1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 *  Interactivity improvements by Mike Galbraith
8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 *  Various enhancements by Dmitry Adamushko.
11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 *  Group scheduling enhancements by Srivatsa Vaddagiri
14 *  Copyright IBM Corporation, 2007
15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 *  Scaled math optimizations by Thomas Gleixner
18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23#include <linux/energy_model.h>
24#include <linux/mmap_lock.h>
25#include <linux/hugetlb_inline.h>
26#include <linux/jiffies.h>
27#include <linux/mm_api.h>
28#include <linux/highmem.h>
29#include <linux/spinlock_api.h>
30#include <linux/cpumask_api.h>
31#include <linux/lockdep_api.h>
32#include <linux/softirq.h>
33#include <linux/refcount_api.h>
34#include <linux/topology.h>
35#include <linux/sched/clock.h>
36#include <linux/sched/cond_resched.h>
37#include <linux/sched/cputime.h>
38#include <linux/sched/isolation.h>
39#include <linux/sched/nohz.h>
40
41#include <linux/cpuidle.h>
42#include <linux/interrupt.h>
43#include <linux/memory-tiers.h>
44#include <linux/mempolicy.h>
45#include <linux/mutex_api.h>
46#include <linux/profile.h>
47#include <linux/psi.h>
48#include <linux/ratelimit.h>
49#include <linux/task_work.h>
50#include <linux/rbtree_augmented.h>
51
52#include <asm/switch_to.h>
53
54#include "sched.h"
55#include "stats.h"
56#include "autogroup.h"
57
58/*
59 * The initial- and re-scaling of tunables is configurable
60 *
61 * Options are:
62 *
63 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66 *
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68 */
69unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70
71/*
72 * Minimal preemption granularity for CPU-bound tasks:
73 *
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 */
76unsigned int sysctl_sched_base_slice			= 750000ULL;
77static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78
79const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80
81int sched_thermal_decay_shift;
82static int __init setup_sched_thermal_decay_shift(char *str)
83{
84	int _shift = 0;
85
86	if (kstrtoint(str, 0, &_shift))
87		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
88
89	sched_thermal_decay_shift = clamp(_shift, 0, 10);
90	return 1;
91}
92__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
93
94#ifdef CONFIG_SMP
95/*
96 * For asym packing, by default the lower numbered CPU has higher priority.
97 */
98int __weak arch_asym_cpu_priority(int cpu)
99{
100	return -cpu;
101}
102
103/*
104 * The margin used when comparing utilization with CPU capacity.
105 *
106 * (default: ~20%)
107 */
108#define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
109
110/*
111 * The margin used when comparing CPU capacities.
112 * is 'cap1' noticeably greater than 'cap2'
113 *
114 * (default: ~5%)
115 */
116#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
117#endif
118
119#ifdef CONFIG_CFS_BANDWIDTH
120/*
121 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
122 * each time a cfs_rq requests quota.
123 *
124 * Note: in the case that the slice exceeds the runtime remaining (either due
125 * to consumption or the quota being specified to be smaller than the slice)
126 * we will always only issue the remaining available time.
127 *
128 * (default: 5 msec, units: microseconds)
129 */
130static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
131#endif
132
133#ifdef CONFIG_NUMA_BALANCING
134/* Restrict the NUMA promotion throughput (MB/s) for each target node. */
135static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
136#endif
137
138#ifdef CONFIG_SYSCTL
139static struct ctl_table sched_fair_sysctls[] = {
140#ifdef CONFIG_CFS_BANDWIDTH
141	{
142		.procname       = "sched_cfs_bandwidth_slice_us",
143		.data           = &sysctl_sched_cfs_bandwidth_slice,
144		.maxlen         = sizeof(unsigned int),
145		.mode           = 0644,
146		.proc_handler   = proc_dointvec_minmax,
147		.extra1         = SYSCTL_ONE,
148	},
149#endif
150#ifdef CONFIG_NUMA_BALANCING
151	{
152		.procname	= "numa_balancing_promote_rate_limit_MBps",
153		.data		= &sysctl_numa_balancing_promote_rate_limit,
154		.maxlen		= sizeof(unsigned int),
155		.mode		= 0644,
156		.proc_handler	= proc_dointvec_minmax,
157		.extra1		= SYSCTL_ZERO,
158	},
159#endif /* CONFIG_NUMA_BALANCING */
160	{}
161};
162
163static int __init sched_fair_sysctl_init(void)
164{
165	register_sysctl_init("kernel", sched_fair_sysctls);
166	return 0;
167}
168late_initcall(sched_fair_sysctl_init);
169#endif
170
171static inline void update_load_add(struct load_weight *lw, unsigned long inc)
172{
173	lw->weight += inc;
174	lw->inv_weight = 0;
175}
176
177static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
178{
179	lw->weight -= dec;
180	lw->inv_weight = 0;
181}
182
183static inline void update_load_set(struct load_weight *lw, unsigned long w)
184{
185	lw->weight = w;
186	lw->inv_weight = 0;
187}
188
189/*
190 * Increase the granularity value when there are more CPUs,
191 * because with more CPUs the 'effective latency' as visible
192 * to users decreases. But the relationship is not linear,
193 * so pick a second-best guess by going with the log2 of the
194 * number of CPUs.
195 *
196 * This idea comes from the SD scheduler of Con Kolivas:
197 */
198static unsigned int get_update_sysctl_factor(void)
199{
200	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
201	unsigned int factor;
202
203	switch (sysctl_sched_tunable_scaling) {
204	case SCHED_TUNABLESCALING_NONE:
205		factor = 1;
206		break;
207	case SCHED_TUNABLESCALING_LINEAR:
208		factor = cpus;
209		break;
210	case SCHED_TUNABLESCALING_LOG:
211	default:
212		factor = 1 + ilog2(cpus);
213		break;
214	}
215
216	return factor;
217}
218
219static void update_sysctl(void)
220{
221	unsigned int factor = get_update_sysctl_factor();
222
223#define SET_SYSCTL(name) \
224	(sysctl_##name = (factor) * normalized_sysctl_##name)
225	SET_SYSCTL(sched_base_slice);
226#undef SET_SYSCTL
227}
228
229void __init sched_init_granularity(void)
230{
231	update_sysctl();
232}
233
234#define WMULT_CONST	(~0U)
235#define WMULT_SHIFT	32
236
237static void __update_inv_weight(struct load_weight *lw)
238{
239	unsigned long w;
240
241	if (likely(lw->inv_weight))
242		return;
243
244	w = scale_load_down(lw->weight);
245
246	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
247		lw->inv_weight = 1;
248	else if (unlikely(!w))
249		lw->inv_weight = WMULT_CONST;
250	else
251		lw->inv_weight = WMULT_CONST / w;
252}
253
254/*
255 * delta_exec * weight / lw.weight
256 *   OR
257 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
258 *
259 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
260 * we're guaranteed shift stays positive because inv_weight is guaranteed to
261 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
262 *
263 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
264 * weight/lw.weight <= 1, and therefore our shift will also be positive.
265 */
266static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
267{
268	u64 fact = scale_load_down(weight);
269	u32 fact_hi = (u32)(fact >> 32);
270	int shift = WMULT_SHIFT;
271	int fs;
272
273	__update_inv_weight(lw);
274
275	if (unlikely(fact_hi)) {
276		fs = fls(fact_hi);
277		shift -= fs;
278		fact >>= fs;
279	}
280
281	fact = mul_u32_u32(fact, lw->inv_weight);
282
283	fact_hi = (u32)(fact >> 32);
284	if (fact_hi) {
285		fs = fls(fact_hi);
286		shift -= fs;
287		fact >>= fs;
288	}
289
290	return mul_u64_u32_shr(delta_exec, fact, shift);
291}
292
293/*
294 * delta /= w
295 */
296static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
297{
298	if (unlikely(se->load.weight != NICE_0_LOAD))
299		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
300
301	return delta;
302}
303
304const struct sched_class fair_sched_class;
305
306/**************************************************************
307 * CFS operations on generic schedulable entities:
308 */
309
310#ifdef CONFIG_FAIR_GROUP_SCHED
311
312/* Walk up scheduling entities hierarchy */
313#define for_each_sched_entity(se) \
314		for (; se; se = se->parent)
315
316static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
317{
318	struct rq *rq = rq_of(cfs_rq);
319	int cpu = cpu_of(rq);
320
321	if (cfs_rq->on_list)
322		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
323
324	cfs_rq->on_list = 1;
325
326	/*
327	 * Ensure we either appear before our parent (if already
328	 * enqueued) or force our parent to appear after us when it is
329	 * enqueued. The fact that we always enqueue bottom-up
330	 * reduces this to two cases and a special case for the root
331	 * cfs_rq. Furthermore, it also means that we will always reset
332	 * tmp_alone_branch either when the branch is connected
333	 * to a tree or when we reach the top of the tree
334	 */
335	if (cfs_rq->tg->parent &&
336	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
337		/*
338		 * If parent is already on the list, we add the child
339		 * just before. Thanks to circular linked property of
340		 * the list, this means to put the child at the tail
341		 * of the list that starts by parent.
