1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NTP state machine interfaces and logic.
4 *
5 * This code was mainly moved from kernel/timer.c and kernel/time.c
6 * Please see those files for relevant copyright info and historical
7 * changelogs.
8 */
9#include <linux/capability.h>
10#include <linux/clocksource.h>
11#include <linux/workqueue.h>
12#include <linux/hrtimer.h>
13#include <linux/jiffies.h>
14#include <linux/math64.h>
15#include <linux/timex.h>
16#include <linux/time.h>
17#include <linux/mm.h>
18#include <linux/module.h>
19#include <linux/rtc.h>
20#include <linux/audit.h>
21
22#include "ntp_internal.h"
23#include "timekeeping_internal.h"
24
25
26/*
27 * NTP timekeeping variables:
28 *
29 * Note: All of the NTP state is protected by the timekeeping locks.
30 */
31
32
33/* USER_HZ period (usecs): */
34unsigned long			tick_usec = USER_TICK_USEC;
35
36/* SHIFTED_HZ period (nsecs): */
37unsigned long			tick_nsec;
38
39static u64			tick_length;
40static u64			tick_length_base;
41
42#define SECS_PER_DAY		86400
43#define MAX_TICKADJ		500LL		/* usecs */
44#define MAX_TICKADJ_SCALED \
45	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46#define MAX_TAI_OFFSET		100000
47
48/*
49 * phase-lock loop variables
50 */
51
52/*
53 * clock synchronization status
54 *
55 * (TIME_ERROR prevents overwriting the CMOS clock)
56 */
57static int			time_state = TIME_OK;
58
59/* clock status bits:							*/
60static int			time_status = STA_UNSYNC;
61
62/* time adjustment (nsecs):						*/
63static s64			time_offset;
64
65/* pll time constant:							*/
66static long			time_constant = 2;
67
68/* maximum error (usecs):						*/
69static long			time_maxerror = NTP_PHASE_LIMIT;
70
71/* estimated error (usecs):						*/
72static long			time_esterror = NTP_PHASE_LIMIT;
73
74/* frequency offset (scaled nsecs/secs):				*/
75static s64			time_freq;
76
77/* time at last adjustment (secs):					*/
78static time64_t		time_reftime;
79
80static long			time_adjust;
81
82/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
83static s64			ntp_tick_adj;
84
85/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86static time64_t			ntp_next_leap_sec = TIME64_MAX;
87
88#ifdef CONFIG_NTP_PPS
89
90/*
91 * The following variables are used when a pulse-per-second (PPS) signal
92 * is available. They establish the engineering parameters of the clock
93 * discipline loop when controlled by the PPS signal.
94 */
95#define PPS_VALID	10	/* PPS signal watchdog max (s) */
96#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
97#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
98#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
99#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
100				   increase pps_shift or consecutive bad
101				   intervals to decrease it */
102#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
103
104static int pps_valid;		/* signal watchdog counter */
105static long pps_tf[3];		/* phase median filter */
106static long pps_jitter;		/* current jitter (ns) */
107static struct timespec64 pps_fbase; /* beginning of the last freq interval */
108static int pps_shift;		/* current interval duration (s) (shift) */
109static int pps_intcnt;		/* interval counter */
110static s64 pps_freq;		/* frequency offset (scaled ns/s) */
111static long pps_stabil;		/* current stability (scaled ns/s) */
112
113/*
114 * PPS signal quality monitors
115 */
116static long pps_calcnt;		/* calibration intervals */
117static long pps_jitcnt;		/* jitter limit exceeded */
118static long pps_stbcnt;		/* stability limit exceeded */
119static long pps_errcnt;		/* calibration errors */
120
121
122/* PPS kernel consumer compensates the whole phase error immediately.
123 * Otherwise, reduce the offset by a fixed factor times the time constant.
