timer)
1474{
1475	return __timer_delete(timer, true);
1476}
1477EXPORT_SYMBOL_GPL(timer_shutdown);
1478
1479/**
1480 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1481 * @timer:	Timer to deactivate
1482 * @shutdown:	If true, this indicates that the timer is about to be
1483 *		shutdown permanently.
1484 *
1485 * If @shutdown is true then @timer->function is set to NULL under the
1486 * timer base lock which prevents further rearming of the timer. Any
1487 * attempt to rearm @timer after this function returns will be silently
1488 * ignored.
1489 *
1490 * This function cannot guarantee that the timer cannot be rearmed
1491 * right after dropping the base lock if @shutdown is false. That
1492 * needs to be prevented by the calling code if necessary.
1493 *
1494 * Return:
1495 * * %0  - The timer was not pending
1496 * * %1  - The timer was pending and deactivated
1497 * * %-1 - The timer callback function is running on a different CPU
1498 */
1499static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1500{
1501	struct timer_base *base;
1502	unsigned long flags;
1503	int ret = -1;
1504
1505	debug_assert_init(timer);
1506
1507	base = lock_timer_base(timer, &flags);
1508
1509	if (base->running_timer != timer)
1510		ret = detach_if_pending(timer, base, true);
1511	if (shutdown)
1512		timer->function = NULL;
1513
1514	raw_spin_unlock_irqrestore(&base->lock, flags);
1515
1516	return ret;
1517}
1518
1519/**
1520 * try_to_del_timer_sync - Try to deactivate a timer
1521 * @timer:	Timer to deactivate
1522 *
1523 * This function tries to deactivate a timer. On success the timer is not
1524 * queued and the timer callback function is not running on any CPU.
1525 *
1526 * This function does not guarantee that the timer cannot be rearmed right
1527 * after dropping the base lock. That needs to be prevented by the calling
1528 * code if necessary.
1529 *
1530 * Return:
1531 * * %0  - The timer was not pending
1532 * * %1  - The timer was pending and deactivated
1533 * * %-1 - The timer callback function is running on a different CPU
1534 */
1535int try_to_del_timer_sync(struct timer_list *timer)
1536{
1537	return __try_to_del_timer_sync(timer, false);
1538}
1539EXPORT_SYMBOL(try_to_del_timer_sync);
1540
1541#ifdef CONFIG_PREEMPT_RT
1542static __init void timer_base_init_expiry_lock(struct timer_base *base)
1543{
1544	spin_lock_init(&base->expiry_lock);
1545}
1546
1547static inline void timer_base_lock_expiry(struct timer_base *base)
1548{
1549	spin_lock(&base->expiry_lock);
1550}
1551
1552static inline void timer_base_unlock_expiry(struct timer_base *base)
1553{
1554	spin_unlock(&base->expiry_lock);
1555}
1556
1557/*
1558 * The counterpart to del_timer_wait_running().
1559 *
1560 * If there is a waiter for base->expiry_lock, then it was waiting for the
1561 * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1562 * the waiter to acquire the lock and make progress.
1563 */
1564static void timer_sync_wait_running(struct timer_base *base)
1565{
1566	if (atomic_read(&base->timer_waiters)) {
1567		raw_spin_unlock_irq(&base->lock);
1568		spin_unlock(&base->expiry_lock);
1569		spin_lock(&base->expiry_lock);
1570		raw_spin_lock_irq(&base->lock);
1571	}
1572}
1573
1574/*
1575 * This function is called on PREEMPT_RT kernels when the fast path
1576 * deletion of a timer failed because the timer callback function was
1577 * running.
1578 *
1579 * This prevents priority inversion, if the softirq thread on a remote CPU
1580 * got preempted, and it prevents a life lock when the task which tries to
1581 * delete a timer preempted the softirq thread running the timer callback
1582 * function.
1583 */
1584static void del_timer_wait_running(struct timer_list *timer)
1585{
1586	u32 tf;
1587
1588	tf = READ_ONCE(timer->flags);
1589	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1590		struct timer_base *base = get_timer_base(tf);
1591
1592		/*
1593		 * Mark the base as contended and grab the expiry lock,
1594		 * which is held by the softirq across the timer
1595		 * callback. Drop the lock immediately so the softirq can
1596		 * expire the next timer. In theory the timer could already
1597		 * be running again, but that's more than unlikely and just
1598		 * causes another wait loop.
1599		 */
1600		atomic_inc(&base->timer_waiters);
1601		spin_lock_bh(&base->expiry_lock);
1602		atomic_dec(&base->timer_waiters);
1603		spin_unlock_bh(&base->expiry_lock);
1604	}
1605}
1606#else
1607static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1608static inline void timer_base_lock_expiry(struct timer_base *base) { }
1609static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1610static inline void timer_sync_wait_running(struct timer_base *base) { }
1611static inline void del_timer_wait_running(struct timer_list *timer) { }
1612#endif
1613
1614/**
1615 * __timer_delete_sync - Internal function: Deactivate a timer and wait
1616 *			 for the handler to finish.
1617 * @timer:	The timer to be deactivated
1618 * @shutdown:	If true, @timer->function will be set to NULL under the
1619 *		timer base lock which prevents rearming of @timer
1620 *
1621 * If @shutdown is not set the timer can be rearmed later. If the timer can
1622 * be rearmed concurrently, i.e. after dropping the base lock then the
1623 * return value is meaningless.
1624 *
1625 * If @shutdown is set then @timer->function is set to NULL under timer
1626 * base lock which prevents rearming of the timer. Any attempt to rearm
1627 * a shutdown timer is silently ignored.
