1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/device.h>
11#include <linux/clocksource.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15#include <linux/tick.h>
16#include <linux/kthread.h>
17#include <linux/prandom.h>
18#include <linux/cpu.h>
19
20#include "tick-internal.h"
21#include "timekeeping_internal.h"
22
23/**
24 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25 * @mult:	pointer to mult variable
26 * @shift:	pointer to shift variable
27 * @from:	frequency to convert from
28 * @to:		frequency to convert to
29 * @maxsec:	guaranteed runtime conversion range in seconds
30 *
31 * The function evaluates the shift/mult pair for the scaled math
32 * operations of clocksources and clockevents.
33 *
34 * @to and @from are frequency values in HZ. For clock sources @to is
35 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36 * event @to is the counter frequency and @from is NSEC_PER_SEC.
37 *
38 * The @maxsec conversion range argument controls the time frame in
39 * seconds which must be covered by the runtime conversion with the
40 * calculated mult and shift factors. This guarantees that no 64bit
41 * overflow happens when the input value of the conversion is
42 * multiplied with the calculated mult factor. Larger ranges may
43 * reduce the conversion accuracy by choosing smaller mult and shift
44 * factors.
45 */
46void
47clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48{
49	u64 tmp;
50	u32 sft, sftacc= 32;
51
52	/*
53	 * Calculate the shift factor which is limiting the conversion
54	 * range:
55	 */
56	tmp = ((u64)maxsec * from) >> 32;
57	while (tmp) {
58		tmp >>=1;
59		sftacc--;
60	}
61
62	/*
63	 * Find the conversion shift/mult pair which has the best
64	 * accuracy and fits the maxsec conversion range:
65	 */
66	for (sft = 32; sft > 0; sft--) {
67		tmp = (u64) to << sft;
68		tmp += from / 2;
69		do_div(tmp, from);
70		if ((tmp >> sftacc) == 0)
71			break;
72	}
73	*mult = tmp;
74	*shift = sft;
75}
76EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77
78/*[Clocksource internal variables]---------
79 * curr_clocksource:
80 *	currently selected clocksource.
81 * suspend_clocksource:
82 *	used to calculate the suspend time.
83 * clocksource_list:
84 *	linked list with the registered clocksources
85 * clocksource_mutex:
86 *	protects manipulations to curr_clocksource and the clocksource_list
87 * override_name:
88 *	Name of the user-specified clocksource.
89 */
90static struct clocksource *curr_clocksource;
91static struct clocksource *suspend_clocksource;
92static LIST_HEAD(clocksource_list);
93static DEFINE_MUTEX(clocksource_mutex);
94static char override_name[CS_NAME_LEN];
95static int finished_booting;
96static u64 suspend_start;
97
98/*
99 * Interval: 0.5sec.
100 */
101#define WATCHDOG_INTERVAL (HZ >> 1)
102#define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
103
104/*
105 * Threshold: 0.0312s, when doubled: 0.0625s.
106 * Also a default for cs->uncertainty_margin when registering clocks.
107 */
108#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
109
110/*
111 * Maximum permissible delay between two readouts of the watchdog
112 * clocksource surrounding a read of the clocksource being validated.
113 * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
114 * a lower bound for cs->uncertainty_margin values when registering clocks.
115 *
116 * The default of 500 parts per million is based on NTP's limits.
117 * If a clocksource is good enough for NTP, it is good enough for us!
118 */
119#ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
120#define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
121#else
122#define MAX_SKEW_USEC	(125 * WATCHDOG_INTERVAL / HZ)
123#endif
124
125#define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
126
127#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
128static void clocksource_watchdog_work(struct work_struct *work);
129static void clocksource_select(void);
130
131static LIST_HEAD(watchdog_list);
132static struct clocksource *watchdog;
133static struct timer_list watchdog_timer;
134static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
135static DEFINE_SPINLOCK(watchdog_lock);
136static int watchdog_running;
137static atomic_t watchdog_reset_pending;
138static int64_t watchdog_max_interval;
139
140static inline void clocksource_watchdog_lock(unsigned long *flags)
141{
142	spin_lock_irqsave(&watchdog_lock, *flags);
143}
144
145static inline void clocksource_watchdog_unlock(unsigned long *flags)
146{
147	spin_unlock_irqrestore(&watchdog_lock, *flags);
148}
149
150static int clocksource_watchdog_kthread(void *data);
151static void __clocksource_change_rating(struct clocksource *cs, int rating);
152
153static void clocksource_watchdog_work(struct work_struct *work)
154{
155	/*
156	 * We cannot directly run clocksource_watchdog_kthread() here, because
157	 * clocksource_select() calls timekeeping_notify() which uses
158	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
159	 * lock inversions wrt CPU hotplug.
160	 *
161	 * Also, we only ever run this work once or twice during the lifetime
162	 * of the kernel, so there is no point in creating a more permanent
163	 * kthread for this.
164	 *
165	 * If kthread_run fails the next watchdog scan over the
166	 * watchdog_list will find the unstable clock again.
167	 */
168	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
169}
170
171static void __clocksource_unstable(struct clocksource *cs)
172{
173	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
174	cs->flags |= CLOCK_SOURCE_UNSTABLE;
175
176	/*
177	 * If the clocksource is registered clocksource_watchdog_kthread() will
178	 * re-rate and re-select.
179	 */
180	if (list_empty(&cs->list)) {
181		cs->rating = 0;
182		return;
183	}
184
185	if (cs->mark_unstable)
186		cs->mark_unstable(cs);
187
188	/* kick clocksource_watchdog_kthread() */
189	if (finished_booting)
190		schedule_work(&watchdog_work);
191}
192
193/**
194 * clocksource_mark_unstable - mark clocksource unstable via watchdog
195 * @cs:		clocksource to be marked unstable
196 *
197 * This function is called by the x86 TSC code to mark clocksources as unstable;
198 * it defers demotion and re-selection to a kthread.