124 */
125static inline s64 ntp_offset_chunk(s64 offset)
126{
127	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
128		return offset;
129	else
130		return shift_right(offset, SHIFT_PLL + time_constant);
131}
132
133static inline void pps_reset_freq_interval(void)
134{
135	/* the PPS calibration interval may end
136	   surprisingly early */
137	pps_shift = PPS_INTMIN;
138	pps_intcnt = 0;
139}
140
141/**
142 * pps_clear - Clears the PPS state variables
143 */
144static inline void pps_clear(void)
145{
146	pps_reset_freq_interval();
147	pps_tf[0] = 0;
148	pps_tf[1] = 0;
149	pps_tf[2] = 0;
150	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
151	pps_freq = 0;
152}
153
154/* Decrease pps_valid to indicate that another second has passed since
155 * the last PPS signal. When it reaches 0, indicate that PPS signal is
156 * missing.
157 */
158static inline void pps_dec_valid(void)
159{
160	if (pps_valid > 0)
161		pps_valid--;
162	else {
163		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164				 STA_PPSWANDER | STA_PPSERROR);
165		pps_clear();
166	}
167}
168
169static inline void pps_set_freq(s64 freq)
170{
171	pps_freq = freq;
172}
173
174static inline int is_error_status(int status)
175{
176	return (status & (STA_UNSYNC|STA_CLOCKERR))
177		/* PPS signal lost when either PPS time or
178		 * PPS frequency synchronization requested
179		 */
180		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
181			&& !(status & STA_PPSSIGNAL))
182		/* PPS jitter exceeded when
183		 * PPS time synchronization requested */
184		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
185			== (STA_PPSTIME|STA_PPSJITTER))
186		/* PPS wander exceeded or calibration error when
187		 * PPS frequency synchronization requested
188		 */
189		|| ((status & STA_PPSFREQ)
190			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
191}
192
193static inline void pps_fill_timex(struct __kernel_timex *txc)
194{
195	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
196					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
197	txc->jitter	   = pps_jitter;
198	if (!(time_status & STA_NANO))
199		txc->jitter = pps_jitter / NSEC_PER_USEC;
200	txc->shift	   = pps_shift;
201	txc->stabil	   = pps_stabil;
202	txc->jitcnt	   = pps_jitcnt;
203	txc->calcnt	   = pps_calcnt;
204	txc->errcnt	   = pps_errcnt;
205	txc->stbcnt	   = pps_stbcnt;
206}
207
208#else /* !CONFIG_NTP_PPS */
209
210static inline s64 ntp_offset_chunk(s64 offset)
211{
212	return shift_right(offset, SHIFT_PLL + time_constant);
213}
214
215static inline void pps_reset_freq_interval(void) {}
216static inline void pps_clear(void) {}
217static inline void pps_dec_valid(void) {}
218static inline void pps_set_freq(s64 freq) {}
219
220static inline int is_error_status(int status)
221{
222	return status & (STA_UNSYNC|STA_CLOCKERR);
223}
224
225static inline void pps_fill_timex(struct __kernel_timex *txc)
226{
227	/* PPS is not implemented, so these are zero */
228	txc->ppsfreq	   = 0;
229	txc->jitter	   = 0;
230	txc->shift	   = 0;
231	txc->stabil	   = 0;
232	txc->jitcnt	   = 0;
233	txc->calcnt	   = 0;
234	txc->errcnt	   = 0;
235	txc->stbcnt	   = 0;
236}
237
238#endif /* CONFIG_NTP_PPS */
239
240
241/**
242 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243 *
244 */
245static inline int ntp_synced(void)
246{
247	return !(time_status & STA_UNSYNC);
248}
249
250
251/*
252 * NTP methods:
253 */
254
255/*
256 * Update (tick_length, tick_length_base, tick_nsec), based
257 * on (tick_usec, ntp_tick_adj, time_freq):
258 */
259static void ntp_update_frequency(void)
260{
261	u64 second_length;
262	u64 new_base;
263
264	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265						<< NTP_SCALE_SHIFT;
266
267	second_length		+= ntp_tick_adj;
268	second_length		+= time_freq;
269
270	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
271	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
272
273	/*
274	 * Don't wait for the next second_overflow, apply
275	 * the change to the tick length immediately:
276	 */
277	tick_length		+= new_base - tick_length_base;
278	tick_length_base	 = new_base;
279}
280
281static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
282{
283	time_status &= ~STA_MODE;
284
285	if (secs < MINSEC)
286		return 0;
287
288	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
289		return 0;
290
291	time_status |= STA_MODE;
292
293	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
294}
295
296static void ntp_update_offset(long offset)
297{
298	s64 freq_adj;
299	s64 offset64;
300	long secs;
301
302	if (!(time_status & STA_PLL))
303		return;
304
305	if (!(time_status & STA_NANO)) {
306		/* Make sure the multiplication below won't overflow */
307		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
308		offset *= NSEC_PER_USEC;
309	}
310
311	/*
312	 * Scale the phase adjustment and
313	 * clamp to the operating range.
