1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7int sched_rr_timeslice = RR_TIMESLICE;
8/* More than 4 hours if BW_SHIFT equals 20. */
9static const u64 max_rt_runtime = MAX_BW;
10
11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13struct rt_bandwidth def_rt_bandwidth;
14
15/*
16 * period over which we measure -rt task CPU usage in us.
17 * default: 1s
18 */
19int sysctl_sched_rt_period = 1000000;
20
21/*
22 * part of the period that we allow rt tasks to run in us.
23 * default: 0.95s
24 */
25int sysctl_sched_rt_runtime = 950000;
26
27#ifdef CONFIG_SYSCTL
28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30		size_t *lenp, loff_t *ppos);
31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32		size_t *lenp, loff_t *ppos);
33static struct ctl_table sched_rt_sysctls[] = {
34	{
35		.procname       = "sched_rt_period_us",
36		.data           = &sysctl_sched_rt_period,
37		.maxlen         = sizeof(int),
38		.mode           = 0644,
39		.proc_handler   = sched_rt_handler,
40		.extra1         = SYSCTL_ONE,
41		.extra2         = SYSCTL_INT_MAX,
42	},
43	{
44		.procname       = "sched_rt_runtime_us",
45		.data           = &sysctl_sched_rt_runtime,
46		.maxlen         = sizeof(int),
47		.mode           = 0644,
48		.proc_handler   = sched_rt_handler,
49		.extra1         = SYSCTL_NEG_ONE,
50		.extra2         = (void *)&sysctl_sched_rt_period,
51	},
52	{
53		.procname       = "sched_rr_timeslice_ms",
54		.data           = &sysctl_sched_rr_timeslice,
55		.maxlen         = sizeof(int),
56		.mode           = 0644,
57		.proc_handler   = sched_rr_handler,
58	},
59	{}
60};
61
62static int __init sched_rt_sysctl_init(void)
63{
64	register_sysctl_init("kernel", sched_rt_sysctls);
65	return 0;
66}
67late_initcall(sched_rt_sysctl_init);
68#endif
69
70static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
71{
72	struct rt_bandwidth *rt_b =
73		container_of(timer, struct rt_bandwidth, rt_period_timer);
74	int idle = 0;
75	int overrun;
76
77	raw_spin_lock(&rt_b->rt_runtime_lock);
78	for (;;) {
79		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
80		if (!overrun)
81			break;
82
83		raw_spin_unlock(&rt_b->rt_runtime_lock);
84		idle = do_sched_rt_period_timer(rt_b, overrun);
85		raw_spin_lock(&rt_b->rt_runtime_lock);
86	}
87	if (idle)
88		rt_b->rt_period_active = 0;
89	raw_spin_unlock(&rt_b->rt_runtime_lock);
90
91	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
92}
93
94void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
95{
96	rt_b->rt_period = ns_to_ktime(period);
97	rt_b->rt_runtime = runtime;
98
99	raw_spin_lock_init(&rt_b->rt_runtime_lock);
100
101	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
102		     HRTIMER_MODE_REL_HARD);
103	rt_b->rt_period_timer.function = sched_rt_period_timer;
104}
105
106static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
107{
108	raw_spin_lock(&rt_b->rt_runtime_lock);
109	if (!rt_b->rt_period_active) {
110		rt_b->rt_period_active = 1;
111		/*
112		 * SCHED_DEADLINE updates the bandwidth, as a run away
113		 * RT task with a DL task could hog a CPU. But DL does
114		 * not reset the period. If a deadline task was running
115		 * without an RT task running, it can cause RT tasks to
116		 * throttle when they start up. Kick the timer right away
117		 * to update the period.
118		 */
119		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
120		hrtimer_start_expires(&rt_b->rt_period_timer,
121				      HRTIMER_MODE_ABS_PINNED_HARD);
122	}
123	raw_spin_unlock(&rt_b->rt_runtime_lock);
124}
125
126static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
127{
128	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
129		return;
130
131	do_start_rt_bandwidth(rt_b);
132}
133
134void init_rt_rq(struct rt_rq *rt_rq)
135{
136	struct rt_prio_array *array;
137	int i;
138
139	array = &rt_rq->active;
140	for (i = 0; i < MAX_RT_PRIO; i++) {
141		INIT_LIST_HEAD(array->queue + i);
142		__clear_bit(i, array->bitmap);
143	}
144	/* delimiter for bitsearch: */
145	__set_bit(MAX_RT_PRIO, array->bitmap);
146
147#if defined CONFIG_SMP
148	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150	rt_rq->overloaded = 0;
151	plist_head_init(&rt_rq->pushable_tasks);
152#endif /* CONFIG_SMP */
153	/* We start is dequeued state, because no RT tasks are queued */
154	rt_rq->rt_queued = 0;
155
156	rt_rq->rt_time = 0;
157	rt_rq->rt_throttled = 0;
158	rt_rq->rt_runtime = 0;
159	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
160}
161
162#ifdef CONFIG_RT_GROUP_SCHED
163static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
164{
165	hrtimer_cancel(&rt_b->rt_period_timer);
166}
167
168#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
169
170static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
171{
172#ifdef CONFIG_SCHED_DEBUG
173	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174#endif
175	return container_of(rt_se, struct task_struct, rt);
176}
177
178static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179{
180	return rt_rq->rq;
181}
182
183static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
184{
185	return rt_se->rt_rq;
186}
187
188static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
189{
190	struct rt_rq *rt_rq = rt_se->rt_rq;
191
192	return rt_rq->rq;
193}
194
195void unregister_rt_sched_group(struct task_group *tg)
196{
197	if (tg->rt_se)
198		destroy_rt_bandwidth(&tg->rt_bandwidth);
199
200}
201
202void free_rt_sched_group(struct task_group *tg)
203{
204	int i;
205
206	for_each_possible_cpu(i) {
207		if (tg->rt_rq)
208			kfree(tg->rt_rq[i]);
209		if (tg->rt_se)
210			kfree(tg->rt_se[i]);
211	}
212
213	kfree(tg->rt_rq);
214	kfree(tg->rt_se);
215}
216
217void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218		struct sched_rt_entity *rt_se, int cpu,
219		struct sched_rt_entity *parent)
220{
221	struct rq *rq = cpu_rq(cpu);
222
223	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
224	rt_rq->rt_nr_boosted = 0;
225	rt_rq->rq = rq;
226	rt_rq->tg = tg;
227
228	tg->rt_rq[cpu] = rt_rq;
229	tg->rt_se[cpu] = rt_se;
230
231	if (!rt_se)
232		return;
233
234	if (!parent)
235		rt_se->rt_rq = &rq->rt;
236	else
237		rt_se->rt_rq = parent->my_q;
238
239	rt_se->my_q = rt_rq;
240	rt_se->parent = parent;
241	INIT_LIST_HEAD(&rt_se->run_list);
242}
243
244int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
245{
246	struct rt_rq *rt_rq;
247	struct sched_rt_entity *rt_se;
248	int i;
249
250	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
251	if (!tg->rt_rq)
252		goto err;
253	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
254	if (!tg->rt_se)
255		goto err;
256
257	init_rt_bandwidth(&tg->rt_bandwidth,
258			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
259
260	for_each_possible_cpu(i) {
261		rt_rq = kzalloc_node(sizeof(struct rt_rq),
262				     GFP_KERNEL, cpu_to_node(i));
263		if (!rt_rq)
264			goto err;
265
266		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
267				     GFP_KERNEL, cpu_to_node(i));
268		if (!rt_se)
269			goto err_free_rq;
270
271		init_rt_rq(rt_rq);
272		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
273		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
274	}
275
276	return 1;
277
278err_free_rq:
279	kfree(rt_rq);
280err:
281	return 0;
282}
283
284#else /* CONFIG_RT_GROUP_SCHED */
285
286#define rt_entity_is_task(rt_se) (1)
287
288static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
289{
290	return container_of(rt_se, struct task_struct, rt);
291}
292
293static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
294{
295	return container_of(rt_rq, struct rq, rt);
296}
297
298static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
299{
300	struct task_struct *p = rt_task_of(rt_se);
301
302	return task_rq(p);
303}
304
305static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
306{
307	struct rq *rq = rq_of_rt_se(rt_se);
308
309	return &rq->rt;
310}
311
312void unregister_rt_sched_group(struct task_group *tg) { }
313
314void free_rt_sched_group(struct task_group *tg) { }
315
316int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
317{
318	return 1;
319}
320#endif /* CONFIG_RT_GROUP_SCHED */
321
322#ifdef CONFIG_SMP
323
324static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
325{
326	/* Try to pull RT tasks here if we lower this rq's prio */
327	return rq->online && rq->rt.highest_prio.curr > prev->prio;
328}
329
330static inline int rt_overloaded(struct rq *rq)
331{
332	return atomic_read(&rq->rd->rto_count);
333}
334
335static inline void rt_set_overload(struct rq *rq)
336{
337	if (!rq->online)
338		return;
339
340	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
341	/*
342	 * Make sure the mask is visible before we set
343	 * the overload count. That is checked to determine
344	 * if we should look at the mask. It would be a shame
345	 * if we looked at the mask, but the mask was not
346	 * updated yet.
347	 *
348	 * Matched by the barrier in pull_rt_task().
349	 */
350	smp_wmb();
351	atomic_inc(&rq->rd->rto_count);
352}
353
354static inline void rt_clear_overload(struct rq *rq)
355{
356	if (!rq->online)
357		return;
358
359	/* the order here really doesn't matter */
360	atomic_dec(&rq->rd->rto_count);
361	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
362}
363
364static inline int has_pushable_tasks(struct rq *rq)
365{
366	return !plist_head_empty(&rq->rt.pushable_tasks);
367}
368
369static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
370static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
371
372static void push_rt_tasks(struct rq *);
373static void pull_rt_task(struct rq *);
374
375static inline void rt_queue_push_tasks(struct rq *rq)
376{
377	if (!has_pushable_tasks(rq))
378		return;
379
380	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
381}
382
383static inline void rt_queue_pull_task(struct rq *rq)
384{
385	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
386}
387
388static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389{
390	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
391	plist_node_init(&p->pushable_tasks, p->prio);
392	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
393
394	/* Update the highest prio pushable task */
395	if (p->prio < rq->rt.highest_prio.next)
396		rq->rt.highest_prio.next = p->prio;
397
398	if (!rq->rt.overloaded) {
399		rt_set_overload(rq);
400		rq->rt.overloaded = 1;
401	}
402}
403
404static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405{
406	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
407
408	/* Update the new highest prio pushable task */
409	if (has_pushable_tasks(rq)) {
410		p = plist_first_entry(&rq->rt.pushable_tasks,
411				      struct task_struct, pushable_tasks);
412		rq->rt.highest_prio.next = p->prio;
413	} else {
414		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
415
416		if (rq->rt.overloaded) {
417			rt_clear_overload(rq);
418			rq->rt.overloaded = 0;
419		}
420	}
421}
422
423#else
424
425static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
426{
427}
428
429static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
430{
431}
432
433static inline void rt_queue_push_tasks(struct rq *rq)
434{
435}
436#endif /* CONFIG_SMP */
437
438static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
439static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
440
441static inline int on_rt_rq(struct sched_rt_entity *rt_se)
442{
443	return rt_se->on_rq;
444}
445
446#ifdef CONFIG_UCLAMP_TASK
447/*
448 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
449 * settings.