199 */
200void clocksource_mark_unstable(struct clocksource *cs)
201{
202	unsigned long flags;
203
204	spin_lock_irqsave(&watchdog_lock, flags);
205	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
206		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
207			list_add(&cs->wd_list, &watchdog_list);
208		__clocksource_unstable(cs);
209	}
210	spin_unlock_irqrestore(&watchdog_lock, flags);
211}
212
213static int verify_n_cpus = 8;
214module_param(verify_n_cpus, int, 0644);
215
216enum wd_read_status {
217	WD_READ_SUCCESS,
218	WD_READ_UNSTABLE,
219	WD_READ_SKIP
220};
221
222static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
223{
224	unsigned int nretries, max_retries;
225	u64 wd_end, wd_end2, wd_delta;
226	int64_t wd_delay, wd_seq_delay;
227
228	max_retries = clocksource_get_max_watchdog_retry();
229	for (nretries = 0; nretries <= max_retries; nretries++) {
230		local_irq_disable();
231		*wdnow = watchdog->read(watchdog);
232		*csnow = cs->read(cs);
233		wd_end = watchdog->read(watchdog);
234		wd_end2 = watchdog->read(watchdog);
235		local_irq_enable();
236
237		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
238		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
239					      watchdog->shift);
240		if (wd_delay <= WATCHDOG_MAX_SKEW) {
241			if (nretries > 1 || nretries >= max_retries) {
242				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
243					smp_processor_id(), watchdog->name, nretries);
244			}
245			return WD_READ_SUCCESS;
246		}
247
248		/*
249		 * Now compute delay in consecutive watchdog read to see if
250		 * there is too much external interferences that cause
251		 * significant delay in reading both clocksource and watchdog.
252		 *
253		 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
254		 * report system busy, reinit the watchdog and skip the current
255		 * watchdog test.
256		 */
257		wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
258		wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
259		if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
260			goto skip_test;
261	}
262
263	pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
264		smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
265	return WD_READ_UNSTABLE;
266
267skip_test:
268	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
269		smp_processor_id(), watchdog->name, wd_seq_delay);
270	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
271		cs->name, wd_delay);
272	return WD_READ_SKIP;
273}
274
275static u64 csnow_mid;
276static cpumask_t cpus_ahead;
277static cpumask_t cpus_behind;
278static cpumask_t cpus_chosen;
279
280static void clocksource_verify_choose_cpus(void)
281{
282	int cpu, i, n = verify_n_cpus;
283
284	if (n < 0) {
285		/* Check all of the CPUs. */
286		cpumask_copy(&cpus_chosen, cpu_online_mask);
287		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
288		return;
289	}
290
291	/* If no checking desired, or no other CPU to check, leave. */
292	cpumask_clear(&cpus_chosen);
293	if (n == 0 || num_online_cpus() <= 1)
294		return;
295
296	/* Make sure to select at least one CPU other than the current CPU. */
297	cpu = cpumask_first(cpu_online_mask);
298	if (cpu == smp_processor_id())
299		cpu = cpumask_next(cpu, cpu_online_mask);
300	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
301		return;
302	cpumask_set_cpu(cpu, &cpus_chosen);
303
304	/* Force a sane value for the boot parameter. */
305	if (n > nr_cpu_ids)
306		n = nr_cpu_ids;
307
308	/*
309	 * Randomly select the specified number of CPUs.  If the same
310	 * CPU is selected multiple times, that CPU is checked only once,
311	 * and no replacement CPU is selected.  This gracefully handles
312	 * situations where verify_n_cpus is greater than the number of
313	 * CPUs that are currently online.
314	 */
315	for (i = 1; i < n; i++) {
316		cpu = get_random_u32_below(nr_cpu_ids);
317		cpu = cpumask_next(cpu - 1, cpu_online_mask);
318		if (cpu >= nr_cpu_ids)
319			cpu = cpumask_first(cpu_online_mask);
320		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
321			cpumask_set_cpu(cpu, &cpus_chosen);
322	}
323
324	/* Don't verify ourselves. */
325	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
326}
327
328static void clocksource_verify_one_cpu(void *csin)
329{
330	struct clocksource *cs = (struct clocksource *)csin;
331
332	csnow_mid = cs->read(cs);
333}
334
335void clocksource_verify_percpu(struct clocksource *cs)
336{
337	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
338	u64 csnow_begin, csnow_end;
339	int cpu, testcpu;
340	s64 delta;
341
342	if (verify_n_cpus == 0)
343		return;
344	cpumask_clear(&cpus_ahead);
345	cpumask_clear(&cpus_behind);
346	cpus_read_lock();
347	preempt_disable();
348	clocksource_verify_choose_cpus();
349	if (cpumask_empty(&cpus_chosen)) {
350		preempt_enable();
351		cpus_read_unlock();
352		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
353		return;
354	}
355	testcpu = smp_processor_id();
356	pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
357	for_each_cpu(cpu, &cpus_chosen) {
358		if (cpu == testcpu)
359			continue;
360		csnow_begin = cs->read(cs);
361		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
362		csnow_end = cs->read(cs);
363		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
364		if (delta < 0)
365			cpumask_set_cpu(cpu, &cpus_behind);
366		delta = (csnow_end - csnow_mid) & cs->mask;
367		if (delta < 0)
368			cpumask_set_cpu(cpu, &cpus_ahead);
369		delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
370		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
371		if (cs_nsec > cs_nsec_max)
372			cs_nsec_max = cs_nsec;
373		if (cs_nsec < cs_nsec_min)
374			cs_nsec_min = cs_nsec;
375	}
376	preempt_enable();
377	cpus_read_unlock();
378	if (!cpumask_empty(&cpus_ahead))
379		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
380			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
381	if (!cpumask_empty(&cpus_behind))
382		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
383			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