1628 *
1629 * If the timer should be reused after shutdown it has to be initialized
1630 * again.
1631 *
1632 * Return:
1633 * * %0	- The timer was not pending
1634 * * %1	- The timer was pending and deactivated
1635 */
1636static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1637{
1638	int ret;
1639
1640#ifdef CONFIG_LOCKDEP
1641	unsigned long flags;
1642
1643	/*
1644	 * If lockdep gives a backtrace here, please reference
1645	 * the synchronization rules above.
1646	 */
1647	local_irq_save(flags);
1648	lock_map_acquire(&timer->lockdep_map);
1649	lock_map_release(&timer->lockdep_map);
1650	local_irq_restore(flags);
1651#endif
1652	/*
1653	 * don't use it in hardirq context, because it
1654	 * could lead to deadlock.
1655	 */
1656	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1657
1658	/*
1659	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1660	 * del_timer_wait_running().
1661	 */
1662	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1663		lockdep_assert_preemption_enabled();
1664
1665	do {
1666		ret = __try_to_del_timer_sync(timer, shutdown);
1667
1668		if (unlikely(ret < 0)) {
1669			del_timer_wait_running(timer);
1670			cpu_relax();
1671		}
1672	} while (ret < 0);
1673
1674	return ret;
1675}
1676
1677/**
1678 * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1679 * @timer:	The timer to be deactivated
1680 *
1681 * Synchronization rules: Callers must prevent restarting of the timer,
1682 * otherwise this function is meaningless. It must not be called from
1683 * interrupt contexts unless the timer is an irqsafe one. The caller must
1684 * not hold locks which would prevent completion of the timer's callback
1685 * function. The timer's handler must not call add_timer_on(). Upon exit
1686 * the timer is not queued and the handler is not running on any CPU.
1687 *
1688 * For !irqsafe timers, the caller must not hold locks that are held in
1689 * interrupt context. Even if the lock has nothing to do with the timer in
1690 * question.  Here's why::
1691 *
1692 *    CPU0                             CPU1
1693 *    ----                             ----
1694 *                                     <SOFTIRQ>
1695 *                                       call_timer_fn();
1696 *                                       base->running_timer = mytimer;
1697 *    spin_lock_irq(somelock);
1698 *                                     <IRQ>
1699 *                                        spin_lock(somelock);
1700 *    timer_delete_sync(mytimer);
1701 *    while (base->running_timer == mytimer);
1702 *
1703 * Now timer_delete_sync() will never return and never release somelock.
1704 * The interrupt on the other CPU is waiting to grab somelock but it has
1705 * interrupted the softirq that CPU0 is waiting to finish.
1706 *
1707 * This function cannot guarantee that the timer is not rearmed again by
1708 * some concurrent or preempting code, right after it dropped the base
1709 * lock. If there is the possibility of a concurrent rearm then the return
1710 * value of the function is meaningless.
1711 *
1712 * If such a guarantee is needed, e.g. for teardown situations then use
1713 * timer_shutdown_sync() instead.
1714 *
1715 * Return:
1716 * * %0	- The timer was not pending
1717 * * %1	- The timer was pending and deactivated
1718 */
1719int timer_delete_sync(struct timer_list *timer)
1720{
1721	return __timer_delete_sync(timer, false);
1722}
1723EXPORT_SYMBOL(timer_delete_sync);
1724
1725/**
1726 * timer_shutdown_sync - Shutdown a timer and prevent rearming
1727 * @timer: The timer to be shutdown
1728 *
1729 * When the function returns it is guaranteed that:
1730 *   - @timer is not queued
1731 *   - The callback function of @timer is not running
1732 *   - @timer cannot be enqueued again. Any attempt to rearm
1733 *     @timer is silently ignored.
1734 *
1735 * See timer_delete_sync() for synchronization rules.
1736 *
1737 * This function is useful for final teardown of an infrastructure where
1738 * the timer is subject to a circular dependency problem.
1739 *
1740 * A common pattern for this is a timer and a workqueue where the timer can
1741 * schedule work and work can arm the timer. On shutdown the workqueue must
1742 * be destroyed and the timer must be prevented from rearming. Unless the
1743 * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1744 * there is no way to get this correct with timer_delete_sync().
1745 *
1746 * timer_shutdown_sync() is solving the problem. The correct ordering of
1747 * calls in this case is:
1748 *
1749 *	timer_shutdown_sync(&mything->timer);
1750 *	workqueue_destroy(&mything->workqueue);
1751 *
1752 * After this 'mything' can be safely freed.
1753 *
1754 * This obviously implies that the timer is not required to be functional
1755 * for the rest of the shutdown operation.
1756 *
1757 * Return:
1758 * * %0 - The timer was not pending
1759 * * %1 - The timer was pending
1760 */
1761int timer_shutdown_sync(struct timer_list *timer)
1762{
1763	return __timer_delete_sync(timer, true);
1764}
1765EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1766
1767static void call_timer_fn(struct timer_list *timer,
1768			  void (*fn)(struct timer_list *),
1769			  unsigned long baseclk)
1770{
1771	int count = preempt_count();
1772
1773#ifdef CONFIG_LOCKDEP
1774	/*
1775	 * It is permissible to free the timer from inside the
1776	 * function that is called from it, this we need to take into
1777	 * account for lockdep too. To avoid bogus "held lock freed"
1778	 * warnings as well as problems when looking into
1779	 * timer->lockdep_map, make a copy and use that here.