314	 */
315	offset = clamp(offset, -MAXPHASE, MAXPHASE);
316
317	/*
318	 * Select how the frequency is to be controlled
319	 * and in which mode (PLL or FLL).
320	 */
321	secs = (long)(__ktime_get_real_seconds() - time_reftime);
322	if (unlikely(time_status & STA_FREQHOLD))
323		secs = 0;
324
325	time_reftime = __ktime_get_real_seconds();
326
327	offset64    = offset;
328	freq_adj    = ntp_update_offset_fll(offset64, secs);
329
330	/*
331	 * Clamp update interval to reduce PLL gain with low
332	 * sampling rate (e.g. intermittent network connection)
333	 * to avoid instability.
334	 */
335	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
336		secs = 1 << (SHIFT_PLL + 1 + time_constant);
337
338	freq_adj    += (offset64 * secs) <<
339			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
340
341	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
342
343	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
344
345	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
346}
347
348/**
349 * ntp_clear - Clears the NTP state variables
350 */
351void ntp_clear(void)
352{
353	time_adjust	= 0;		/* stop active adjtime() */
354	time_status	|= STA_UNSYNC;
355	time_maxerror	= NTP_PHASE_LIMIT;
356	time_esterror	= NTP_PHASE_LIMIT;
357
358	ntp_update_frequency();
359
360	tick_length	= tick_length_base;
361	time_offset	= 0;
362
363	ntp_next_leap_sec = TIME64_MAX;
364	/* Clear PPS state variables */
365	pps_clear();
366}
367
368
369u64 ntp_tick_length(void)
370{
371	return tick_length;
372}
373
374/**
375 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376 *
377 * Provides the time of the next leapsecond against CLOCK_REALTIME in
378 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379 */
380ktime_t ntp_get_next_leap(void)
381{
382	ktime_t ret;
383
384	if ((time_state == TIME_INS) && (time_status & STA_INS))
385		return ktime_set(ntp_next_leap_sec, 0);
386	ret = KTIME_MAX;
387	return ret;
388}
389
390/*
391 * this routine handles the overflow of the microsecond field
392 *
393 * The tricky bits of code to handle the accurate clock support
394 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395 * They were originally developed for SUN and DEC kernels.
396 * All the kudos should go to Dave for this stuff.
397 *
398 * Also handles leap second processing, and returns leap offset
399 */
400int second_overflow(time64_t secs)
401{
402	s64 delta;
403	int leap = 0;
404	s32 rem;
405
406	/*
407	 * Leap second processing. If in leap-insert state at the end of the
408	 * day, the system clock is set back one second; if in leap-delete
409	 * state, the system clock is set ahead one second.