384	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
385		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
386			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
387}
388EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
389
390static inline void clocksource_reset_watchdog(void)
391{
392	struct clocksource *cs;
393
394	list_for_each_entry(cs, &watchdog_list, wd_list)
395		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
396}
397
398
399static void clocksource_watchdog(struct timer_list *unused)
400{
401	u64 csnow, wdnow, cslast, wdlast, delta;
402	int64_t wd_nsec, cs_nsec, interval;
403	int next_cpu, reset_pending;
404	struct clocksource *cs;
405	enum wd_read_status read_ret;
406	unsigned long extra_wait = 0;
407	u32 md;
408
409	spin_lock(&watchdog_lock);
410	if (!watchdog_running)
411		goto out;
412
413	reset_pending = atomic_read(&watchdog_reset_pending);
414
415	list_for_each_entry(cs, &watchdog_list, wd_list) {
416
417		/* Clocksource already marked unstable? */
418		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
419			if (finished_booting)
420				schedule_work(&watchdog_work);
421			continue;
422		}
423
424		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
425
426		if (read_ret == WD_READ_UNSTABLE) {
427			/* Clock readout unreliable, so give it up. */
428			__clocksource_unstable(cs);
429			continue;
430		}
431
432		/*
433		 * When WD_READ_SKIP is returned, it means the system is likely
434		 * under very heavy load, where the latency of reading
435		 * watchdog/clocksource is very big, and affect the accuracy of
436		 * watchdog check. So give system some space and suspend the
437		 * watchdog check for 5 minutes.
438		 */
439		if (read_ret == WD_READ_SKIP) {
440			/*
441			 * As the watchdog timer will be suspended, and
442			 * cs->last could keep unchanged for 5 minutes, reset
443			 * the counters.
444			 */
445			clocksource_reset_watchdog();
446			extra_wait = HZ * 300;
447			break;
448		}
449
450		/* Clocksource initialized ? */
451		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
452		    atomic_read(&watchdog_reset_pending)) {
453			cs->flags |= CLOCK_SOURCE_WATCHDOG;
454			cs->wd_last = wdnow;
455			cs->cs_last = csnow;
456			continue;
457		}
458
459		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
460		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
461					     watchdog->shift);
462
463		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
464		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
465		wdlast = cs->wd_last; /* save these in case we print them */
466		cslast = cs->cs_last;
467		cs->cs_last = csnow;
468		cs->wd_last = wdnow;
469
470		if (atomic_read(&watchdog_reset_pending))
471			continue;
472
473		/*
474		 * The processing of timer softirqs can get delayed (usually
475		 * on account of ksoftirqd not getting to run in a timely
476		 * manner), which causes the watchdog interval to stretch.
477		 * Skew detection may fail for longer watchdog intervals
478		 * on account of fixed margins being used.
479		 * Some clocksources, e.g. acpi_pm, cannot tolerate
480		 * watchdog intervals longer than a few seconds.
481		 */
482		interval = max(cs_nsec, wd_nsec);
483		if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
484			if (system_state > SYSTEM_SCHEDULING &&
485			    interval > 2 * watchdog_max_interval) {
486				watchdog_max_interval = interval;
487				pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
488					cs_nsec, wd_nsec);
489			}
490			watchdog_timer.expires = jiffies;
491			continue;
492		}
493
494		/* Check the deviation from the watchdog clocksource. */
495		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
496		if (abs(cs_nsec - wd_nsec) > md) {
497			s64 cs_wd_msec;
498			s64 wd_msec;
499			u32 wd_rem;
500
501			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
502				smp_processor_id(), cs->name);
503			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
504				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
505			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
506				cs->name, cs_nsec, csnow, cslast, cs->mask);
507			cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
508			wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
509			pr_warn("                      Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
510				cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
511			if (curr_clocksource == cs)
512				pr_warn("                      '%s' is current clocksource.\n", cs->name);
513			else if (curr_clocksource)
514				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
515			else
516				pr_warn("                      No current clocksource.\n");
517			__clocksource_unstable(cs);
518			continue;
519		}
520
521		if (cs == curr_clocksource && cs->tick_stable)
522			cs->tick_stable(cs);
523
524		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
525		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
526		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
527			/* Mark it valid for high-res. */
528			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
529
530			/*
531			 * clocksource_done_booting() will sort it if
532			 * finished_booting is not set yet.
533			 */
534			if (!finished_booting)
535				continue;
536
537			/*
538			 * If this is not the current clocksource let
539			 * the watchdog thread reselect it. Due to the
540			 * change to high res this clocksource might
541			 * be preferred now. If it is the current
542			 * clocksource let the tick code know about
543			 * that change.
544			 */
545			if (cs != curr_clocksource) {
546				cs->flags |= CLOCK_SOURCE_RESELECT;
547				schedule_work(&watchdog_work);
548			} else {
549				tick_clock_notify();
550			}
551		}
552	}
553
554	/*
555	 * We only clear the watchdog_reset_pending, when we did a
556	 * full cycle through all clocksources.
557	 */
558	if (reset_pending)
559		atomic_dec(&watchdog_reset_pending);
560
561	/*
562	 * Cycle through CPUs to check if the CPUs stay synchronized
563	 * to each other.