1780	 */
1781	struct lockdep_map lockdep_map;
1782
1783	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1784#endif
1785	/*
1786	 * Couple the lock chain with the lock chain at
1787	 * timer_delete_sync() by acquiring the lock_map around the fn()
1788	 * call here and in timer_delete_sync().
1789	 */
1790	lock_map_acquire(&lockdep_map);
1791
1792	trace_timer_expire_entry(timer, baseclk);
1793	fn(timer);
1794	trace_timer_expire_exit(timer);
1795
1796	lock_map_release(&lockdep_map);
1797
1798	if (count != preempt_count()) {
1799		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1800			  fn, count, preempt_count());
1801		/*
1802		 * Restore the preempt count. That gives us a decent
1803		 * chance to survive and extract information. If the
1804		 * callback kept a lock held, bad luck, but not worse
1805		 * than the BUG() we had.
1806		 */
1807		preempt_count_set(count);
1808	}
1809}
1810
1811static void expire_timers(struct timer_base *base, struct hlist_head *head)
1812{
1813	/*
1814	 * This value is required only for tracing. base->clk was
1815	 * incremented directly before expire_timers was called. But expiry
1816	 * is related to the old base->clk value.
1817	 */
1818	unsigned long baseclk = base->clk - 1;
1819
1820	while (!hlist_empty(head)) {
1821		struct timer_list *timer;
1822		void (*fn)(struct timer_list *);
1823
1824		timer = hlist_entry(head->first, struct timer_list, entry);
1825
1826		base->running_timer = timer;
1827		detach_timer(timer, true);
1828
1829		fn = timer->function;
1830
1831		if (WARN_ON_ONCE(!fn)) {
1832			/* Should never happen. Emphasis on should! */
1833			base->running_timer = NULL;
1834			continue;
1835		}
1836
1837		if (timer->flags & TIMER_IRQSAFE) {
1838			raw_spin_unlock(&base->lock);
1839			call_timer_fn(timer, fn, baseclk);
1840			raw_spin_lock(&base->lock);
1841			base->running_timer = NULL;
1842		} else {
1843			raw_spin_unlock_irq(&base->lock);
1844			call_timer_fn(timer, fn, baseclk);
1845			raw_spin_lock_irq(&base->lock);
1846			base->running_timer = NULL;
1847			timer_sync_wait_running(base);
1848		}
1849	}
1850}
1851
1852static int collect_expired_timers(struct timer_base *base,
1853				  struct hlist_head *heads)
1854{
1855	unsigned long clk = base->clk = base->next_expiry;
1856	struct hlist_head *vec;
1857	int i, levels = 0;
1858	unsigned int idx;
1859
1860	for (i = 0; i < LVL_DEPTH; i++) {
1861		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1862
1863		if (__test_and_clear_bit(idx, base->pending_map)) {
1864			vec = base->vectors + idx;
1865			hlist_move_list(vec, heads++);
1866			levels++;
1867		}
1868		/* Is it time to look at the next level? */
1869		if (clk & LVL_CLK_MASK)
1870			break;
1871		/* Shift clock for the next level granularity */
1872		clk >>= LVL_CLK_SHIFT;
1873	}
1874	return levels;
1875}
1876
1877/*
1878 * Find the next pending bucket of a level. Search from level start (@offset)
1879 * + @clk upwards and if nothing there, search from start of the level
1880 * (@offset) up to @offset + clk.
1881 */
1882static int next_pending_bucket(struct timer_base *base, unsigned offset,
1883			       unsigned clk)
1884{
1885	unsigned pos, start = offset + clk;
1886	unsigned end = offset + LVL_SIZE;
1887
1888	pos = find_next_bit(base->pending_map, end, start);
1889	if (pos < end)
1890		return pos - start;
1891
1892	pos = find_next_bit(base->pending_map, start, offset);
1893	return pos < start ? pos + LVL_SIZE - start : -1;
1894}
1895
1896/*
1897 * Search the first expiring timer in the various clock levels. Caller must
1898 * hold base->lock.
1899 *
1900 * Store next expiry time in base->next_expiry.
1901 */
1902static void next_expiry_recalc(struct timer_base *base)
1903{
1904	unsigned long clk, next, adj;
1905	unsigned lvl, offset = 0;
1906
1907	next = base->clk + NEXT_TIMER_MAX_DELTA;
1908	clk = base->clk;
1909	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1910		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1911		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1912
1913		if (pos >= 0) {
1914			unsigned long tmp = clk + (unsigned long) pos;
1915
1916			tmp <<= LVL_SHIFT(lvl);
1917			if (time_before(tmp, next))
1918				next = tmp;
1919
1920			/*
1921			 * If the next expiration happens before we reach
1922			 * the next level, no need to check further.
1923			 */
1924			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1925				break;
1926		}
1927		/*
1928		 * Clock for the next level. If the current level clock lower
1929		 * bits are zero, we look at the next level as is. If not we
1930		 * need to advance it by one because that's going to be the
1931		 * next expiring bucket in that level. base->clk is the next
1932		 * expiring jiffie. So in case of:
1933		 *
1934		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1935		 *  0    0    0    0    0    0
1936		 *
1937		 * we have to look at all levels @index 0. With
1938		 *
1939		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1940		 *  0    0    0    0    0    2
1941		 *
1942		 * LVL0 has the next expiring bucket @index 2. The upper
1943		 * levels have the next expiring bucket @index 1.