410	 */
411	switch (time_state) {
412	case TIME_OK:
413		if (time_status & STA_INS) {
414			time_state = TIME_INS;
415			div_s64_rem(secs, SECS_PER_DAY, &rem);
416			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
417		} else if (time_status & STA_DEL) {
418			time_state = TIME_DEL;
419			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
420			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
421		}
422		break;
423	case TIME_INS:
424		if (!(time_status & STA_INS)) {
425			ntp_next_leap_sec = TIME64_MAX;
426			time_state = TIME_OK;
427		} else if (secs == ntp_next_leap_sec) {
428			leap = -1;
429			time_state = TIME_OOP;
430			printk(KERN_NOTICE
431				"Clock: inserting leap second 23:59:60 UTC\n");
432		}
433		break;
434	case TIME_DEL:
435		if (!(time_status & STA_DEL)) {
436			ntp_next_leap_sec = TIME64_MAX;
437			time_state = TIME_OK;
438		} else if (secs == ntp_next_leap_sec) {
439			leap = 1;
440			ntp_next_leap_sec = TIME64_MAX;
441			time_state = TIME_WAIT;
442			printk(KERN_NOTICE
443				"Clock: deleting leap second 23:59:59 UTC\n");
444		}
445		break;
446	case TIME_OOP:
447		ntp_next_leap_sec = TIME64_MAX;
448		time_state = TIME_WAIT;
449		break;
450	case TIME_WAIT:
451		if (!(time_status & (STA_INS | STA_DEL)))
452			time_state = TIME_OK;
453		break;
454	}
455
456
457	/* Bump the maxerror field */
458	time_maxerror += MAXFREQ / NSEC_PER_USEC;
459	if (time_maxerror > NTP_PHASE_LIMIT) {
460		time_maxerror = NTP_PHASE_LIMIT;
461		time_status |= STA_UNSYNC;
462	}
463
464	/* Compute the phase adjustment for the next second */
465	tick_length	 = tick_length_base;
466
467	delta		 = ntp_offset_chunk(time_offset);
468	time_offset	-= delta;
469	tick_length	+= delta;
470
471	/* Check PPS signal */
472	pps_dec_valid();
473
474	if (!time_adjust)
475		goto out;
476
477	if (time_adjust > MAX_TICKADJ) {
478		time_adjust -= MAX_TICKADJ;
479		tick_length += MAX_TICKADJ_SCALED;
480		goto out;
481	}
482
483	if (time_adjust < -MAX_TICKADJ) {
484		time_adjust += MAX_TICKADJ;
485		tick_length -= MAX_TICKADJ_SCALED;
486		goto out;
487	}
488
489	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
490							 << NTP_SCALE_SHIFT;
491	time_adjust = 0;
492
493out:
494	return leap;
495}
496
497#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
498static void sync_hw_clock(struct work_struct *work);
499static DECLARE_WORK(sync_work, sync_hw_clock);
500static struct hrtimer sync_hrtimer;
501#define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
502
503static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
504{
505	queue_work(system_freezable_power_efficient_wq, &sync_work);
506
507	return HRTIMER_NORESTART;
508}
509
510static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
511{
512	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
513
514	if (retry)
515		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
516	else
517		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
518
519	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
520}
521
522/*
523 * Check whether @now is correct versus the required time to update the RTC
524 * and calculate the value which needs to be written to the RTC so that the
525 * next seconds increment of the RTC after the write is aligned with the next
526 * seconds increment of clock REALTIME.
527 *
528 * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
529 *
530 * t2.tv_nsec == 0
531 * tsched = t2 - set_offset_nsec
532 * newval = t2 - NSEC_PER_SEC
533 *
534 * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
535 *
536 * As the execution of this code is not guaranteed to happen exactly at
537 * tsched this allows it to happen within a fuzzy region:
538 *
539 *	abs(now - tsched) < FUZZ
540 *
541 * If @now is not inside the allowed window the function returns false.