564	 */
565	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
566	if (next_cpu >= nr_cpu_ids)
567		next_cpu = cpumask_first(cpu_online_mask);
568
569	/*
570	 * Arm timer if not already pending: could race with concurrent
571	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
572	 */
573	if (!timer_pending(&watchdog_timer)) {
574		watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
575		add_timer_on(&watchdog_timer, next_cpu);
576	}
577out:
578	spin_unlock(&watchdog_lock);
579}
580
581static inline void clocksource_start_watchdog(void)
582{
583	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
584		return;
585	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
586	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
587	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
588	watchdog_running = 1;
589}
590
591static inline void clocksource_stop_watchdog(void)
592{
593	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
594		return;
595	del_timer(&watchdog_timer);
596	watchdog_running = 0;
597}
598
599static void clocksource_resume_watchdog(void)
600{
601	atomic_inc(&watchdog_reset_pending);
602}
603
604static void clocksource_enqueue_watchdog(struct clocksource *cs)
605{
606	INIT_LIST_HEAD(&cs->wd_list);
607
608	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
609		/* cs is a clocksource to be watched. */
610		list_add(&cs->wd_list, &watchdog_list);
611		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
612	} else {
613		/* cs is a watchdog. */
614		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
615			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
616	}
617}
618
619static void clocksource_select_watchdog(bool fallback)
620{
621	struct clocksource *cs, *old_wd;
622	unsigned long flags;
623
624	spin_lock_irqsave(&watchdog_lock, flags);
625	/* save current watchdog */
626	old_wd = watchdog;
627	if (fallback)
628		watchdog = NULL;
629
630	list_for_each_entry(cs, &clocksource_list, list) {
631		/* cs is a clocksource to be watched. */
632		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
633			continue;
634
635		/* Skip current if we were requested for a fallback. */
636		if (fallback && cs == old_wd)
637			continue;
638
639		/* Pick the best watchdog. */
640		if (!watchdog || cs->rating > watchdog->rating)
641			watchdog = cs;
642	}
643	/* If we failed to find a fallback restore the old one. */
644	if (!watchdog)
645		watchdog = old_wd;
646
647	/* If we changed the watchdog we need to reset cycles. */
648	if (watchdog != old_wd)
649		clocksource_reset_watchdog();
650
651	/* Check if the watchdog timer needs to be started. */
652	clocksource_start_watchdog();
653	spin_unlock_irqrestore(&watchdog_lock, flags);
654}
655
656static void clocksource_dequeue_watchdog(struct clocksource *cs)
657{
658	if (cs != watchdog) {
659		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
660			/* cs is a watched clocksource. */
661			list_del_init(&cs->wd_list);
662			/* Check if the watchdog timer needs to be stopped. */
663			clocksource_stop_watchdog();
664		}
665	}
666}
667
668static int __clocksource_watchdog_kthread(void)
669{
670	struct clocksource *cs, *tmp;
671	unsigned long flags;
672	int select = 0;
673
674	/* Do any required per-CPU skew verification. */
675	if (curr_clocksource &&
676	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
677	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
678		clocksource_verify_percpu(curr_clocksource);
679
680	spin_lock_irqsave(&watchdog_lock, flags);
681	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
682		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
683			list_del_init(&cs->wd_list);
684			__clocksource_change_rating(cs, 0);
685			select = 1;
686		}
687		if (cs->flags & CLOCK_SOURCE_RESELECT) {
688			cs->flags &= ~CLOCK_SOURCE_RESELECT;
689			select = 1;
690		}
691	}
692	/* Check if the watchdog timer needs to be stopped. */
693	clocksource_stop_watchdog();
694	spin_unlock_irqrestore(&watchdog_lock, flags);
695
696	return select;
697}
698
699static int clocksource_watchdog_kthread(void *data)
700{
701	mutex_lock(&clocksource_mutex);
702	if (__clocksource_watchdog_kthread())
703		clocksource_select();
704	mutex_unlock(&clocksource_mutex);
705	return 0;
706}
707
708static bool clocksource_is_watchdog(struct clocksource *cs)
709{
710	return cs == watchdog;
711}
712
713#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
714
715static void clocksource_enqueue_watchdog(struct clocksource *cs)
716{
717	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
718		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
719}
720
721static void clocksource_select_watchdog(bool fallback) { }
722static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
723static inline void clocksource_resume_watchdog(void) { }
724static inline int __clocksource_watchdog_kthread(void) { return 0; }
725static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
726void clocksource_mark_unstable(struct clocksource *cs) { }
727
728static inline void clocksource_watchdog_lock(unsigned long *flags) { }
729static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
730
731#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
732
733static bool clocksource_is_suspend(struct clocksource *cs)
734{
735	return cs == suspend_clocksource;
736}
737
738static void __clocksource_suspend_select(struct clocksource *cs)
739{
740	/*
741	 * Skip the clocksource which will be stopped in suspend state.
742	 */
743	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
744		return;
745
746	/*
747	 * The nonstop clocksource can be selected as the suspend clocksource to
748	 * calculate the suspend time, so it should not supply suspend/resume
749	 * interfaces to suspend the nonstop clocksource when system suspends.
750	 */
751	if (cs->suspend || cs->resume) {
752		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
753			cs->name);
754	}
755
756	/* Pick the best rating. */
757	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
758		suspend_clocksource = cs;
759}
760
761/**
762 * clocksource_suspend_select - Select the best clocksource for suspend timing
763 * @fallback:	if select a fallback clocksource
764 */
765static void clocksource_suspend_select(bool fallback)
766{
767	struct clocksource *cs, *old_suspend;
768
769	old_suspend = suspend_clocksource;
770	if (fallback)
771		suspend_clocksource = NULL;
772
773	list_for_each_entry(cs, &clocksource_list, list) {
774		/* Skip current if we were requested for a fallback. */
775		if (fallback && cs == old_suspend)
776			continue;
777
778		__clocksource_suspend_select(cs);
779	}
780}
781
782/**
783 * clocksource_start_suspend_timing - Start measuring the suspend timing
784 * @cs:			current clocksource from timekeeping
785 * @start_cycles:	current cycles from timekeeping
786 *
787 * This function will save the start cycle values of suspend timer to calculate
788 * the suspend time when resuming system.