1944		 *
1945		 * In case that the propagation wraps the next level the same
1946		 * rules apply:
1947		 *
1948		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1949		 *  0    0    0    0    F    2
1950		 *
1951		 * So after looking at LVL0 we get:
1952		 *
1953		 * LVL5 LVL4 LVL3 LVL2 LVL1
1954		 *  0    0    0    1    0
1955		 *
1956		 * So no propagation from LVL1 to LVL2 because that happened
1957		 * with the add already, but then we need to propagate further
1958		 * from LVL2 to LVL3.
1959		 *
1960		 * So the simple check whether the lower bits of the current
1961		 * level are 0 or not is sufficient for all cases.
1962		 */
1963		adj = lvl_clk ? 1 : 0;
1964		clk >>= LVL_CLK_SHIFT;
1965		clk += adj;
1966	}
1967
1968	base->next_expiry = next;
1969	base->next_expiry_recalc = false;
1970	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1971}
1972
1973#ifdef CONFIG_NO_HZ_COMMON
1974/*
1975 * Check, if the next hrtimer event is before the next timer wheel
1976 * event:
1977 */
1978static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1979{
1980	u64 nextevt = hrtimer_get_next_event();
1981
1982	/*
1983	 * If high resolution timers are enabled
1984	 * hrtimer_get_next_event() returns KTIME_MAX.
1985	 */
1986	if (expires <= nextevt)
1987		return expires;
1988
1989	/*
1990	 * If the next timer is already expired, return the tick base
1991	 * time so the tick is fired immediately.
1992	 */
1993	if (nextevt <= basem)
1994		return basem;
1995
1996	/*
1997	 * Round up to the next jiffie. High resolution timers are
1998	 * off, so the hrtimers are expired in the tick and we need to
1999	 * make sure that this tick really expires the timer to avoid
2000	 * a ping pong of the nohz stop code.
2001	 *
2002	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
2003	 */
2004	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
2005}
2006
2007static unsigned long next_timer_interrupt(struct timer_base *base,
2008					  unsigned long basej)
2009{
2010	if (base->next_expiry_recalc)
2011		next_expiry_recalc(base);
2012
2013	/*
2014	 * Move next_expiry for the empty base into the future to prevent an
2015	 * unnecessary raise of the timer softirq when the next_expiry value
2016	 * will be reached even if there is no timer pending.
2017	 *
2018	 * This update is also required to make timer_base::next_expiry values
2019	 * easy comparable to find out which base holds the first pending timer.
2020	 */
2021	if (!base->timers_pending)
2022		base->next_expiry = basej + NEXT_TIMER_MAX_DELTA;
2023
2024	return base->next_expiry;
2025}
2026
2027static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
2028						struct timer_base *base_local,
2029						struct timer_base *base_global,
2030						struct timer_events *tevt)
2031{
2032	unsigned long nextevt, nextevt_local, nextevt_global;
2033	bool local_first;
2034
2035	nextevt_local = next_timer_interrupt(base_local, basej);
2036	nextevt_global = next_timer_interrupt(base_global, basej);
2037
2038	local_first = time_before_eq(nextevt_local, nextevt_global);
2039
2040	nextevt = local_first ? nextevt_local : nextevt_global;
2041
2042	/*
2043	 * If the @nextevt is at max. one tick away, use @nextevt and store
2044	 * it in the local expiry value. The next global event is irrelevant in
2045	 * this case and can be left as KTIME_MAX.
2046	 */
2047	if (time_before_eq(nextevt, basej + 1)) {
2048		/* If we missed a tick already, force 0 delta */
2049		if (time_before(nextevt, basej))
2050			nextevt = basej;
2051		tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
2052
2053		/*
2054		 * This is required for the remote check only but it doesn't
2055		 * hurt, when it is done for both call sites:
2056		 *
2057		 * * The remote callers will only take care of the global timers
2058		 *   as local timers will be handled by CPU itself. When not
2059		 *   updating tevt->global with the already missed first global
2060		 *   timer, it is possible that it will be missed completely.
2061		 *
2062		 * * The local callers will ignore the tevt->global anyway, when
2063		 *   nextevt is max. one tick away.
2064		 */
2065		if (!local_first)
2066			tevt->global = tevt->local;
2067		return nextevt;
2068	}
2069
2070	/*
2071	 * Update tevt.* values:
2072	 *
2073	 * If the local queue expires first, then the global event can be
2074	 * ignored. If the global queue is empty, nothing to do either.
2075	 */
2076	if (!local_first && base_global->timers_pending)
2077		tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
2078
2079	if (base_local->timers_pending)
2080		tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
2081
2082	return nextevt;
2083}
2084
2085# ifdef CONFIG_SMP
2086/**
2087 * fetch_next_timer_interrupt_remote() - Store next timers into @tevt
2088 * @basej:	base time jiffies
2089 * @basem:	base time clock monotonic
2090 * @tevt:	Pointer to the storage for the expiry values
2091 * @cpu:	Remote CPU
2092 *
2093 * Stores the next pending local and global timer expiry values in the
2094 * struct pointed to by @tevt. If a queue is empty the corresponding
2095 * field is set to KTIME_MAX. If local event expires before global
2096 * event, global event is set to KTIME_MAX as well.
2097 *
2098 * Caller needs to make sure timer base locks are held (use
2099 * timer_lock_remote_bases() for this purpose).