542 */
543static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
544				  struct timespec64 *to_set,
545				  const struct timespec64 *now)
546{
547	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
548	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
549	struct timespec64 delay = {.tv_sec = -1,
550				   .tv_nsec = set_offset_nsec};
551
552	*to_set = timespec64_add(*now, delay);
553
554	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
555		to_set->tv_nsec = 0;
556		return true;
557	}
558
559	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
560		to_set->tv_sec++;
561		to_set->tv_nsec = 0;
562		return true;
563	}
564	return false;
565}
566
567#ifdef CONFIG_GENERIC_CMOS_UPDATE
568int __weak update_persistent_clock64(struct timespec64 now64)
569{
570	return -ENODEV;
571}
572#else
573static inline int update_persistent_clock64(struct timespec64 now64)
574{
575	return -ENODEV;
576}
577#endif
578
579#ifdef CONFIG_RTC_SYSTOHC
580/* Save NTP synchronized time to the RTC */
581static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
582{
583	struct rtc_device *rtc;
584	struct rtc_time tm;
585	int err = -ENODEV;
586
587	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
588	if (!rtc)
589		return -ENODEV;
590
591	if (!rtc->ops || !rtc->ops->set_time)
592		goto out_close;
593
594	/* First call might not have the correct offset */
595	if (*offset_nsec == rtc->set_offset_nsec) {
596		rtc_time64_to_tm(to_set->tv_sec, &tm);
597		err = rtc_set_time(rtc, &tm);
598	} else {
599		/* Store the update offset and let the caller try again */
600		*offset_nsec = rtc->set_offset_nsec;
601		err = -EAGAIN;
602	}
603out_close:
604	rtc_class_close(rtc);
605	return err;
606}
607#else
608static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
609{
610	return -ENODEV;
611}
612#endif
613
614/*
615 * If we have an externally synchronized Linux clock, then update RTC clock
616 * accordingly every ~11 minutes. Generally RTCs can only store second
617 * precision, but many RTCs will adjust the phase of their second tick to
618 * match the moment of update. This infrastructure arranges to call to the RTC
619 * set at the correct moment to phase synchronize the RTC second tick over
620 * with the kernel clock.
621 */
622static void sync_hw_clock(struct work_struct *work)
623{
624	/*
625	 * The default synchronization offset is 500ms for the deprecated
626	 * update_persistent_clock64() under the assumption that it uses
627	 * the infamous CMOS clock (MC146818).
628	 */
629	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
630	struct timespec64 now, to_set;
631	int res = -EAGAIN;
632
633	/*
634	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
635	 * managed to schedule the work between the timer firing and the
636	 * work being able to rearm the timer. Wait for the timer to expire.
637	 */
638	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
639		return;
640
641	ktime_get_real_ts64(&now);
642	/* If @now is not in the allowed window, try again */
643	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
644		goto rearm;
645
646	/* Take timezone adjusted RTCs into account */
647	if (persistent_clock_is_local)
648		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
649
650	/* Try the legacy RTC first. */
651	res = update_persistent_clock64(to_set);
652	if (res != -ENODEV)
653		goto rearm;
654
655	/* Try the RTC class */
656	res = update_rtc(&to_set, &offset_nsec);
657	if (res == -ENODEV)
658		return;
659rearm:
660	sched_sync_hw_clock(offset_nsec, res != 0);
661}
662
663void ntp_notify_cmos_timer(void)
664{
665	/*
666	 * When the work is currently executed but has not yet the timer
667	 * rearmed this queues the work immediately again. No big issue,
668	 * just a pointless work scheduled.
669	 */
670	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
671		queue_work(system_freezable_power_efficient_wq, &sync_work);
672}
673
674static void __init ntp_init_cmos_sync(void)
675{
676	hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
677	sync_hrtimer.function = sync_timer_callback;
678}
679#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
680static inline void __init ntp_init_cmos_sync(void) { }
681#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
682
683/*
684 * Propagate a new txc->status value into the NTP state:
685 */
686static inline void process_adj_status(const struct __kernel_timex *txc)
687{
688	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
689		time_state = TIME_OK;
690		time_status = STA_UNSYNC;
691		ntp_next_leap_sec = TIME64_MAX;
692		/* restart PPS frequency calibration */
693		pps_reset_freq_interval();
694	}
695
696	/*
697	 * If we turn on PLL adjustments then reset the
698	 * reference time to current time.