450 *
451 * This check is only important for heterogeneous systems where uclamp_min value
452 * is higher than the capacity of a @cpu. For non-heterogeneous system this
453 * function will always return true.
454 *
455 * The function will return true if the capacity of the @cpu is >= the
456 * uclamp_min and false otherwise.
457 *
458 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
459 * > uclamp_max.
460 */
461static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
462{
463	unsigned int min_cap;
464	unsigned int max_cap;
465	unsigned int cpu_cap;
466
467	/* Only heterogeneous systems can benefit from this check */
468	if (!sched_asym_cpucap_active())
469		return true;
470
471	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
472	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
473
474	cpu_cap = arch_scale_cpu_capacity(cpu);
475
476	return cpu_cap >= min(min_cap, max_cap);
477}
478#else
479static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
480{
481	return true;
482}
483#endif
484
485#ifdef CONFIG_RT_GROUP_SCHED
486
487static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
488{
489	if (!rt_rq->tg)
490		return RUNTIME_INF;
491
492	return rt_rq->rt_runtime;
493}
494
495static inline u64 sched_rt_period(struct rt_rq *rt_rq)
496{
497	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
498}
499
500typedef struct task_group *rt_rq_iter_t;
501
502static inline struct task_group *next_task_group(struct task_group *tg)
503{
504	do {
505		tg = list_entry_rcu(tg->list.next,
506			typeof(struct task_group), list);
507	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
508
509	if (&tg->list == &task_groups)
510		tg = NULL;
511
512	return tg;
513}
514
515#define for_each_rt_rq(rt_rq, iter, rq)					\
516	for (iter = container_of(&task_groups, typeof(*iter), list);	\
517		(iter = next_task_group(iter)) &&			\
518		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
519
520#define for_each_sched_rt_entity(rt_se) \
521	for (; rt_se; rt_se = rt_se->parent)
522
523static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
524{
525	return rt_se->my_q;
526}
527
528static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
529static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
530
531static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
532{
533	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
534	struct rq *rq = rq_of_rt_rq(rt_rq);
535	struct sched_rt_entity *rt_se;
536
537	int cpu = cpu_of(rq);
538
539	rt_se = rt_rq->tg->rt_se[cpu];
540
541	if (rt_rq->rt_nr_running) {
542		if (!rt_se)
543			enqueue_top_rt_rq(rt_rq);
544		else if (!on_rt_rq(rt_se))
545			enqueue_rt_entity(rt_se, 0);
546
547		if (rt_rq->highest_prio.curr < curr->prio)
548			resched_curr(rq);
549	}
550}
551
552static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
553{
554	struct sched_rt_entity *rt_se;
555	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
556
557	rt_se = rt_rq->tg->rt_se[cpu];
558
559	if (!rt_se) {
560		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
561		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
562		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
563	}
564	else if (on_rt_rq(rt_se))
565		dequeue_rt_entity(rt_se, 0);
566}
567
568static inline int rt_rq_throttled(struct rt_rq *rt_rq)
569{
570	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
571}
572
573static int rt_se_boosted(struct sched_rt_entity *rt_se)
574{
575	struct rt_rq *rt_rq = group_rt_rq(rt_se);
576	struct task_struct *p;
577
578	if (rt_rq)
579		return !!rt_rq->rt_nr_boosted;
580
581	p = rt_task_of(rt_se);
582	return p->prio != p->normal_prio;
583}
584
585#ifdef CONFIG_SMP
586static inline const struct cpumask *sched_rt_period_mask(void)
587{
588	return this_rq()->rd->span;
589}
590#else
591static inline const struct cpumask *sched_rt_period_mask(void)
592{
593	return cpu_online_mask;
594}
595#endif
596
597static inline
598struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
599{
600	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
601}
602
603static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
604{
605	return &rt_rq->tg->rt_bandwidth;
606}
607
608#else /* !CONFIG_RT_GROUP_SCHED */
609
610static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
611{
612	return rt_rq->rt_runtime;
613}
614
615static inline u64 sched_rt_period(struct rt_rq *rt_rq)
616{
617	return ktime_to_ns(def_rt_bandwidth.rt_period);
618}
619
620typedef struct rt_rq *rt_rq_iter_t;
621
622#define for_each_rt_rq(rt_rq, iter, rq) \
623	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
624
625#define for_each_sched_rt_entity(rt_se) \
626	for (; rt_se; rt_se = NULL)
627
628static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
629{
630	return NULL;
631}
632
633static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
634{
635	struct rq *rq = rq_of_rt_rq(rt_rq);
636
637	if (!rt_rq->rt_nr_running)
638		return;
639
640	enqueue_top_rt_rq(rt_rq);
641	resched_curr(rq);
642}
643
644static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
645{
646	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
647}
648
649static inline int rt_rq_throttled(struct rt_rq *rt_rq)
650{
651	return rt_rq->rt_throttled;
652}
653
654static inline const struct cpumask *sched_rt_period_mask(void)
655{
656	return cpu_online_mask;
657}
658
659static inline
660struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
661{
662	return &cpu_rq(cpu)->rt;
663}
664
665static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
666{
667	return &def_rt_bandwidth;
668}
669
670#endif /* CONFIG_RT_GROUP_SCHED */
671
672bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
673{
674	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
675
676	return (hrtimer_active(&rt_b->rt_period_timer) ||
677		rt_rq->rt_time < rt_b->rt_runtime);
678}
679
680#ifdef CONFIG_SMP
681/*
682 * We ran out of runtime, see if we can borrow some from our neighbours.
683 */
684static void do_balance_runtime(struct rt_rq *rt_rq)
685{
686	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
687	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
688	int i, weight;
689	u64 rt_period;
690
691	weight = cpumask_weight(rd->span);
692
693	raw_spin_lock(&rt_b->rt_runtime_lock);
694	rt_period = ktime_to_ns(rt_b->rt_period);
695	for_each_cpu(i, rd->span) {
696		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
697		s64 diff;
698
699		if (iter == rt_rq)
700			continue;
701
702		raw_spin_lock(&iter->rt_runtime_lock);
703		/*
704		 * Either all rqs have inf runtime and there's nothing to steal
705		 * or __disable_runtime() below sets a specific rq to inf to
706		 * indicate its been disabled and disallow stealing.
707		 */
708		if (iter->rt_runtime == RUNTIME_INF)
709			goto next;
710
711		/*
712		 * From runqueues with spare time, take 1/n part of their
713		 * spare time, but no more than our period.
714		 */
715		diff = iter->rt_runtime - iter->rt_time;
716		if (diff > 0) {
717			diff = div_u64((u64)diff, weight);
718			if (rt_rq->rt_runtime + diff > rt_period)
719				diff = rt_period - rt_rq->rt_runtime;
720			iter->rt_runtime -= diff;
721			rt_rq->rt_runtime += diff;
722			if (rt_rq->rt_runtime == rt_period) {
723				raw_spin_unlock(&iter->rt_runtime_lock);
724				break;
725			}
726		}
727next:
728		raw_spin_unlock(&iter->rt_runtime_lock);
729	}
730	raw_spin_unlock(&rt_b->rt_runtime_lock);
731}
732
733/*
734 * Ensure this RQ takes back all the runtime it lend to its neighbours.
735 */
736static void __disable_runtime(struct rq *rq)
737{
738	struct root_domain *rd = rq->rd;
739	rt_rq_iter_t iter;
740	struct rt_rq *rt_rq;
741
742	if (unlikely(!scheduler_running))
743		return;
744
745	for_each_rt_rq(rt_rq, iter, rq) {
746		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
747		s64 want;
748		int i;
749
750		raw_spin_lock(&rt_b->rt_runtime_lock);
751		raw_spin_lock(&rt_rq->rt_runtime_lock);
752		/*
753		 * Either we're all inf and nobody needs to borrow, or we're
754		 * already disabled and thus have nothing to do, or we have
755		 * exactly the right amount of runtime to take out.
756		 */
757		if (rt_rq->rt_runtime == RUNTIME_INF ||
758				rt_rq->rt_runtime == rt_b->rt_runtime)
759			goto balanced;
760		raw_spin_unlock(&rt_rq->rt_runtime_lock);
761
762		/*
763		 * Calculate the difference between what we started out with
764		 * and what we current have, that's the amount of runtime
765		 * we lend and now have to reclaim.
766		 */
767		want = rt_b->rt_runtime - rt_rq->rt_runtime;
768
769		/*
770		 * Greedy reclaim, take back as much as we can.
771		 */
772		for_each_cpu(i, rd->span) {
773			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
774			s64 diff;
775
776			/*
777			 * Can't reclaim from ourselves or disabled runqueues.
778			 */
779			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
780				continue;
781
782			raw_spin_lock(&iter->rt_runtime_lock);
783			if (want > 0) {
784				diff = min_t(s64, iter->rt_runtime, want);
785				iter->rt_runtime -= diff;
786				want -= diff;
787			} else {
788				iter->rt_runtime -= want;
789				want -= want;
790			}
791			raw_spin_unlock(&iter->rt_runtime_lock);
792
793			if (!want)
794				break;
795		}
796
797		raw_spin_lock(&rt_rq->rt_runtime_lock);
798		/*
799		 * We cannot be left wanting - that would mean some runtime
800		 * leaked out of the system.
801		 */
802		WARN_ON_ONCE(want);
803balanced:
804		/*
805		 * Disable all the borrow logic by pretending we have inf
806		 * runtime - in which case borrowing doesn't make sense.