2100 */
2101void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
2102				       struct timer_events *tevt,
2103				       unsigned int cpu)
2104{
2105	struct timer_base *base_local, *base_global;
2106
2107	/* Preset local / global events */
2108	tevt->local = tevt->global = KTIME_MAX;
2109
2110	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2111	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2112
2113	lockdep_assert_held(&base_local->lock);
2114	lockdep_assert_held(&base_global->lock);
2115
2116	fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
2117}
2118
2119/**
2120 * timer_unlock_remote_bases - unlock timer bases of cpu
2121 * @cpu:	Remote CPU
2122 *
2123 * Unlocks the remote timer bases.
2124 */
2125void timer_unlock_remote_bases(unsigned int cpu)
2126	__releases(timer_bases[BASE_LOCAL]->lock)
2127	__releases(timer_bases[BASE_GLOBAL]->lock)
2128{
2129	struct timer_base *base_local, *base_global;
2130
2131	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2132	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2133
2134	raw_spin_unlock(&base_global->lock);
2135	raw_spin_unlock(&base_local->lock);
2136}
2137
2138/**
2139 * timer_lock_remote_bases - lock timer bases of cpu
2140 * @cpu:	Remote CPU
2141 *
2142 * Locks the remote timer bases.
2143 */
2144void timer_lock_remote_bases(unsigned int cpu)
2145	__acquires(timer_bases[BASE_LOCAL]->lock)
2146	__acquires(timer_bases[BASE_GLOBAL]->lock)
2147{
2148	struct timer_base *base_local, *base_global;
2149
2150	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2151	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2152
2153	lockdep_assert_irqs_disabled();
2154
2155	raw_spin_lock(&base_local->lock);
2156	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2157}
2158
2159/**
2160 * timer_base_is_idle() - Return whether timer base is set idle
2161 *
2162 * Returns value of local timer base is_idle value.
2163 */
2164bool timer_base_is_idle(void)
2165{
2166	return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle);
2167}
2168
2169static void __run_timer_base(struct timer_base *base);
2170
2171/**
2172 * timer_expire_remote() - expire global timers of cpu
2173 * @cpu:	Remote CPU
2174 *
2175 * Expire timers of global base of remote CPU.
2176 */
2177void timer_expire_remote(unsigned int cpu)
2178{
2179	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2180
2181	__run_timer_base(base);
2182}
2183
2184static void timer_use_tmigr(unsigned long basej, u64 basem,
2185			    unsigned long *nextevt, bool *tick_stop_path,
2186			    bool timer_base_idle, struct timer_events *tevt)
2187{
2188	u64 next_tmigr;
2189
2190	if (timer_base_idle)
2191		next_tmigr = tmigr_cpu_new_timer(tevt->global);
2192	else if (tick_stop_path)
2193		next_tmigr = tmigr_cpu_deactivate(tevt->global);
2194	else
2195		next_tmigr = tmigr_quick_check(tevt->global);
2196
2197	/*
2198	 * If the CPU is the last going idle in timer migration hierarchy, make
2199	 * sure the CPU will wake up in time to handle remote timers.
2200	 * next_tmigr == KTIME_MAX if other CPUs are still active.
2201	 */
2202	if (next_tmigr < tevt->local) {
2203		u64 tmp;
2204
2205		/* If we missed a tick already, force 0 delta */
2206		if (next_tmigr < basem)
2207			next_tmigr = basem;
2208
2209		tmp = div_u64(next_tmigr - basem, TICK_NSEC);
2210
2211		*nextevt = basej + (unsigned long)tmp;
2212		tevt->local = next_tmigr;
2213	}
2214}
2215# else
2216static void timer_use_tmigr(unsigned long basej, u64 basem,
2217			    unsigned long *nextevt, bool *tick_stop_path,
2218			    bool timer_base_idle, struct timer_events *tevt)
2219{
2220	/*
2221	 * Make sure first event is written into tevt->local to not miss a
2222	 * timer on !SMP systems.
2223	 */
2224	tevt->local = min_t(u64, tevt->local, tevt->global);
2225}
2226# endif /* CONFIG_SMP */
2227
2228static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
2229					     bool *idle)
2230{
2231	struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
2232	struct timer_base *base_local, *base_global;
2233	unsigned long nextevt;
2234	bool idle_is_possible;
2235
2236	/*
2237	 * When the CPU is offline, the tick is cancelled and nothing is supposed
2238	 * to try to stop it.
2239	 */
2240	if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) {
2241		if (idle)
2242			*idle = true;
2243		return tevt.local;
2244	}
2245
2246	base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2247	base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
2248
2249	raw_spin_lock(&base_local->lock);
2250	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2251
2252	nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
2253					     base_global, &tevt);
2254
2255	/*
2256	 * If the next event is only one jiffie ahead there is no need to call
2257	 * timer migration hierarchy related functions. The value for the next
2258	 * global timer in @tevt struct equals then KTIME_MAX. This is also
2259	 * true, when the timer base is idle.
2260	 *
2261	 * The proper timer migration hierarchy function depends on the callsite
2262	 * and whether timer base is idle or not. @nextevt will be updated when
2263	 * this CPU needs to handle the first timer migration hierarchy
2264	 * event. See timer_use_tmigr() for detailed information.
2265	 */
2266	idle_is_possible = time_after(nextevt, basej + 1);
2267	if (idle_is_possible)
2268		timer_use_tmigr(basej, basem, &nextevt, idle,
2269				base_local->is_idle, &tevt);
2270
2271	/*
2272	 * We have a fresh next event. Check whether we can forward the
2273	 * base.
