1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/kernel/sys.c
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/mm_inline.h>
11#include <linux/utsname.h>
12#include <linux/mman.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
15#include <linux/highuid.h>
16#include <linux/fs.h>
17#include <linux/kmod.h>
18#include <linux/ksm.h>
19#include <linux/perf_event.h>
20#include <linux/resource.h>
21#include <linux/kernel.h>
22#include <linux/workqueue.h>
23#include <linux/capability.h>
24#include <linux/device.h>
25#include <linux/key.h>
26#include <linux/times.h>
27#include <linux/posix-timers.h>
28#include <linux/security.h>
29#include <linux/random.h>
30#include <linux/suspend.h>
31#include <linux/tty.h>
32#include <linux/signal.h>
33#include <linux/cn_proc.h>
34#include <linux/getcpu.h>
35#include <linux/task_io_accounting_ops.h>
36#include <linux/seccomp.h>
37#include <linux/cpu.h>
38#include <linux/personality.h>
39#include <linux/ptrace.h>
40#include <linux/fs_struct.h>
41#include <linux/file.h>
42#include <linux/mount.h>
43#include <linux/gfp.h>
44#include <linux/syscore_ops.h>
45#include <linux/version.h>
46#include <linux/ctype.h>
47#include <linux/syscall_user_dispatch.h>
48
49#include <linux/compat.h>
50#include <linux/syscalls.h>
51#include <linux/kprobes.h>
52#include <linux/user_namespace.h>
53#include <linux/time_namespace.h>
54#include <linux/binfmts.h>
55
56#include <linux/sched.h>
57#include <linux/sched/autogroup.h>
58#include <linux/sched/loadavg.h>
59#include <linux/sched/stat.h>
60#include <linux/sched/mm.h>
61#include <linux/sched/coredump.h>
62#include <linux/sched/task.h>
63#include <linux/sched/cputime.h>
64#include <linux/rcupdate.h>
65#include <linux/uidgid.h>
66#include <linux/cred.h>
67
68#include <linux/nospec.h>
69
70#include <linux/kmsg_dump.h>
71/* Move somewhere else to avoid recompiling? */
72#include <generated/utsrelease.h>
73
74#include <linux/uaccess.h>
75#include <asm/io.h>
76#include <asm/unistd.h>
77
78#include "uid16.h"
79
80#ifndef SET_UNALIGN_CTL
81# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
82#endif
83#ifndef GET_UNALIGN_CTL
84# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
85#endif
86#ifndef SET_FPEMU_CTL
87# define SET_FPEMU_CTL(a, b)	(-EINVAL)
88#endif
89#ifndef GET_FPEMU_CTL
90# define GET_FPEMU_CTL(a, b)	(-EINVAL)
91#endif
92#ifndef SET_FPEXC_CTL
93# define SET_FPEXC_CTL(a, b)	(-EINVAL)
94#endif
95#ifndef GET_FPEXC_CTL
96# define GET_FPEXC_CTL(a, b)	(-EINVAL)
97#endif
98#ifndef GET_ENDIAN
99# define GET_ENDIAN(a, b)	(-EINVAL)
100#endif
101#ifndef SET_ENDIAN
102# define SET_ENDIAN(a, b)	(-EINVAL)
103#endif
104#ifndef GET_TSC_CTL
105# define GET_TSC_CTL(a)		(-EINVAL)
106#endif
107#ifndef SET_TSC_CTL
108# define SET_TSC_CTL(a)		(-EINVAL)
109#endif
110#ifndef GET_FP_MODE
111# define GET_FP_MODE(a)		(-EINVAL)
112#endif
113#ifndef SET_FP_MODE
114# define SET_FP_MODE(a,b)	(-EINVAL)
115#endif
116#ifndef SVE_SET_VL
117# define SVE_SET_VL(a)		(-EINVAL)
118#endif
119#ifndef SVE_GET_VL
120# define SVE_GET_VL()		(-EINVAL)
121#endif
122#ifndef SME_SET_VL
123# define SME_SET_VL(a)		(-EINVAL)
124#endif
125#ifndef SME_GET_VL
126# define SME_GET_VL()		(-EINVAL)
127#endif
128#ifndef PAC_RESET_KEYS
129# define PAC_RESET_KEYS(a, b)	(-EINVAL)
130#endif
131#ifndef PAC_SET_ENABLED_KEYS
132# define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
133#endif
134#ifndef PAC_GET_ENABLED_KEYS
135# define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
136#endif
137#ifndef SET_TAGGED_ADDR_CTRL
138# define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
139#endif
140#ifndef GET_TAGGED_ADDR_CTRL
141# define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
142#endif
143#ifndef RISCV_V_SET_CONTROL
144# define RISCV_V_SET_CONTROL(a)		(-EINVAL)
145#endif
146#ifndef RISCV_V_GET_CONTROL
147# define RISCV_V_GET_CONTROL()		(-EINVAL)
148#endif
149
150/*
151 * this is where the system-wide overflow UID and GID are defined, for
152 * architectures that now have 32-bit UID/GID but didn't in the past
153 */
154
155int overflowuid = DEFAULT_OVERFLOWUID;
156int overflowgid = DEFAULT_OVERFLOWGID;
157
158EXPORT_SYMBOL(overflowuid);
159EXPORT_SYMBOL(overflowgid);
160
161/*
162 * the same as above, but for filesystems which can only store a 16-bit
163 * UID and GID. as such, this is needed on all architectures
164 */
165
166int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
167int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
168
169EXPORT_SYMBOL(fs_overflowuid);
170EXPORT_SYMBOL(fs_overflowgid);
171
172/*
173 * Returns true if current's euid is same as p's uid or euid,
174 * or has CAP_SYS_NICE to p's user_ns.
175 *
176 * Called with rcu_read_lock, creds are safe
177 */
178static bool set_one_prio_perm(struct task_struct *p)
179{
180	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
181
182	if (uid_eq(pcred->uid,  cred->euid) ||
183	    uid_eq(pcred->euid, cred->euid))
184		return true;
185	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
186		return true;
187	return false;
188}
189
190/*
191 * set the priority of a task
192 * - the caller must hold the RCU read lock
193 */
194static int set_one_prio(struct task_struct *p, int niceval, int error)
195{
196	int no_nice;
197
198	if (!set_one_prio_perm(p)) {
199		error = -EPERM;
200		goto out;
201	}
202	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
203		error = -EACCES;
204		goto out;
205	}
206	no_nice = security_task_setnice(p, niceval);
207	if (no_nice) {
208		error = no_nice;
209		goto out;
210	}
211	if (error == -ESRCH)
212		error = 0;
213	set_user_nice(p, niceval);
214out:
215	return error;
216}
217
218SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
219{
220	struct task_struct *g, *p;
221	struct user_struct *user;
222	const struct cred *cred = current_cred();
223	int error = -EINVAL;
224	struct pid *pgrp;
225	kuid_t uid;
226
227	if (which > PRIO_USER || which < PRIO_PROCESS)
228		goto out;
229
230	/* normalize: avoid signed division (rounding problems) */
231	error = -ESRCH;
232	if (niceval < MIN_NICE)
233		niceval = MIN_NICE;
234	if (niceval > MAX_NICE)
235		niceval = MAX_NICE;
236
237	rcu_read_lock();
238	switch (which) {
239	case PRIO_PROCESS:
240		if (who)
241			p = find_task_by_vpid(who);
242		else
243			p = current;
244		if (p)
245			error = set_one_prio(p, niceval, error);
246		break;
247	case PRIO_PGRP:
248		if (who)
249			pgrp = find_vpid(who);
250		else
251			pgrp = task_pgrp(current);
252		read_lock(&tasklist_lock);
253		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
254			error = set_one_prio(p, niceval, error);
255		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
256		read_unlock(&tasklist_lock);
257		break;
258	case PRIO_USER:
259		uid = make_kuid(cred->user_ns, who);
260		user = cred->user;
261		if (!who)
262			uid = cred->uid;
263		else if (!uid_eq(uid, cred->uid)) {
264			user = find_user(uid);
265			if (!user)
266				goto out_unlock;	/* No processes for this user */
267		}
268		for_each_process_thread(g, p) {
269			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
270				error = set_one_prio(p, niceval, error);
271		}
272		if (!uid_eq(uid, cred->uid))
273			free_uid(user);		/* For find_user() */
274		break;
275	}
276out_unlock:
277	rcu_read_unlock();
278out:
279	return error;
280}
281
282/*
283 * Ugh. To avoid negative return values, "getpriority()" will
284 * not return the normal nice-value, but a negated value that
285 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
286 * to stay compatible.
287 */
288SYSCALL_DEFINE2(getpriority, int, which, int, who)
289{
290	struct task_struct *g, *p;
291	struct user_struct *user;
292	const struct cred *cred = current_cred();
293	long niceval, retval = -ESRCH;
294	struct pid *pgrp;
295	kuid_t uid;
296
297	if (which > PRIO_USER || which < PRIO_PROCESS)
298		return -EINVAL;
299
300	rcu_read_lock();
301	switch (which) {
302	case PRIO_PROCESS:
303		if (who)
304			p = find_task_by_vpid(who);
305		else
306			p = current;
307		if (p) {
308			niceval = nice_to_rlimit(task_nice(p));
309			if (niceval > retval)
310				retval = niceval;
311		}
312		break;
313	case PRIO_PGRP:
314		if (who)
315			pgrp = find_vpid(who);
316		else
317			pgrp = task_pgrp(current);
318		read_lock(&tasklist_lock);
319		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
320			niceval = nice_to_rlimit(task_nice(p));
321			if (niceval > retval)
322				retval = niceval;
323		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
324		read_unlock(&tasklist_lock);
325		break;
326	case PRIO_USER:
327		uid = make_kuid(cred->user_ns, who);
328		user = cred->user;
329		if (!who)
330			uid = cred->uid;
331		else if (!uid_eq(uid, cred->uid)) {
332			user = find_user(uid);
333			if (!user)
334				goto out_unlock;	/* No processes for this user */
335		}
336		for_each_process_thread(g, p) {
337			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
338				niceval = nice_to_rlimit(task_nice(p));
339				if (niceval > retval)
340					retval = niceval;
341			}
342		}
343		if (!uid_eq(uid, cred->uid))
344			free_uid(user);		/* for find_user() */
345		break;
346	}
347out_unlock:
348	rcu_read_unlock();
349
350	return retval;
351}
352
353/*
354 * Unprivileged users may change the real gid to the effective gid
355 * or vice versa.  (BSD-style)
356 *
357 * If you set the real gid at all, or set the effective gid to a value not
358 * equal to the real gid, then the saved gid is set to the new effective gid.
359 *
360 * This makes it possible for a setgid program to completely drop its
361 * privileges, which is often a useful assertion to make when you are doing
362 * a security audit over a program.