807		 */
808		rt_rq->rt_runtime = RUNTIME_INF;
809		rt_rq->rt_throttled = 0;
810		raw_spin_unlock(&rt_rq->rt_runtime_lock);
811		raw_spin_unlock(&rt_b->rt_runtime_lock);
812
813		/* Make rt_rq available for pick_next_task() */
814		sched_rt_rq_enqueue(rt_rq);
815	}
816}
817
818static void __enable_runtime(struct rq *rq)
819{
820	rt_rq_iter_t iter;
821	struct rt_rq *rt_rq;
822
823	if (unlikely(!scheduler_running))
824		return;
825
826	/*
827	 * Reset each runqueue's bandwidth settings
828	 */
829	for_each_rt_rq(rt_rq, iter, rq) {
830		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
831
832		raw_spin_lock(&rt_b->rt_runtime_lock);
833		raw_spin_lock(&rt_rq->rt_runtime_lock);
834		rt_rq->rt_runtime = rt_b->rt_runtime;
835		rt_rq->rt_time = 0;
836		rt_rq->rt_throttled = 0;
837		raw_spin_unlock(&rt_rq->rt_runtime_lock);
838		raw_spin_unlock(&rt_b->rt_runtime_lock);
839	}
840}
841
842static void balance_runtime(struct rt_rq *rt_rq)
843{
844	if (!sched_feat(RT_RUNTIME_SHARE))
845		return;
846
847	if (rt_rq->rt_time > rt_rq->rt_runtime) {
848		raw_spin_unlock(&rt_rq->rt_runtime_lock);
849		do_balance_runtime(rt_rq);
850		raw_spin_lock(&rt_rq->rt_runtime_lock);
851	}
852}
853#else /* !CONFIG_SMP */
854static inline void balance_runtime(struct rt_rq *rt_rq) {}
855#endif /* CONFIG_SMP */
856
857static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
858{
859	int i, idle = 1, throttled = 0;
860	const struct cpumask *span;
861
862	span = sched_rt_period_mask();
863#ifdef CONFIG_RT_GROUP_SCHED
864	/*
865	 * FIXME: isolated CPUs should really leave the root task group,
866	 * whether they are isolcpus or were isolated via cpusets, lest
867	 * the timer run on a CPU which does not service all runqueues,
868	 * potentially leaving other CPUs indefinitely throttled.  If
869	 * isolation is really required, the user will turn the throttle
870	 * off to kill the perturbations it causes anyway.  Meanwhile,
871	 * this maintains functionality for boot and/or troubleshooting.
872	 */
873	if (rt_b == &root_task_group.rt_bandwidth)
874		span = cpu_online_mask;
875#endif
876	for_each_cpu(i, span) {
877		int enqueue = 0;
878		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
879		struct rq *rq = rq_of_rt_rq(rt_rq);
880		struct rq_flags rf;
881		int skip;
882
883		/*
884		 * When span == cpu_online_mask, taking each rq->lock
885		 * can be time-consuming. Try to avoid it when possible.
886		 */
887		raw_spin_lock(&rt_rq->rt_runtime_lock);
888		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
889			rt_rq->rt_runtime = rt_b->rt_runtime;
890		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
891		raw_spin_unlock(&rt_rq->rt_runtime_lock);
892		if (skip)
893			continue;
894
895		rq_lock(rq, &rf);
896		update_rq_clock(rq);
897
898		if (rt_rq->rt_time) {
899			u64 runtime;
900
901			raw_spin_lock(&rt_rq->rt_runtime_lock);
902			if (rt_rq->rt_throttled)
903				balance_runtime(rt_rq);
904			runtime = rt_rq->rt_runtime;
905			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
906			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
907				rt_rq->rt_throttled = 0;
908				enqueue = 1;
909
910				/*
911				 * When we're idle and a woken (rt) task is
912				 * throttled wakeup_preempt() will set
913				 * skip_update and the time between the wakeup
914				 * and this unthrottle will get accounted as
915				 * 'runtime'.
916				 */
917				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
918					rq_clock_cancel_skipupdate(rq);
919			}
920			if (rt_rq->rt_time || rt_rq->rt_nr_running)
921				idle = 0;
922			raw_spin_unlock(&rt_rq->rt_runtime_lock);
923		} else if (rt_rq->rt_nr_running) {
924			idle = 0;
925			if (!rt_rq_throttled(rt_rq))
926				enqueue = 1;
927		}
928		if (rt_rq->rt_throttled)
929			throttled = 1;
930
931		if (enqueue)
932			sched_rt_rq_enqueue(rt_rq);
933		rq_unlock(rq, &rf);
934	}
935
936	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
937		return 1;
938
939	return idle;
940}
941
942static inline int rt_se_prio(struct sched_rt_entity *rt_se)
943{
944#ifdef CONFIG_RT_GROUP_SCHED
945	struct rt_rq *rt_rq = group_rt_rq(rt_se);
946
947	if (rt_rq)
948		return rt_rq->highest_prio.curr;
949#endif
950
951	return rt_task_of(rt_se)->prio;
952}
953
954static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
955{
956	u64 runtime = sched_rt_runtime(rt_rq);
957
958	if (rt_rq->rt_throttled)
959		return rt_rq_throttled(rt_rq);
960
961	if (runtime >= sched_rt_period(rt_rq))
962		return 0;
963
964	balance_runtime(rt_rq);
965	runtime = sched_rt_runtime(rt_rq);
966	if (runtime == RUNTIME_INF)
967		return 0;
968
969	if (rt_rq->rt_time > runtime) {
970		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
971
972		/*
973		 * Don't actually throttle groups that have no runtime assigned
974		 * but accrue some time due to boosting.
975		 */
976		if (likely(rt_b->rt_runtime)) {
977			rt_rq->rt_throttled = 1;
978			printk_deferred_once("sched: RT throttling activated\n");
979		} else {
980			/*
981			 * In case we did anyway, make it go away,
982			 * replenishment is a joke, since it will replenish us
983			 * with exactly 0 ns.
984			 */
985			rt_rq->rt_time = 0;
986		}
987
988		if (rt_rq_throttled(rt_rq)) {
989			sched_rt_rq_dequeue(rt_rq);
990			return 1;
991		}
992	}
993
994	return 0;
995}
996
997/*
998 * Update the current task's runtime statistics. Skip current tasks that
999 * are not in our scheduling class.
1000 */
1001static void update_curr_rt(struct rq *rq)
1002{
1003	struct task_struct *curr = rq->curr;
1004	struct sched_rt_entity *rt_se = &curr->rt;
1005	s64 delta_exec;
1006
1007	if (curr->sched_class != &rt_sched_class)
1008		return;
1009
1010	delta_exec = update_curr_common(rq);
1011	if (unlikely(delta_exec <= 0))
1012		return;
1013
1014	if (!rt_bandwidth_enabled())
1015		return;
1016
1017	for_each_sched_rt_entity(rt_se) {
1018		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1019		int exceeded;
1020
1021		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1022			raw_spin_lock(&rt_rq->rt_runtime_lock);
1023			rt_rq->rt_time += delta_exec;
1024			exceeded = sched_rt_runtime_exceeded(rt_rq);
1025			if (exceeded)
1026				resched_curr(rq);
1027			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1028			if (exceeded)
1029				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1030		}
1031	}
1032}
1033
1034static void
1035dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1036{
1037	struct rq *rq = rq_of_rt_rq(rt_rq);
1038
1039	BUG_ON(&rq->rt != rt_rq);
1040
1041	if (!rt_rq->rt_queued)
1042		return;
1043
1044	BUG_ON(!rq->nr_running);
1045
1046	sub_nr_running(rq, count);
1047	rt_rq->rt_queued = 0;
1048
1049}
1050
1051static void
1052enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053{
1054	struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056	BUG_ON(&rq->rt != rt_rq);
1057
1058	if (rt_rq->rt_queued)
1059		return;
1060
1061	if (rt_rq_throttled(rt_rq))
1062		return;
1063
1064	if (rt_rq->rt_nr_running) {
1065		add_nr_running(rq, rt_rq->rt_nr_running);
1066		rt_rq->rt_queued = 1;
1067	}
1068
1069	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070	cpufreq_update_util(rq, 0);
1071}
1072
1073#if defined CONFIG_SMP
1074
1075static void
1076inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077{
1078	struct rq *rq = rq_of_rt_rq(rt_rq);
1079
1080#ifdef CONFIG_RT_GROUP_SCHED
1081	/*
1082	 * Change rq's cpupri only if rt_rq is the top queue.
1083	 */
1084	if (&rq->rt != rt_rq)
1085		return;
1086#endif
1087	if (rq->online && prio < prev_prio)
1088		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089}
1090
1091static void
1092dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093{
1094	struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096#ifdef CONFIG_RT_GROUP_SCHED
1097	/*
1098	 * Change rq's cpupri only if rt_rq is the top queue.