699	 */
700	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
701		time_reftime = __ktime_get_real_seconds();
702
703	/* only set allowed bits */
704	time_status &= STA_RONLY;
705	time_status |= txc->status & ~STA_RONLY;
706}
707
708
709static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
710					  s32 *time_tai)
711{
712	if (txc->modes & ADJ_STATUS)
713		process_adj_status(txc);
714
715	if (txc->modes & ADJ_NANO)
716		time_status |= STA_NANO;
717
718	if (txc->modes & ADJ_MICRO)
719		time_status &= ~STA_NANO;
720
721	if (txc->modes & ADJ_FREQUENCY) {
722		time_freq = txc->freq * PPM_SCALE;
723		time_freq = min(time_freq, MAXFREQ_SCALED);
724		time_freq = max(time_freq, -MAXFREQ_SCALED);
725		/* update pps_freq */
726		pps_set_freq(time_freq);
727	}
728
729	if (txc->modes & ADJ_MAXERROR)
730		time_maxerror = txc->maxerror;
731
732	if (txc->modes & ADJ_ESTERROR)
733		time_esterror = txc->esterror;
734
735	if (txc->modes & ADJ_TIMECONST) {
736		time_constant = txc->constant;
737		if (!(time_status & STA_NANO))
738			time_constant += 4;
739		time_constant = min(time_constant, (long)MAXTC);
740		time_constant = max(time_constant, 0l);
741	}
742
743	if (txc->modes & ADJ_TAI &&
744			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
745		*time_tai = txc->constant;
746
747	if (txc->modes & ADJ_OFFSET)
748		ntp_update_offset(txc->offset);
749
750	if (txc->modes & ADJ_TICK)
751		tick_usec = txc->tick;
752
753	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
754		ntp_update_frequency();
755}
756
757
758/*
759 * adjtimex mainly allows reading (and writing, if superuser) of
760 * kernel time-keeping variables. used by xntpd.
761 */
762int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
763		  s32 *time_tai, struct audit_ntp_data *ad)
764{
765	int result;
766
767	if (txc->modes & ADJ_ADJTIME) {
768		long save_adjust = time_adjust;
769
770		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
771			/* adjtime() is independent from ntp_adjtime() */
772			time_adjust = txc->offset;
773			ntp_update_frequency();
774
775			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
776			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	time_adjust);
777		}
778		txc->offset = save_adjust;
779	} else {
780		/* If there are input parameters, then process them: */
781		if (txc->modes) {
782			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	time_offset);
783			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	time_freq);
784			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	time_status);
785			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
786			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	tick_usec);
787
788			process_adjtimex_modes(txc, time_tai);
789
790			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	time_offset);
791			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	time_freq);
792			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	time_status);
793			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
794			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	tick_usec);
795		}
796
797		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
798				  NTP_SCALE_SHIFT);
799		if (!(time_status & STA_NANO))
800			txc->offset = (u32)txc->offset / NSEC_PER_USEC;
801	}
802
803	result = time_state;	/* mostly `TIME_OK' */
804	/* check for errors */
805	if (is_error_status(time_status))
806		result = TIME_ERROR;
807
808	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
809					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
810	txc->maxerror	   = time_maxerror;
811	txc->esterror	   = time_esterror;
812	txc->status	   = time_status;
813	txc->constant	   = time_constant;
814	txc->precision	   = 1;
815	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
816	txc->tick	   = tick_usec;