363 *
364 * The general idea is that a program which uses just setregid() will be
365 * 100% compatible with BSD.  A program which uses just setgid() will be
366 * 100% compatible with POSIX with saved IDs.
367 *
368 * SMP: There are not races, the GIDs are checked only by filesystem
369 *      operations (as far as semantic preservation is concerned).
370 */
371#ifdef CONFIG_MULTIUSER
372long __sys_setregid(gid_t rgid, gid_t egid)
373{
374	struct user_namespace *ns = current_user_ns();
375	const struct cred *old;
376	struct cred *new;
377	int retval;
378	kgid_t krgid, kegid;
379
380	krgid = make_kgid(ns, rgid);
381	kegid = make_kgid(ns, egid);
382
383	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
384		return -EINVAL;
385	if ((egid != (gid_t) -1) && !gid_valid(kegid))
386		return -EINVAL;
387
388	new = prepare_creds();
389	if (!new)
390		return -ENOMEM;
391	old = current_cred();
392
393	retval = -EPERM;
394	if (rgid != (gid_t) -1) {
395		if (gid_eq(old->gid, krgid) ||
396		    gid_eq(old->egid, krgid) ||
397		    ns_capable_setid(old->user_ns, CAP_SETGID))
398			new->gid = krgid;
399		else
400			goto error;
401	}
402	if (egid != (gid_t) -1) {
403		if (gid_eq(old->gid, kegid) ||
404		    gid_eq(old->egid, kegid) ||
405		    gid_eq(old->sgid, kegid) ||
406		    ns_capable_setid(old->user_ns, CAP_SETGID))
407			new->egid = kegid;
408		else
409			goto error;
410	}
411
412	if (rgid != (gid_t) -1 ||
413	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
414		new->sgid = new->egid;
415	new->fsgid = new->egid;
416
417	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
418	if (retval < 0)
419		goto error;
420
421	return commit_creds(new);
422
423error:
424	abort_creds(new);
425	return retval;
426}
427
428SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
429{
430	return __sys_setregid(rgid, egid);
431}
432
433/*
434 * setgid() is implemented like SysV w/ SAVED_IDS
435 *
436 * SMP: Same implicit races as above.
437 */
438long __sys_setgid(gid_t gid)
439{
440	struct user_namespace *ns = current_user_ns();
441	const struct cred *old;
442	struct cred *new;
443	int retval;
444	kgid_t kgid;
445
446	kgid = make_kgid(ns, gid);
447	if (!gid_valid(kgid))
448		return -EINVAL;
449
450	new = prepare_creds();
451	if (!new)
452		return -ENOMEM;
453	old = current_cred();
454
455	retval = -EPERM;
456	if (ns_capable_setid(old->user_ns, CAP_SETGID))
457		new->gid = new->egid = new->sgid = new->fsgid = kgid;
458	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
459		new->egid = new->fsgid = kgid;
460	else
461		goto error;
462
463	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
464	if (retval < 0)
465		goto error;
466
467	return commit_creds(new);
468
469error:
470	abort_creds(new);
471	return retval;
472}
473
474SYSCALL_DEFINE1(setgid, gid_t, gid)
475{
476	return __sys_setgid(gid);
477}
478
479/*
480 * change the user struct in a credentials set to match the new UID
481 */
482static int set_user(struct cred *new)
483{
484	struct user_struct *new_user;
485
486	new_user = alloc_uid(new->uid);
487	if (!new_user)
488		return -EAGAIN;
489
490	free_uid(new->user);
491	new->user = new_user;
492	return 0;
493}
494
495static void flag_nproc_exceeded(struct cred *new)
496{
497	if (new->ucounts == current_ucounts())
498		return;
499
500	/*
501	 * We don't fail in case of NPROC limit excess here because too many
502	 * poorly written programs don't check set*uid() return code, assuming
503	 * it never fails if called by root.  We may still enforce NPROC limit
504	 * for programs doing set*uid()+execve() by harmlessly deferring the
505	 * failure to the execve() stage.
506	 */
507	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
508			new->user != INIT_USER)
509		current->flags |= PF_NPROC_EXCEEDED;
510	else
511		current->flags &= ~PF_NPROC_EXCEEDED;
512}
513
514/*
515 * Unprivileged users may change the real uid to the effective uid
516 * or vice versa.  (BSD-style)
517 *
518 * If you set the real uid at all, or set the effective uid to a value not
519 * equal to the real uid, then the saved uid is set to the new effective uid.
520 *
521 * This makes it possible for a setuid program to completely drop its
522 * privileges, which is often a useful assertion to make when you are doing
523 * a security audit over a program.
524 *
525 * The general idea is that a program which uses just setreuid() will be
526 * 100% compatible with BSD.  A program which uses just setuid() will be
527 * 100% compatible with POSIX with saved IDs.
528 */
529long __sys_setreuid(uid_t ruid, uid_t euid)
530{
531	struct user_namespace *ns = current_user_ns();
532	const struct cred *old;
533	struct cred *new;
534	int retval;
535	kuid_t kruid, keuid;
536
537	kruid = make_kuid(ns, ruid);
538	keuid = make_kuid(ns, euid);
539
540	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
541		return -EINVAL;
542	if ((euid != (uid_t) -1) && !uid_valid(keuid))
543		return -EINVAL;
544
545	new = prepare_creds();
546	if (!new)
547		return -ENOMEM;
548	old = current_cred();
549
550	retval = -EPERM;
551	if (ruid != (uid_t) -1) {
552		new->uid = kruid;
553		if (!uid_eq(old->uid, kruid) &&
554		    !uid_eq(old->euid, kruid) &&
555		    !ns_capable_setid(old->user_ns, CAP_SETUID))
556			goto error;
557	}
558
559	if (euid != (uid_t) -1) {
560		new->euid = keuid;
561		if (!uid_eq(old->uid, keuid) &&
562		    !uid_eq(old->euid, keuid) &&
563		    !uid_eq(old->suid, keuid) &&
564		    !ns_capable_setid(old->user_ns, CAP_SETUID))
565			goto error;
566	}
567
568	if (!uid_eq(new->uid, old->uid)) {
569		retval = set_user(new);
570		if (retval < 0)
571			goto error;
572	}
573	if (ruid != (uid_t) -1 ||
574	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
575		new->suid = new->euid;
576	new->fsuid = new->euid;
577
578	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
579	if (retval < 0)
580		goto error;
581
582	retval = set_cred_ucounts(new);
583	if (retval < 0)
584		goto error;
585
586	flag_nproc_exceeded(new);
587	return commit_creds(new);
588
589error:
590	abort_creds(new);
591	return retval;
592}
593
594SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
595{
596	return __sys_setreuid(ruid, euid);
597}
598
599/*
600 * setuid() is implemented like SysV with SAVED_IDS
601 *
602 * Note that SAVED_ID's is deficient in that a setuid root program
603 * like sendmail, for example, cannot set its uid to be a normal
604 * user and then switch back, because if you're root, setuid() sets
605 * the saved uid too.  If you don't like this, blame the bright people
606 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
607 * will allow a root program to temporarily drop privileges and be able to
608 * regain them by swapping the real and effective uid.
609 */
610long __sys_setuid(uid_t uid)
611{
612	struct user_namespace *ns = current_user_ns();
613	const struct cred *old;
614	struct cred *new;
615	int retval;
616	kuid_t kuid;
617
618	kuid = make_kuid(ns, uid);
619	if (!uid_valid(kuid))
620		return -EINVAL;
621
622	new = prepare_creds();
623	if (!new)
624		return -ENOMEM;
625	old = current_cred();
626
627	retval = -EPERM;
628	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
629		new->suid = new->uid = kuid;
630		if (!uid_eq(kuid, old->uid)) {
631			retval = set_user(new);
632			if (retval < 0)
633				goto error;
634		}
635	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
636		goto error;
637	}
638
639	new->fsuid = new->euid = kuid;
640
641	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
642	if (retval < 0)
643		goto error;
644
645	retval = set_cred_ucounts(new);
646	if (retval < 0)
647		goto error;
648
649	flag_nproc_exceeded(new);
650	return commit_creds(new);
651
652error:
653	abort_creds(new);
654	return retval;
655}
656
657SYSCALL_DEFINE1(setuid, uid_t, uid)
658{
659	return __sys_setuid(uid);
660}
661
662
663/*
664 * This function implements a generic ability to update ruid, euid,
665 * and suid.  This allows you to implement the 4.4 compatible seteuid().
666 */
667long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
668{
669	struct user_namespace *ns = current_user_ns();
670	const struct cred *old;
671	struct cred *new;
672	int retval;
673	kuid_t kruid, keuid, ksuid;
674	bool ruid_new, euid_new, suid_new;
675
676	kruid = make_kuid(ns, ruid);
677	keuid = make_kuid(ns, euid);
678	ksuid = make_kuid(ns, suid);
679
680	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
681		return -EINVAL;
682
683	if ((euid != (uid_t) -1) && !uid_valid(keuid))
684		return -EINVAL;
685
686	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
687		return -EINVAL;
688
689	old = current_cred();
690
691	/* check for no-op */
692	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
693	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
694				    uid_eq(keuid, old->fsuid))) &&
695	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
696		return 0;
697
698	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
699		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
700	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
701		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
702	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
703		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
704	if ((ruid_new || euid_new || suid_new) &&
705	    !ns_capable_setid(old->user_ns, CAP_SETUID))
706		return -EPERM;
707
708	new = prepare_creds();
709	if (!new)
710		return -ENOMEM;
711
712	if (ruid != (uid_t) -1) {
713		new->uid = kruid;
714		if (!uid_eq(kruid, old->uid)) {
715			retval = set_user(new);
716			if (retval < 0)
717				goto error;
718		}
719	}
720	if (euid != (uid_t) -1)
721		new->euid = keuid;
722	if (suid != (uid_t) -1)
723		new->suid = ksuid;
724	new->fsuid = new->euid;
725
726	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
727	if (retval < 0)
728		goto error;
729
730	retval = set_cred_ucounts(new);
731	if (retval < 0)
732		goto error;
733
734	flag_nproc_exceeded(new);
735	return commit_creds(new);
736
737error:
738	abort_creds(new);
739	return retval;
740}
741
742SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
743{
744	return __sys_setresuid(ruid, euid, suid);
745}
746
747SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
748{
749	const struct cred *cred = current_cred();
750	int retval;
751	uid_t ruid, euid, suid;
752
753	ruid = from_kuid_munged(cred->user_ns, cred->uid);
754	euid = from_kuid_munged(cred->user_ns, cred->euid);
755	suid = from_kuid_munged(cred->user_ns, cred->suid);
756
757	retval = put_user(ruid, ruidp);
758	if (!retval) {
759		retval = put_user(euid, euidp);
760		if (!retval)
761			return put_user(suid, suidp);
762	}
763	return retval;
764}
765
766/*
767 * Same as above, but for rgid, egid, sgid.