1099	 */
1100	if (&rq->rt != rt_rq)
1101		return;
1102#endif
1103	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105}
1106
1107#else /* CONFIG_SMP */
1108
1109static inline
1110void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111static inline
1112void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113
1114#endif /* CONFIG_SMP */
1115
1116#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117static void
1118inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119{
1120	int prev_prio = rt_rq->highest_prio.curr;
1121
1122	if (prio < prev_prio)
1123		rt_rq->highest_prio.curr = prio;
1124
1125	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126}
1127
1128static void
1129dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130{
1131	int prev_prio = rt_rq->highest_prio.curr;
1132
1133	if (rt_rq->rt_nr_running) {
1134
1135		WARN_ON(prio < prev_prio);
1136
1137		/*
1138		 * This may have been our highest task, and therefore
1139		 * we may have some recomputation to do
1140		 */
1141		if (prio == prev_prio) {
1142			struct rt_prio_array *array = &rt_rq->active;
1143
1144			rt_rq->highest_prio.curr =
1145				sched_find_first_bit(array->bitmap);
1146		}
1147
1148	} else {
1149		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1150	}
1151
1152	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1153}
1154
1155#else
1156
1157static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159
1160#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1161
1162#ifdef CONFIG_RT_GROUP_SCHED
1163
1164static void
1165inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166{
1167	if (rt_se_boosted(rt_se))
1168		rt_rq->rt_nr_boosted++;
1169
1170	if (rt_rq->tg)
1171		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1172}
1173
1174static void
1175dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176{
1177	if (rt_se_boosted(rt_se))
1178		rt_rq->rt_nr_boosted--;
1179
1180	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1181}
1182
1183#else /* CONFIG_RT_GROUP_SCHED */
1184
1185static void
1186inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187{
1188	start_rt_bandwidth(&def_rt_bandwidth);
1189}
1190
1191static inline
1192void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1193
1194#endif /* CONFIG_RT_GROUP_SCHED */
1195
1196static inline
1197unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1198{
1199	struct rt_rq *group_rq = group_rt_rq(rt_se);
1200
1201	if (group_rq)
1202		return group_rq->rt_nr_running;
1203	else
1204		return 1;
1205}
1206
1207static inline
1208unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1209{
1210	struct rt_rq *group_rq = group_rt_rq(rt_se);
1211	struct task_struct *tsk;
1212
1213	if (group_rq)
1214		return group_rq->rr_nr_running;
1215
1216	tsk = rt_task_of(rt_se);
1217
1218	return (tsk->policy == SCHED_RR) ? 1 : 0;
1219}
1220
1221static inline
1222void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223{
1224	int prio = rt_se_prio(rt_se);
1225
1226	WARN_ON(!rt_prio(prio));
1227	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1228	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1229
1230	inc_rt_prio(rt_rq, prio);
1231	inc_rt_group(rt_se, rt_rq);
1232}
1233
1234static inline
1235void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236{
1237	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238	WARN_ON(!rt_rq->rt_nr_running);
1239	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241
1242	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243	dec_rt_group(rt_se, rt_rq);
1244}
1245
1246/*
1247 * Change rt_se->run_list location unless SAVE && !MOVE
1248 *
1249 * assumes ENQUEUE/DEQUEUE flags match
1250 */
1251static inline bool move_entity(unsigned int flags)
1252{
1253	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1254		return false;
1255
1256	return true;
1257}
1258
1259static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1260{
1261	list_del_init(&rt_se->run_list);
1262
1263	if (list_empty(array->queue + rt_se_prio(rt_se)))
1264		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1265
1266	rt_se->on_list = 0;
1267}
1268
1269static inline struct sched_statistics *
1270__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1271{
1272#ifdef CONFIG_RT_GROUP_SCHED
1273	/* schedstats is not supported for rt group. */
1274	if (!rt_entity_is_task(rt_se))
1275		return NULL;
1276#endif
1277
1278	return &rt_task_of(rt_se)->stats;
1279}
1280
1281static inline void
1282update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1283{
1284	struct sched_statistics *stats;
1285	struct task_struct *p = NULL;
1286
1287	if (!schedstat_enabled())
1288		return;
1289
1290	if (rt_entity_is_task(rt_se))
1291		p = rt_task_of(rt_se);
1292
1293	stats = __schedstats_from_rt_se(rt_se);
1294	if (!stats)
1295		return;
1296
1297	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1298}
1299
1300static inline void
1301update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1302{
1303	struct sched_statistics *stats;
1304	struct task_struct *p = NULL;
1305
1306	if (!schedstat_enabled())
1307		return;
1308
1309	if (rt_entity_is_task(rt_se))
1310		p = rt_task_of(rt_se);
1311
1312	stats = __schedstats_from_rt_se(rt_se);
1313	if (!stats)
1314		return;
1315
1316	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1317}
1318
1319static inline void
1320update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1321			int flags)
1322{
1323	if (!schedstat_enabled())
1324		return;
1325
1326	if (flags & ENQUEUE_WAKEUP)
1327		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1328}
1329
1330static inline void
1331update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1332{
1333	struct sched_statistics *stats;
1334	struct task_struct *p = NULL;
1335
1336	if (!schedstat_enabled())
1337		return;
1338
1339	if (rt_entity_is_task(rt_se))
1340		p = rt_task_of(rt_se);
1341
1342	stats = __schedstats_from_rt_se(rt_se);
1343	if (!stats)
1344		return;
1345
1346	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1347}
1348
1349static inline void
1350update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1351			int flags)
1352{
1353	struct task_struct *p = NULL;
1354
1355	if (!schedstat_enabled())
1356		return;
1357
1358	if (rt_entity_is_task(rt_se))
1359		p = rt_task_of(rt_se);
1360
1361	if ((flags & DEQUEUE_SLEEP) && p) {
1362		unsigned int state;
1363
1364		state = READ_ONCE(p->__state);
1365		if (state & TASK_INTERRUPTIBLE)
1366			__schedstat_set(p->stats.sleep_start,
1367					rq_clock(rq_of_rt_rq(rt_rq)));
1368
1369		if (state & TASK_UNINTERRUPTIBLE)
1370			__schedstat_set(p->stats.block_start,
1371					rq_clock(rq_of_rt_rq(rt_rq)));
1372	}
1373}
1374
1375static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1376{
1377	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1378	struct rt_prio_array *array = &rt_rq->active;
1379	struct rt_rq *group_rq = group_rt_rq(rt_se);
1380	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1381
1382	/*
1383	 * Don't enqueue the group if its throttled, or when empty.
1384	 * The latter is a consequence of the former when a child group
1385	 * get throttled and the current group doesn't have any other
1386	 * active members.
1387	 */
1388	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1389		if (rt_se->on_list)
1390			__delist_rt_entity(rt_se, array);
1391		return;
1392	}
1393
1394	if (move_entity(flags)) {
1395		WARN_ON_ONCE(rt_se->on_list);
1396		if (flags & ENQUEUE_HEAD)
1397			list_add(&rt_se->run_list, queue);
1398		else
1399			list_add_tail(&rt_se->run_list, queue);
1400
1401		__set_bit(rt_se_prio(rt_se), array->bitmap);
1402		rt_se->on_list = 1;
1403	}
1404	rt_se->on_rq = 1;
1405
1406	inc_rt_tasks(rt_se, rt_rq);
1407}
1408
1409static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1410{
1411	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1412	struct rt_prio_array *array = &rt_rq->active;
1413
1414	if (move_entity(flags)) {
1415		WARN_ON_ONCE(!rt_se->on_list);
1416		__delist_rt_entity(rt_se, array);
1417	}
1418	rt_se->on_rq = 0;
1419
1420	dec_rt_tasks(rt_se, rt_rq);
1421}
1422
1423/*
1424 * Because the prio of an upper entry depends on the lower
1425 * entries, we must remove entries top - down.
1426 */
1427static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1428{
1429	struct sched_rt_entity *back = NULL;
1430	unsigned int rt_nr_running;
1431
1432	for_each_sched_rt_entity(rt_se) {
1433		rt_se->back = back;
1434		back = rt_se;
1435	}
1436
1437	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1438
1439	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1440		if (on_rt_rq(rt_se))
1441			__dequeue_rt_entity(rt_se, flags);
1442	}
1443
1444	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1445}
1446
1447static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1448{
1449	struct rq *rq = rq_of_rt_se(rt_se);
1450
1451	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1452
1453	dequeue_rt_stack(rt_se, flags);
1454	for_each_sched_rt_entity(rt_se)
1455		__enqueue_rt_entity(rt_se, flags);
1456	enqueue_top_rt_rq(&rq->rt);
1457}
1458
1459static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1460{
1461	struct rq *rq = rq_of_rt_se(rt_se);
1462
1463	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1464
1465	dequeue_rt_stack(rt_se, flags);
1466
1467	for_each_sched_rt_entity(rt_se) {
1468		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1469
1470		if (rt_rq && rt_rq->rt_nr_running)
1471			__enqueue_rt_entity(rt_se, flags);
1472	}
1473	enqueue_top_rt_rq(&rq->rt);
1474}
1475
1476/*
1477 * Adding/removing a task to/from a priority array:
1478 */
1479static void
1480enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1481{
1482	struct sched_rt_entity *rt_se = &p->rt;
1483
1484	if (flags & ENQUEUE_WAKEUP)
1485		rt_se->timeout = 0;
1486
1487	check_schedstat_required();
1488	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1489
1490	enqueue_rt_entity(rt_se, flags);
1491
1492	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1493		enqueue_pushable_task(rq, p);
1494}
1495
1496static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1497{
1498	struct sched_rt_entity *rt_se = &p->rt;
1499
1500	update_curr_rt(rq);
1501	dequeue_rt_entity(rt_se, flags);
1502
1503	dequeue_pushable_task(rq, p);
1504}
1505
1506/*
1507 * Put task to the head or the end of the run list without the overhead of
1508 * dequeue followed by enqueue.
1509 */
1510static void
1511requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1512{
1513	if (on_rt_rq(rt_se)) {
1514		struct rt_prio_array *array = &rt_rq->active;
1515		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1516
1517		if (head)
1518			list_move(&rt_se->run_list, queue);
1519		else
1520			list_move_tail(&rt_se->run_list, queue);
1521	}
1522}
1523
1524static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1525{
1526	struct sched_rt_entity *rt_se = &p->rt;
1527	struct rt_rq *rt_rq;
1528
1529	for_each_sched_rt_entity(rt_se) {
1530		rt_rq = rt_rq_of_se(rt_se);
1531		requeue_rt_entity(rt_rq, rt_se, head);
1532	}
1533}
1534
1535static void yield_task_rt(struct rq *rq)
1536{
1537	requeue_task_rt(rq, rq->curr, 0);
1538}
1539
1540#ifdef CONFIG_SMP
1541static int find_lowest_rq(struct task_struct *task);
1542
1543static int
1544select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1545{
1546	struct task_struct *curr;
1547	struct rq *rq;
1548	bool test;
1549
1550	/* For anything but wake ups, just return the task_cpu */
1551	if (!(flags & (WF_TTWU | WF_FORK)))
1552		goto out;
1553
1554	rq = cpu_rq(cpu);
1555
1556	rcu_read_lock();
1557	curr = READ_ONCE(rq->curr); /* unlocked access */
1558
1559	/*
1560	 * If the current task on @p's runqueue is an RT task, then
1561	 * try to see if we can wake this RT task up on another
1562	 * runqueue. Otherwise simply start this RT task
1563	 * on its current runqueue.
1564	 *
1565	 * We want to avoid overloading runqueues. If the woken
1566	 * task is a higher priority, then it will stay on this CPU
1567	 * and the lower prio task should be moved to another CPU.
1568	 * Even though this will probably make the lower prio task
1569	 * lose its cache, we do not want to bounce a higher task
1570	 * around just because it gave up its CPU, perhaps for a
1571	 * lock?
1572	 *
1573	 * For equal prio tasks, we just let the scheduler sort it out.
1574	 *
1575	 * Otherwise, just let it ride on the affined RQ and the
1576	 * post-schedule router will push the preempted task away
1577	 *
1578	 * This test is optimistic, if we get it wrong the load-balancer
1579	 * will have to sort it out.
1580	 *
1581	 * We take into account the capacity of the CPU to ensure it fits the
1582	 * requirement of the task - which is only important on heterogeneous
1583	 * systems like big.LITTLE.
1584	 */
1585	test = curr &&
1586	       unlikely(rt_task(curr)) &&
1587	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1588
1589	if (test || !rt_task_fits_capacity(p, cpu)) {
1590		int target = find_lowest_rq(p);
1591
1592		/*
1593		 * Bail out if we were forcing a migration to find a better
1594		 * fitting CPU but our search failed.