342		 */
343		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
344			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
345		/*
346		 * The branch is now connected to its tree so we can
347		 * reset tmp_alone_branch to the beginning of the
348		 * list.
349		 */
350		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351		return true;
352	}
353
354	if (!cfs_rq->tg->parent) {
355		/*
356		 * cfs rq without parent should be put
357		 * at the tail of the list.
358		 */
359		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
360			&rq->leaf_cfs_rq_list);
361		/*
362		 * We have reach the top of a tree so we can reset
363		 * tmp_alone_branch to the beginning of the list.
364		 */
365		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366		return true;
367	}
368
369	/*
370	 * The parent has not already been added so we want to
371	 * make sure that it will be put after us.
372	 * tmp_alone_branch points to the begin of the branch
373	 * where we will add parent.
374	 */
375	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
376	/*
377	 * update tmp_alone_branch to points to the new begin
378	 * of the branch
379	 */
380	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
381	return false;
382}
383
384static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
385{
386	if (cfs_rq->on_list) {
387		struct rq *rq = rq_of(cfs_rq);
388
389		/*
390		 * With cfs_rq being unthrottled/throttled during an enqueue,
391		 * it can happen the tmp_alone_branch points the a leaf that
392		 * we finally want to del. In this case, tmp_alone_branch moves
393		 * to the prev element but it will point to rq->leaf_cfs_rq_list
394		 * at the end of the enqueue.
395		 */
396		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
397			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
398
399		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
400		cfs_rq->on_list = 0;
401	}
402}
403
404static inline void assert_list_leaf_cfs_rq(struct rq *rq)
405{
406	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
407}
408
409/* Iterate thr' all leaf cfs_rq's on a runqueue */
410#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
411	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
412				 leaf_cfs_rq_list)
413
414/* Do the two (enqueued) entities belong to the same group ? */
415static inline struct cfs_rq *
416is_same_group(struct sched_entity *se, struct sched_entity *pse)
417{
418	if (se->cfs_rq == pse->cfs_rq)
419		return se->cfs_rq;
420
421	return NULL;
422}
423
424static inline struct sched_entity *parent_entity(const struct sched_entity *se)
425{
426	return se->parent;
427}
428
429static void
430find_matching_se(struct sched_entity **se, struct sched_entity **pse)
431{
432	int se_depth, pse_depth;
433
434	/*
435	 * preemption test can be made between sibling entities who are in the
436	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
437	 * both tasks until we find their ancestors who are siblings of common
438	 * parent.
439	 */
440
441	/* First walk up until both entities are at same depth */
442	se_depth = (*se)->depth;
443	pse_depth = (*pse)->depth;
444
445	while (se_depth > pse_depth) {
446		se_depth--;
447		*se = parent_entity(*se);
448	}
449
450	while (pse_depth > se_depth) {
451		pse_depth--;
452		*pse = parent_entity(*pse);
453	}
454
455	while (!is_same_group(*se, *pse)) {
456		*se = parent_entity(*se);
457		*pse = parent_entity(*pse);
458	}
459}
460
461static int tg_is_idle(struct task_group *tg)
462{
463	return tg->idle > 0;
464}
465
466static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
467{
468	return cfs_rq->idle > 0;
469}
470
471static int se_is_idle(struct sched_entity *se)
472{
473	if (entity_is_task(se))
474		return task_has_idle_policy(task_of(se));
475	return cfs_rq_is_idle(group_cfs_rq(se));
476}
477
478#else	/* !CONFIG_FAIR_GROUP_SCHED */
479
480#define for_each_sched_entity(se) \
481		for (; se; se = NULL)
482
483static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484{
485	return true;
486}
487
488static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489{
490}
491
492static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493{
494}
495
496#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
497		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498
499static inline struct sched_entity *parent_entity(struct sched_entity *se)
500{
501	return NULL;
502}
503
504static inline void
505find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506{
507}
508
509static inline int tg_is_idle(struct task_group *tg)
510{
511	return 0;
512}
513
514static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
515{
516	return 0;
517}
518
519static int se_is_idle(struct sched_entity *se)
520{
521	return 0;
522}
523
524#endif	/* CONFIG_FAIR_GROUP_SCHED */
525
526static __always_inline
527void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
528
529/**************************************************************
530 * Scheduling class tree data structure manipulation methods:
531 */
532
533static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
534{
535	s64 delta = (s64)(vruntime - max_vruntime);
536	if (delta > 0)
537		max_vruntime = vruntime;
538
539	return max_vruntime;
540}
541
542static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
543{
544	s64 delta = (s64)(vruntime - min_vruntime);
545	if (delta < 0)
546		min_vruntime = vruntime;
547
548	return min_vruntime;
549}
550
551static inline bool entity_before(const struct sched_entity *a,
552				 const struct sched_entity *b)
553{
554	/*
555	 * Tiebreak on vruntime seems unnecessary since it can
556	 * hardly happen.
557	 */
558	return (s64)(a->deadline - b->deadline) < 0;
559}
560
561static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
562{
563	return (s64)(se->vruntime - cfs_rq->min_vruntime);
564}
565
566#define __node_2_se(node) \
567	rb_entry((node), struct sched_entity, run_node)
568
569/*
570 * Compute virtual time from the per-task service numbers:
571 *
572 * Fair schedulers conserve lag:
573 *
574 *   \Sum lag_i = 0
575 *
576 * Where lag_i is given by:
577 *
578 *   lag_i = S - s_i = w_i * (V - v_i)
579 *
580 * Where S is the ideal service time and V is it's virtual time counterpart.
581 * Therefore:
582 *
583 *   \Sum lag_i = 0
584 *   \Sum w_i * (V - v_i) = 0
585 *   \Sum w_i * V - w_i * v_i = 0
586 *
587 * From which we can solve an expression for V in v_i (which we have in
588 * se->vruntime):
589 *
590 *       \Sum v_i * w_i   \Sum v_i * w_i
591 *   V = -------------- = --------------
592 *          \Sum w_i            W
593 *
594 * Specifically, this is the weighted average of all entity virtual runtimes.
595 *
596 * [[ NOTE: this is only equal to the ideal scheduler under the condition
597 *          that join/leave operations happen at lag_i = 0, otherwise the
598 *          virtual time has non-continguous motion equivalent to:
599 *
600 *	      V +-= lag_i / W
601 *
602 *	    Also see the comment in place_entity() that deals with this. ]]
603 *
604 * However, since v_i is u64, and the multiplcation could easily overflow
605 * transform it into a relative form that uses smaller quantities:
606 *
607 * Substitute: v_i == (v_i - v0) + v0
608 *
609 *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
610 * V = ---------------------------- = --------------------- + v0
611 *                  W                            W
612 *
613 * Which we track using:
614 *
615 *                    v0 := cfs_rq->min_vruntime
616 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
617 *              \Sum w_i := cfs_rq->avg_load
618 *
619 * Since min_vruntime is a monotonic increasing variable that closely tracks
620 * the per-task service, these deltas: (v_i - v), will be in the order of the
621 * maximal (virtual) lag induced in the system due to quantisation.
622 *
623 * Also, we use scale_load_down() to reduce the size.
624 *
625 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
626 */
627static void
628avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
629{
630	unsigned long weight = scale_load_down(se->load.weight);
631	s64 key = entity_key(cfs_rq, se);
632
633	cfs_rq->avg_vruntime += key * weight;
634	cfs_rq->avg_load += weight;
635}
636
637static void
638avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
639{
640	unsigned long weight = scale_load_down(se->load.weight);
641	s64 key = entity_key(cfs_rq, se);
642
643	cfs_rq->avg_vruntime -= key * weight;
644	cfs_rq->avg_load -= weight;
645}
646
647static inline
648void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
649{
650	/*
651	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
652	 */
653	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
654}
655
656/*
657 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
658 * For this to be so, the result of this function must have a left bias.