768 */
769long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
770{
771	struct user_namespace *ns = current_user_ns();
772	const struct cred *old;
773	struct cred *new;
774	int retval;
775	kgid_t krgid, kegid, ksgid;
776	bool rgid_new, egid_new, sgid_new;
777
778	krgid = make_kgid(ns, rgid);
779	kegid = make_kgid(ns, egid);
780	ksgid = make_kgid(ns, sgid);
781
782	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
783		return -EINVAL;
784	if ((egid != (gid_t) -1) && !gid_valid(kegid))
785		return -EINVAL;
786	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
787		return -EINVAL;
788
789	old = current_cred();
790
791	/* check for no-op */
792	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
793	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
794				    gid_eq(kegid, old->fsgid))) &&
795	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
796		return 0;
797
798	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
799		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
800	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
801		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
802	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
803		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
804	if ((rgid_new || egid_new || sgid_new) &&
805	    !ns_capable_setid(old->user_ns, CAP_SETGID))
806		return -EPERM;
807
808	new = prepare_creds();
809	if (!new)
810		return -ENOMEM;
811
812	if (rgid != (gid_t) -1)
813		new->gid = krgid;
814	if (egid != (gid_t) -1)
815		new->egid = kegid;
816	if (sgid != (gid_t) -1)
817		new->sgid = ksgid;
818	new->fsgid = new->egid;
819
820	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
821	if (retval < 0)
822		goto error;
823
824	return commit_creds(new);
825
826error:
827	abort_creds(new);
828	return retval;
829}
830
831SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
832{
833	return __sys_setresgid(rgid, egid, sgid);
834}
835
836SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
837{
838	const struct cred *cred = current_cred();
839	int retval;
840	gid_t rgid, egid, sgid;
841
842	rgid = from_kgid_munged(cred->user_ns, cred->gid);
843	egid = from_kgid_munged(cred->user_ns, cred->egid);
844	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
845
846	retval = put_user(rgid, rgidp);
847	if (!retval) {
848		retval = put_user(egid, egidp);
849		if (!retval)
850			retval = put_user(sgid, sgidp);
851	}
852
853	return retval;
854}
855
856
857/*
858 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
859 * is used for "access()" and for the NFS daemon (letting nfsd stay at
860 * whatever uid it wants to). It normally shadows "euid", except when
861 * explicitly set by setfsuid() or for access..
862 */
863long __sys_setfsuid(uid_t uid)
864{
865	const struct cred *old;
866	struct cred *new;
867	uid_t old_fsuid;
868	kuid_t kuid;
869
870	old = current_cred();
871	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
872
873	kuid = make_kuid(old->user_ns, uid);
874	if (!uid_valid(kuid))
875		return old_fsuid;
876
877	new = prepare_creds();
878	if (!new)
879		return old_fsuid;
880
881	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
882	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
883	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
884		if (!uid_eq(kuid, old->fsuid)) {
885			new->fsuid = kuid;
886			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
887				goto change_okay;
888		}
889	}
890
891	abort_creds(new);
892	return old_fsuid;
893
894change_okay:
895	commit_creds(new);
896	return old_fsuid;
897}
898
899SYSCALL_DEFINE1(setfsuid, uid_t, uid)
900{
901	return __sys_setfsuid(uid);
902}
903
904/*
905 * Samma p�� svenska..
906 */
907long __sys_setfsgid(gid_t gid)
908{
909	const struct cred *old;
910	struct cred *new;
911	gid_t old_fsgid;
912	kgid_t kgid;
913
914	old = current_cred();
915	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
916
917	kgid = make_kgid(old->user_ns, gid);
918	if (!gid_valid(kgid))
919		return old_fsgid;
920
921	new = prepare_creds();
922	if (!new)
923		return old_fsgid;
924
925	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
926	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
927	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
928		if (!gid_eq(kgid, old->fsgid)) {
929			new->fsgid = kgid;
930			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
931				goto change_okay;
932		}
933	}
934
935	abort_creds(new);
936	return old_fsgid;
937
938change_okay:
939	commit_creds(new);
940	return old_fsgid;
941}
942
943SYSCALL_DEFINE1(setfsgid, gid_t, gid)
944{
945	return __sys_setfsgid(gid);
946}
947#endif /* CONFIG_MULTIUSER */
948
949/**
950 * sys_getpid - return the thread group id of the current process
951 *
952 * Note, despite the name, this returns the tgid not the pid.  The tgid and
953 * the pid are identical unless CLONE_THREAD was specified on clone() in
954 * which case the tgid is the same in all threads of the same group.
955 *
956 * This is SMP safe as current->tgid does not change.
957 */
958SYSCALL_DEFINE0(getpid)
959{
960	return task_tgid_vnr(current);
961}
962
963/* Thread ID - the internal kernel "pid" */
964SYSCALL_DEFINE0(gettid)
965{
966	return task_pid_vnr(current);
967}
968
969/*
970 * Accessing ->real_parent is not SMP-safe, it could
971 * change from under us. However, we can use a stale
972 * value of ->real_parent under rcu_read_lock(), see
973 * release_task()->call_rcu(delayed_put_task_struct).
974 */
975SYSCALL_DEFINE0(getppid)
976{
977	int pid;
978
979	rcu_read_lock();
980	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
981	rcu_read_unlock();
982
983	return pid;
984}
985
986SYSCALL_DEFINE0(getuid)
987{
988	/* Only we change this so SMP safe */
989	return from_kuid_munged(current_user_ns(), current_uid());
990}
991
992SYSCALL_DEFINE0(geteuid)
993{
994	/* Only we change this so SMP safe */
995	return from_kuid_munged(current_user_ns(), current_euid());
996}
997
998SYSCALL_DEFINE0(getgid)
999{
1000	/* Only we change this so SMP safe */
1001	return from_kgid_munged(current_user_ns(), current_gid());
1002}
1003
1004SYSCALL_DEFINE0(getegid)
1005{
1006	/* Only we change this so SMP safe */
1007	return from_kgid_munged(current_user_ns(), current_egid());
1008}
1009
1010static void do_sys_times(struct tms *tms)
1011{
1012	u64 tgutime, tgstime, cutime, cstime;
1013
1014	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1015	cutime = current->signal->cutime;
1016	cstime = current->signal->cstime;
1017	tms->tms_utime = nsec_to_clock_t(tgutime);
1018	tms->tms_stime = nsec_to_clock_t(tgstime);
1019	tms->tms_cutime = nsec_to_clock_t(cutime);
1020	tms->tms_cstime = nsec_to_clock_t(cstime);
1021}
1022
1023SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1024{
1025	if (tbuf) {
1026		struct tms tmp;
1027
1028		do_sys_times(&tmp);
1029		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1030			return -EFAULT;
1031	}
1032	force_successful_syscall_return();
1033	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1034}
1035
1036#ifdef CONFIG_COMPAT
1037static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1038{
1039	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1040}
1041
1042COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1043{
1044	if (tbuf) {
1045		struct tms tms;
1046		struct compat_tms tmp;
1047
1048		do_sys_times(&tms);
1049		/* Convert our struct tms to the compat version. */
1050		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1051		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1052		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1053		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1054		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1055			return -EFAULT;
1056	}
1057	force_successful_syscall_return();
1058	return compat_jiffies_to_clock_t(jiffies);
1059}
1060#endif
1061
1062/*
1063 * This needs some heavy checking ...
1064 * I just haven't the stomach for it. I also don't fully
1065 * understand sessions/pgrp etc. Let somebody who does explain it.
1066 *
1067 * OK, I think I have the protection semantics right.... this is really
1068 * only important on a multi-user system anyway, to make sure one user
1069 * can't send a signal to a process owned by another.  -TYT, 12/12/91
1070 *
1071 * !PF_FORKNOEXEC check to conform completely to POSIX.
1072 */
1073SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1074{
1075	struct task_struct *p;
1076	struct task_struct *group_leader = current->group_leader;
1077	struct pid *pgrp;
1078	int err;
1079
1080	if (!pid)
1081		pid = task_pid_vnr(group_leader);
1082	if (!pgid)
1083		pgid = pid;
1084	if (pgid < 0)
1085		return -EINVAL;
1086	rcu_read_lock();
1087
1088	/* From this point forward we keep holding onto the tasklist lock
1089	 * so that our parent does not change from under us. -DaveM
1090	 */
1091	write_lock_irq(&tasklist_lock);
1092
1093	err = -ESRCH;
1094	p = find_task_by_vpid(pid);
1095	if (!p)
1096		goto out;
1097
1098	err = -EINVAL;
1099	if (!thread_group_leader(p))
1100		goto out;
1101
1102	if (same_thread_group(p->real_parent, group_leader)) {
1103		err = -EPERM;
1104		if (task_session(p) != task_session(group_leader))
1105			goto out;
1106		err = -EACCES;
1107		if (!(p->flags & PF_FORKNOEXEC))
1108			goto out;
1109	} else {
1110		err = -ESRCH;
1111		if (p != group_leader)
1112			goto out;
1113	}
1114
1115	err = -EPERM;
1116	if (p->signal->leader)
1117		goto out;
1118
1119	pgrp = task_pid(p);
1120	if (pgid != pid) {
1121		struct task_struct *g;
1122
1123		pgrp = find_vpid(pgid);
1124		g = pid_task(pgrp, PIDTYPE_PGID);
1125		if (!g || task_session(g) != task_session(group_leader))
1126			goto out;
1127	}
1128
1129	err = security_task_setpgid(p, pgid);
1130	if (err)
1131		goto out;
1132
1133	if (task_pgrp(p) != pgrp)
1134		change_pid(p, PIDTYPE_PGID, pgrp);
1135
1136	err = 0;
1137out:
1138	/* All paths lead to here, thus we are safe. -DaveM */
1139	write_unlock_irq(&tasklist_lock);
1140	rcu_read_unlock();
1141	return err;
1142}
1143
1144static int do_getpgid(pid_t pid)
1145{
1146	struct task_struct *p;
1147	struct pid *grp;
1148	int retval;
1149
1150	rcu_read_lock();
1151	if (!pid)
1152		grp = task_pgrp(current);
1153	else {
1154		retval = -ESRCH;
1155		p = find_task_by_vpid(pid);
1156		if (!p)
1157			goto out;
1158		grp = task_pgrp(p);
1159		if (!grp)
1160			goto out;
1161
1162		retval = security_task_getpgid(p);
1163		if (retval)
1164			goto out;
1165	}
1166	retval = pid_vnr(grp);
1167out:
1168	rcu_read_unlock();
1169	return retval;
1170}
1171
1172SYSCALL_DEFINE1(getpgid, pid_t, pid)
1173{
1174	return do_getpgid(pid);
1175}
1176
1177#ifdef __ARCH_WANT_SYS_GETPGRP
1178
1179SYSCALL_DEFINE0(getpgrp)
1180{
1181	return do_getpgid(0);
1182}
1183
1184#endif
1185
1186SYSCALL_DEFINE1(getsid, pid_t, pid)
1187{
1188	struct task_struct *p;
1189	struct pid *sid;
1190	int retval;
1191
1192	rcu_read_lock();
1193	if (!pid)
1194		sid = task_session(current);
1195	else {
1196		retval = -ESRCH;
1197		p = find_task_by_vpid(pid);
1198		if (!p)
1199			goto out;
1200		sid = task_session(p);
1201		if (!sid)
1202			goto out;
1203
1204		retval = security_task_getsid(p);
1205		if (retval)
1206			goto out;
1207	}
1208	retval = pid_vnr(sid);
1209out:
1210	rcu_read_unlock();
1211	return retval;
1212}
1213
1214static void set_special_pids(struct pid *pid)
1215{
1216	struct task_struct *curr = current->group_leader;
1217
1218	if (task_session(curr) != pid)
1219		change_pid(curr, PIDTYPE_SID, pid);
1220
1221	if (task_pgrp(curr) != pid)
1222		change_pid(curr, PIDTYPE_PGID, pid);
1223}
1224
1225int ksys_setsid(void)
1226{
1227	struct task_struct *group_leader = current->group_leader;
1228	struct pid *sid = task_pid(group_leader);
1229	pid_t session = pid_vnr(sid);
1230	int err = -EPERM;
1231
1232	write_lock_irq(&tasklist_lock);
1233	/* Fail if I am already a session leader */
1234	if (group_leader->signal->leader)
1235		goto out;
1236
1237	/* Fail if a process group id already exists that equals the
1238	 * proposed session id.