1595		 */
1596		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1597			goto out_unlock;
1598
1599		/*
1600		 * Don't bother moving it if the destination CPU is
1601		 * not running a lower priority task.
1602		 */
1603		if (target != -1 &&
1604		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1605			cpu = target;
1606	}
1607
1608out_unlock:
1609	rcu_read_unlock();
1610
1611out:
1612	return cpu;
1613}
1614
1615static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1616{
1617	/*
1618	 * Current can't be migrated, useless to reschedule,
1619	 * let's hope p can move out.
1620	 */
1621	if (rq->curr->nr_cpus_allowed == 1 ||
1622	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1623		return;
1624
1625	/*
1626	 * p is migratable, so let's not schedule it and
1627	 * see if it is pushed or pulled somewhere else.
1628	 */
1629	if (p->nr_cpus_allowed != 1 &&
1630	    cpupri_find(&rq->rd->cpupri, p, NULL))
1631		return;
1632
1633	/*
1634	 * There appear to be other CPUs that can accept
1635	 * the current task but none can run 'p', so lets reschedule
1636	 * to try and push the current task away:
1637	 */
1638	requeue_task_rt(rq, p, 1);
1639	resched_curr(rq);
1640}
1641
1642static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1643{
1644	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1645		/*
1646		 * This is OK, because current is on_cpu, which avoids it being
1647		 * picked for load-balance and preemption/IRQs are still
1648		 * disabled avoiding further scheduler activity on it and we've
1649		 * not yet started the picking loop.
1650		 */
1651		rq_unpin_lock(rq, rf);
1652		pull_rt_task(rq);
1653		rq_repin_lock(rq, rf);
1654	}
1655
1656	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1657}
1658#endif /* CONFIG_SMP */
1659
1660/*
1661 * Preempt the current task with a newly woken task if needed:
1662 */
1663static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1664{
1665	if (p->prio < rq->curr->prio) {
1666		resched_curr(rq);
1667		return;
1668	}
1669
1670#ifdef CONFIG_SMP
1671	/*
1672	 * If:
1673	 *
1674	 * - the newly woken task is of equal priority to the current task
1675	 * - the newly woken task is non-migratable while current is migratable
1676	 * - current will be preempted on the next reschedule
1677	 *
1678	 * we should check to see if current can readily move to a different
1679	 * cpu.  If so, we will reschedule to allow the push logic to try
1680	 * to move current somewhere else, making room for our non-migratable
1681	 * task.
1682	 */
1683	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1684		check_preempt_equal_prio(rq, p);
1685#endif
1686}
1687
1688static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1689{
1690	struct sched_rt_entity *rt_se = &p->rt;
1691	struct rt_rq *rt_rq = &rq->rt;
1692
1693	p->se.exec_start = rq_clock_task(rq);
1694	if (on_rt_rq(&p->rt))
1695		update_stats_wait_end_rt(rt_rq, rt_se);
1696
1697	/* The running task is never eligible for pushing */
1698	dequeue_pushable_task(rq, p);
1699
1700	if (!first)
1701		return;
1702
1703	/*
1704	 * If prev task was rt, put_prev_task() has already updated the
1705	 * utilization. We only care of the case where we start to schedule a
1706	 * rt task
1707	 */
1708	if (rq->curr->sched_class != &rt_sched_class)
1709		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1710
1711	rt_queue_push_tasks(rq);
1712}
1713
1714static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1715{
1716	struct rt_prio_array *array = &rt_rq->active;
1717	struct sched_rt_entity *next = NULL;
1718	struct list_head *queue;
1719	int idx;
1720
1721	idx = sched_find_first_bit(array->bitmap);
1722	BUG_ON(idx >= MAX_RT_PRIO);
1723
1724	queue = array->queue + idx;
1725	if (SCHED_WARN_ON(list_empty(queue)))
1726		return NULL;
1727	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1728
1729	return next;
1730}
1731
1732static struct task_struct *_pick_next_task_rt(struct rq *rq)
1733{
1734	struct sched_rt_entity *rt_se;
1735	struct rt_rq *rt_rq  = &rq->rt;
1736
1737	do {
1738		rt_se = pick_next_rt_entity(rt_rq);
1739		if (unlikely(!rt_se))
1740			return NULL;
1741		rt_rq = group_rt_rq(rt_se);
1742	} while (rt_rq);
1743
1744	return rt_task_of(rt_se);
1745}
1746
1747static struct task_struct *pick_task_rt(struct rq *rq)
1748{
1749	struct task_struct *p;
1750
1751	if (!sched_rt_runnable(rq))
1752		return NULL;
1753
1754	p = _pick_next_task_rt(rq);
1755
1756	return p;
1757}
1758
1759static struct task_struct *pick_next_task_rt(struct rq *rq)
1760{
1761	struct task_struct *p = pick_task_rt(rq);
1762
1763	if (p)
1764		set_next_task_rt(rq, p, true);
1765
1766	return p;
1767}
1768
1769static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1770{
1771	struct sched_rt_entity *rt_se = &p->rt;
1772	struct rt_rq *rt_rq = &rq->rt;
1773
1774	if (on_rt_rq(&p->rt))
1775		update_stats_wait_start_rt(rt_rq, rt_se);
1776
1777	update_curr_rt(rq);
1778
1779	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1780
1781	/*
1782	 * The previous task needs to be made eligible for pushing
1783	 * if it is still active
1784	 */
1785	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1786		enqueue_pushable_task(rq, p);
1787}
1788
1789#ifdef CONFIG_SMP
1790
1791/* Only try algorithms three times */
1792#define RT_MAX_TRIES 3
1793
1794static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1795{
1796	if (!task_on_cpu(rq, p) &&
1797	    cpumask_test_cpu(cpu, &p->cpus_mask))
1798		return 1;
1799
1800	return 0;
1801}
1802
1803/*
1804 * Return the highest pushable rq's task, which is suitable to be executed
1805 * on the CPU, NULL otherwise
1806 */
1807static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1808{
1809	struct plist_head *head = &rq->rt.pushable_tasks;
1810	struct task_struct *p;
1811
1812	if (!has_pushable_tasks(rq))
1813		return NULL;
1814
1815	plist_for_each_entry(p, head, pushable_tasks) {
1816		if (pick_rt_task(rq, p, cpu))
1817			return p;
1818	}
1819
1820	return NULL;
1821}
1822
1823static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1824
1825static int find_lowest_rq(struct task_struct *task)
1826{
1827	struct sched_domain *sd;
1828	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1829	int this_cpu = smp_processor_id();
1830	int cpu      = task_cpu(task);
1831	int ret;
1832
1833	/* Make sure the mask is initialized first */
1834	if (unlikely(!lowest_mask))
1835		return -1;
1836
1837	if (task->nr_cpus_allowed == 1)
1838		return -1; /* No other targets possible */
1839
1840	/*
1841	 * If we're on asym system ensure we consider the different capacities
1842	 * of the CPUs when searching for the lowest_mask.
1843	 */
1844	if (sched_asym_cpucap_active()) {
1845
1846		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1847					  task, lowest_mask,
1848					  rt_task_fits_capacity);
1849	} else {
1850
1851		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1852				  task, lowest_mask);
1853	}
1854
1855	if (!ret)
1856		return -1; /* No targets found */
1857
1858	/*
1859	 * At this point we have built a mask of CPUs representing the
1860	 * lowest priority tasks in the system.  Now we want to elect
1861	 * the best one based on our affinity and topology.
1862	 *
1863	 * We prioritize the last CPU that the task executed on since
1864	 * it is most likely cache-hot in that location.
1865	 */
1866	if (cpumask_test_cpu(cpu, lowest_mask))
1867		return cpu;
1868
1869	/*
1870	 * Otherwise, we consult the sched_domains span maps to figure
1871	 * out which CPU is logically closest to our hot cache data.
1872	 */
1873	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1874		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1875
1876	rcu_read_lock();
1877	for_each_domain(cpu, sd) {
1878		if (sd->flags & SD_WAKE_AFFINE) {
1879			int best_cpu;
1880
1881			/*
1882			 * "this_cpu" is cheaper to preempt than a
1883			 * remote processor.
1884			 */
1885			if (this_cpu != -1 &&
1886			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1887				rcu_read_unlock();
1888				return this_cpu;
1889			}
1890
1891			best_cpu = cpumask_any_and_distribute(lowest_mask,
1892							      sched_domain_span(sd));
1893			if (best_cpu < nr_cpu_ids) {
1894				rcu_read_unlock();
1895				return best_cpu;
1896			}
1897		}
1898	}
1899	rcu_read_unlock();
1900
1901	/*
1902	 * And finally, if there were no matches within the domains
1903	 * just give the caller *something* to work with from the compatible
1904	 * locations.
1905	 */
1906	if (this_cpu != -1)
1907		return this_cpu;
1908
1909	cpu = cpumask_any_distribute(lowest_mask);
1910	if (cpu < nr_cpu_ids)
1911		return cpu;
1912
1913	return -1;
1914}
1915
1916/* Will lock the rq it finds */
1917static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1918{
1919	struct rq *lowest_rq = NULL;
1920	int tries;
1921	int cpu;
1922
1923	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1924		cpu = find_lowest_rq(task);
1925
1926		if ((cpu == -1) || (cpu == rq->cpu))
1927			break;
1928
1929		lowest_rq = cpu_rq(cpu);
1930
1931		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1932			/*
1933			 * Target rq has tasks of equal or higher priority,
1934			 * retrying does not release any lock and is unlikely
1935			 * to yield a different result.
1936			 */
1937			lowest_rq = NULL;
1938			break;
1939		}
1940
1941		/* if the prio of this runqueue changed, try again */
1942		if (double_lock_balance(rq, lowest_rq)) {
1943			/*
1944			 * We had to unlock the run queue. In
1945			 * the mean time, task could have
1946			 * migrated already or had its affinity changed.
1947			 * Also make sure that it wasn't scheduled on its rq.
1948			 * It is possible the task was scheduled, set
1949			 * "migrate_disabled" and then got preempted, so we must
1950			 * check the task migration disable flag here too.