2274	 */
2275	__forward_timer_base(base_local, basej);
2276	__forward_timer_base(base_global, basej);
2277
2278	/*
2279	 * Set base->is_idle only when caller is timer_base_try_to_set_idle()
2280	 */
2281	if (idle) {
2282		/*
2283		 * Bases are idle if the next event is more than a tick
2284		 * away. Caution: @nextevt could have changed by enqueueing a
2285		 * global timer into timer migration hierarchy. Therefore a new
2286		 * check is required here.
2287		 *
2288		 * If the base is marked idle then any timer add operation must
2289		 * forward the base clk itself to keep granularity small. This
2290		 * idle logic is only maintained for the BASE_LOCAL and
2291		 * BASE_GLOBAL base, deferrable timers may still see large
2292		 * granularity skew (by design).
2293		 */
2294		if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
2295			base_local->is_idle = true;
2296			/*
2297			 * Global timers queued locally while running in a task
2298			 * in nohz_full mode need a self-IPI to kick reprogramming
2299			 * in IRQ tail.
2300			 */
2301			if (tick_nohz_full_cpu(base_local->cpu))
2302				base_global->is_idle = true;
2303			trace_timer_base_idle(true, base_local->cpu);
2304		}
2305		*idle = base_local->is_idle;
2306
2307		/*
2308		 * When timer base is not set idle, undo the effect of
2309		 * tmigr_cpu_deactivate() to prevent inconsistent states - active
2310		 * timer base but inactive timer migration hierarchy.
2311		 *
2312		 * When timer base was already marked idle, nothing will be
2313		 * changed here.
2314		 */
2315		if (!base_local->is_idle && idle_is_possible)
2316			tmigr_cpu_activate();
2317	}
2318
2319	raw_spin_unlock(&base_global->lock);
2320	raw_spin_unlock(&base_local->lock);
2321
2322	return cmp_next_hrtimer_event(basem, tevt.local);
2323}
2324
2325/**
2326 * get_next_timer_interrupt() - return the time (clock mono) of the next timer
2327 * @basej:	base time jiffies
2328 * @basem:	base time clock monotonic
2329 *
2330 * Returns the tick aligned clock monotonic time of the next pending timer or
2331 * KTIME_MAX if no timer is pending. If timer of global base was queued into
2332 * timer migration hierarchy, first global timer is not taken into account. If
2333 * it was the last CPU of timer migration hierarchy going idle, first global
2334 * event is taken into account.
2335 */
2336u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
2337{
2338	return __get_next_timer_interrupt(basej, basem, NULL);
2339}
2340
2341/**
2342 * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
2343 * @basej:	base time jiffies
2344 * @basem:	base time clock monotonic
2345 * @idle:	pointer to store the value of timer_base->is_idle on return;
2346 *		*idle contains the information whether tick was already stopped
2347 *
2348 * Returns the tick aligned clock monotonic time of the next pending timer or
2349 * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
2350 * returned as well.
2351 */
2352u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
2353{
2354	if (*idle)
2355		return KTIME_MAX;
2356
2357	return __get_next_timer_interrupt(basej, basem, idle);
2358}
2359
2360/**
2361 * timer_clear_idle - Clear the idle state of the timer base
2362 *
2363 * Called with interrupts disabled
2364 */
2365void timer_clear_idle(void)
2366{
2367	/*
2368	 * We do this unlocked. The worst outcome is a remote pinned timer
2369	 * enqueue sending a pointless IPI, but taking the lock would just
2370	 * make the window for sending the IPI a few instructions smaller
2371	 * for the cost of taking the lock in the exit from idle
2372	 * path. Required for BASE_LOCAL only.
2373	 */
2374	__this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
2375	if (tick_nohz_full_cpu(smp_processor_id()))
2376		__this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false);
2377	trace_timer_base_idle(false, smp_processor_id());
2378
2379	/* Activate without holding the timer_base->lock */
2380	tmigr_cpu_activate();
2381}
2382#endif
2383
2384/**
2385 * __run_timers - run all expired timers (if any) on this CPU.
2386 * @base: the timer vector to be processed.
2387 */
2388static inline void __run_timers(struct timer_base *base)
2389{
2390	struct hlist_head heads[LVL_DEPTH];
2391	int levels;
2392
2393	lockdep_assert_held(&base->lock);
2394
2395	if (base->running_timer)
2396		return;
2397
2398	while (time_after_eq(jiffies, base->clk) &&
2399	       time_after_eq(jiffies, base->next_expiry)) {
2400		levels = collect_expired_timers(base, heads);
2401		/*
2402		 * The two possible reasons for not finding any expired
2403		 * timer at this clk are that all matching timers have been
2404		 * dequeued or no timer has been queued since
2405		 * base::next_expiry was set to base::clk +
2406		 * NEXT_TIMER_MAX_DELTA.
2407		 */
2408		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2409			     && base->timers_pending);
2410		/*
2411		 * While executing timers, base->clk is set 1 offset ahead of
2412		 * jiffies to avoid endless requeuing to current jiffies.
2413		 */
2414		base->clk++;
2415		next_expiry_recalc(base);
2416
2417		while (levels--)
2418			expire_timers(base, heads + levels);
2419	}
2420}
2421
2422static void __run_timer_base(struct timer_base *base)
2423{
2424	if (time_before(jiffies, base->next_expiry))
2425		return;
2426
2427	timer_base_lock_expiry(base);
2428	raw_spin_lock_irq(&base->lock);
2429	__run_timers(base);
2430	raw_spin_unlock_irq(&base->lock);
2431	timer_base_unlock_expiry(base);
2432}
2433
2434static void run_timer_base(int index)
2435{
2436	struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
2437
2438	__run_timer_base(base);
2439}
2440
2441/*
2442 * This function runs timers and the timer-tq in bottom half context.