1239	 */
1240	if (pid_task(sid, PIDTYPE_PGID))
1241		goto out;
1242
1243	group_leader->signal->leader = 1;
1244	set_special_pids(sid);
1245
1246	proc_clear_tty(group_leader);
1247
1248	err = session;
1249out:
1250	write_unlock_irq(&tasklist_lock);
1251	if (err > 0) {
1252		proc_sid_connector(group_leader);
1253		sched_autogroup_create_attach(group_leader);
1254	}
1255	return err;
1256}
1257
1258SYSCALL_DEFINE0(setsid)
1259{
1260	return ksys_setsid();
1261}
1262
1263DECLARE_RWSEM(uts_sem);
1264
1265#ifdef COMPAT_UTS_MACHINE
1266#define override_architecture(name) \
1267	(personality(current->personality) == PER_LINUX32 && \
1268	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1269		      sizeof(COMPAT_UTS_MACHINE)))
1270#else
1271#define override_architecture(name)	0
1272#endif
1273
1274/*
1275 * Work around broken programs that cannot handle "Linux 3.0".
1276 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1277 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1278 * 2.6.60.
1279 */
1280static int override_release(char __user *release, size_t len)
1281{
1282	int ret = 0;
1283
1284	if (current->personality & UNAME26) {
1285		const char *rest = UTS_RELEASE;
1286		char buf[65] = { 0 };
1287		int ndots = 0;
1288		unsigned v;
1289		size_t copy;
1290
1291		while (*rest) {
1292			if (*rest == '.' && ++ndots >= 3)
1293				break;
1294			if (!isdigit(*rest) && *rest != '.')
1295				break;
1296			rest++;
1297		}
1298		v = LINUX_VERSION_PATCHLEVEL + 60;
1299		copy = clamp_t(size_t, len, 1, sizeof(buf));
1300		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1301		ret = copy_to_user(release, buf, copy + 1);
1302	}
1303	return ret;
1304}
1305
1306SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1307{
1308	struct new_utsname tmp;
1309
1310	down_read(&uts_sem);
1311	memcpy(&tmp, utsname(), sizeof(tmp));
1312	up_read(&uts_sem);
1313	if (copy_to_user(name, &tmp, sizeof(tmp)))
1314		return -EFAULT;
1315
1316	if (override_release(name->release, sizeof(name->release)))
1317		return -EFAULT;
1318	if (override_architecture(name))
1319		return -EFAULT;
1320	return 0;
1321}
1322
1323#ifdef __ARCH_WANT_SYS_OLD_UNAME
1324/*
1325 * Old cruft
1326 */
1327SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1328{
1329	struct old_utsname tmp;
1330
1331	if (!name)
1332		return -EFAULT;
1333
1334	down_read(&uts_sem);
1335	memcpy(&tmp, utsname(), sizeof(tmp));
1336	up_read(&uts_sem);
1337	if (copy_to_user(name, &tmp, sizeof(tmp)))
1338		return -EFAULT;
1339
1340	if (override_release(name->release, sizeof(name->release)))
1341		return -EFAULT;
1342	if (override_architecture(name))
1343		return -EFAULT;
1344	return 0;
1345}
1346
1347SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1348{
1349	struct oldold_utsname tmp;
1350
1351	if (!name)
1352		return -EFAULT;
1353
1354	memset(&tmp, 0, sizeof(tmp));
1355
1356	down_read(&uts_sem);
1357	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1358	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1359	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1360	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1361	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1362	up_read(&uts_sem);
1363	if (copy_to_user(name, &tmp, sizeof(tmp)))
1364		return -EFAULT;
1365
1366	if (override_architecture(name))
1367		return -EFAULT;
1368	if (override_release(name->release, sizeof(name->release)))
1369		return -EFAULT;
1370	return 0;
1371}
1372#endif
1373
1374SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1375{
1376	int errno;
1377	char tmp[__NEW_UTS_LEN];
1378
1379	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1380		return -EPERM;
1381
1382	if (len < 0 || len > __NEW_UTS_LEN)
1383		return -EINVAL;
1384	errno = -EFAULT;
1385	if (!copy_from_user(tmp, name, len)) {
1386		struct new_utsname *u;
1387
1388		add_device_randomness(tmp, len);
1389		down_write(&uts_sem);
1390		u = utsname();
1391		memcpy(u->nodename, tmp, len);
1392		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1393		errno = 0;
1394		uts_proc_notify(UTS_PROC_HOSTNAME);
1395		up_write(&uts_sem);
1396	}
1397	return errno;
1398}
1399
1400#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1401
1402SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1403{
1404	int i;
1405	struct new_utsname *u;
1406	char tmp[__NEW_UTS_LEN + 1];
1407
1408	if (len < 0)
1409		return -EINVAL;
1410	down_read(&uts_sem);
1411	u = utsname();
1412	i = 1 + strlen(u->nodename);
1413	if (i > len)
1414		i = len;
1415	memcpy(tmp, u->nodename, i);
1416	up_read(&uts_sem);
1417	if (copy_to_user(name, tmp, i))
1418		return -EFAULT;
1419	return 0;
1420}
1421
1422#endif
1423
1424/*
1425 * Only setdomainname; getdomainname can be implemented by calling
1426 * uname()
1427 */
1428SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1429{
1430	int errno;
1431	char tmp[__NEW_UTS_LEN];
1432
1433	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1434		return -EPERM;
1435	if (len < 0 || len > __NEW_UTS_LEN)
1436		return -EINVAL;
1437
1438	errno = -EFAULT;
1439	if (!copy_from_user(tmp, name, len)) {
1440		struct new_utsname *u;
1441
1442		add_device_randomness(tmp, len);
1443		down_write(&uts_sem);
1444		u = utsname();
1445		memcpy(u->domainname, tmp, len);
1446		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1447		errno = 0;
1448		uts_proc_notify(UTS_PROC_DOMAINNAME);
1449		up_write(&uts_sem);
1450	}
1451	return errno;
1452}
1453
1454/* make sure you are allowed to change @tsk limits before calling this */
1455static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1456		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1457{
1458	struct rlimit *rlim;
1459	int retval = 0;
1460
1461	if (resource >= RLIM_NLIMITS)
1462		return -EINVAL;
1463	resource = array_index_nospec(resource, RLIM_NLIMITS);
1464
1465	if (new_rlim) {
1466		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1467			return -EINVAL;
1468		if (resource == RLIMIT_NOFILE &&
1469				new_rlim->rlim_max > sysctl_nr_open)
1470			return -EPERM;
1471	}
1472
1473	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1474	rlim = tsk->signal->rlim + resource;
1475	task_lock(tsk->group_leader);
1476	if (new_rlim) {
1477		/*
1478		 * Keep the capable check against init_user_ns until cgroups can
1479		 * contain all limits.
1480		 */
1481		if (new_rlim->rlim_max > rlim->rlim_max &&
1482				!capable(CAP_SYS_RESOURCE))
1483			retval = -EPERM;
1484		if (!retval)
1485			retval = security_task_setrlimit(tsk, resource, new_rlim);
1486	}
1487	if (!retval) {
1488		if (old_rlim)
1489			*old_rlim = *rlim;
1490		if (new_rlim)
1491			*rlim = *new_rlim;
1492	}
1493	task_unlock(tsk->group_leader);
1494
1495	/*
1496	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1497	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1498	 * ignores the rlimit.
1499	 */
1500	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1501	    new_rlim->rlim_cur != RLIM_INFINITY &&
1502	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1503		/*
1504		 * update_rlimit_cpu can fail if the task is exiting, but there
1505		 * may be other tasks in the thread group that are not exiting,
1506		 * and they need their cpu timers adjusted.
1507		 *
1508		 * The group_leader is the last task to be released, so if we
1509		 * cannot update_rlimit_cpu on it, then the entire process is
1510		 * exiting and we do not need to update at all.
1511		 */
1512		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1513	}
1514
1515	return retval;
1516}
1517
1518SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1519{
1520	struct rlimit value;
1521	int ret;
1522
1523	ret = do_prlimit(current, resource, NULL, &value);
1524	if (!ret)
1525		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1526
1527	return ret;
1528}
1529
1530#ifdef CONFIG_COMPAT
1531
1532COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1533		       struct compat_rlimit __user *, rlim)
1534{
1535	struct rlimit r;
1536	struct compat_rlimit r32;
1537
1538	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1539		return -EFAULT;
1540
1541	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1542		r.rlim_cur = RLIM_INFINITY;
1543	else
1544		r.rlim_cur = r32.rlim_cur;
1545	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1546		r.rlim_max = RLIM_INFINITY;
1547	else
1548		r.rlim_max = r32.rlim_max;
1549	return do_prlimit(current, resource, &r, NULL);
1550}
1551
1552COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1553		       struct compat_rlimit __user *, rlim)
1554{
1555	struct rlimit r;
1556	int ret;
1557
1558	ret = do_prlimit(current, resource, NULL, &r);
1559	if (!ret) {
1560		struct compat_rlimit r32;
1561		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1562			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1563		else
1564			r32.rlim_cur = r.rlim_cur;
1565		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1566			r32.rlim_max = COMPAT_RLIM_INFINITY;
1567		else
1568			r32.rlim_max = r.rlim_max;
1569
1570		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1571			return -EFAULT;
1572	}
1573	return ret;
1574}
1575
1576#endif
1577
1578#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1579
1580/*
1581 *	Back compatibility for getrlimit. Needed for some apps.