817	txc->tai	   = *time_tai;
818
819	/* fill PPS status fields */
820	pps_fill_timex(txc);
821
822	txc->time.tv_sec = ts->tv_sec;
823	txc->time.tv_usec = ts->tv_nsec;
824	if (!(time_status & STA_NANO))
825		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
826
827	/* Handle leapsec adjustments */
828	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
829		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
830			result = TIME_OOP;
831			txc->tai++;
832			txc->time.tv_sec--;
833		}
834		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
835			result = TIME_WAIT;
836			txc->tai--;
837			txc->time.tv_sec++;
838		}
839		if ((time_state == TIME_OOP) &&
840					(ts->tv_sec == ntp_next_leap_sec)) {
841			result = TIME_WAIT;
842		}
843	}
844
845	return result;
846}
847
848#ifdef	CONFIG_NTP_PPS
849
850/* actually struct pps_normtime is good old struct timespec, but it is
851 * semantically different (and it is the reason why it was invented):
852 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
853 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
854struct pps_normtime {
855	s64		sec;	/* seconds */
856	long		nsec;	/* nanoseconds */
857};
858
859/* normalize the timestamp so that nsec is in the
860   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
861static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
862{
863	struct pps_normtime norm = {
864		.sec = ts.tv_sec,
865		.nsec = ts.tv_nsec
866	};
867
868	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
869		norm.nsec -= NSEC_PER_SEC;
870		norm.sec++;
871	}
872
873	return norm;
874}
875
876/* get current phase correction and jitter */
877static inline long pps_phase_filter_get(long *jitter)
878{
879	*jitter = pps_tf[0] - pps_tf[1];
880	if (*jitter < 0)
881		*jitter = -*jitter;
882
883	/* TODO: test various filters */
884	return pps_tf[0];
885}
886
887/* add the sample to the phase filter */
888static inline void pps_phase_filter_add(long err)
889{
890	pps_tf[2] = pps_tf[1];
891	pps_tf[1] = pps_tf[0];
892	pps_tf[0] = err;
893}
894
895/* decrease frequency calibration interval length.
896 * It is halved after four consecutive unstable intervals.
897 */
898static inline void pps_dec_freq_interval(void)
899{
900	if (--pps_intcnt <= -PPS_INTCOUNT) {
901		pps_intcnt = -PPS_INTCOUNT;
902		if (pps_shift > PPS_INTMIN) {
903			pps_shift--;
904			pps_intcnt = 0;
905		}
906	}
907}
908
909/* increase frequency calibration interval length.
910 * It is doubled after four consecutive stable intervals.
911 */
912static inline void pps_inc_freq_interval(void)
913{
914	if (++pps_intcnt >= PPS_INTCOUNT) {
915		pps_intcnt = PPS_INTCOUNT;
916		if (pps_shift < PPS_INTMAX) {
917			pps_shift++;
918			pps_intcnt = 0;
919		}
920	}
921}
922
923/* update clock frequency based on MONOTONIC_RAW clock PPS signal
924 * timestamps
925 *
926 * At the end of the calibration interval the difference between the
927 * first and last MONOTONIC_RAW clock timestamps divided by the length
928 * of the interval becomes the frequency update. If the interval was
929 * too long, the data are discarded.
930 * Returns the difference between old and new frequency values.
931 */
932static long hardpps_update_freq(struct pps_normtime freq_norm)
933{
934	long delta, delta_mod;
935	s64 ftemp;
936
937	/* check if the frequency interval was too long */
938	if (freq_norm.sec > (2 << pps_shift)) {
939		time_status |= STA_PPSERROR;
940		pps_errcnt++;
941		pps_dec_freq_interval();
942		printk_deferred(KERN_ERR
943			"hardpps: PPSERROR: interval too long - %lld s\n",
944			freq_norm.sec);
945		return 0;
946	}
947
948	/* here the raw frequency offset and wander (stability) is
949	 * calculated. If the wander is less than the wander threshold
950	 * the interval is increased; otherwise it is decreased.