2443 */
2444static __latent_entropy void run_timer_softirq(struct softirq_action *h)
2445{
2446	run_timer_base(BASE_LOCAL);
2447	if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
2448		run_timer_base(BASE_GLOBAL);
2449		run_timer_base(BASE_DEF);
2450
2451		if (is_timers_nohz_active())
2452			tmigr_handle_remote();
2453	}
2454}
2455
2456/*
2457 * Called by the local, per-CPU timer interrupt on SMP.
2458 */
2459static void run_local_timers(void)
2460{
2461	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2462
2463	hrtimer_run_queues();
2464
2465	for (int i = 0; i < NR_BASES; i++, base++) {
2466		/* Raise the softirq only if required. */
2467		if (time_after_eq(jiffies, base->next_expiry) ||
2468		    (i == BASE_DEF && tmigr_requires_handle_remote())) {
2469			raise_softirq(TIMER_SOFTIRQ);
2470			return;
2471		}
2472	}
2473}
2474
2475/*
2476 * Called from the timer interrupt handler to charge one tick to the current
2477 * process.  user_tick is 1 if the tick is user time, 0 for system.
2478 */
2479void update_process_times(int user_tick)
2480{
2481	struct task_struct *p = current;
2482
2483	/* Note: this timer irq context must be accounted for as well. */
2484	account_process_tick(p, user_tick);
2485	run_local_timers();
2486	rcu_sched_clock_irq(user_tick);
2487#ifdef CONFIG_IRQ_WORK
2488	if (in_irq())
2489		irq_work_tick();
2490#endif
2491	scheduler_tick();
2492	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2493		run_posix_cpu_timers();
2494}
2495
2496/*
2497 * Since schedule_timeout()'s timer is defined on the stack, it must store
2498 * the target task on the stack as well.
2499 */
2500struct process_timer {
2501	struct timer_list timer;
2502	struct task_struct *task;
2503};
2504
2505static void process_timeout(struct timer_list *t)
2506{
2507	struct process_timer *timeout = from_timer(timeout, t, timer);
2508
2509	wake_up_process(timeout->task);
2510}
2511
2512/**
2513 * schedule_timeout - sleep until timeout
2514 * @timeout: timeout value in jiffies
2515 *
2516 * Make the current task sleep until @timeout jiffies have elapsed.
2517 * The function behavior depends on the current task state
2518 * (see also set_current_state() description):
2519 *
2520 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
2521 * at all. That happens because sched_submit_work() does nothing for
2522 * tasks in %TASK_RUNNING state.
2523 *
2524 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
2525 * pass before the routine returns unless the current task is explicitly
2526 * woken up, (e.g. by wake_up_process()).
2527 *
2528 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2529 * delivered to the current task or the current task is explicitly woken
2530 * up.
2531 *
2532 * The current task state is guaranteed to be %TASK_RUNNING when this
2533 * routine returns.
2534 *
2535 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
2536 * the CPU away without a bound on the timeout. In this case the return
2537 * value will be %MAX_SCHEDULE_TIMEOUT.
2538 *
2539 * Returns 0 when the timer has expired otherwise the remaining time in
2540 * jiffies will be returned. In all cases the return value is guaranteed
2541 * to be non-negative.
2542 */
2543signed long __sched schedule_timeout(signed long timeout)
2544{
2545	struct process_timer timer;
2546	unsigned long expire;
2547
2548	switch (timeout)
2549	{
2550	case MAX_SCHEDULE_TIMEOUT:
2551		/*
2552		 * These two special cases are useful to be comfortable
2553		 * in the caller. Nothing more. We could take
2554		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
2555		 * but I' d like to return a valid offset (>=0) to allow
2556		 * the caller to do everything it want with the retval.
2557		 */
2558		schedule();
2559		goto out;
2560	default:
2561		/*
2562		 * Another bit of PARANOID. Note that the retval will be
2563		 * 0 since no piece of kernel is supposed to do a check
2564		 * for a negative retval of schedule_timeout() (since it
2565		 * should never happens anyway). You just have the printk()
2566		 * that will tell you if something is gone wrong and where.
2567		 */
2568		if (timeout < 0) {
2569			printk(KERN_ERR "schedule_timeout: wrong timeout "
2570				"value %lx\n", timeout);
2571			dump_stack();
2572			__set_current_state(TASK_RUNNING);
2573			goto out;
2574		}
2575	}
2576
2577	expire = timeout + jiffies;
2578
2579	timer.task = current;
2580	timer_setup_on_stack(&timer.timer, process_timeout, 0);
2581	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
2582	schedule();
2583	del_timer_sync(&timer.timer);
2584
2585	/* Remove the timer from the object tracker */
2586	destroy_timer_on_stack(&timer.timer);
2587
2588	timeout = expire - jiffies;
2589
2590 out:
2591	return timeout < 0 ? 0 : timeout;
2592}
2593EXPORT_SYMBOL(schedule_timeout);
2594
2595/*
2596 * We can use __set_current_state() here because schedule_timeout() calls
2597 * schedule() unconditionally.