1582 */
1583SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1584		struct rlimit __user *, rlim)
1585{
1586	struct rlimit x;
1587	if (resource >= RLIM_NLIMITS)
1588		return -EINVAL;
1589
1590	resource = array_index_nospec(resource, RLIM_NLIMITS);
1591	task_lock(current->group_leader);
1592	x = current->signal->rlim[resource];
1593	task_unlock(current->group_leader);
1594	if (x.rlim_cur > 0x7FFFFFFF)
1595		x.rlim_cur = 0x7FFFFFFF;
1596	if (x.rlim_max > 0x7FFFFFFF)
1597		x.rlim_max = 0x7FFFFFFF;
1598	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1599}
1600
1601#ifdef CONFIG_COMPAT
1602COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1603		       struct compat_rlimit __user *, rlim)
1604{
1605	struct rlimit r;
1606
1607	if (resource >= RLIM_NLIMITS)
1608		return -EINVAL;
1609
1610	resource = array_index_nospec(resource, RLIM_NLIMITS);
1611	task_lock(current->group_leader);
1612	r = current->signal->rlim[resource];
1613	task_unlock(current->group_leader);
1614	if (r.rlim_cur > 0x7FFFFFFF)
1615		r.rlim_cur = 0x7FFFFFFF;
1616	if (r.rlim_max > 0x7FFFFFFF)
1617		r.rlim_max = 0x7FFFFFFF;
1618
1619	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1620	    put_user(r.rlim_max, &rlim->rlim_max))
1621		return -EFAULT;
1622	return 0;
1623}
1624#endif
1625
1626#endif
1627
1628static inline bool rlim64_is_infinity(__u64 rlim64)
1629{
1630#if BITS_PER_LONG < 64
1631	return rlim64 >= ULONG_MAX;
1632#else
1633	return rlim64 == RLIM64_INFINITY;
1634#endif
1635}
1636
1637static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1638{
1639	if (rlim->rlim_cur == RLIM_INFINITY)
1640		rlim64->rlim_cur = RLIM64_INFINITY;
1641	else
1642		rlim64->rlim_cur = rlim->rlim_cur;
1643	if (rlim->rlim_max == RLIM_INFINITY)
1644		rlim64->rlim_max = RLIM64_INFINITY;
1645	else
1646		rlim64->rlim_max = rlim->rlim_max;
1647}
1648
1649static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1650{
1651	if (rlim64_is_infinity(rlim64->rlim_cur))
1652		rlim->rlim_cur = RLIM_INFINITY;
1653	else
1654		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1655	if (rlim64_is_infinity(rlim64->rlim_max))
1656		rlim->rlim_max = RLIM_INFINITY;
1657	else
1658		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1659}
1660
1661/* rcu lock must be held */
1662static int check_prlimit_permission(struct task_struct *task,
1663				    unsigned int flags)
1664{
1665	const struct cred *cred = current_cred(), *tcred;
1666	bool id_match;
1667
1668	if (current == task)
1669		return 0;
1670
1671	tcred = __task_cred(task);
1672	id_match = (uid_eq(cred->uid, tcred->euid) &&
1673		    uid_eq(cred->uid, tcred->suid) &&
1674		    uid_eq(cred->uid, tcred->uid)  &&
1675		    gid_eq(cred->gid, tcred->egid) &&
1676		    gid_eq(cred->gid, tcred->sgid) &&
1677		    gid_eq(cred->gid, tcred->gid));
1678	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1679		return -EPERM;
1680
1681	return security_task_prlimit(cred, tcred, flags);
1682}
1683
1684SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1685		const struct rlimit64 __user *, new_rlim,
1686		struct rlimit64 __user *, old_rlim)
1687{
1688	struct rlimit64 old64, new64;
1689	struct rlimit old, new;
1690	struct task_struct *tsk;
1691	unsigned int checkflags = 0;
1692	int ret;
1693
1694	if (old_rlim)
1695		checkflags |= LSM_PRLIMIT_READ;
1696
1697	if (new_rlim) {
1698		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1699			return -EFAULT;
1700		rlim64_to_rlim(&new64, &new);
1701		checkflags |= LSM_PRLIMIT_WRITE;
1702	}
1703
1704	rcu_read_lock();
1705	tsk = pid ? find_task_by_vpid(pid) : current;
1706	if (!tsk) {
1707		rcu_read_unlock();
1708		return -ESRCH;
1709	}
1710	ret = check_prlimit_permission(tsk, checkflags);
1711	if (ret) {
1712		rcu_read_unlock();
1713		return ret;
1714	}
1715	get_task_struct(tsk);
1716	rcu_read_unlock();
1717
1718	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1719			old_rlim ? &old : NULL);
1720
1721	if (!ret && old_rlim) {
1722		rlim_to_rlim64(&old, &old64);
1723		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1724			ret = -EFAULT;
1725	}
1726
1727	put_task_struct(tsk);
1728	return ret;
1729}
1730
1731SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1732{
1733	struct rlimit new_rlim;
1734
1735	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1736		return -EFAULT;
1737	return do_prlimit(current, resource, &new_rlim, NULL);
1738}
1739
1740/*
1741 * It would make sense to put struct rusage in the task_struct,
1742 * except that would make the task_struct be *really big*.  After
1743 * task_struct gets moved into malloc'ed memory, it would
1744 * make sense to do this.  It will make moving the rest of the information
1745 * a lot simpler!  (Which we're not doing right now because we're not
1746 * measuring them yet).
1747 *
1748 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1749 * races with threads incrementing their own counters.  But since word
1750 * reads are atomic, we either get new values or old values and we don't
1751 * care which for the sums.  We always take the siglock to protect reading
1752 * the c* fields from p->signal from races with exit.c updating those
1753 * fields when reaping, so a sample either gets all the additions of a
1754 * given child after it's reaped, or none so this sample is before reaping.
1755 *
1756 * Locking:
1757 * We need to take the siglock for CHILDEREN, SELF and BOTH
1758 * for  the cases current multithreaded, non-current single threaded
1759 * non-current multithreaded.  Thread traversal is now safe with
1760 * the siglock held.
1761 * Strictly speaking, we donot need to take the siglock if we are current and
1762 * single threaded,  as no one else can take our signal_struct away, no one
1763 * else can  reap the  children to update signal->c* counters, and no one else
1764 * can race with the signal-> fields. If we do not take any lock, the
1765 * signal-> fields could be read out of order while another thread was just
1766 * exiting. So we should  place a read memory barrier when we avoid the lock.
1767 * On the writer side,  write memory barrier is implied in  __exit_signal
1768 * as __exit_signal releases  the siglock spinlock after updating the signal->
1769 * fields. But we don't do this yet to keep things simple.
1770 *
1771 */
1772
1773static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1774{
1775	r->ru_nvcsw += t->nvcsw;
1776	r->ru_nivcsw += t->nivcsw;
1777	r->ru_minflt += t->min_flt;
1778	r->ru_majflt += t->maj_flt;
1779	r->ru_inblock += task_io_get_inblock(t);
1780	r->ru_oublock += task_io_get_oublock(t);
1781}
1782
1783void getrusage(struct task_struct *p, int who, struct rusage *r)
1784{
1785	struct task_struct *t;
1786	unsigned long flags;
1787	u64 tgutime, tgstime, utime, stime;
1788	unsigned long maxrss;
1789	struct mm_struct *mm;
1790	struct signal_struct *sig = p->signal;
1791	unsigned int seq = 0;
1792
1793retry:
1794	memset(r, 0, sizeof(*r));
1795	utime = stime = 0;
1796	maxrss = 0;
1797
1798	if (who == RUSAGE_THREAD) {
1799		task_cputime_adjusted(current, &utime, &stime);
1800		accumulate_thread_rusage(p, r);
1801		maxrss = sig->maxrss;
1802		goto out_thread;
1803	}
1804
1805	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1806
1807	switch (who) {
1808	case RUSAGE_BOTH:
1809	case RUSAGE_CHILDREN:
1810		utime = sig->cutime;
1811		stime = sig->cstime;
1812		r->ru_nvcsw = sig->cnvcsw;
1813		r->ru_nivcsw = sig->cnivcsw;
1814		r->ru_minflt = sig->cmin_flt;
1815		r->ru_majflt = sig->cmaj_flt;
1816		r->ru_inblock = sig->cinblock;
1817		r->ru_oublock = sig->coublock;
1818		maxrss = sig->cmaxrss;
1819
1820		if (who == RUSAGE_CHILDREN)
1821			break;
1822		fallthrough;
1823
1824	case RUSAGE_SELF:
1825		r->ru_nvcsw += sig->nvcsw;
1826		r->ru_nivcsw += sig->nivcsw;
1827		r->ru_minflt += sig->min_flt;
1828		r->ru_majflt += sig->maj_flt;
1829		r->ru_inblock += sig->inblock;
1830		r->ru_oublock += sig->oublock;
1831		if (maxrss < sig->maxrss)
1832			maxrss = sig->maxrss;
1833
1834		rcu_read_lock();
1835		__for_each_thread(sig, t)
1836			accumulate_thread_rusage(t, r);
1837		rcu_read_unlock();
1838
1839		break;
1840
1841	default:
1842		BUG();
1843	}
1844
1845	if (need_seqretry(&sig->stats_lock, seq)) {
1846		seq = 1;
1847		goto retry;
1848	}
1849	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1850
1851	if (who == RUSAGE_CHILDREN)
1852		goto out_children;
1853
1854	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1855	utime += tgutime;
1856	stime += tgstime;
1857
1858out_thread:
1859	mm = get_task_mm(p);
1860	if (mm) {
1861		setmax_mm_hiwater_rss(&maxrss, mm);
1862		mmput(mm);
1863	}
1864
1865out_children:
1866	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1867	r->ru_utime = ns_to_kernel_old_timeval(utime);
1868	r->ru_stime = ns_to_kernel_old_timeval(stime);
1869}
1870
1871SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1872{
1873	struct rusage r;
1874
1875	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1876	    who != RUSAGE_THREAD)
1877		return -EINVAL;
1878
1879	getrusage(current, who, &r);
1880	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1881}
1882
1883#ifdef CONFIG_COMPAT
1884COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1885{
1886	struct rusage r;
1887
1888	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1889	    who != RUSAGE_THREAD)
1890		return -EINVAL;
1891
1892	getrusage(current, who, &r);
1893	return put_compat_rusage(&r, ru);
1894}
1895#endif
1896
1897SYSCALL_DEFINE1(umask, int, mask)
1898{
1899	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1900	return mask;
1901}
1902
1903static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1904{
1905	struct fd exe;
1906	struct inode *inode;
1907	int err;
1908
1909	exe = fdget(fd);
1910	if (!exe.file)
1911		return -EBADF;
1912
1913	inode = file_inode(exe.file);
1914
1915	/*
1916	 * Because the original mm->exe_file points to executable file, make
1917	 * sure that this one is executable as well, to avoid breaking an
1918	 * overall picture.