659 */
660u64 avg_vruntime(struct cfs_rq *cfs_rq)
661{
662	struct sched_entity *curr = cfs_rq->curr;
663	s64 avg = cfs_rq->avg_vruntime;
664	long load = cfs_rq->avg_load;
665
666	if (curr && curr->on_rq) {
667		unsigned long weight = scale_load_down(curr->load.weight);
668
669		avg += entity_key(cfs_rq, curr) * weight;
670		load += weight;
671	}
672
673	if (load) {
674		/* sign flips effective floor / ceil */
675		if (avg < 0)
676			avg -= (load - 1);
677		avg = div_s64(avg, load);
678	}
679
680	return cfs_rq->min_vruntime + avg;
681}
682
683/*
684 * lag_i = S - s_i = w_i * (V - v_i)
685 *
686 * However, since V is approximated by the weighted average of all entities it
687 * is possible -- by addition/removal/reweight to the tree -- to move V around
688 * and end up with a larger lag than we started with.
689 *
690 * Limit this to either double the slice length with a minimum of TICK_NSEC
691 * since that is the timing granularity.
692 *
693 * EEVDF gives the following limit for a steady state system:
694 *
695 *   -r_max < lag < max(r_max, q)
696 *
697 * XXX could add max_slice to the augmented data to track this.
698 */
699static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
700{
701	s64 lag, limit;
702
703	SCHED_WARN_ON(!se->on_rq);
704	lag = avg_vruntime(cfs_rq) - se->vruntime;
705
706	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
707	se->vlag = clamp(lag, -limit, limit);
708}
709
710/*
711 * Entity is eligible once it received less service than it ought to have,
712 * eg. lag >= 0.
713 *
714 * lag_i = S - s_i = w_i*(V - v_i)
715 *
716 * lag_i >= 0 -> V >= v_i
717 *
718 *     \Sum (v_i - v)*w_i
719 * V = ------------------ + v
720 *          \Sum w_i
721 *
722 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723 *
724 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
725 *       to the loss in precision caused by the division.
726 */
727static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
728{
729	struct sched_entity *curr = cfs_rq->curr;
730	s64 avg = cfs_rq->avg_vruntime;
731	long load = cfs_rq->avg_load;
732
733	if (curr && curr->on_rq) {
734		unsigned long weight = scale_load_down(curr->load.weight);
735
736		avg += entity_key(cfs_rq, curr) * weight;
737		load += weight;
738	}
739
740	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
741}
742
743int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
744{
745	return vruntime_eligible(cfs_rq, se->vruntime);
746}
747
748static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
749{
750	u64 min_vruntime = cfs_rq->min_vruntime;
751	/*
752	 * open coded max_vruntime() to allow updating avg_vruntime
753	 */
754	s64 delta = (s64)(vruntime - min_vruntime);
755	if (delta > 0) {
756		avg_vruntime_update(cfs_rq, delta);
757		min_vruntime = vruntime;
758	}
759	return min_vruntime;
760}
761
762static void update_min_vruntime(struct cfs_rq *cfs_rq)
763{
764	struct sched_entity *se = __pick_root_entity(cfs_rq);
765	struct sched_entity *curr = cfs_rq->curr;
766	u64 vruntime = cfs_rq->min_vruntime;
767
768	if (curr) {
769		if (curr->on_rq)
770			vruntime = curr->vruntime;
771		else
772			curr = NULL;
773	}
774
775	if (se) {
776		if (!curr)
777			vruntime = se->min_vruntime;
778		else
779			vruntime = min_vruntime(vruntime, se->min_vruntime);
780	}
781
782	/* ensure we never gain time by being placed backwards. */
783	u64_u32_store(cfs_rq->min_vruntime,
784		      __update_min_vruntime(cfs_rq, vruntime));
785}
786
787static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
788{
789	return entity_before(__node_2_se(a), __node_2_se(b));
790}
791
792#define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
793
794static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
795{
796	if (node) {
797		struct sched_entity *rse = __node_2_se(node);
798		if (vruntime_gt(min_vruntime, se, rse))
799			se->min_vruntime = rse->min_vruntime;
800	}
801}
802
803/*
804 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
805 */
806static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
807{
808	u64 old_min_vruntime = se->min_vruntime;
809	struct rb_node *node = &se->run_node;
810
811	se->min_vruntime = se->vruntime;
812	__min_vruntime_update(se, node->rb_right);
813	__min_vruntime_update(se, node->rb_left);
814
815	return se->min_vruntime == old_min_vruntime;
816}
817
818RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
819		     run_node, min_vruntime, min_vruntime_update);
820
821/*
822 * Enqueue an entity into the rb-tree:
823 */
824static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
825{
826	avg_vruntime_add(cfs_rq, se);
827	se->min_vruntime = se->vruntime;
828	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
829				__entity_less, &min_vruntime_cb);
830}
831
832static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
833{
834	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
835				  &min_vruntime_cb);
836	avg_vruntime_sub(cfs_rq, se);
837}
838
839struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
840{
841	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
842
843	if (!root)
844		return NULL;
845
846	return __node_2_se(root);
847}
848
849struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
850{
851	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
852
853	if (!left)
854		return NULL;
855
856	return __node_2_se(left);
857}
858
859/*
860 * Earliest Eligible Virtual Deadline First
861 *
862 * In order to provide latency guarantees for different request sizes
863 * EEVDF selects the best runnable task from two criteria:
864 *
865 *  1) the task must be eligible (must be owed service)
866 *
867 *  2) from those tasks that meet 1), we select the one
868 *     with the earliest virtual deadline.
869 *
870 * We can do this in O(log n) time due to an augmented RB-tree. The
871 * tree keeps the entries sorted on deadline, but also functions as a
872 * heap based on the vruntime by keeping:
873 *
874 *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
875 *
876 * Which allows tree pruning through eligibility.
877 */
878static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
879{
880	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
881	struct sched_entity *se = __pick_first_entity(cfs_rq);
882	struct sched_entity *curr = cfs_rq->curr;
883	struct sched_entity *best = NULL;
884
885	/*
886	 * We can safely skip eligibility check if there is only one entity
887	 * in this cfs_rq, saving some cycles.
888	 */
889	if (cfs_rq->nr_running == 1)
890		return curr && curr->on_rq ? curr : se;
891
892	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
893		curr = NULL;
894
895	/*
896	 * Once selected, run a task until it either becomes non-eligible or
897	 * until it gets a new slice. See the HACK in set_next_entity().
898	 */
899	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
900		return curr;
901
902	/* Pick the leftmost entity if it's eligible */
903	if (se && entity_eligible(cfs_rq, se)) {
904		best = se;
905		goto found;
906	}
907
908	/* Heap search for the EEVD entity */
909	while (node) {
910		struct rb_node *left = node->rb_left;
911
912		/*
913		 * Eligible entities in left subtree are always better
914		 * choices, since they have earlier deadlines.
915		 */
916		if (left && vruntime_eligible(cfs_rq,
917					__node_2_se(left)->min_vruntime)) {
918			node = left;
919			continue;
920		}
921
922		se = __node_2_se(node);
923
924		/*
925		 * The left subtree either is empty or has no eligible
926		 * entity, so check the current node since it is the one
927		 * with earliest deadline that might be eligible.
928		 */
929		if (entity_eligible(cfs_rq, se)) {
930			best = se;
931			break;
932		}
933
934		node = node->rb_right;
935	}
936found:
937	if (!best || (curr && entity_before(curr, best)))
938		best = curr;
939
940	return best;
941}
942
943#ifdef CONFIG_SCHED_DEBUG
944struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
945{
946	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
947
948	if (!last)
949		return NULL;
950
951	return __node_2_se(last);
952}
953
954/**************************************************************
955 * Scheduling class statistics methods:
956 */
957#ifdef CONFIG_SMP
958int sched_update_scaling(void)
959{
960	unsigned int factor = get_update_sysctl_factor();
961
962#define WRT_SYSCTL(name) \
963	(normalized_sysctl_##name = sysctl_##name / (factor))
964	WRT_SYSCTL(sched_base_slice);
965#undef WRT_SYSCTL
966
967	return 0;
968}
969#endif
970#endif
971
972static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
973
974/*
975 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
976 * this is probably good enough.