789 *
790 * This function is called late in the suspend process from timekeeping_suspend(),
791 * that means processes are frozen, non-boot cpus and interrupts are disabled
792 * now. It is therefore possible to start the suspend timer without taking the
793 * clocksource mutex.
794 */
795void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
796{
797	if (!suspend_clocksource)
798		return;
799
800	/*
801	 * If current clocksource is the suspend timer, we should use the
802	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
803	 * from suspend timer.
804	 */
805	if (clocksource_is_suspend(cs)) {
806		suspend_start = start_cycles;
807		return;
808	}
809
810	if (suspend_clocksource->enable &&
811	    suspend_clocksource->enable(suspend_clocksource)) {
812		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
813		return;
814	}
815
816	suspend_start = suspend_clocksource->read(suspend_clocksource);
817}
818
819/**
820 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
821 * @cs:		current clocksource from timekeeping
822 * @cycle_now:	current cycles from timekeeping
823 *
824 * This function will calculate the suspend time from suspend timer.
825 *
826 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
827 *
828 * This function is called early in the resume process from timekeeping_resume(),
829 * that means there is only one cpu, no processes are running and the interrupts
830 * are disabled. It is therefore possible to stop the suspend timer without
831 * taking the clocksource mutex.
832 */
833u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
834{
835	u64 now, delta, nsec = 0;
836
837	if (!suspend_clocksource)
838		return 0;
839
840	/*
841	 * If current clocksource is the suspend timer, we should use the
842	 * tkr_mono.cycle_last value from timekeeping as current cycle to
843	 * avoid same reading from suspend timer.
844	 */
845	if (clocksource_is_suspend(cs))
846		now = cycle_now;
847	else
848		now = suspend_clocksource->read(suspend_clocksource);
849
850	if (now > suspend_start) {
851		delta = clocksource_delta(now, suspend_start,
852					  suspend_clocksource->mask);
853		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
854				       suspend_clocksource->shift);
855	}
856
857	/*
858	 * Disable the suspend timer to save power if current clocksource is
859	 * not the suspend timer.
860	 */
861	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
862		suspend_clocksource->disable(suspend_clocksource);
863
864	return nsec;
865}
866
867/**
868 * clocksource_suspend - suspend the clocksource(s)
869 */
870void clocksource_suspend(void)
871{
872	struct clocksource *cs;
873
874	list_for_each_entry_reverse(cs, &clocksource_list, list)
875		if (cs->suspend)
876			cs->suspend(cs);
877}
878
879/**
880 * clocksource_resume - resume the clocksource(s)
881 */
882void clocksource_resume(void)
883{
884	struct clocksource *cs;
885
886	list_for_each_entry(cs, &clocksource_list, list)
887		if (cs->resume)
888			cs->resume(cs);
889
890	clocksource_resume_watchdog();
891}
892
893/**
894 * clocksource_touch_watchdog - Update watchdog
895 *
896 * Update the watchdog after exception contexts such as kgdb so as not
897 * to incorrectly trip the watchdog. This might fail when the kernel
898 * was stopped in code which holds watchdog_lock.
899 */
900void clocksource_touch_watchdog(void)
901{
902	clocksource_resume_watchdog();
903}
904
905/**
906 * clocksource_max_adjustment- Returns max adjustment amount
907 * @cs:         Pointer to clocksource
908 *
909 */
910static u32 clocksource_max_adjustment(struct clocksource *cs)
911{
912	u64 ret;
913	/*
914	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
915	 */
916	ret = (u64)cs->mult * 11;
917	do_div(ret,100);
918	return (u32)ret;
919}
920
921/**
922 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
923 * @mult:	cycle to nanosecond multiplier
924 * @shift:	cycle to nanosecond divisor (power of two)
925 * @maxadj:	maximum adjustment value to mult (~11%)
926 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
927 * @max_cyc:	maximum cycle value before potential overflow (does not include
928 *		any safety margin)
929 *
930 * NOTE: This function includes a safety margin of 50%, in other words, we
931 * return half the number of nanoseconds the hardware counter can technically
932 * cover. This is done so that we can potentially detect problems caused by
933 * delayed timers or bad hardware, which might result in time intervals that
934 * are larger than what the math used can handle without overflows.
935 */
936u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
937{
938	u64 max_nsecs, max_cycles;
939
940	/*
941	 * Calculate the maximum number of cycles that we can pass to the
942	 * cyc2ns() function without overflowing a 64-bit result.
943	 */
944	max_cycles = ULLONG_MAX;
945	do_div(max_cycles, mult+maxadj);
946
947	/*
948	 * The actual maximum number of cycles we can defer the clocksource is
949	 * determined by the minimum of max_cycles and mask.
950	 * Note: Here we subtract the maxadj to make sure we don't sleep for
951	 * too long if there's a large negative adjustment.
952	 */
953	max_cycles = min(max_cycles, mask);
954	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
955
956	/* return the max_cycles value as well if requested */
957	if (max_cyc)
958		*max_cyc = max_cycles;
959
960	/* Return 50% of the actual maximum, so we can detect bad values */
961	max_nsecs >>= 1;
962
963	return max_nsecs;
964}
965
966/**
967 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
968 * @cs:         Pointer to clocksource to be updated
969 *
970 */
971static inline void clocksource_update_max_deferment(struct clocksource *cs)
972{
973	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
974						cs->maxadj, cs->mask,
975						&cs->max_cycles);
976}
977
978static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
979{
980	struct clocksource *cs;
981
982	if (!finished_booting || list_empty(&clocksource_list))
983		return NULL;
984
985	/*
986	 * We pick the clocksource with the highest rating. If oneshot
987	 * mode is active, we pick the highres valid clocksource with
988	 * the best rating.