1919	 */
1920	err = -EACCES;
1921	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1922		goto exit;
1923
1924	err = file_permission(exe.file, MAY_EXEC);
1925	if (err)
1926		goto exit;
1927
1928	err = replace_mm_exe_file(mm, exe.file);
1929exit:
1930	fdput(exe);
1931	return err;
1932}
1933
1934/*
1935 * Check arithmetic relations of passed addresses.
1936 *
1937 * WARNING: we don't require any capability here so be very careful
1938 * in what is allowed for modification from userspace.
1939 */
1940static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1941{
1942	unsigned long mmap_max_addr = TASK_SIZE;
1943	int error = -EINVAL, i;
1944
1945	static const unsigned char offsets[] = {
1946		offsetof(struct prctl_mm_map, start_code),
1947		offsetof(struct prctl_mm_map, end_code),
1948		offsetof(struct prctl_mm_map, start_data),
1949		offsetof(struct prctl_mm_map, end_data),
1950		offsetof(struct prctl_mm_map, start_brk),
1951		offsetof(struct prctl_mm_map, brk),
1952		offsetof(struct prctl_mm_map, start_stack),
1953		offsetof(struct prctl_mm_map, arg_start),
1954		offsetof(struct prctl_mm_map, arg_end),
1955		offsetof(struct prctl_mm_map, env_start),
1956		offsetof(struct prctl_mm_map, env_end),
1957	};
1958
1959	/*
1960	 * Make sure the members are not somewhere outside
1961	 * of allowed address space.
1962	 */
1963	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1964		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1965
1966		if ((unsigned long)val >= mmap_max_addr ||
1967		    (unsigned long)val < mmap_min_addr)
1968			goto out;
1969	}
1970
1971	/*
1972	 * Make sure the pairs are ordered.
1973	 */
1974#define __prctl_check_order(__m1, __op, __m2)				\
1975	((unsigned long)prctl_map->__m1 __op				\
1976	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1977	error  = __prctl_check_order(start_code, <, end_code);
1978	error |= __prctl_check_order(start_data,<=, end_data);
1979	error |= __prctl_check_order(start_brk, <=, brk);
1980	error |= __prctl_check_order(arg_start, <=, arg_end);
1981	error |= __prctl_check_order(env_start, <=, env_end);
1982	if (error)
1983		goto out;
1984#undef __prctl_check_order
1985
1986	error = -EINVAL;
1987
1988	/*
1989	 * Neither we should allow to override limits if they set.
1990	 */
1991	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1992			      prctl_map->start_brk, prctl_map->end_data,
1993			      prctl_map->start_data))
1994			goto out;
1995
1996	error = 0;
1997out:
1998	return error;
1999}
2000
2001#ifdef CONFIG_CHECKPOINT_RESTORE
2002static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2003{
2004	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2005	unsigned long user_auxv[AT_VECTOR_SIZE];
2006	struct mm_struct *mm = current->mm;
2007	int error;
2008
2009	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2010	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2011
2012	if (opt == PR_SET_MM_MAP_SIZE)
2013		return put_user((unsigned int)sizeof(prctl_map),
2014				(unsigned int __user *)addr);
2015
2016	if (data_size != sizeof(prctl_map))
2017		return -EINVAL;
2018
2019	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2020		return -EFAULT;
2021
2022	error = validate_prctl_map_addr(&prctl_map);
2023	if (error)
2024		return error;
2025
2026	if (prctl_map.auxv_size) {
2027		/*
2028		 * Someone is trying to cheat the auxv vector.
2029		 */
2030		if (!prctl_map.auxv ||
2031				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2032			return -EINVAL;
2033
2034		memset(user_auxv, 0, sizeof(user_auxv));
2035		if (copy_from_user(user_auxv,
2036				   (const void __user *)prctl_map.auxv,
2037				   prctl_map.auxv_size))
2038			return -EFAULT;
2039
2040		/* Last entry must be AT_NULL as specification requires */
2041		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2042		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2043	}
2044
2045	if (prctl_map.exe_fd != (u32)-1) {
2046		/*
2047		 * Check if the current user is checkpoint/restore capable.
2048		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2049		 * or CAP_CHECKPOINT_RESTORE.
2050		 * Note that a user with access to ptrace can masquerade an
2051		 * arbitrary program as any executable, even setuid ones.
2052		 * This may have implications in the tomoyo subsystem.
2053		 */
2054		if (!checkpoint_restore_ns_capable(current_user_ns()))
2055			return -EPERM;
2056
2057		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2058		if (error)
2059			return error;
2060	}
2061
2062	/*
2063	 * arg_lock protects concurrent updates but we still need mmap_lock for
2064	 * read to exclude races with sys_brk.
2065	 */
2066	mmap_read_lock(mm);
2067
2068	/*
2069	 * We don't validate if these members are pointing to
2070	 * real present VMAs because application may have correspond
2071	 * VMAs already unmapped and kernel uses these members for statistics
2072	 * output in procfs mostly, except
2073	 *
2074	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2075	 *    for VMAs when updating these members so anything wrong written
2076	 *    here cause kernel to swear at userspace program but won't lead
2077	 *    to any problem in kernel itself
2078	 */
2079
2080	spin_lock(&mm->arg_lock);
2081	mm->start_code	= prctl_map.start_code;
2082	mm->end_code	= prctl_map.end_code;
2083	mm->start_data	= prctl_map.start_data;
2084	mm->end_data	= prctl_map.end_data;
2085	mm->start_brk	= prctl_map.start_brk;
2086	mm->brk		= prctl_map.brk;
2087	mm->start_stack	= prctl_map.start_stack;
2088	mm->arg_start	= prctl_map.arg_start;
2089	mm->arg_end	= prctl_map.arg_end;
2090	mm->env_start	= prctl_map.env_start;
2091	mm->env_end	= prctl_map.env_end;
2092	spin_unlock(&mm->arg_lock);
2093
2094	/*
2095	 * Note this update of @saved_auxv is lockless thus
2096	 * if someone reads this member in procfs while we're
2097	 * updating -- it may get partly updated results. It's
2098	 * known and acceptable trade off: we leave it as is to
2099	 * not introduce additional locks here making the kernel
2100	 * more complex.
2101	 */
2102	if (prctl_map.auxv_size)
2103		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2104
2105	mmap_read_unlock(mm);
2106	return 0;
2107}
2108#endif /* CONFIG_CHECKPOINT_RESTORE */
2109
2110static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2111			  unsigned long len)
2112{
2113	/*
2114	 * This doesn't move the auxiliary vector itself since it's pinned to
2115	 * mm_struct, but it permits filling the vector with new values.  It's
2116	 * up to the caller to provide sane values here, otherwise userspace
2117	 * tools which use this vector might be unhappy.
2118	 */
2119	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2120
2121	if (len > sizeof(user_auxv))
2122		return -EINVAL;
2123
2124	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2125		return -EFAULT;
2126
2127	/* Make sure the last entry is always AT_NULL */
2128	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2129	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2130
2131	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2132
2133	task_lock(current);
2134	memcpy(mm->saved_auxv, user_auxv, len);
2135	task_unlock(current);
2136
2137	return 0;
2138}
2139
2140static int prctl_set_mm(int opt, unsigned long addr,
2141			unsigned long arg4, unsigned long arg5)
2142{
2143	struct mm_struct *mm = current->mm;
2144	struct prctl_mm_map prctl_map = {
2145		.auxv = NULL,
2146		.auxv_size = 0,
2147		.exe_fd = -1,
2148	};
2149	struct vm_area_struct *vma;
2150	int error;
2151
2152	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2153			      opt != PR_SET_MM_MAP &&
2154			      opt != PR_SET_MM_MAP_SIZE)))
2155		return -EINVAL;
2156
2157#ifdef CONFIG_CHECKPOINT_RESTORE
2158	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2159		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2160#endif
2161
2162	if (!capable(CAP_SYS_RESOURCE))
2163		return -EPERM;
2164
2165	if (opt == PR_SET_MM_EXE_FILE)
2166		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2167
2168	if (opt == PR_SET_MM_AUXV)
2169		return prctl_set_auxv(mm, addr, arg4);
2170
2171	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2172		return -EINVAL;
2173
2174	error = -EINVAL;
2175
2176	/*
2177	 * arg_lock protects concurrent updates of arg boundaries, we need
2178	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2179	 * validation.
2180	 */
2181	mmap_read_lock(mm);
2182	vma = find_vma(mm, addr);
2183
2184	spin_lock(&mm->arg_lock);
2185	prctl_map.start_code	= mm->start_code;
2186	prctl_map.end_code	= mm->end_code;
2187	prctl_map.start_data	= mm->start_data;
2188	prctl_map.end_data	= mm->end_data;
2189	prctl_map.start_brk	= mm->start_brk;
2190	prctl_map.brk		= mm->brk;
2191	prctl_map.start_stack	= mm->start_stack;
2192	prctl_map.arg_start	= mm->arg_start;
2193	prctl_map.arg_end	= mm->arg_end;
2194	prctl_map.env_start	= mm->env_start;
2195	prctl_map.env_end	= mm->env_end;
2196
2197	switch (opt) {
2198	case PR_SET_MM_START_CODE:
2199		prctl_map.start_code = addr;
2200		break;
2201	case PR_SET_MM_END_CODE:
2202		prctl_map.end_code = addr;
2203		break;
2204	case PR_SET_MM_START_DATA:
2205		prctl_map.start_data = addr;
2206		break;
2207	case PR_SET_MM_END_DATA:
2208		prctl_map.end_data = addr;
2209		break;
2210	case PR_SET_MM_START_STACK:
2211		prctl_map.start_stack = addr;
2212		break;
2213	case PR_SET_MM_START_BRK:
2214		prctl_map.start_brk = addr;
2215		break;
2216	case PR_SET_MM_BRK:
2217		prctl_map.brk = addr;
2218		break;
2219	case PR_SET_MM_ARG_START:
2220		prctl_map.arg_start = addr;
2221		break;
2222	case PR_SET_MM_ARG_END:
2223		prctl_map.arg_end = addr;
2224		break;
2225	case PR_SET_MM_ENV_START:
2226		prctl_map.env_start = addr;
2227		break;
2228	case PR_SET_MM_ENV_END:
2229		prctl_map.env_end = addr;
2230		break;
2231	default:
2232		goto out;
2233	}
2234
2235	error = validate_prctl_map_addr(&prctl_map);
2236	if (error)
2237		goto out;
2238
2239	switch (opt) {
2240	/*
2241	 * If command line arguments and environment
2242	 * are placed somewhere else on stack, we can
2243	 * set them up here, ARG_START/END to setup
2244	 * command line arguments and ENV_START/END
2245	 * for environment.