977 */
978static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
979{
980	if ((s64)(se->vruntime - se->deadline) < 0)
981		return;
982
983	/*
984	 * For EEVDF the virtual time slope is determined by w_i (iow.
985	 * nice) while the request time r_i is determined by
986	 * sysctl_sched_base_slice.
987	 */
988	se->slice = sysctl_sched_base_slice;
989
990	/*
991	 * EEVDF: vd_i = ve_i + r_i / w_i
992	 */
993	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
994
995	/*
996	 * The task has consumed its request, reschedule.
997	 */
998	if (cfs_rq->nr_running > 1) {
999		resched_curr(rq_of(cfs_rq));
1000		clear_buddies(cfs_rq, se);
1001	}
1002}
1003
1004#include "pelt.h"
1005#ifdef CONFIG_SMP
1006
1007static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1008static unsigned long task_h_load(struct task_struct *p);
1009static unsigned long capacity_of(int cpu);
1010
1011/* Give new sched_entity start runnable values to heavy its load in infant time */
1012void init_entity_runnable_average(struct sched_entity *se)
1013{
1014	struct sched_avg *sa = &se->avg;
1015
1016	memset(sa, 0, sizeof(*sa));
1017
1018	/*
1019	 * Tasks are initialized with full load to be seen as heavy tasks until
1020	 * they get a chance to stabilize to their real load level.
1021	 * Group entities are initialized with zero load to reflect the fact that
1022	 * nothing has been attached to the task group yet.
1023	 */
1024	if (entity_is_task(se))
1025		sa->load_avg = scale_load_down(se->load.weight);
1026
1027	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1028}
1029
1030/*
1031 * With new tasks being created, their initial util_avgs are extrapolated
1032 * based on the cfs_rq's current util_avg:
1033 *
1034 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1035 *
1036 * However, in many cases, the above util_avg does not give a desired
1037 * value. Moreover, the sum of the util_avgs may be divergent, such
1038 * as when the series is a harmonic series.
1039 *
1040 * To solve this problem, we also cap the util_avg of successive tasks to
1041 * only 1/2 of the left utilization budget:
1042 *
1043 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1044 *
1045 * where n denotes the nth task and cpu_scale the CPU capacity.
1046 *
1047 * For example, for a CPU with 1024 of capacity, a simplest series from
1048 * the beginning would be like:
1049 *
1050 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1052 *
1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1054 * if util_avg > util_avg_cap.
1055 */
1056void post_init_entity_util_avg(struct task_struct *p)
1057{
1058	struct sched_entity *se = &p->se;
1059	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1060	struct sched_avg *sa = &se->avg;
1061	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1062	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1063
1064	if (p->sched_class != &fair_sched_class) {
1065		/*
1066		 * For !fair tasks do:
1067		 *
1068		update_cfs_rq_load_avg(now, cfs_rq);
1069		attach_entity_load_avg(cfs_rq, se);
1070		switched_from_fair(rq, p);
1071		 *
1072		 * such that the next switched_to_fair() has the
1073		 * expected state.
1074		 */
1075		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1076		return;
1077	}
1078
1079	if (cap > 0) {
1080		if (cfs_rq->avg.util_avg != 0) {
1081			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1082			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1083
1084			if (sa->util_avg > cap)
1085				sa->util_avg = cap;
1086		} else {
1087			sa->util_avg = cap;
1088		}
1089	}
1090
1091	sa->runnable_avg = sa->util_avg;
1092}
1093
1094#else /* !CONFIG_SMP */
1095void init_entity_runnable_average(struct sched_entity *se)
1096{
1097}
1098void post_init_entity_util_avg(struct task_struct *p)
1099{
1100}
1101static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1102{
1103}
1104#endif /* CONFIG_SMP */
1105
1106static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1107{
1108	u64 now = rq_clock_task(rq);
1109	s64 delta_exec;
1110
1111	delta_exec = now - curr->exec_start;
1112	if (unlikely(delta_exec <= 0))
1113		return delta_exec;
1114
1115	curr->exec_start = now;
1116	curr->sum_exec_runtime += delta_exec;
1117
1118	if (schedstat_enabled()) {
1119		struct sched_statistics *stats;
1120
1121		stats = __schedstats_from_se(curr);
1122		__schedstat_set(stats->exec_max,
1123				max(delta_exec, stats->exec_max));
1124	}
1125
1126	return delta_exec;
1127}
1128
1129static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1130{
1131	trace_sched_stat_runtime(p, delta_exec);
1132	account_group_exec_runtime(p, delta_exec);
1133	cgroup_account_cputime(p, delta_exec);
1134	if (p->dl_server)
1135		dl_server_update(p->dl_server, delta_exec);
1136}
1137
1138/*
1139 * Used by other classes to account runtime.
1140 */
1141s64 update_curr_common(struct rq *rq)
1142{
1143	struct task_struct *curr = rq->curr;
1144	s64 delta_exec;
1145
1146	delta_exec = update_curr_se(rq, &curr->se);
1147	if (likely(delta_exec > 0))
1148		update_curr_task(curr, delta_exec);
1149
1150	return delta_exec;
1151}
1152
1153/*
1154 * Update the current task's runtime statistics.
1155 */
1156static void update_curr(struct cfs_rq *cfs_rq)
1157{
1158	struct sched_entity *curr = cfs_rq->curr;
1159	s64 delta_exec;
1160
1161	if (unlikely(!curr))
1162		return;
1163
1164	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1165	if (unlikely(delta_exec <= 0))
1166		return;
1167
1168	curr->vruntime += calc_delta_fair(delta_exec, curr);
1169	update_deadline(cfs_rq, curr);
1170	update_min_vruntime(cfs_rq);
1171
1172	if (entity_is_task(curr))
1173		update_curr_task(task_of(curr), delta_exec);
1174
1175	account_cfs_rq_runtime(cfs_rq, delta_exec);
1176}
1177
1178static void update_curr_fair(struct rq *rq)
1179{
1180	update_curr(cfs_rq_of(&rq->curr->se));
1181}
1182
1183static inline void
1184update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1185{
1186	struct sched_statistics *stats;
1187	struct task_struct *p = NULL;
1188
1189	if (!schedstat_enabled())
1190		return;
1191
1192	stats = __schedstats_from_se(se);
1193
1194	if (entity_is_task(se))
1195		p = task_of(se);
1196
1197	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1198}
1199
1200static inline void
1201update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1202{
1203	struct sched_statistics *stats;
1204	struct task_struct *p = NULL;
1205
1206	if (!schedstat_enabled())
1207		return;
1208
1209	stats = __schedstats_from_se(se);
1210
1211	/*
1212	 * When the sched_schedstat changes from 0 to 1, some sched se
1213	 * maybe already in the runqueue, the se->statistics.wait_start
1214	 * will be 0.So it will let the delta wrong. We need to avoid this
1215	 * scenario.
1216	 */
1217	if (unlikely(!schedstat_val(stats->wait_start)))
1218		return;
1219
1220	if (entity_is_task(se))
1221		p = task_of(se);
1222
1223	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1224}
1225
1226static inline void
1227update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1228{
1229	struct sched_statistics *stats;
1230	struct task_struct *tsk = NULL;
1231
1232	if (!schedstat_enabled())
1233		return;
1234
1235	stats = __schedstats_from_se(se);
1236
1237	if (entity_is_task(se))
1238		tsk = task_of(se);
1239
1240	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1241}
1242
1243/*
1244 * Task is being enqueued - update stats:
1245 */
1246static inline void
1247update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1248{
1249	if (!schedstat_enabled())
1250		return;
1251
1252	/*
1253	 * Are we enqueueing a waiting task? (for current tasks
1254	 * a dequeue/enqueue event is a NOP)
1255	 */
1256	if (se != cfs_rq->curr)
1257		update_stats_wait_start_fair(cfs_rq, se);
1258
1259	if (flags & ENQUEUE_WAKEUP)
1260		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1261}
1262
1263static inline void
1264update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1265{
1266
1267	if (!schedstat_enabled())
1268		return;
1269
1270	/*
1271	 * Mark the end of the wait period if dequeueing a
1272	 * waiting task:
1273	 */
1274	if (se != cfs_rq->curr)
1275		update_stats_wait_end_fair(cfs_rq, se);
1276
1277	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1278		struct task_struct *tsk = task_of(se);
1279		unsigned int state;
1280
1281		/* XXX racy against TTWU */
1282		state = READ_ONCE(tsk->__state);
1283		if (state & TASK_INTERRUPTIBLE)
1284			__schedstat_set(tsk->stats.sleep_start,
1285				      rq_clock(rq_of(cfs_rq)));
1286		if (state & TASK_UNINTERRUPTIBLE)
1287			__schedstat_set(tsk->stats.block_start,
1288				      rq_clock(rq_of(cfs_rq)));
1289	}
1290}
1291
1292/*
1293 * We are picking a new current task - update its stats:
1294 */
1295static inline void
1296update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1297{
1298	/*
1299	 * We are starting a new run period:
1300	 */
1301	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1302}
1303
1304/**************************************************
1305 * Scheduling class queueing methods:
1306 */
1307
1308static inline bool is_core_idle(int cpu)
1309{
1310#ifdef CONFIG_SCHED_SMT
1311	int sibling;
1312
1313	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1314		if (cpu == sibling)
1315			continue;
1316
1317		if (!idle_cpu(sibling))
1318			return false;
1319	}
1320#endif
1321
1322	return true;
1323}
1324
1325#ifdef CONFIG_NUMA
1326#define NUMA_IMBALANCE_MIN 2
1327
1328static inline long
1329adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1330{
1331	/*
1332	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1333	 * threshold. Above this threshold, individual tasks may be contending
1334	 * for both memory bandwidth and any shared HT resources.  This is an
1335	 * approximation as the number of running tasks may not be related to
1336	 * the number of busy CPUs due to sched_setaffinity.