989	 */
990	list_for_each_entry(cs, &clocksource_list, list) {
991		if (skipcur && cs == curr_clocksource)
992			continue;
993		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
994			continue;
995		return cs;
996	}
997	return NULL;
998}
999
1000static void __clocksource_select(bool skipcur)
1001{
1002	bool oneshot = tick_oneshot_mode_active();
1003	struct clocksource *best, *cs;
1004
1005	/* Find the best suitable clocksource */
1006	best = clocksource_find_best(oneshot, skipcur);
1007	if (!best)
1008		return;
1009
1010	if (!strlen(override_name))
1011		goto found;
1012
1013	/* Check for the override clocksource. */
1014	list_for_each_entry(cs, &clocksource_list, list) {
1015		if (skipcur && cs == curr_clocksource)
1016			continue;
1017		if (strcmp(cs->name, override_name) != 0)
1018			continue;
1019		/*
1020		 * Check to make sure we don't switch to a non-highres
1021		 * capable clocksource if the tick code is in oneshot
1022		 * mode (highres or nohz)
1023		 */
1024		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1025			/* Override clocksource cannot be used. */
1026			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1027				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1028					cs->name);
1029				override_name[0] = 0;
1030			} else {
1031				/*
1032				 * The override cannot be currently verified.
1033				 * Deferring to let the watchdog check.
1034				 */
1035				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1036					cs->name);
1037			}
1038		} else
1039			/* Override clocksource can be used. */
1040			best = cs;
1041		break;
1042	}
1043
1044found:
1045	if (curr_clocksource != best && !timekeeping_notify(best)) {
1046		pr_info("Switched to clocksource %s\n", best->name);
1047		curr_clocksource = best;
1048	}
1049}
1050
1051/**
1052 * clocksource_select - Select the best clocksource available
1053 *
1054 * Private function. Must hold clocksource_mutex when called.
1055 *
1056 * Select the clocksource with the best rating, or the clocksource,
1057 * which is selected by userspace override.
1058 */
1059static void clocksource_select(void)
1060{
1061	__clocksource_select(false);
1062}
1063
1064static void clocksource_select_fallback(void)
1065{
1066	__clocksource_select(true);
1067}
1068
1069/*
1070 * clocksource_done_booting - Called near the end of core bootup
1071 *
1072 * Hack to avoid lots of clocksource churn at boot time.
1073 * We use fs_initcall because we want this to start before
1074 * device_initcall but after subsys_initcall.
1075 */
1076static int __init clocksource_done_booting(void)
1077{
1078	mutex_lock(&clocksource_mutex);
1079	curr_clocksource = clocksource_default_clock();
1080	finished_booting = 1;
1081	/*
1082	 * Run the watchdog first to eliminate unstable clock sources
1083	 */
1084	__clocksource_watchdog_kthread();
1085	clocksource_select();
1086	mutex_unlock(&clocksource_mutex);
1087	return 0;
1088}
1089fs_initcall(clocksource_done_booting);
1090
1091/*
1092 * Enqueue the clocksource sorted by rating
1093 */
1094static void clocksource_enqueue(struct clocksource *cs)
1095{
1096	struct list_head *entry = &clocksource_list;
1097	struct clocksource *tmp;
1098
1099	list_for_each_entry(tmp, &clocksource_list, list) {
1100		/* Keep track of the place, where to insert */
1101		if (tmp->rating < cs->rating)
1102			break;
1103		entry = &tmp->list;
1104	}
1105	list_add(&cs->list, entry);
1106}
1107
1108/**
1109 * __clocksource_update_freq_scale - Used update clocksource with new freq
1110 * @cs:		clocksource to be registered
1111 * @scale:	Scale factor multiplied against freq to get clocksource hz
1112 * @freq:	clocksource frequency (cycles per second) divided by scale
1113 *
1114 * This should only be called from the clocksource->enable() method.
1115 *
1116 * This *SHOULD NOT* be called directly! Please use the
1117 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1118 * functions.
1119 */
1120void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1121{
1122	u64 sec;
1123
1124	/*
1125	 * Default clocksources are *special* and self-define their mult/shift.
1126	 * But, you're not special, so you should specify a freq value.
1127	 */
1128	if (freq) {
1129		/*
1130		 * Calc the maximum number of seconds which we can run before
1131		 * wrapping around. For clocksources which have a mask > 32-bit
1132		 * we need to limit the max sleep time to have a good
1133		 * conversion precision. 10 minutes is still a reasonable
1134		 * amount. That results in a shift value of 24 for a
1135		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1136		 * ~ 0.06ppm granularity for NTP.
1137		 */
1138		sec = cs->mask;
1139		do_div(sec, freq);
1140		do_div(sec, scale);
1141		if (!sec)
1142			sec = 1;
1143		else if (sec > 600 && cs->mask > UINT_MAX)
1144			sec = 600;
1145
1146		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1147				       NSEC_PER_SEC / scale, sec * scale);
1148	}
1149
1150	/*
1151	 * If the uncertainty margin is not specified, calculate it.
1152	 * If both scale and freq are non-zero, calculate the clock
1153	 * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1154	 * if either of scale or freq is zero, be very conservative and
1155	 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1156	 * uncertainty margin.  Allow stupidly small uncertainty margins
1157	 * to be specified by the caller for testing purposes, but warn
1158	 * to discourage production use of this capability.
1159	 */
1160	if (scale && freq && !cs->uncertainty_margin) {
1161		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1162		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1163			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1164	} else if (!cs->uncertainty_margin) {
1165		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1166	}
1167	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1168
1169	/*
1170	 * Ensure clocksources that have large 'mult' values don't overflow
1171	 * when adjusted.