951	 */
952	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
953			freq_norm.sec);
954	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
955	pps_freq = ftemp;
956	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
957		printk_deferred(KERN_WARNING
958				"hardpps: PPSWANDER: change=%ld\n", delta);
959		time_status |= STA_PPSWANDER;
960		pps_stbcnt++;
961		pps_dec_freq_interval();
962	} else {	/* good sample */
963		pps_inc_freq_interval();
964	}
965
966	/* the stability metric is calculated as the average of recent
967	 * frequency changes, but is used only for performance
968	 * monitoring
969	 */
970	delta_mod = delta;
971	if (delta_mod < 0)
972		delta_mod = -delta_mod;
973	pps_stabil += (div_s64(((s64)delta_mod) <<
974				(NTP_SCALE_SHIFT - SHIFT_USEC),
975				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
976
977	/* if enabled, the system clock frequency is updated */
978	if ((time_status & STA_PPSFREQ) != 0 &&
979	    (time_status & STA_FREQHOLD) == 0) {
980		time_freq = pps_freq;
981		ntp_update_frequency();
982	}
983
984	return delta;
985}
986
987/* correct REALTIME clock phase error against PPS signal */
988static void hardpps_update_phase(long error)
989{
990	long correction = -error;
991	long jitter;
992
993	/* add the sample to the median filter */
994	pps_phase_filter_add(correction);
995	correction = pps_phase_filter_get(&jitter);
996
997	/* Nominal jitter is due to PPS signal noise. If it exceeds the
998	 * threshold, the sample is discarded; otherwise, if so enabled,
999	 * the time offset is updated.
1000	 */
1001	if (jitter > (pps_jitter << PPS_POPCORN)) {
1002		printk_deferred(KERN_WARNING
1003				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1004				jitter, (pps_jitter << PPS_POPCORN));
1005		time_status |= STA_PPSJITTER;
1006		pps_jitcnt++;
1007	} else if (time_status & STA_PPSTIME) {
1008		/* correct the time using the phase offset */
1009		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1010				NTP_INTERVAL_FREQ);
1011		/* cancel running adjtime() */
1012		time_adjust = 0;
1013	}
1014	/* update jitter */
1015	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
1016}
1017
1018/*
1019 * __hardpps() - discipline CPU clock oscillator to external PPS signal
1020 *
1021 * This routine is called at each PPS signal arrival in order to
1022 * discipline the CPU clock oscillator to the PPS signal. It takes two
1023 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1024 * is used to correct clock phase error and the latter is used to
1025 * correct the frequency.
1026 *
1027 * This code is based on David Mills's reference nanokernel
1028 * implementation. It was mostly rewritten but keeps the same idea.
1029 */
1030void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1031{
1032	struct pps_normtime pts_norm, freq_norm;
1033
1034	pts_norm = pps_normalize_ts(*phase_ts);
1035
1036	/* clear the error bits, they will be set again if needed */
1037	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1038
1039	/* indicate signal presence */
1040	time_status |= STA_PPSSIGNAL;
1041	pps_valid = PPS_VALID;
1042
1043	/* when called for the first time,
1044	 * just start the frequency interval */
1045	if (unlikely(pps_fbase.tv_sec == 0)) {
1046		pps_fbase = *raw_ts;
1047		return;
1048	}
1049
1050	/* ok, now we have a base for frequency calculation */
1051	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1052
1053	/* check that the signal is in the range
1054	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1055	if ((freq_norm.sec == 0) ||
1056			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1057			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1058		time_status |= STA_PPSJITTER;
1059		/* restart the frequency calibration interval */
1060		pps_fbase = *raw_ts;
1061		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1062		return;
1063	}
1064
1065	/* signal is ok */
1066
1067	/* check if the current frequency interval is finished */
1068	if (freq_norm.sec >= (1 << pps_shift)) {
1069		pps_calcnt++;
1070		/* restart the frequency calibration interval */
1071		pps_fbase = *raw_ts;
1072		hardpps_update_freq(freq_norm);
1073	}
1074
1075	hardpps_update_phase(pts_norm.nsec);
1076
1077}
1078#endif	/* CONFIG_NTP_PPS */
1079
1080static int __init ntp_tick_adj_setup(char *str)
1081{
1082	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1083	if (rc)
1084		return rc;
1085
1086	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1087	return 1;
1088}
1089
1090__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1091
1092void __init ntp_init(void)
1093{
1094	ntp_clear();
1095	ntp_init_cmos_sync();
1096}
1097