1337	 */
1338	if (dst_running > imb_numa_nr)
1339		return imbalance;
1340
1341	/*
1342	 * Allow a small imbalance based on a simple pair of communicating
1343	 * tasks that remain local when the destination is lightly loaded.
1344	 */
1345	if (imbalance <= NUMA_IMBALANCE_MIN)
1346		return 0;
1347
1348	return imbalance;
1349}
1350#endif /* CONFIG_NUMA */
1351
1352#ifdef CONFIG_NUMA_BALANCING
1353/*
1354 * Approximate time to scan a full NUMA task in ms. The task scan period is
1355 * calculated based on the tasks virtual memory size and
1356 * numa_balancing_scan_size.
1357 */
1358unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1359unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1360
1361/* Portion of address space to scan in MB */
1362unsigned int sysctl_numa_balancing_scan_size = 256;
1363
1364/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1365unsigned int sysctl_numa_balancing_scan_delay = 1000;
1366
1367/* The page with hint page fault latency < threshold in ms is considered hot */
1368unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1369
1370struct numa_group {
1371	refcount_t refcount;
1372
1373	spinlock_t lock; /* nr_tasks, tasks */
1374	int nr_tasks;
1375	pid_t gid;
1376	int active_nodes;
1377
1378	struct rcu_head rcu;
1379	unsigned long total_faults;
1380	unsigned long max_faults_cpu;
1381	/*
1382	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1383	 *
1384	 * Faults_cpu is used to decide whether memory should move
1385	 * towards the CPU. As a consequence, these stats are weighted
1386	 * more by CPU use than by memory faults.
1387	 */
1388	unsigned long faults[];
1389};
1390
1391/*
1392 * For functions that can be called in multiple contexts that permit reading
1393 * ->numa_group (see struct task_struct for locking rules).
1394 */
1395static struct numa_group *deref_task_numa_group(struct task_struct *p)
1396{
1397	return rcu_dereference_check(p->numa_group, p == current ||
1398		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1399}
1400
1401static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1402{
1403	return rcu_dereference_protected(p->numa_group, p == current);
1404}
1405
1406static inline unsigned long group_faults_priv(struct numa_group *ng);
1407static inline unsigned long group_faults_shared(struct numa_group *ng);
1408
1409static unsigned int task_nr_scan_windows(struct task_struct *p)
1410{
1411	unsigned long rss = 0;
1412	unsigned long nr_scan_pages;
1413
1414	/*
1415	 * Calculations based on RSS as non-present and empty pages are skipped
1416	 * by the PTE scanner and NUMA hinting faults should be trapped based
1417	 * on resident pages
1418	 */
1419	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1420	rss = get_mm_rss(p->mm);
1421	if (!rss)
1422		rss = nr_scan_pages;
1423
1424	rss = round_up(rss, nr_scan_pages);
1425	return rss / nr_scan_pages;
1426}
1427
1428/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1429#define MAX_SCAN_WINDOW 2560
1430
1431static unsigned int task_scan_min(struct task_struct *p)
1432{
1433	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1434	unsigned int scan, floor;
1435	unsigned int windows = 1;
1436
1437	if (scan_size < MAX_SCAN_WINDOW)
1438		windows = MAX_SCAN_WINDOW / scan_size;
1439	floor = 1000 / windows;
1440
1441	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1442	return max_t(unsigned int, floor, scan);
1443}
1444
1445static unsigned int task_scan_start(struct task_struct *p)
1446{
1447	unsigned long smin = task_scan_min(p);
1448	unsigned long period = smin;
1449	struct numa_group *ng;
1450
1451	/* Scale the maximum scan period with the amount of shared memory. */
1452	rcu_read_lock();
1453	ng = rcu_dereference(p->numa_group);
1454	if (ng) {
1455		unsigned long shared = group_faults_shared(ng);
1456		unsigned long private = group_faults_priv(ng);
1457
1458		period *= refcount_read(&ng->refcount);
1459		period *= shared + 1;
1460		period /= private + shared + 1;
1461	}
1462	rcu_read_unlock();
1463
1464	return max(smin, period);
1465}
1466
1467static unsigned int task_scan_max(struct task_struct *p)
1468{
1469	unsigned long smin = task_scan_min(p);
1470	unsigned long smax;
1471	struct numa_group *ng;
1472
1473	/* Watch for min being lower than max due to floor calculations */
1474	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1475
1476	/* Scale the maximum scan period with the amount of shared memory. */
1477	ng = deref_curr_numa_group(p);
1478	if (ng) {
1479		unsigned long shared = group_faults_shared(ng);
1480		unsigned long private = group_faults_priv(ng);
1481		unsigned long period = smax;
1482
1483		period *= refcount_read(&ng->refcount);
1484		period *= shared + 1;
1485		period /= private + shared + 1;
1486
1487		smax = max(smax, period);
1488	}
1489
1490	return max(smin, smax);
1491}
1492
1493static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1494{
1495	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1496	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1497}
1498
1499static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1500{
1501	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1502	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1503}
1504
1505/* Shared or private faults. */
1506#define NR_NUMA_HINT_FAULT_TYPES 2
1507
1508/* Memory and CPU locality */
1509#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1510
1511/* Averaged statistics, and temporary buffers. */
1512#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1513
1514pid_t task_numa_group_id(struct task_struct *p)
1515{
1516	struct numa_group *ng;
1517	pid_t gid = 0;
1518
1519	rcu_read_lock();
1520	ng = rcu_dereference(p->numa_group);
1521	if (ng)
1522		gid = ng->gid;
1523	rcu_read_unlock();
1524
1525	return gid;
1526}
1527
1528/*
1529 * The averaged statistics, shared & private, memory & CPU,
1530 * occupy the first half of the array. The second half of the
1531 * array is for current counters, which are averaged into the
1532 * first set by task_numa_placement.
1533 */
1534static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1535{
1536	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1537}
1538
1539static inline unsigned long task_faults(struct task_struct *p, int nid)
1540{
1541	if (!p->numa_faults)
1542		return 0;
1543
1544	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1545		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1546}
1547
1548static inline unsigned long group_faults(struct task_struct *p, int nid)
1549{
1550	struct numa_group *ng = deref_task_numa_group(p);
1551
1552	if (!ng)
1553		return 0;
1554
1555	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1556		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1557}
1558
1559static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1560{
1561	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1562		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1563}
1564
1565static inline unsigned long group_faults_priv(struct numa_group *ng)
1566{
1567	unsigned long faults = 0;
1568	int node;
1569
1570	for_each_online_node(node) {
1571		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1572	}
1573
1574	return faults;
1575}
1576
1577static inline unsigned long group_faults_shared(struct numa_group *ng)
1578{
1579	unsigned long faults = 0;
1580	int node;
1581
1582	for_each_online_node(node) {
1583		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1584	}
1585
1586	return faults;
1587}
1588
1589/*
1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1591 * considered part of a numa group's pseudo-interleaving set. Migrations
1592 * between these nodes are slowed down, to allow things to settle down.