1172	 */
1173	cs->maxadj = clocksource_max_adjustment(cs);
1174	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1175		|| (cs->mult - cs->maxadj > cs->mult))) {
1176		cs->mult >>= 1;
1177		cs->shift--;
1178		cs->maxadj = clocksource_max_adjustment(cs);
1179	}
1180
1181	/*
1182	 * Only warn for *special* clocksources that self-define
1183	 * their mult/shift values and don't specify a freq.
1184	 */
1185	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1186		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1187		cs->name);
1188
1189	clocksource_update_max_deferment(cs);
1190
1191	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1192		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1193}
1194EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1195
1196/**
1197 * __clocksource_register_scale - Used to install new clocksources
1198 * @cs:		clocksource to be registered
1199 * @scale:	Scale factor multiplied against freq to get clocksource hz
1200 * @freq:	clocksource frequency (cycles per second) divided by scale
1201 *
1202 * Returns -EBUSY if registration fails, zero otherwise.
1203 *
1204 * This *SHOULD NOT* be called directly! Please use the
1205 * clocksource_register_hz() or clocksource_register_khz helper functions.
1206 */
1207int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1208{
1209	unsigned long flags;
1210
1211	clocksource_arch_init(cs);
1212
1213	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1214		cs->id = CSID_GENERIC;
1215	if (cs->vdso_clock_mode < 0 ||
1216	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1217		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1218			cs->name, cs->vdso_clock_mode);
1219		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1220	}
1221
1222	/* Initialize mult/shift and max_idle_ns */
1223	__clocksource_update_freq_scale(cs, scale, freq);
1224
1225	/* Add clocksource to the clocksource list */
1226	mutex_lock(&clocksource_mutex);
1227
1228	clocksource_watchdog_lock(&flags);
1229	clocksource_enqueue(cs);
1230	clocksource_enqueue_watchdog(cs);
1231	clocksource_watchdog_unlock(&flags);
1232
1233	clocksource_select();
1234	clocksource_select_watchdog(false);
1235	__clocksource_suspend_select(cs);
1236	mutex_unlock(&clocksource_mutex);
1237	return 0;
1238}
1239EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1240
1241static void __clocksource_change_rating(struct clocksource *cs, int rating)
1242{
1243	list_del(&cs->list);
1244	cs->rating = rating;
1245	clocksource_enqueue(cs);
1246}
1247
1248/**
1249 * clocksource_change_rating - Change the rating of a registered clocksource
1250 * @cs:		clocksource to be changed
1251 * @rating:	new rating
1252 */
1253void clocksource_change_rating(struct clocksource *cs, int rating)
1254{
1255	unsigned long flags;
1256
1257	mutex_lock(&clocksource_mutex);
1258	clocksource_watchdog_lock(&flags);
1259	__clocksource_change_rating(cs, rating);
1260	clocksource_watchdog_unlock(&flags);
1261
1262	clocksource_select();
1263	clocksource_select_watchdog(false);
1264	clocksource_suspend_select(false);
1265	mutex_unlock(&clocksource_mutex);
1266}
1267EXPORT_SYMBOL(clocksource_change_rating);
1268
1269/*
1270 * Unbind clocksource @cs. Called with clocksource_mutex held
1271 */
1272static int clocksource_unbind(struct clocksource *cs)
1273{
1274	unsigned long flags;
1275
1276	if (clocksource_is_watchdog(cs)) {
1277		/* Select and try to install a replacement watchdog. */
1278		clocksource_select_watchdog(true);
1279		if (clocksource_is_watchdog(cs))
1280			return -EBUSY;
1281	}
1282
1283	if (cs == curr_clocksource) {
1284		/* Select and try to install a replacement clock source */
1285		clocksource_select_fallback();
1286		if (curr_clocksource == cs)
1287			return -EBUSY;
1288	}
1289
1290	if (clocksource_is_suspend(cs)) {
1291		/*
1292		 * Select and try to install a replacement suspend clocksource.
1293		 * If no replacement suspend clocksource, we will just let the
1294		 * clocksource go and have no suspend clocksource.
1295		 */
1296		clocksource_suspend_select(true);
1297	}
1298
1299	clocksource_watchdog_lock(&flags);
1300	clocksource_dequeue_watchdog(cs);
1301	list_del_init(&cs->list);
1302	clocksource_watchdog_unlock(&flags);
1303
1304	return 0;
1305}
1306
1307/**
1308 * clocksource_unregister - remove a registered clocksource
1309 * @cs:	clocksource to be unregistered
1310 */
1311int clocksource_unregister(struct clocksource *cs)
1312{
1313	int ret = 0;
1314
1315	mutex_lock(&clocksource_mutex);
1316	if (!list_empty(&cs->list))
1317		ret = clocksource_unbind(cs);
1318	mutex_unlock(&clocksource_mutex);
1319	return ret;
1320}
1321EXPORT_SYMBOL(clocksource_unregister);
1322
1323#ifdef CONFIG_SYSFS
1324/**
1325 * current_clocksource_show - sysfs interface for current clocksource
1326 * @dev:	unused
1327 * @attr:	unused
1328 * @buf:	char buffer to be filled with clocksource list
1329 *
1330 * Provides sysfs interface for listing current clocksource.