1951			 */
1952			if (unlikely(task_rq(task) != rq ||
1953				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1954				     task_on_cpu(rq, task) ||
1955				     !rt_task(task) ||
1956				     is_migration_disabled(task) ||
1957				     !task_on_rq_queued(task))) {
1958
1959				double_unlock_balance(rq, lowest_rq);
1960				lowest_rq = NULL;
1961				break;
1962			}
1963		}
1964
1965		/* If this rq is still suitable use it. */
1966		if (lowest_rq->rt.highest_prio.curr > task->prio)
1967			break;
1968
1969		/* try again */
1970		double_unlock_balance(rq, lowest_rq);
1971		lowest_rq = NULL;
1972	}
1973
1974	return lowest_rq;
1975}
1976
1977static struct task_struct *pick_next_pushable_task(struct rq *rq)
1978{
1979	struct task_struct *p;
1980
1981	if (!has_pushable_tasks(rq))
1982		return NULL;
1983
1984	p = plist_first_entry(&rq->rt.pushable_tasks,
1985			      struct task_struct, pushable_tasks);
1986
1987	BUG_ON(rq->cpu != task_cpu(p));
1988	BUG_ON(task_current(rq, p));
1989	BUG_ON(p->nr_cpus_allowed <= 1);
1990
1991	BUG_ON(!task_on_rq_queued(p));
1992	BUG_ON(!rt_task(p));
1993
1994	return p;
1995}
1996
1997/*
1998 * If the current CPU has more than one RT task, see if the non
1999 * running task can migrate over to a CPU that is running a task
2000 * of lesser priority.
2001 */
2002static int push_rt_task(struct rq *rq, bool pull)
2003{
2004	struct task_struct *next_task;
2005	struct rq *lowest_rq;
2006	int ret = 0;
2007
2008	if (!rq->rt.overloaded)
2009		return 0;
2010
2011	next_task = pick_next_pushable_task(rq);
2012	if (!next_task)
2013		return 0;
2014
2015retry:
2016	/*
2017	 * It's possible that the next_task slipped in of
2018	 * higher priority than current. If that's the case
2019	 * just reschedule current.
2020	 */
2021	if (unlikely(next_task->prio < rq->curr->prio)) {
2022		resched_curr(rq);
2023		return 0;
2024	}
2025
2026	if (is_migration_disabled(next_task)) {
2027		struct task_struct *push_task = NULL;
2028		int cpu;
2029
2030		if (!pull || rq->push_busy)
2031			return 0;
2032
2033		/*
2034		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2035		 * make sense. Per the above priority check, curr has to
2036		 * be of higher priority than next_task, so no need to
2037		 * reschedule when bailing out.
2038		 *
2039		 * Note that the stoppers are masqueraded as SCHED_FIFO
2040		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2041		 */
2042		if (rq->curr->sched_class != &rt_sched_class)
2043			return 0;
2044
2045		cpu = find_lowest_rq(rq->curr);
2046		if (cpu == -1 || cpu == rq->cpu)
2047			return 0;
2048
2049		/*
2050		 * Given we found a CPU with lower priority than @next_task,
2051		 * therefore it should be running. However we cannot migrate it
2052		 * to this other CPU, instead attempt to push the current
2053		 * running task on this CPU away.
2054		 */
2055		push_task = get_push_task(rq);
2056		if (push_task) {
2057			preempt_disable();
2058			raw_spin_rq_unlock(rq);
2059			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2060					    push_task, &rq->push_work);
2061			preempt_enable();
2062			raw_spin_rq_lock(rq);
2063		}
2064
2065		return 0;
2066	}
2067
2068	if (WARN_ON(next_task == rq->curr))
2069		return 0;
2070
2071	/* We might release rq lock */
2072	get_task_struct(next_task);
2073
2074	/* find_lock_lowest_rq locks the rq if found */
2075	lowest_rq = find_lock_lowest_rq(next_task, rq);
2076	if (!lowest_rq) {
2077		struct task_struct *task;
2078		/*
2079		 * find_lock_lowest_rq releases rq->lock
2080		 * so it is possible that next_task has migrated.
2081		 *
2082		 * We need to make sure that the task is still on the same
2083		 * run-queue and is also still the next task eligible for
2084		 * pushing.
2085		 */
2086		task = pick_next_pushable_task(rq);
2087		if (task == next_task) {
2088			/*
2089			 * The task hasn't migrated, and is still the next
2090			 * eligible task, but we failed to find a run-queue
2091			 * to push it to.  Do not retry in this case, since
2092			 * other CPUs will pull from us when ready.
2093			 */
2094			goto out;
2095		}
2096
2097		if (!task)
2098			/* No more tasks, just exit */
2099			goto out;
2100
2101		/*
2102		 * Something has shifted, try again.
2103		 */
2104		put_task_struct(next_task);
2105		next_task = task;
2106		goto retry;
2107	}
2108
2109	deactivate_task(rq, next_task, 0);
2110	set_task_cpu(next_task, lowest_rq->cpu);
2111	activate_task(lowest_rq, next_task, 0);
2112	resched_curr(lowest_rq);
2113	ret = 1;
2114
2115	double_unlock_balance(rq, lowest_rq);
2116out:
2117	put_task_struct(next_task);
2118
2119	return ret;
2120}
2121
2122static void push_rt_tasks(struct rq *rq)
2123{
2124	/* push_rt_task will return true if it moved an RT */
2125	while (push_rt_task(rq, false))
2126		;
2127}
2128
2129#ifdef HAVE_RT_PUSH_IPI
2130
2131/*
2132 * When a high priority task schedules out from a CPU and a lower priority
2133 * task is scheduled in, a check is made to see if there's any RT tasks
2134 * on other CPUs that are waiting to run because a higher priority RT task
2135 * is currently running on its CPU. In this case, the CPU with multiple RT
2136 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2137 * up that may be able to run one of its non-running queued RT tasks.
2138 *
2139 * All CPUs with overloaded RT tasks need to be notified as there is currently
2140 * no way to know which of these CPUs have the highest priority task waiting
2141 * to run. Instead of trying to take a spinlock on each of these CPUs,
2142 * which has shown to cause large latency when done on machines with many
2143 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2144 * RT tasks waiting to run.
2145 *
2146 * Just sending an IPI to each of the CPUs is also an issue, as on large
2147 * count CPU machines, this can cause an IPI storm on a CPU, especially
2148 * if its the only CPU with multiple RT tasks queued, and a large number
2149 * of CPUs scheduling a lower priority task at the same time.
2150 *
2151 * Each root domain has its own irq work function that can iterate over
2152 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2153 * task must be checked if there's one or many CPUs that are lowering
2154 * their priority, there's a single irq work iterator that will try to
2155 * push off RT tasks that are waiting to run.
2156 *
2157 * When a CPU schedules a lower priority task, it will kick off the
2158 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2159 * As it only takes the first CPU that schedules a lower priority task
2160 * to start the process, the rto_start variable is incremented and if
2161 * the atomic result is one, then that CPU will try to take the rto_lock.
2162 * This prevents high contention on the lock as the process handles all
2163 * CPUs scheduling lower priority tasks.
2164 *
2165 * All CPUs that are scheduling a lower priority task will increment the
2166 * rt_loop_next variable. This will make sure that the irq work iterator
2167 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2168 * priority task, even if the iterator is in the middle of a scan. Incrementing
2169 * the rt_loop_next will cause the iterator to perform another scan.
2170 *
2171 */
2172static int rto_next_cpu(struct root_domain *rd)
2173{
2174	int next;
2175	int cpu;
2176
2177	/*
2178	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2179	 * rt_next_cpu() will simply return the first CPU found in
2180	 * the rto_mask.
2181	 *
2182	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2183	 * will return the next CPU found in the rto_mask.
2184	 *
2185	 * If there are no more CPUs left in the rto_mask, then a check is made
2186	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2187	 * the rto_lock held, but any CPU may increment the rto_loop_next
2188	 * without any locking.
2189	 */
2190	for (;;) {
2191
2192		/* When rto_cpu is -1 this acts like cpumask_first() */
2193		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2194
2195		rd->rto_cpu = cpu;
2196
2197		if (cpu < nr_cpu_ids)
2198			return cpu;
2199
2200		rd->rto_cpu = -1;
2201
2202		/*
2203		 * ACQUIRE ensures we see the @rto_mask changes
2204		 * made prior to the @next value observed.
2205		 *
2206		 * Matches WMB in rt_set_overload().
2207		 */
2208		next = atomic_read_acquire(&rd->rto_loop_next);
2209
2210		if (rd->rto_loop == next)
2211			break;
2212
2213		rd->rto_loop = next;
2214	}
2215
2216	return -1;
2217}
2218
2219static inline bool rto_start_trylock(atomic_t *v)
2220{
2221	return !atomic_cmpxchg_acquire(v, 0, 1);
2222}
2223
2224static inline void rto_start_unlock(atomic_t *v)
2225{
2226	atomic_set_release(v, 0);
2227}
2228
2229static void tell_cpu_to_push(struct rq *rq)
2230{
2231	int cpu = -1;
2232
2233	/* Keep the loop going if the IPI is currently active */
2234	atomic_inc(&rq->rd->rto_loop_next);
2235
2236	/* Only one CPU can initiate a loop at a time */
2237	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2238		return;
2239
2240	raw_spin_lock(&rq->rd->rto_lock);
2241
2242	/*
2243	 * The rto_cpu is updated under the lock, if it has a valid CPU
2244	 * then the IPI is still running and will continue due to the
2245	 * update to loop_next, and nothing needs to be done here.
2246	 * Otherwise it is finishing up and an ipi needs to be sent.
2247	 */
2248	if (rq->rd->rto_cpu < 0)
2249		cpu = rto_next_cpu(rq->rd);
2250
2251	raw_spin_unlock(&rq->rd->rto_lock);
2252
2253	rto_start_unlock(&rq->rd->rto_loop_start);
2254
2255	if (cpu >= 0) {
2256		/* Make sure the rd does not get freed while pushing */
2257		sched_get_rd(rq->rd);
2258		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2259	}
2260}
2261
2262/* Called from hardirq context */
2263void rto_push_irq_work_func(struct irq_work *work)
2264{
2265	struct root_domain *rd =
2266		container_of(work, struct root_domain, rto_push_work);
2267	struct rq *rq;
2268	int cpu;
2269
2270	rq = this_rq();
2271
2272	/*
2273	 * We do not need to grab the lock to check for has_pushable_tasks.
2274	 * When it gets updated, a check is made if a push is possible.