1593 */
1594#define ACTIVE_NODE_FRACTION 3
1595
1596static bool numa_is_active_node(int nid, struct numa_group *ng)
1597{
1598	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1599}
1600
1601/* Handle placement on systems where not all nodes are directly connected. */
1602static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1603					int lim_dist, bool task)
1604{
1605	unsigned long score = 0;
1606	int node, max_dist;
1607
1608	/*
1609	 * All nodes are directly connected, and the same distance
1610	 * from each other. No need for fancy placement algorithms.
1611	 */
1612	if (sched_numa_topology_type == NUMA_DIRECT)
1613		return 0;
1614
1615	/* sched_max_numa_distance may be changed in parallel. */
1616	max_dist = READ_ONCE(sched_max_numa_distance);
1617	/*
1618	 * This code is called for each node, introducing N^2 complexity,
1619	 * which should be ok given the number of nodes rarely exceeds 8.
1620	 */
1621	for_each_online_node(node) {
1622		unsigned long faults;
1623		int dist = node_distance(nid, node);
1624
1625		/*
1626		 * The furthest away nodes in the system are not interesting
1627		 * for placement; nid was already counted.
1628		 */
1629		if (dist >= max_dist || node == nid)
1630			continue;
1631
1632		/*
1633		 * On systems with a backplane NUMA topology, compare groups
1634		 * of nodes, and move tasks towards the group with the most
1635		 * memory accesses. When comparing two nodes at distance
1636		 * "hoplimit", only nodes closer by than "hoplimit" are part
1637		 * of each group. Skip other nodes.
1638		 */
1639		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1640			continue;
1641
1642		/* Add up the faults from nearby nodes. */
1643		if (task)
1644			faults = task_faults(p, node);
1645		else
1646			faults = group_faults(p, node);
1647
1648		/*
1649		 * On systems with a glueless mesh NUMA topology, there are
1650		 * no fixed "groups of nodes". Instead, nodes that are not
1651		 * directly connected bounce traffic through intermediate
1652		 * nodes; a numa_group can occupy any set of nodes.
1653		 * The further away a node is, the less the faults count.
1654		 * This seems to result in good task placement.
1655		 */
1656		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1657			faults *= (max_dist - dist);
1658			faults /= (max_dist - LOCAL_DISTANCE);
1659		}
1660
1661		score += faults;
1662	}
1663
1664	return score;
1665}
1666
1667/*
1668 * These return the fraction of accesses done by a particular task, or
1669 * task group, on a particular numa node.  The group weight is given a
1670 * larger multiplier, in order to group tasks together that are almost
1671 * evenly spread out between numa nodes.
1672 */
1673static inline unsigned long task_weight(struct task_struct *p, int nid,
1674					int dist)
1675{
1676	unsigned long faults, total_faults;
1677
1678	if (!p->numa_faults)
1679		return 0;
1680
1681	total_faults = p->total_numa_faults;
1682
1683	if (!total_faults)
1684		return 0;
1685
1686	faults = task_faults(p, nid);
1687	faults += score_nearby_nodes(p, nid, dist, true);
1688
1689	return 1000 * faults / total_faults;
1690}
1691
1692static inline unsigned long group_weight(struct task_struct *p, int nid,
1693					 int dist)
1694{
1695	struct numa_group *ng = deref_task_numa_group(p);
1696	unsigned long faults, total_faults;
1697
1698	if (!ng)
1699		return 0;
1700
1701	total_faults = ng->total_faults;
1702
1703	if (!total_faults)
1704		return 0;
1705
1706	faults = group_faults(p, nid);
1707	faults += score_nearby_nodes(p, nid, dist, false);
1708
1709	return 1000 * faults / total_faults;
1710}
1711
1712/*
1713 * If memory tiering mode is enabled, cpupid of slow memory page is
1714 * used to record scan time instead of CPU and PID.  When tiering mode
1715 * is disabled at run time, the scan time (in cpupid) will be
1716 * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1717 * access out of array bound.
1718 */
1719static inline bool cpupid_valid(int cpupid)
1720{
1721	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1722}
1723
1724/*
1725 * For memory tiering mode, if there are enough free pages (more than
1726 * enough watermark defined here) in fast memory node, to take full
1727 * advantage of fast memory capacity, all recently accessed slow
1728 * memory pages will be migrated to fast memory node without
1729 * considering hot threshold.
1730 */
1731static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1732{
1733	int z;
1734	unsigned long enough_wmark;
1735
1736	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1737			   pgdat->node_present_pages >> 4);
1738	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1739		struct zone *zone = pgdat->node_zones + z;
1740
1741		if (!populated_zone(zone))
1742			continue;
1743
1744		if (zone_watermark_ok(zone, 0,
1745				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1746				      ZONE_MOVABLE, 0))
1747			return true;
1748	}
1749	return false;
1750}
1751
1752/*
1753 * For memory tiering mode, when page tables are scanned, the scan
1754 * time will be recorded in struct page in addition to make page
1755 * PROT_NONE for slow memory page.  So when the page is accessed, in
1756 * hint page fault handler, the hint page fault latency is calculated
1757 * via,
1758 *
1759 *	hint page fault latency = hint page fault time - scan time
1760 *
1761 * The smaller the hint page fault latency, the higher the possibility
1762 * for the page to be hot.
1763 */
1764static int numa_hint_fault_latency(struct folio *folio)
1765{
1766	int last_time, time;
1767
1768	time = jiffies_to_msecs(jiffies);
1769	last_time = folio_xchg_access_time(folio, time);
1770
1771	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1772}
1773
1774/*
1775 * For memory tiering mode, too high promotion/demotion throughput may
1776 * hurt application latency.  So we provide a mechanism to rate limit
1777 * the number of pages that are tried to be promoted.
1778 */
1779static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1780				      unsigned long rate_limit, int nr)
1781{
1782	unsigned long nr_cand;
1783	unsigned int now, start;
1784
1785	now = jiffies_to_msecs(jiffies);
1786	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1787	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1788	start = pgdat->nbp_rl_start;
1789	if (now - start > MSEC_PER_SEC &&
1790	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1791		pgdat->nbp_rl_nr_cand = nr_cand;
1792	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1793		return true;
1794	return false;
1795}
1796
1797#define NUMA_MIGRATION_ADJUST_STEPS	16
1798
1799static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1800					    unsigned long rate_limit,
1801					    unsigned int ref_th)
1802{
1803	unsigned int now, start, th_period, unit_th, th;
1804	unsigned long nr_cand, ref_cand, diff_cand;
1805
1806	now = jiffies_to_msecs(jiffies);
1807	th_period = sysctl_numa_balancing_scan_period_max;
1808	start = pgdat->nbp_th_start;
1809	if (now - start > th_period &&
1810	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1811		ref_cand = rate_limit *
1812			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1813		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1814		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1815		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1816		th = pgdat->nbp_threshold ? : ref_th;
1817		if (diff_cand > ref_cand * 11 / 10)
1818			th = max(th - unit_th, unit_th);
1819		else if (diff_cand < ref_cand * 9 / 10)
1820			th = min(th + unit_th, ref_th * 2);
1821		pgdat->nbp_th_nr_cand = nr_cand;
1822		pgdat->nbp_threshold = th;
1823	}
1824}
1825
1826bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1827				int src_nid, int dst_cpu)
1828{
1829	struct numa_group *ng = deref_curr_numa_group(p);
1830	int dst_nid = cpu_to_node(dst_cpu);
1831	int last_cpupid, this_cpupid;
1832
1833	/*
1834	 * Cannot migrate to memoryless nodes.
1835	 */
1836	if (!node_state(dst_nid, N_MEMORY))
1837		return false;
1838
1839	/*
1840	 * The pages in slow memory node should be migrated according
1841	 * to hot/cold instead of private/shared.