2598 */
2599signed long __sched schedule_timeout_interruptible(signed long timeout)
2600{
2601	__set_current_state(TASK_INTERRUPTIBLE);
2602	return schedule_timeout(timeout);
2603}
2604EXPORT_SYMBOL(schedule_timeout_interruptible);
2605
2606signed long __sched schedule_timeout_killable(signed long timeout)
2607{
2608	__set_current_state(TASK_KILLABLE);
2609	return schedule_timeout(timeout);
2610}
2611EXPORT_SYMBOL(schedule_timeout_killable);
2612
2613signed long __sched schedule_timeout_uninterruptible(signed long timeout)
2614{
2615	__set_current_state(TASK_UNINTERRUPTIBLE);
2616	return schedule_timeout(timeout);
2617}
2618EXPORT_SYMBOL(schedule_timeout_uninterruptible);
2619
2620/*
2621 * Like schedule_timeout_uninterruptible(), except this task will not contribute
2622 * to load average.
2623 */
2624signed long __sched schedule_timeout_idle(signed long timeout)
2625{
2626	__set_current_state(TASK_IDLE);
2627	return schedule_timeout(timeout);
2628}
2629EXPORT_SYMBOL(schedule_timeout_idle);
2630
2631#ifdef CONFIG_HOTPLUG_CPU
2632static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2633{
2634	struct timer_list *timer;
2635	int cpu = new_base->cpu;
2636
2637	while (!hlist_empty(head)) {
2638		timer = hlist_entry(head->first, struct timer_list, entry);
2639		detach_timer(timer, false);
2640		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2641		internal_add_timer(new_base, timer);
2642	}
2643}
2644
2645int timers_prepare_cpu(unsigned int cpu)
2646{
2647	struct timer_base *base;
2648	int b;
2649
2650	for (b = 0; b < NR_BASES; b++) {
2651		base = per_cpu_ptr(&timer_bases[b], cpu);
2652		base->clk = jiffies;
2653		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2654		base->next_expiry_recalc = false;
2655		base->timers_pending = false;
2656		base->is_idle = false;
2657	}
2658	return 0;
2659}
2660
2661int timers_dead_cpu(unsigned int cpu)
2662{
2663	struct timer_base *old_base;
2664	struct timer_base *new_base;
2665	int b, i;
2666
2667	for (b = 0; b < NR_BASES; b++) {
2668		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2669		new_base = get_cpu_ptr(&timer_bases[b]);
2670		/*
2671		 * The caller is globally serialized and nobody else
2672		 * takes two locks at once, deadlock is not possible.
2673		 */
2674		raw_spin_lock_irq(&new_base->lock);
2675		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2676
2677		/*
2678		 * The current CPUs base clock might be stale. Update it
2679		 * before moving the timers over.
2680		 */
2681		forward_timer_base(new_base);
2682
2683		WARN_ON_ONCE(old_base->running_timer);
2684		old_base->running_timer = NULL;
2685
2686		for (i = 0; i < WHEEL_SIZE; i++)
2687			migrate_timer_list(new_base, old_base->vectors + i);
2688
2689		raw_spin_unlock(&old_base->lock);
2690		raw_spin_unlock_irq(&new_base->lock);
2691		put_cpu_ptr(&timer_bases);
2692	}
2693	return 0;
2694}
2695
2696#endif /* CONFIG_HOTPLUG_CPU */
2697
2698static void __init init_timer_cpu(int cpu)
2699{
2700	struct timer_base *base;
2701	int i;
2702
2703	for (i = 0; i < NR_BASES; i++) {
2704		base = per_cpu_ptr(&timer_bases[i], cpu);
2705		base->cpu = cpu;
2706		raw_spin_lock_init(&base->lock);
2707		base->clk = jiffies;
2708		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2709		timer_base_init_expiry_lock(base);
2710	}
2711}
2712
2713static void __init init_timer_cpus(void)
2714{
2715	int cpu;
2716
2717	for_each_possible_cpu(cpu)
2718		init_timer_cpu(cpu);
2719}
2720
2721void __init init_timers(void)
2722{
2723	init_timer_cpus();
2724	posix_cputimers_init_work();
2725	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2726}
2727
2728/**
2729 * msleep - sleep safely even with waitqueue interruptions
2730 * @msecs: Time in milliseconds to sleep for
2731 */
2732void msleep(unsigned int msecs)
2733{
2734	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2735
2736	while (timeout)
2737		timeout = schedule_timeout_uninterruptible(timeout);
2738}
2739
2740EXPORT_SYMBOL(msleep);
2741
2742/**
2743 * msleep_interruptible - sleep waiting for signals
2744 * @msecs: Time in milliseconds to sleep for
2745 */
2746unsigned long msleep_interruptible(unsigned int msecs)
2747{
2748	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2749
2750	while (timeout && !signal_pending(current))
2751		timeout = schedule_timeout_interruptible(timeout);
2752	return jiffies_to_msecs(timeout);
2753}
2754
2755EXPORT_SYMBOL(msleep_interruptible);
2756
2757/**
2758 * usleep_range_state - Sleep for an approximate time in a given state
2759 * @min:	Minimum time in usecs to sleep
2760 * @max:	Maximum time in usecs to sleep
2761 * @state:	State of the current task that will be while sleeping
2762 *
2763 * In non-atomic context where the exact wakeup time is flexible, use
2764 * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2765 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2766 * power usage by allowing hrtimers to take advantage of an already-
2767 * scheduled interrupt instead of scheduling a new one just for this sleep.
2768 */
2769void __sched usleep_range_state(unsigned long min, unsigned long max,
2770				unsigned int state)
2771{
2772	ktime_t exp = ktime_add_us(ktime_get(), min);
2773	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2774
2775	for (;;) {
2776		__set_current_state(state);
2777		/* Do not return before the requested sleep time has elapsed */
2778		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2779			break;
2780	}
2781}
2782EXPORT_SYMBOL(usleep_range_state);
2783