2275	 */
2276	if (has_pushable_tasks(rq)) {
2277		raw_spin_rq_lock(rq);
2278		while (push_rt_task(rq, true))
2279			;
2280		raw_spin_rq_unlock(rq);
2281	}
2282
2283	raw_spin_lock(&rd->rto_lock);
2284
2285	/* Pass the IPI to the next rt overloaded queue */
2286	cpu = rto_next_cpu(rd);
2287
2288	raw_spin_unlock(&rd->rto_lock);
2289
2290	if (cpu < 0) {
2291		sched_put_rd(rd);
2292		return;
2293	}
2294
2295	/* Try the next RT overloaded CPU */
2296	irq_work_queue_on(&rd->rto_push_work, cpu);
2297}
2298#endif /* HAVE_RT_PUSH_IPI */
2299
2300static void pull_rt_task(struct rq *this_rq)
2301{
2302	int this_cpu = this_rq->cpu, cpu;
2303	bool resched = false;
2304	struct task_struct *p, *push_task;
2305	struct rq *src_rq;
2306	int rt_overload_count = rt_overloaded(this_rq);
2307
2308	if (likely(!rt_overload_count))
2309		return;
2310
2311	/*
2312	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2313	 * see overloaded we must also see the rto_mask bit.
2314	 */
2315	smp_rmb();
2316
2317	/* If we are the only overloaded CPU do nothing */
2318	if (rt_overload_count == 1 &&
2319	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2320		return;
2321
2322#ifdef HAVE_RT_PUSH_IPI
2323	if (sched_feat(RT_PUSH_IPI)) {
2324		tell_cpu_to_push(this_rq);
2325		return;
2326	}
2327#endif
2328
2329	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2330		if (this_cpu == cpu)
2331			continue;
2332
2333		src_rq = cpu_rq(cpu);
2334
2335		/*
2336		 * Don't bother taking the src_rq->lock if the next highest
2337		 * task is known to be lower-priority than our current task.
2338		 * This may look racy, but if this value is about to go
2339		 * logically higher, the src_rq will push this task away.
2340		 * And if its going logically lower, we do not care
2341		 */
2342		if (src_rq->rt.highest_prio.next >=
2343		    this_rq->rt.highest_prio.curr)
2344			continue;
2345
2346		/*
2347		 * We can potentially drop this_rq's lock in
2348		 * double_lock_balance, and another CPU could
2349		 * alter this_rq
2350		 */
2351		push_task = NULL;
2352		double_lock_balance(this_rq, src_rq);
2353
2354		/*
2355		 * We can pull only a task, which is pushable
2356		 * on its rq, and no others.
2357		 */
2358		p = pick_highest_pushable_task(src_rq, this_cpu);
2359
2360		/*
2361		 * Do we have an RT task that preempts
2362		 * the to-be-scheduled task?
2363		 */
2364		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2365			WARN_ON(p == src_rq->curr);
2366			WARN_ON(!task_on_rq_queued(p));
2367
2368			/*
2369			 * There's a chance that p is higher in priority
2370			 * than what's currently running on its CPU.
2371			 * This is just that p is waking up and hasn't
2372			 * had a chance to schedule. We only pull
2373			 * p if it is lower in priority than the
2374			 * current task on the run queue
2375			 */
2376			if (p->prio < src_rq->curr->prio)
2377				goto skip;
2378
2379			if (is_migration_disabled(p)) {
2380				push_task = get_push_task(src_rq);
2381			} else {
2382				deactivate_task(src_rq, p, 0);
2383				set_task_cpu(p, this_cpu);
2384				activate_task(this_rq, p, 0);
2385				resched = true;
2386			}
2387			/*
2388			 * We continue with the search, just in
2389			 * case there's an even higher prio task
2390			 * in another runqueue. (low likelihood
2391			 * but possible)
2392			 */
2393		}
2394skip:
2395		double_unlock_balance(this_rq, src_rq);
2396
2397		if (push_task) {
2398			preempt_disable();
2399			raw_spin_rq_unlock(this_rq);
2400			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2401					    push_task, &src_rq->push_work);
2402			preempt_enable();
2403			raw_spin_rq_lock(this_rq);
2404		}
2405	}
2406
2407	if (resched)
2408		resched_curr(this_rq);
2409}
2410
2411/*
2412 * If we are not running and we are not going to reschedule soon, we should
2413 * try to push tasks away now
2414 */
2415static void task_woken_rt(struct rq *rq, struct task_struct *p)
2416{
2417	bool need_to_push = !task_on_cpu(rq, p) &&
2418			    !test_tsk_need_resched(rq->curr) &&
2419			    p->nr_cpus_allowed > 1 &&
2420			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2421			    (rq->curr->nr_cpus_allowed < 2 ||
2422			     rq->curr->prio <= p->prio);
2423
2424	if (need_to_push)
2425		push_rt_tasks(rq);
2426}
2427
2428/* Assumes rq->lock is held */
2429static void rq_online_rt(struct rq *rq)
2430{
2431	if (rq->rt.overloaded)
2432		rt_set_overload(rq);
2433
2434	__enable_runtime(rq);
2435
2436	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2437}
2438
2439/* Assumes rq->lock is held */
2440static void rq_offline_rt(struct rq *rq)
2441{
2442	if (rq->rt.overloaded)
2443		rt_clear_overload(rq);
2444
2445	__disable_runtime(rq);
2446
2447	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2448}
2449
2450/*
2451 * When switch from the rt queue, we bring ourselves to a position
2452 * that we might want to pull RT tasks from other runqueues.
2453 */
2454static void switched_from_rt(struct rq *rq, struct task_struct *p)
2455{
2456	/*
2457	 * If there are other RT tasks then we will reschedule
2458	 * and the scheduling of the other RT tasks will handle
2459	 * the balancing. But if we are the last RT task
2460	 * we may need to handle the pulling of RT tasks
2461	 * now.
2462	 */
2463	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2464		return;
2465
2466	rt_queue_pull_task(rq);
2467}
2468
2469void __init init_sched_rt_class(void)
2470{
2471	unsigned int i;
2472
2473	for_each_possible_cpu(i) {
2474		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2475					GFP_KERNEL, cpu_to_node(i));
2476	}
2477}
2478#endif /* CONFIG_SMP */
2479
2480/*
2481 * When switching a task to RT, we may overload the runqueue
2482 * with RT tasks. In this case we try to push them off to
2483 * other runqueues.
2484 */
2485static void switched_to_rt(struct rq *rq, struct task_struct *p)
2486{
2487	/*
2488	 * If we are running, update the avg_rt tracking, as the running time
2489	 * will now on be accounted into the latter.
2490	 */
2491	if (task_current(rq, p)) {
2492		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2493		return;
2494	}
2495
2496	/*
2497	 * If we are not running we may need to preempt the current
2498	 * running task. If that current running task is also an RT task
2499	 * then see if we can move to another run queue.
2500	 */
2501	if (task_on_rq_queued(p)) {
2502#ifdef CONFIG_SMP
2503		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2504			rt_queue_push_tasks(rq);
2505#endif /* CONFIG_SMP */
2506		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2507			resched_curr(rq);
2508	}
2509}
2510
2511/*
2512 * Priority of the task has changed. This may cause
2513 * us to initiate a push or pull.
2514 */
2515static void
2516prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2517{
2518	if (!task_on_rq_queued(p))
2519		return;
2520
2521	if (task_current(rq, p)) {
2522#ifdef CONFIG_SMP
2523		/*
2524		 * If our priority decreases while running, we
2525		 * may need to pull tasks to this runqueue.
2526		 */
2527		if (oldprio < p->prio)
2528			rt_queue_pull_task(rq);
2529
2530		/*
2531		 * If there's a higher priority task waiting to run
2532		 * then reschedule.
2533		 */
2534		if (p->prio > rq->rt.highest_prio.curr)
2535			resched_curr(rq);
2536#else
2537		/* For UP simply resched on drop of prio */
2538		if (oldprio < p->prio)
2539			resched_curr(rq);
2540#endif /* CONFIG_SMP */
2541	} else {
2542		/*
2543		 * This task is not running, but if it is
2544		 * greater than the current running task
2545		 * then reschedule.
2546		 */
2547		if (p->prio < rq->curr->prio)
2548			resched_curr(rq);
2549	}
2550}
2551
2552#ifdef CONFIG_POSIX_TIMERS
2553static void watchdog(struct rq *rq, struct task_struct *p)
2554{
2555	unsigned long soft, hard;
2556
2557	/* max may change after cur was read, this will be fixed next tick */
2558	soft = task_rlimit(p, RLIMIT_RTTIME);
2559	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2560
2561	if (soft != RLIM_INFINITY) {
2562		unsigned long next;
2563
2564		if (p->rt.watchdog_stamp != jiffies) {
2565			p->rt.timeout++;
2566			p->rt.watchdog_stamp = jiffies;
2567		}
2568
2569		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2570		if (p->rt.timeout > next) {
2571			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2572						    p->se.sum_exec_runtime);
2573		}
2574	}
2575}
2576#else
2577static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2578#endif
2579
2580/*
2581 * scheduler tick hitting a task of our scheduling class.
2582 *
2583 * NOTE: This function can be called remotely by the tick offload that
2584 * goes along full dynticks. Therefore no local assumption can be made
2585 * and everything must be accessed through the @rq and @curr passed in
2586 * parameters.
2587 */
2588static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2589{
2590	struct sched_rt_entity *rt_se = &p->rt;
2591
2592	update_curr_rt(rq);
2593	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2594
2595	watchdog(rq, p);
2596
2597	/*
2598	 * RR tasks need a special form of timeslice management.
2599	 * FIFO tasks have no timeslices.