1842	 */
1843	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1844	    !node_is_toptier(src_nid)) {
1845		struct pglist_data *pgdat;
1846		unsigned long rate_limit;
1847		unsigned int latency, th, def_th;
1848
1849		pgdat = NODE_DATA(dst_nid);
1850		if (pgdat_free_space_enough(pgdat)) {
1851			/* workload changed, reset hot threshold */
1852			pgdat->nbp_threshold = 0;
1853			return true;
1854		}
1855
1856		def_th = sysctl_numa_balancing_hot_threshold;
1857		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1858			(20 - PAGE_SHIFT);
1859		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1860
1861		th = pgdat->nbp_threshold ? : def_th;
1862		latency = numa_hint_fault_latency(folio);
1863		if (latency >= th)
1864			return false;
1865
1866		return !numa_promotion_rate_limit(pgdat, rate_limit,
1867						  folio_nr_pages(folio));
1868	}
1869
1870	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1871	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1872
1873	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1874	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1875		return false;
1876
1877	/*
1878	 * Allow first faults or private faults to migrate immediately early in
1879	 * the lifetime of a task. The magic number 4 is based on waiting for
1880	 * two full passes of the "multi-stage node selection" test that is
1881	 * executed below.
1882	 */
1883	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1884	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1885		return true;
1886
1887	/*
1888	 * Multi-stage node selection is used in conjunction with a periodic
1889	 * migration fault to build a temporal task<->page relation. By using
1890	 * a two-stage filter we remove short/unlikely relations.
1891	 *
1892	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1893	 * a task's usage of a particular page (n_p) per total usage of this
1894	 * page (n_t) (in a given time-span) to a probability.
1895	 *
1896	 * Our periodic faults will sample this probability and getting the
1897	 * same result twice in a row, given these samples are fully
1898	 * independent, is then given by P(n)^2, provided our sample period
1899	 * is sufficiently short compared to the usage pattern.
1900	 *
1901	 * This quadric squishes small probabilities, making it less likely we
1902	 * act on an unlikely task<->page relation.
1903	 */
1904	if (!cpupid_pid_unset(last_cpupid) &&
1905				cpupid_to_nid(last_cpupid) != dst_nid)
1906		return false;
1907
1908	/* Always allow migrate on private faults */
1909	if (cpupid_match_pid(p, last_cpupid))
1910		return true;
1911
1912	/* A shared fault, but p->numa_group has not been set up yet. */
1913	if (!ng)
1914		return true;
1915
1916	/*
1917	 * Destination node is much more heavily used than the source
1918	 * node? Allow migration.
1919	 */
1920	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1921					ACTIVE_NODE_FRACTION)
1922		return true;
1923
1924	/*
1925	 * Distribute memory according to CPU & memory use on each node,
1926	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1927	 *
1928	 * faults_cpu(dst)   3   faults_cpu(src)
1929	 * --------------- * - > ---------------
1930	 * faults_mem(dst)   4   faults_mem(src)
1931	 */
1932	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1933	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1934}
1935
1936/*
1937 * 'numa_type' describes the node at the moment of load balancing.
1938 */
1939enum numa_type {
1940	/* The node has spare capacity that can be used to run more tasks.  */
1941	node_has_spare = 0,
1942	/*
1943	 * The node is fully used and the tasks don't compete for more CPU
1944	 * cycles. Nevertheless, some tasks might wait before running.
1945	 */
1946	node_fully_busy,
1947	/*
1948	 * The node is overloaded and can't provide expected CPU cycles to all
1949	 * tasks.
1950	 */
1951	node_overloaded
1952};
1953
1954/* Cached statistics for all CPUs within a node */
1955struct numa_stats {
1956	unsigned long load;
1957	unsigned long runnable;
1958	unsigned long util;
1959	/* Total compute capacity of CPUs on a node */
1960	unsigned long compute_capacity;
1961	unsigned int nr_running;
1962	unsigned int weight;
1963	enum numa_type node_type;
1964	int idle_cpu;
1965};
1966
1967struct task_numa_env {
1968	struct task_struct *p;
1969
1970	int src_cpu, src_nid;
1971	int dst_cpu, dst_nid;
1972	int imb_numa_nr;
1973
1974	struct numa_stats src_stats, dst_stats;
1975
1976	int imbalance_pct;
1977	int dist;
1978
1979	struct task_struct *best_task;
1980	long best_imp;
1981	int best_cpu;
1982};
1983
1984static unsigned long cpu_load(struct rq *rq);
1985static unsigned long cpu_runnable(struct rq *rq);
1986
1987static inline enum
1988numa_type numa_classify(unsigned int imbalance_pct,
1989			 struct numa_stats *ns)
1990{
1991	if ((ns->nr_running > ns->weight) &&
1992	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1993	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1994		return node_overloaded;
1995
1996	if ((ns->nr_running < ns->weight) ||
1997	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1998	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1999		return node_has_spare;
2000
2001	return node_fully_busy;
2002}
2003
2004#ifdef CONFIG_SCHED_SMT
2005/* Forward declarations of select_idle_sibling helpers */
2006static inline bool test_idle_cores(int cpu);
2007static inline int numa_idle_core(int idle_core, int cpu)
2008{
2009	if (!static_branch_likely(&sched_smt_present) ||
2010	    idle_core >= 0 || !test_idle_cores(cpu))
2011		return idle_core;
2012
2013	/*
2014	 * Prefer cores instead of packing HT siblings
2015	 * and triggering future load balancing.
2016	 */
2017	if (is_core_idle(cpu))
2018		idle_core = cpu;
2019
2020	return idle_core;
2021}
2022#else
2023static inline int numa_idle_core(int idle_core, int cpu)
2024{
2025	return idle_core;
2026}
2027#endif
2028
2029/*
2030 * Gather all necessary information to make NUMA balancing placement
2031 * decisions that are compatible with standard load balancer. This
2032 * borrows code and logic from update_sg_lb_stats but sharing a
2033 * common implementation is impractical.
2034 */
2035static void update_numa_stats(struct task_numa_env *env,
2036			      struct numa_stats *ns, int nid,
2037			      bool find_idle)
2038{
2039	int cpu, idle_core = -1;
2040
2041	memset(ns, 0, sizeof(*ns));
2042	ns->idle_cpu = -1;
2043
2044	rcu_read_lock();
2045	for_each_cpu(cpu, cpumask_of_node(nid)) {
2046		struct rq *rq = cpu_rq(cpu);
2047
2048		ns->load += cpu_load(rq);
2049		ns->runnable += cpu_runnable(rq);
2050		ns->util += cpu_util_cfs(cpu);
2051		ns->nr_running += rq->cfs.h_nr_running;
2052		ns->compute_capacity += capacity_of(cpu);
2053
2054		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2055			if (READ_ONCE(rq->numa_migrate_on) ||
2056			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2057				continue;
2058
2059			if (ns->idle_cpu == -1)
2060				ns->idle_cpu = cpu;
2061
2062			idle_core = numa_idle_core(idle_core, cpu);
2063		}
2064	}
2065	rcu_read_unlock();
2066
2067	ns->weight = cpumask_weight(cpumask_of_node(nid));
2068
2069	ns->node_type = numa_classify(env->imbalance_pct, ns);
2070
2071	if (idle_core >= 0)
2072		ns->idle_cpu = idle_core;
2073}
2074
2075static void task_numa_assign(struct task_numa_env *env,
2076			     struct task_struct *p, long imp)
2077{
2078	struct rq *rq = cpu_rq(env->dst_cpu);
2079
2080	/* Check if run-queue part of active NUMA balance. */
2081	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2082		int cpu;
2083		int start = env->dst_cpu;
2084
2085		/* Find alternative idle CPU. */
2086		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2087			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2088			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2089				continue;
2090			}
2091
2092			env->dst_cpu = cpu;
2093			rq = cpu_rq(env->dst_cpu);
2094			if (!xchg(&rq->numa_migrate_on, 1))
2095				goto assign;
2096		}
2097
2098		/* Failed to find an alternative idle CPU */
2099		return;
2100	}
2101
2102assign:
2103	/*
2104	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2105	 * found a better CPU to move/swap.
2106	 */
2107	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2108		rq = cpu_rq(env->best_cpu);
2109		WRITE_ONCE(rq->numa_migrate_on, 0);
2110	}
2111
2112	if (env->best_task)
2113		put_task_struct(env->best_task);
2114	if (p)
2115		get_task_struct(p);
2116
2117	env->best_task = p;
2118	env->best_imp = imp;
2119	env->best_cpu = env->dst_cpu;
2120}
2121
2122static bool load_too_imbalanced(long src_load, long dst_load,
2123				struct task_numa_env *env)
2124{
2125	long imb, old_imb;
2126	long orig_src_load, orig_dst_load;
2127	long src_capacity, dst_capacity;
2128
2129	/*
2130	 * The load is corrected for the CPU capacity available on each node.