2246	 */
2247	case PR_SET_MM_START_STACK:
2248	case PR_SET_MM_ARG_START:
2249	case PR_SET_MM_ARG_END:
2250	case PR_SET_MM_ENV_START:
2251	case PR_SET_MM_ENV_END:
2252		if (!vma) {
2253			error = -EFAULT;
2254			goto out;
2255		}
2256	}
2257
2258	mm->start_code	= prctl_map.start_code;
2259	mm->end_code	= prctl_map.end_code;
2260	mm->start_data	= prctl_map.start_data;
2261	mm->end_data	= prctl_map.end_data;
2262	mm->start_brk	= prctl_map.start_brk;
2263	mm->brk		= prctl_map.brk;
2264	mm->start_stack	= prctl_map.start_stack;
2265	mm->arg_start	= prctl_map.arg_start;
2266	mm->arg_end	= prctl_map.arg_end;
2267	mm->env_start	= prctl_map.env_start;
2268	mm->env_end	= prctl_map.env_end;
2269
2270	error = 0;
2271out:
2272	spin_unlock(&mm->arg_lock);
2273	mmap_read_unlock(mm);
2274	return error;
2275}
2276
2277#ifdef CONFIG_CHECKPOINT_RESTORE
2278static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2279{
2280	return put_user(me->clear_child_tid, tid_addr);
2281}
2282#else
2283static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2284{
2285	return -EINVAL;
2286}
2287#endif
2288
2289static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2290{
2291	/*
2292	 * If task has has_child_subreaper - all its descendants
2293	 * already have these flag too and new descendants will
2294	 * inherit it on fork, skip them.
2295	 *
2296	 * If we've found child_reaper - skip descendants in
2297	 * it's subtree as they will never get out pidns.
2298	 */
2299	if (p->signal->has_child_subreaper ||
2300	    is_child_reaper(task_pid(p)))
2301		return 0;
2302
2303	p->signal->has_child_subreaper = 1;
2304	return 1;
2305}
2306
2307int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2308{
2309	return -EINVAL;
2310}
2311
2312int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2313				    unsigned long ctrl)
2314{
2315	return -EINVAL;
2316}
2317
2318#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2319
2320#ifdef CONFIG_ANON_VMA_NAME
2321
2322#define ANON_VMA_NAME_MAX_LEN		80
2323#define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2324
2325static inline bool is_valid_name_char(char ch)
2326{
2327	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2328	return ch > 0x1f && ch < 0x7f &&
2329		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2330}
2331
2332static int prctl_set_vma(unsigned long opt, unsigned long addr,
2333			 unsigned long size, unsigned long arg)
2334{
2335	struct mm_struct *mm = current->mm;
2336	const char __user *uname;
2337	struct anon_vma_name *anon_name = NULL;
2338	int error;
2339
2340	switch (opt) {
2341	case PR_SET_VMA_ANON_NAME:
2342		uname = (const char __user *)arg;
2343		if (uname) {
2344			char *name, *pch;
2345
2346			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2347			if (IS_ERR(name))
2348				return PTR_ERR(name);
2349
2350			for (pch = name; *pch != '\0'; pch++) {
2351				if (!is_valid_name_char(*pch)) {
2352					kfree(name);
2353					return -EINVAL;
2354				}
2355			}
2356			/* anon_vma has its own copy */
2357			anon_name = anon_vma_name_alloc(name);
2358			kfree(name);
2359			if (!anon_name)
2360				return -ENOMEM;
2361
2362		}
2363
2364		mmap_write_lock(mm);
2365		error = madvise_set_anon_name(mm, addr, size, anon_name);
2366		mmap_write_unlock(mm);
2367		anon_vma_name_put(anon_name);
2368		break;
2369	default:
2370		error = -EINVAL;
2371	}
2372
2373	return error;
2374}
2375
2376#else /* CONFIG_ANON_VMA_NAME */
2377static int prctl_set_vma(unsigned long opt, unsigned long start,
2378			 unsigned long size, unsigned long arg)
2379{
2380	return -EINVAL;
2381}
2382#endif /* CONFIG_ANON_VMA_NAME */
2383
2384static inline unsigned long get_current_mdwe(void)
2385{
2386	unsigned long ret = 0;
2387
2388	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2389		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2390	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2391		ret |= PR_MDWE_NO_INHERIT;
2392
2393	return ret;
2394}
2395
2396static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2397				 unsigned long arg4, unsigned long arg5)
2398{
2399	unsigned long current_bits;
2400
2401	if (arg3 || arg4 || arg5)
2402		return -EINVAL;
2403
2404	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2405		return -EINVAL;
2406
2407	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2408	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2409		return -EINVAL;
2410
2411	/*
2412	 * EOPNOTSUPP might be more appropriate here in principle, but
2413	 * existing userspace depends on EINVAL specifically.
2414	 */
2415	if (!arch_memory_deny_write_exec_supported())
2416		return -EINVAL;
2417
2418	current_bits = get_current_mdwe();
2419	if (current_bits && current_bits != bits)
2420		return -EPERM; /* Cannot unset the flags */
2421
2422	if (bits & PR_MDWE_NO_INHERIT)
2423		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2424	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2425		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2426
2427	return 0;
2428}
2429
2430static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2431				 unsigned long arg4, unsigned long arg5)
2432{
2433	if (arg2 || arg3 || arg4 || arg5)
2434		return -EINVAL;
2435	return get_current_mdwe();
2436}
2437
2438static int prctl_get_auxv(void __user *addr, unsigned long len)
2439{
2440	struct mm_struct *mm = current->mm;
2441	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2442
2443	if (size && copy_to_user(addr, mm->saved_auxv, size))
2444		return -EFAULT;
2445	return sizeof(mm->saved_auxv);
2446}
2447
2448SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2449		unsigned long, arg4, unsigned long, arg5)
2450{
2451	struct task_struct *me = current;
2452	unsigned char comm[sizeof(me->comm)];
2453	long error;
2454
2455	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2456	if (error != -ENOSYS)
2457		return error;
2458
2459	error = 0;
2460	switch (option) {
2461	case PR_SET_PDEATHSIG:
2462		if (!valid_signal(arg2)) {
2463			error = -EINVAL;
2464			break;
2465		}
2466		me->pdeath_signal = arg2;
2467		break;
2468	case PR_GET_PDEATHSIG:
2469		error = put_user(me->pdeath_signal, (int __user *)arg2);
2470		break;
2471	case PR_GET_DUMPABLE:
2472		error = get_dumpable(me->mm);
2473		break;
2474	case PR_SET_DUMPABLE:
2475		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2476			error = -EINVAL;
2477			break;
2478		}
2479		set_dumpable(me->mm, arg2);
2480		break;
2481
2482	case PR_SET_UNALIGN:
2483		error = SET_UNALIGN_CTL(me, arg2);
2484		break;
2485	case PR_GET_UNALIGN:
2486		error = GET_UNALIGN_CTL(me, arg2);
2487		break;
2488	case PR_SET_FPEMU:
2489		error = SET_FPEMU_CTL(me, arg2);
2490		break;
2491	case PR_GET_FPEMU:
2492		error = GET_FPEMU_CTL(me, arg2);
2493		break;
2494	case PR_SET_FPEXC:
2495		error = SET_FPEXC_CTL(me, arg2);
2496		break;
2497	case PR_GET_FPEXC:
2498		error = GET_FPEXC_CTL(me, arg2);
2499		break;
2500	case PR_GET_TIMING:
2501		error = PR_TIMING_STATISTICAL;
2502		break;
2503	case PR_SET_TIMING:
2504		if (arg2 != PR_TIMING_STATISTICAL)
2505			error = -EINVAL;
2506		break;
2507	case PR_SET_NAME:
2508		comm[sizeof(me->comm) - 1] = 0;
2509		if (strncpy_from_user(comm, (char __user *)arg2,
2510				      sizeof(me->comm) - 1) < 0)
2511			return -EFAULT;
2512		set_task_comm(me, comm);
2513		proc_comm_connector(me);
2514		break;
2515	case PR_GET_NAME:
2516		get_task_comm(comm, me);
2517		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2518			return -EFAULT;
2519		break;
2520	case PR_GET_ENDIAN:
2521		error = GET_ENDIAN(me, arg2);
2522		break;
2523	case PR_SET_ENDIAN:
2524		error = SET_ENDIAN(me, arg2);
2525		break;
2526	case PR_GET_SECCOMP:
2527		error = prctl_get_seccomp();
2528		break;
2529	case PR_SET_SECCOMP:
2530		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2531		break;
2532	case PR_GET_TSC:
2533		error = GET_TSC_CTL(arg2);
2534		break;
2535	case PR_SET_TSC:
2536		error = SET_TSC_CTL(arg2);
2537		break;
2538	case PR_TASK_PERF_EVENTS_DISABLE:
2539		error = perf_event_task_disable();
2540		break;
2541	case PR_TASK_PERF_EVENTS_ENABLE:
2542		error = perf_event_task_enable();
2543		break;
2544	case PR_GET_TIMERSLACK:
2545		if (current->timer_slack_ns > ULONG_MAX)
2546			error = ULONG_MAX;
2547		else
2548			error = current->timer_slack_ns;
2549		break;
2550	case PR_SET_TIMERSLACK:
2551		if (arg2 <= 0)
2552			current->timer_slack_ns =
2553					current->default_timer_slack_ns;
2554		else
2555			current->timer_slack_ns = arg2;
2556		break;
2557	case PR_MCE_KILL:
2558		if (arg4 | arg5)
2559			return -EINVAL;
2560		switch (arg2) {
2561		case PR_MCE_KILL_CLEAR:
2562			if (arg3 != 0)
2563				return -EINVAL;
2564			current->flags &= ~PF_MCE_PROCESS;
2565			break;
2566		case PR_MCE_KILL_SET:
2567			current->flags |= PF_MCE_PROCESS;
2568			if (arg3 == PR_MCE_KILL_EARLY)
2569				current->flags |= PF_MCE_EARLY;
2570			else if (arg3 == PR_MCE_KILL_LATE)
2571				current->flags &= ~PF_MCE_EARLY;
2572			else if (arg3 == PR_MCE_KILL_DEFAULT)
2573				current->flags &=
2574						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2575			else
2576				return -EINVAL;
2577			break;
2578		default:
2579			return -EINVAL;
2580		}
2581		break;
2582	case PR_MCE_KILL_GET:
2583		if (arg2 | arg3 | arg4 | arg5)
2584			return -EINVAL;
2585		if (current->flags & PF_MCE_PROCESS)
2586			error = (current->flags & PF_MCE_EARLY) ?