1331 */
1332static ssize_t current_clocksource_show(struct device *dev,
1333					struct device_attribute *attr,
1334					char *buf)
1335{
1336	ssize_t count = 0;
1337
1338	mutex_lock(&clocksource_mutex);
1339	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1340	mutex_unlock(&clocksource_mutex);
1341
1342	return count;
1343}
1344
1345ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1346{
1347	size_t ret = cnt;
1348
1349	/* strings from sysfs write are not 0 terminated! */
1350	if (!cnt || cnt >= CS_NAME_LEN)
1351		return -EINVAL;
1352
1353	/* strip of \n: */
1354	if (buf[cnt-1] == '\n')
1355		cnt--;
1356	if (cnt > 0)
1357		memcpy(dst, buf, cnt);
1358	dst[cnt] = 0;
1359	return ret;
1360}
1361
1362/**
1363 * current_clocksource_store - interface for manually overriding clocksource
1364 * @dev:	unused
1365 * @attr:	unused
1366 * @buf:	name of override clocksource
1367 * @count:	length of buffer
1368 *
1369 * Takes input from sysfs interface for manually overriding the default
1370 * clocksource selection.
1371 */
1372static ssize_t current_clocksource_store(struct device *dev,
1373					 struct device_attribute *attr,
1374					 const char *buf, size_t count)
1375{
1376	ssize_t ret;
1377
1378	mutex_lock(&clocksource_mutex);
1379
1380	ret = sysfs_get_uname(buf, override_name, count);
1381	if (ret >= 0)
1382		clocksource_select();
1383
1384	mutex_unlock(&clocksource_mutex);
1385
1386	return ret;
1387}
1388static DEVICE_ATTR_RW(current_clocksource);
1389
1390/**
1391 * unbind_clocksource_store - interface for manually unbinding clocksource
1392 * @dev:	unused
1393 * @attr:	unused
1394 * @buf:	unused
1395 * @count:	length of buffer
1396 *
1397 * Takes input from sysfs interface for manually unbinding a clocksource.
1398 */
1399static ssize_t unbind_clocksource_store(struct device *dev,
1400					struct device_attribute *attr,
1401					const char *buf, size_t count)
1402{
1403	struct clocksource *cs;
1404	char name[CS_NAME_LEN];
1405	ssize_t ret;
1406
1407	ret = sysfs_get_uname(buf, name, count);
1408	if (ret < 0)
1409		return ret;
1410
1411	ret = -ENODEV;
1412	mutex_lock(&clocksource_mutex);
1413	list_for_each_entry(cs, &clocksource_list, list) {
1414		if (strcmp(cs->name, name))
1415			continue;
1416		ret = clocksource_unbind(cs);
1417		break;
1418	}
1419	mutex_unlock(&clocksource_mutex);
1420
1421	return ret ? ret : count;
1422}
1423static DEVICE_ATTR_WO(unbind_clocksource);
1424
1425/**
1426 * available_clocksource_show - sysfs interface for listing clocksource
1427 * @dev:	unused
1428 * @attr:	unused
1429 * @buf:	char buffer to be filled with clocksource list
1430 *
1431 * Provides sysfs interface for listing registered clocksources
1432 */
1433static ssize_t available_clocksource_show(struct device *dev,
1434					  struct device_attribute *attr,
1435					  char *buf)
1436{
1437	struct clocksource *src;
1438	ssize_t count = 0;
1439
1440	mutex_lock(&clocksource_mutex);
1441	list_for_each_entry(src, &clocksource_list, list) {
1442		/*
1443		 * Don't show non-HRES clocksource if the tick code is
1444		 * in one shot mode (highres=on or nohz=on)
1445		 */
1446		if (!tick_oneshot_mode_active() ||
1447		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1448			count += snprintf(buf + count,
1449				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1450				  "%s ", src->name);
1451	}
1452	mutex_unlock(&clocksource_mutex);
1453
1454	count += snprintf(buf + count,
1455			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1456
1457	return count;
1458}
1459static DEVICE_ATTR_RO(available_clocksource);
1460
1461static struct attribute *clocksource_attrs[] = {
1462	&dev_attr_current_clocksource.attr,
1463	&dev_attr_unbind_clocksource.attr,
1464	&dev_attr_available_clocksource.attr,
1465	NULL
1466};
1467ATTRIBUTE_GROUPS(clocksource);
1468
1469static const struct bus_type clocksource_subsys = {
1470	.name = "clocksource",
1471	.dev_name = "clocksource",
1472};
1473
1474static struct device device_clocksource = {
1475	.id	= 0,
1476	.bus	= &clocksource_subsys,
1477	.groups	= clocksource_groups,
1478};
1479
1480static int __init init_clocksource_sysfs(void)
1481{
1482	int error = subsys_system_register(&clocksource_subsys, NULL);
1483
1484	if (!error)
1485		error = device_register(&device_clocksource);
1486
1487	return error;
1488}
1489
1490device_initcall(init_clocksource_sysfs);
1491#endif /* CONFIG_SYSFS */
1492
1493/**
1494 * boot_override_clocksource - boot clock override
1495 * @str:	override name
1496 *
1497 * Takes a clocksource= boot argument and uses it
1498 * as the clocksource override name.
1499 */
1500static int __init boot_override_clocksource(char* str)
1501{
1502	mutex_lock(&clocksource_mutex);
1503	if (str)
1504		strscpy(override_name, str, sizeof(override_name));
1505	mutex_unlock(&clocksource_mutex);
1506	return 1;
1507}
1508
1509__setup("clocksource=", boot_override_clocksource);
1510
1511/**
1512 * boot_override_clock - Compatibility layer for deprecated boot option
1513 * @str:	override name
1514 *
1515 * DEPRECATED! Takes a clock= boot argument and uses it
1516 * as the clocksource override name
1517 */
1518static int __init boot_override_clock(char* str)
1519{
1520	if (!strcmp(str, "pmtmr")) {
1521		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1522		return boot_override_clocksource("acpi_pm");
1523	}
1524	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1525	return boot_override_clocksource(str);
1526}
1527
1528__setup("clock=", boot_override_clock);
1529