2600	 */
2601	if (p->policy != SCHED_RR)
2602		return;
2603
2604	if (--p->rt.time_slice)
2605		return;
2606
2607	p->rt.time_slice = sched_rr_timeslice;
2608
2609	/*
2610	 * Requeue to the end of queue if we (and all of our ancestors) are not
2611	 * the only element on the queue
2612	 */
2613	for_each_sched_rt_entity(rt_se) {
2614		if (rt_se->run_list.prev != rt_se->run_list.next) {
2615			requeue_task_rt(rq, p, 0);
2616			resched_curr(rq);
2617			return;
2618		}
2619	}
2620}
2621
2622static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2623{
2624	/*
2625	 * Time slice is 0 for SCHED_FIFO tasks
2626	 */
2627	if (task->policy == SCHED_RR)
2628		return sched_rr_timeslice;
2629	else
2630		return 0;
2631}
2632
2633#ifdef CONFIG_SCHED_CORE
2634static int task_is_throttled_rt(struct task_struct *p, int cpu)
2635{
2636	struct rt_rq *rt_rq;
2637
2638#ifdef CONFIG_RT_GROUP_SCHED
2639	rt_rq = task_group(p)->rt_rq[cpu];
2640#else
2641	rt_rq = &cpu_rq(cpu)->rt;
2642#endif
2643
2644	return rt_rq_throttled(rt_rq);
2645}
2646#endif
2647
2648DEFINE_SCHED_CLASS(rt) = {
2649
2650	.enqueue_task		= enqueue_task_rt,
2651	.dequeue_task		= dequeue_task_rt,
2652	.yield_task		= yield_task_rt,
2653
2654	.wakeup_preempt		= wakeup_preempt_rt,
2655
2656	.pick_next_task		= pick_next_task_rt,
2657	.put_prev_task		= put_prev_task_rt,
2658	.set_next_task          = set_next_task_rt,
2659
2660#ifdef CONFIG_SMP
2661	.balance		= balance_rt,
2662	.pick_task		= pick_task_rt,
2663	.select_task_rq		= select_task_rq_rt,
2664	.set_cpus_allowed       = set_cpus_allowed_common,
2665	.rq_online              = rq_online_rt,
2666	.rq_offline             = rq_offline_rt,
2667	.task_woken		= task_woken_rt,
2668	.switched_from		= switched_from_rt,
2669	.find_lock_rq		= find_lock_lowest_rq,
2670#endif
2671
2672	.task_tick		= task_tick_rt,
2673
2674	.get_rr_interval	= get_rr_interval_rt,
2675
2676	.prio_changed		= prio_changed_rt,
2677	.switched_to		= switched_to_rt,
2678
2679	.update_curr		= update_curr_rt,
2680
2681#ifdef CONFIG_SCHED_CORE
2682	.task_is_throttled	= task_is_throttled_rt,
2683#endif
2684
2685#ifdef CONFIG_UCLAMP_TASK
2686	.uclamp_enabled		= 1,
2687#endif
2688};
2689
2690#ifdef CONFIG_RT_GROUP_SCHED
2691/*
2692 * Ensure that the real time constraints are schedulable.
2693 */
2694static DEFINE_MUTEX(rt_constraints_mutex);
2695
2696static inline int tg_has_rt_tasks(struct task_group *tg)
2697{
2698	struct task_struct *task;
2699	struct css_task_iter it;
2700	int ret = 0;
2701
2702	/*
2703	 * Autogroups do not have RT tasks; see autogroup_create().
2704	 */
2705	if (task_group_is_autogroup(tg))
2706		return 0;
2707
2708	css_task_iter_start(&tg->css, 0, &it);
2709	while (!ret && (task = css_task_iter_next(&it)))
2710		ret |= rt_task(task);
2711	css_task_iter_end(&it);
2712
2713	return ret;
2714}
2715
2716struct rt_schedulable_data {
2717	struct task_group *tg;
2718	u64 rt_period;
2719	u64 rt_runtime;
2720};
2721
2722static int tg_rt_schedulable(struct task_group *tg, void *data)
2723{
2724	struct rt_schedulable_data *d = data;
2725	struct task_group *child;
2726	unsigned long total, sum = 0;
2727	u64 period, runtime;
2728
2729	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2730	runtime = tg->rt_bandwidth.rt_runtime;
2731
2732	if (tg == d->tg) {
2733		period = d->rt_period;
2734		runtime = d->rt_runtime;
2735	}
2736
2737	/*
2738	 * Cannot have more runtime than the period.
2739	 */
2740	if (runtime > period && runtime != RUNTIME_INF)
2741		return -EINVAL;
2742
2743	/*
2744	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2745	 */
2746	if (rt_bandwidth_enabled() && !runtime &&
2747	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2748		return -EBUSY;
2749
2750	total = to_ratio(period, runtime);
2751
2752	/*
2753	 * Nobody can have more than the global setting allows.
2754	 */
2755	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2756		return -EINVAL;
2757
2758	/*
2759	 * The sum of our children's runtime should not exceed our own.
2760	 */
2761	list_for_each_entry_rcu(child, &tg->children, siblings) {
2762		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2763		runtime = child->rt_bandwidth.rt_runtime;
2764
2765		if (child == d->tg) {
2766			period = d->rt_period;
2767			runtime = d->rt_runtime;
2768		}
2769
2770		sum += to_ratio(period, runtime);
2771	}
2772
2773	if (sum > total)
2774		return -EINVAL;
2775
2776	return 0;
2777}
2778
2779static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2780{
2781	int ret;
2782
2783	struct rt_schedulable_data data = {
2784		.tg = tg,
2785		.rt_period = period,
2786		.rt_runtime = runtime,
2787	};
2788
2789	rcu_read_lock();
2790	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2791	rcu_read_unlock();
2792
2793	return ret;
2794}
2795
2796static int tg_set_rt_bandwidth(struct task_group *tg,
2797		u64 rt_period, u64 rt_runtime)
2798{
2799	int i, err = 0;
2800
2801	/*
2802	 * Disallowing the root group RT runtime is BAD, it would disallow the
2803	 * kernel creating (and or operating) RT threads.
2804	 */
2805	if (tg == &root_task_group && rt_runtime == 0)
2806		return -EINVAL;
2807
2808	/* No period doesn't make any sense. */
2809	if (rt_period == 0)
2810		return -EINVAL;
2811
2812	/*
2813	 * Bound quota to defend quota against overflow during bandwidth shift.
2814	 */
2815	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2816		return -EINVAL;
2817
2818	mutex_lock(&rt_constraints_mutex);
2819	err = __rt_schedulable(tg, rt_period, rt_runtime);
2820	if (err)
2821		goto unlock;
2822
2823	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2824	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2825	tg->rt_bandwidth.rt_runtime = rt_runtime;
2826
2827	for_each_possible_cpu(i) {
2828		struct rt_rq *rt_rq = tg->rt_rq[i];
2829
2830		raw_spin_lock(&rt_rq->rt_runtime_lock);
2831		rt_rq->rt_runtime = rt_runtime;
2832		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2833	}
2834	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2835unlock:
2836	mutex_unlock(&rt_constraints_mutex);
2837
2838	return err;
2839}
2840
2841int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2842{
2843	u64 rt_runtime, rt_period;
2844
2845	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2846	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2847	if (rt_runtime_us < 0)
2848		rt_runtime = RUNTIME_INF;
2849	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2850		return -EINVAL;
2851
2852	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2853}
2854
2855long sched_group_rt_runtime(struct task_group *tg)
2856{
2857	u64 rt_runtime_us;
2858
2859	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2860		return -1;
2861
2862	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2863	do_div(rt_runtime_us, NSEC_PER_USEC);
2864	return rt_runtime_us;
2865}
2866
2867int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2868{
2869	u64 rt_runtime, rt_period;
2870
2871	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2872		return -EINVAL;
2873
2874	rt_period = rt_period_us * NSEC_PER_USEC;
2875	rt_runtime = tg->rt_bandwidth.rt_runtime;
2876
2877	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878}
2879
2880long sched_group_rt_period(struct task_group *tg)
2881{
2882	u64 rt_period_us;
2883
2884	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2885	do_div(rt_period_us, NSEC_PER_USEC);
2886	return rt_period_us;
2887}
2888
2889#ifdef CONFIG_SYSCTL
2890static int sched_rt_global_constraints(void)
2891{
2892	int ret = 0;
2893
2894	mutex_lock(&rt_constraints_mutex);
2895	ret = __rt_schedulable(NULL, 0, 0);
2896	mutex_unlock(&rt_constraints_mutex);
2897
2898	return ret;
2899}
2900#endif /* CONFIG_SYSCTL */
2901
2902int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2903{
2904	/* Don't accept realtime tasks when there is no way for them to run */
2905	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2906		return 0;
2907
2908	return 1;
2909}
2910
2911#else /* !CONFIG_RT_GROUP_SCHED */
2912
2913#ifdef CONFIG_SYSCTL
2914static int sched_rt_global_constraints(void)
2915{
2916	unsigned long flags;
2917	int i;
2918
2919	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2920	for_each_possible_cpu(i) {
2921		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2922
2923		raw_spin_lock(&rt_rq->rt_runtime_lock);
2924		rt_rq->rt_runtime = global_rt_runtime();
2925		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2926	}
2927	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2928
2929	return 0;
2930}
2931#endif /* CONFIG_SYSCTL */
2932#endif /* CONFIG_RT_GROUP_SCHED */
2933
2934#ifdef CONFIG_SYSCTL
2935static int sched_rt_global_validate(void)
2936{
2937	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2938		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2939		 ((u64)sysctl_sched_rt_runtime *
2940			NSEC_PER_USEC > max_rt_runtime)))
2941		return -EINVAL;
2942
2943	return 0;
2944}
2945
2946static void sched_rt_do_global(void)
2947{
2948	unsigned long flags;
2949
2950	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2951	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2952	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2953	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2954}
2955
2956static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2957		size_t *lenp, loff_t *ppos)
2958{
2959	int old_period, old_runtime;
2960	static DEFINE_MUTEX(mutex);
2961	int ret;
2962
2963	mutex_lock(&mutex);
2964	old_period = sysctl_sched_rt_period;
2965	old_runtime = sysctl_sched_rt_runtime;
2966
2967	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2968
2969	if (!ret && write) {
2970		ret = sched_rt_global_validate();
2971		if (ret)
2972			goto undo;
2973
2974		ret = sched_dl_global_validate();
2975		if (ret)
2976			goto undo;
2977
2978		ret = sched_rt_global_constraints();
2979		if (ret)
2980			goto undo;
2981
2982		sched_rt_do_global();
2983		sched_dl_do_global();
2984	}
2985	if (0) {
2986undo:
2987		sysctl_sched_rt_period = old_period;
2988		sysctl_sched_rt_runtime = old_runtime;
2989	}
2990	mutex_unlock(&mutex);
2991
2992	return ret;
2993}
2994
2995static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2996		size_t *lenp, loff_t *ppos)
2997{
2998	int ret;
2999	static DEFINE_MUTEX(mutex);
3000
3001	mutex_lock(&mutex);
3002	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3003	/*
3004	 * Make sure that internally we keep jiffies.
3005	 * Also, writing zero resets the timeslice to default:
3006	 */
3007	if (!ret && write) {
3008		sched_rr_timeslice =
3009			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3010			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3011
3012		if (sysctl_sched_rr_timeslice <= 0)
3013			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3014	}
3015	mutex_unlock(&mutex);
3016
3017	return ret;
3018}
3019#endif /* CONFIG_SYSCTL */
3020
3021#ifdef CONFIG_SCHED_DEBUG
3022void print_rt_stats(struct seq_file *m, int cpu)
3023{
3024	rt_rq_iter_t iter;
3025	struct rt_rq *rt_rq;
3026
3027	rcu_read_lock();
3028	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3029		print_rt_rq(m, cpu, rt_rq);
3030	rcu_read_unlock();
3031}
3032#endif /* CONFIG_SCHED_DEBUG */
3033