2587				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2588		else
2589			error = PR_MCE_KILL_DEFAULT;
2590		break;
2591	case PR_SET_MM:
2592		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2593		break;
2594	case PR_GET_TID_ADDRESS:
2595		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2596		break;
2597	case PR_SET_CHILD_SUBREAPER:
2598		me->signal->is_child_subreaper = !!arg2;
2599		if (!arg2)
2600			break;
2601
2602		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2603		break;
2604	case PR_GET_CHILD_SUBREAPER:
2605		error = put_user(me->signal->is_child_subreaper,
2606				 (int __user *)arg2);
2607		break;
2608	case PR_SET_NO_NEW_PRIVS:
2609		if (arg2 != 1 || arg3 || arg4 || arg5)
2610			return -EINVAL;
2611
2612		task_set_no_new_privs(current);
2613		break;
2614	case PR_GET_NO_NEW_PRIVS:
2615		if (arg2 || arg3 || arg4 || arg5)
2616			return -EINVAL;
2617		return task_no_new_privs(current) ? 1 : 0;
2618	case PR_GET_THP_DISABLE:
2619		if (arg2 || arg3 || arg4 || arg5)
2620			return -EINVAL;
2621		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2622		break;
2623	case PR_SET_THP_DISABLE:
2624		if (arg3 || arg4 || arg5)
2625			return -EINVAL;
2626		if (mmap_write_lock_killable(me->mm))
2627			return -EINTR;
2628		if (arg2)
2629			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2630		else
2631			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2632		mmap_write_unlock(me->mm);
2633		break;
2634	case PR_MPX_ENABLE_MANAGEMENT:
2635	case PR_MPX_DISABLE_MANAGEMENT:
2636		/* No longer implemented: */
2637		return -EINVAL;
2638	case PR_SET_FP_MODE:
2639		error = SET_FP_MODE(me, arg2);
2640		break;
2641	case PR_GET_FP_MODE:
2642		error = GET_FP_MODE(me);
2643		break;
2644	case PR_SVE_SET_VL:
2645		error = SVE_SET_VL(arg2);
2646		break;
2647	case PR_SVE_GET_VL:
2648		error = SVE_GET_VL();
2649		break;
2650	case PR_SME_SET_VL:
2651		error = SME_SET_VL(arg2);
2652		break;
2653	case PR_SME_GET_VL:
2654		error = SME_GET_VL();
2655		break;
2656	case PR_GET_SPECULATION_CTRL:
2657		if (arg3 || arg4 || arg5)
2658			return -EINVAL;
2659		error = arch_prctl_spec_ctrl_get(me, arg2);
2660		break;
2661	case PR_SET_SPECULATION_CTRL:
2662		if (arg4 || arg5)
2663			return -EINVAL;
2664		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2665		break;
2666	case PR_PAC_RESET_KEYS:
2667		if (arg3 || arg4 || arg5)
2668			return -EINVAL;
2669		error = PAC_RESET_KEYS(me, arg2);
2670		break;
2671	case PR_PAC_SET_ENABLED_KEYS:
2672		if (arg4 || arg5)
2673			return -EINVAL;
2674		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2675		break;
2676	case PR_PAC_GET_ENABLED_KEYS:
2677		if (arg2 || arg3 || arg4 || arg5)
2678			return -EINVAL;
2679		error = PAC_GET_ENABLED_KEYS(me);
2680		break;
2681	case PR_SET_TAGGED_ADDR_CTRL:
2682		if (arg3 || arg4 || arg5)
2683			return -EINVAL;
2684		error = SET_TAGGED_ADDR_CTRL(arg2);
2685		break;
2686	case PR_GET_TAGGED_ADDR_CTRL:
2687		if (arg2 || arg3 || arg4 || arg5)
2688			return -EINVAL;
2689		error = GET_TAGGED_ADDR_CTRL();
2690		break;
2691	case PR_SET_IO_FLUSHER:
2692		if (!capable(CAP_SYS_RESOURCE))
2693			return -EPERM;
2694
2695		if (arg3 || arg4 || arg5)
2696			return -EINVAL;
2697
2698		if (arg2 == 1)
2699			current->flags |= PR_IO_FLUSHER;
2700		else if (!arg2)
2701			current->flags &= ~PR_IO_FLUSHER;
2702		else
2703			return -EINVAL;
2704		break;
2705	case PR_GET_IO_FLUSHER:
2706		if (!capable(CAP_SYS_RESOURCE))
2707			return -EPERM;
2708
2709		if (arg2 || arg3 || arg4 || arg5)
2710			return -EINVAL;
2711
2712		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2713		break;
2714	case PR_SET_SYSCALL_USER_DISPATCH:
2715		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2716						  (char __user *) arg5);
2717		break;
2718#ifdef CONFIG_SCHED_CORE
2719	case PR_SCHED_CORE:
2720		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2721		break;
2722#endif
2723	case PR_SET_MDWE:
2724		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2725		break;
2726	case PR_GET_MDWE:
2727		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2728		break;
2729	case PR_SET_VMA:
2730		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2731		break;
2732	case PR_GET_AUXV:
2733		if (arg4 || arg5)
2734			return -EINVAL;
2735		error = prctl_get_auxv((void __user *)arg2, arg3);
2736		break;
2737#ifdef CONFIG_KSM
2738	case PR_SET_MEMORY_MERGE:
2739		if (arg3 || arg4 || arg5)
2740			return -EINVAL;
2741		if (mmap_write_lock_killable(me->mm))
2742			return -EINTR;
2743
2744		if (arg2)
2745			error = ksm_enable_merge_any(me->mm);
2746		else
2747			error = ksm_disable_merge_any(me->mm);
2748		mmap_write_unlock(me->mm);
2749		break;
2750	case PR_GET_MEMORY_MERGE:
2751		if (arg2 || arg3 || arg4 || arg5)
2752			return -EINVAL;
2753
2754		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2755		break;
2756#endif
2757	case PR_RISCV_V_SET_CONTROL:
2758		error = RISCV_V_SET_CONTROL(arg2);
2759		break;
2760	case PR_RISCV_V_GET_CONTROL:
2761		error = RISCV_V_GET_CONTROL();
2762		break;
2763	default:
2764		error = -EINVAL;
2765		break;
2766	}
2767	return error;
2768}
2769
2770SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2771		struct getcpu_cache __user *, unused)
2772{
2773	int err = 0;
2774	int cpu = raw_smp_processor_id();
2775
2776	if (cpup)
2777		err |= put_user(cpu, cpup);
2778	if (nodep)
2779		err |= put_user(cpu_to_node(cpu), nodep);
2780	return err ? -EFAULT : 0;
2781}
2782
2783/**
2784 * do_sysinfo - fill in sysinfo struct
2785 * @info: pointer to buffer to fill
2786 */
2787static int do_sysinfo(struct sysinfo *info)
2788{
2789	unsigned long mem_total, sav_total;
2790	unsigned int mem_unit, bitcount;
2791	struct timespec64 tp;
2792
2793	memset(info, 0, sizeof(struct sysinfo));
2794
2795	ktime_get_boottime_ts64(&tp);
2796	timens_add_boottime(&tp);
2797	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2798
2799	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2800
2801	info->procs = nr_threads;
2802
2803	si_meminfo(info);
2804	si_swapinfo(info);
2805
2806	/*
2807	 * If the sum of all the available memory (i.e. ram + swap)
2808	 * is less than can be stored in a 32 bit unsigned long then
2809	 * we can be binary compatible with 2.2.x kernels.  If not,
2810	 * well, in that case 2.2.x was broken anyways...
2811	 *
2812	 *  -Erik Andersen <andersee@debian.org>
2813	 */
2814
2815	mem_total = info->totalram + info->totalswap;
2816	if (mem_total < info->totalram || mem_total < info->totalswap)
2817		goto out;
2818	bitcount = 0;
2819	mem_unit = info->mem_unit;
2820	while (mem_unit > 1) {
2821		bitcount++;
2822		mem_unit >>= 1;
2823		sav_total = mem_total;
2824		mem_total <<= 1;
2825		if (mem_total < sav_total)
2826			goto out;
2827	}
2828
2829	/*
2830	 * If mem_total did not overflow, multiply all memory values by
2831	 * info->mem_unit and set it to 1.  This leaves things compatible
2832	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2833	 * kernels...
2834	 */
2835
2836	info->mem_unit = 1;
2837	info->totalram <<= bitcount;
2838	info->freeram <<= bitcount;
2839	info->sharedram <<= bitcount;
2840	info->bufferram <<= bitcount;
2841	info->totalswap <<= bitcount;
2842	info->freeswap <<= bitcount;
2843	info->totalhigh <<= bitcount;
2844	info->freehigh <<= bitcount;
2845
2846out:
2847	return 0;
2848}
2849
2850SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2851{
2852	struct sysinfo val;
2853
2854	do_sysinfo(&val);
2855
2856	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2857		return -EFAULT;
2858
2859	return 0;
2860}
2861
2862#ifdef CONFIG_COMPAT
2863struct compat_sysinfo {
2864	s32 uptime;
2865	u32 loads[3];
2866	u32 totalram;
2867	u32 freeram;
2868	u32 sharedram;
2869	u32 bufferram;
2870	u32 totalswap;
2871	u32 freeswap;
2872	u16 procs;
2873	u16 pad;
2874	u32 totalhigh;
2875	u32 freehigh;
2876	u32 mem_unit;
2877	char _f[20-2*sizeof(u32)-sizeof(int)];
2878};
2879
2880COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2881{
2882	struct sysinfo s;
2883	struct compat_sysinfo s_32;
2884
2885	do_sysinfo(&s);
2886
2887	/* Check to see if any memory value is too large for 32-bit and scale
2888	 *  down if needed
2889	 */
2890	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2891		int bitcount = 0;
2892
2893		while (s.mem_unit < PAGE_SIZE) {
2894			s.mem_unit <<= 1;
2895			bitcount++;
2896		}
2897
2898		s.totalram >>= bitcount;
2899		s.freeram >>= bitcount;
2900		s.sharedram >>= bitcount;
2901		s.bufferram >>= bitcount;
2902		s.totalswap >>= bitcount;
2903		s.freeswap >>= bitcount;
2904		s.totalhigh >>= bitcount;
2905		s.freehigh >>= bitcount;
2906	}
2907
2908	memset(&s_32, 0, sizeof(s_32));
2909	s_32.uptime = s.uptime;
2910	s_32.loads[0] = s.loads[0];
2911	s_32.loads[1] = s.loads[1];
2912	s_32.loads[2] = s.loads[2];
2913	s_32.totalram = s.totalram;
2914	s_32.freeram = s.freeram;
2915	s_32.sharedram = s.sharedram;
2916	s_32.bufferram = s.bufferram;
2917	s_32.totalswap = s.totalswap;
2918	s_32.freeswap = s.freeswap;
2919	s_32.procs = s.procs;
2920	s_32.totalhigh = s.totalhigh;
2921	s_32.freehigh = s.freehigh;
2922	s_32.mem_unit = s.mem_unit;
2923	if (copy_to_user(info, &s_32, sizeof(s_32)))
2924		return -EFAULT;
2925	return 0;
2926}
2927#endif /* CONFIG_COMPAT */
2928