2131	 *
2132	 * src_load        dst_load
2133	 * ------------ vs ---------
2134	 * src_capacity    dst_capacity
2135	 */
2136	src_capacity = env->src_stats.compute_capacity;
2137	dst_capacity = env->dst_stats.compute_capacity;
2138
2139	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2140
2141	orig_src_load = env->src_stats.load;
2142	orig_dst_load = env->dst_stats.load;
2143
2144	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2145
2146	/* Would this change make things worse? */
2147	return (imb > old_imb);
2148}
2149
2150/*
2151 * Maximum NUMA importance can be 1998 (2*999);
2152 * SMALLIMP @ 30 would be close to 1998/64.
2153 * Used to deter task migration.
2154 */
2155#define SMALLIMP	30
2156
2157/*
2158 * This checks if the overall compute and NUMA accesses of the system would
2159 * be improved if the source tasks was migrated to the target dst_cpu taking
2160 * into account that it might be best if task running on the dst_cpu should
2161 * be exchanged with the source task
2162 */
2163static bool task_numa_compare(struct task_numa_env *env,
2164			      long taskimp, long groupimp, bool maymove)
2165{
2166	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2167	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2168	long imp = p_ng ? groupimp : taskimp;
2169	struct task_struct *cur;
2170	long src_load, dst_load;
2171	int dist = env->dist;
2172	long moveimp = imp;
2173	long load;
2174	bool stopsearch = false;
2175
2176	if (READ_ONCE(dst_rq->numa_migrate_on))
2177		return false;
2178
2179	rcu_read_lock();
2180	cur = rcu_dereference(dst_rq->curr);
2181	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2182		cur = NULL;
2183
2184	/*
2185	 * Because we have preemption enabled we can get migrated around and
2186	 * end try selecting ourselves (current == env->p) as a swap candidate.
2187	 */
2188	if (cur == env->p) {
2189		stopsearch = true;
2190		goto unlock;
2191	}
2192
2193	if (!cur) {
2194		if (maymove && moveimp >= env->best_imp)
2195			goto assign;
2196		else
2197			goto unlock;
2198	}
2199
2200	/* Skip this swap candidate if cannot move to the source cpu. */
2201	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2202		goto unlock;
2203
2204	/*
2205	 * Skip this swap candidate if it is not moving to its preferred
2206	 * node and the best task is.
2207	 */
2208	if (env->best_task &&
2209	    env->best_task->numa_preferred_nid == env->src_nid &&
2210	    cur->numa_preferred_nid != env->src_nid) {
2211		goto unlock;
2212	}
2213
2214	/*
2215	 * "imp" is the fault differential for the source task between the
2216	 * source and destination node. Calculate the total differential for
2217	 * the source task and potential destination task. The more negative
2218	 * the value is, the more remote accesses that would be expected to
2219	 * be incurred if the tasks were swapped.
2220	 *
2221	 * If dst and source tasks are in the same NUMA group, or not
2222	 * in any group then look only at task weights.
2223	 */
2224	cur_ng = rcu_dereference(cur->numa_group);
2225	if (cur_ng == p_ng) {
2226		/*
2227		 * Do not swap within a group or between tasks that have
2228		 * no group if there is spare capacity. Swapping does
2229		 * not address the load imbalance and helps one task at
2230		 * the cost of punishing another.
2231		 */
2232		if (env->dst_stats.node_type == node_has_spare)
2233			goto unlock;
2234
2235		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2236		      task_weight(cur, env->dst_nid, dist);
2237		/*
2238		 * Add some hysteresis to prevent swapping the
2239		 * tasks within a group over tiny differences.
2240		 */
2241		if (cur_ng)
2242			imp -= imp / 16;
2243	} else {
2244		/*
2245		 * Compare the group weights. If a task is all by itself
2246		 * (not part of a group), use the task weight instead.
2247		 */
2248		if (cur_ng && p_ng)
2249			imp += group_weight(cur, env->src_nid, dist) -
2250			       group_weight(cur, env->dst_nid, dist);
2251		else
2252			imp += task_weight(cur, env->src_nid, dist) -
2253			       task_weight(cur, env->dst_nid, dist);
2254	}
2255
2256	/* Discourage picking a task already on its preferred node */
2257	if (cur->numa_preferred_nid == env->dst_nid)
2258		imp -= imp / 16;
2259
2260	/*
2261	 * Encourage picking a task that moves to its preferred node.
2262	 * This potentially makes imp larger than it's maximum of
2263	 * 1998 (see SMALLIMP and task_weight for why) but in this
2264	 * case, it does not matter.
2265	 */
2266	if (cur->numa_preferred_nid == env->src_nid)
2267		imp += imp / 8;
2268
2269	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2270		imp = moveimp;
2271		cur = NULL;
2272		goto assign;
2273	}
2274
2275	/*
2276	 * Prefer swapping with a task moving to its preferred node over a
2277	 * task that is not.
2278	 */
2279	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2280	    env->best_task->numa_preferred_nid != env->src_nid) {
2281		goto assign;
2282	}
2283
2284	/*
2285	 * If the NUMA importance is less than SMALLIMP,
2286	 * task migration might only result in ping pong
2287	 * of tasks and also hurt performance due to cache
2288	 * misses.
2289	 */
2290	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2291		goto unlock;
2292
2293	/*
2294	 * In the overloaded case, try and keep the load balanced.
2295	 */
2296	load = task_h_load(env->p) - task_h_load(cur);
2297	if (!load)
2298		goto assign;
2299
2300	dst_load = env->dst_stats.load + load;
2301	src_load = env->src_stats.load - load;
2302
2303	if (load_too_imbalanced(src_load, dst_load, env))
2304		goto unlock;
2305
2306assign:
2307	/* Evaluate an idle CPU for a task numa move. */
2308	if (!cur) {
2309		int cpu = env->dst_stats.idle_cpu;
2310
2311		/* Nothing cached so current CPU went idle since the search. */
2312		if (cpu < 0)
2313			cpu = env->dst_cpu;
2314
2315		/*
2316		 * If the CPU is no longer truly idle and the previous best CPU
2317		 * is, keep using it.
2318		 */
2319		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2320		    idle_cpu(env->best_cpu)) {
2321			cpu = env->best_cpu;
2322		}
2323
2324		env->dst_cpu = cpu;
2325	}
2326
2327	task_numa_assign(env, cur, imp);
2328
2329	/*
2330	 * If a move to idle is allowed because there is capacity or load
2331	 * balance improves then stop the search. While a better swap
2332	 * candidate may exist, a search is not free.
2333	 */
2334	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2335		stopsearch = true;
2336
2337	/*
2338	 * If a swap candidate must be identified and the current best task
2339	 * moves its preferred node then stop the search.
2340	 */
2341	if (!maymove && env->best_task &&
2342	    env->best_task->numa_preferred_nid == env->src_nid) {
2343		stopsearch = true;
2344	}
2345unlock:
2346	rcu_read_unlock();
2347
2348	return stopsearch;
2349}
2350
2351static void task_numa_find_cpu(struct task_numa_env *env,
2352				long taskimp, long groupimp)
2353{
2354	bool maymove = false;
2355	int cpu;
2356
2357	/*
2358	 * If dst node has spare capacity, then check if there is an
2359	 * imbalance that would be overruled by the load balancer.
2360	 */
2361	if (env->dst_stats.node_type == node_has_spare) {
2362		unsigned int imbalance;
2363		int src_running, dst_running;
2364
2365		/*
2366		 * Would movement cause an imbalance? Note that if src has
2367		 * more running tasks that the imbalance is ignored as the
2368		 * move improves the imbalance from the perspective of the
2369		 * CPU load balancer.
2370		 * */
2371		src_running = env->src_stats.nr_running - 1;
2372		dst_running = env->dst_stats.nr_running + 1;
2373		imbalance = max(0, dst_running - src_running);
2374		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2375						  env->imb_numa_nr);
2376
2377		/* Use idle CPU if there is no imbalance */
2378		if (!imbalance) {
2379			maymove = true;
2380			if (env->dst_stats.idle_cpu >= 0) {
2381				env->dst_cpu = env->dst_stats.idle_cpu;
2382				task_numa_assign(env, NULL, 0);
2383				return;
2384			}
2385		}
2386	} else {
2387		long src_load, dst_load, load;
2388		/*
2389		 * If the improvement from just moving env->p direction is better
2390		 * than swapping tasks around, check if a move is possible.
2391		 */
2392		load = task_h_load(env->p);
2393		dst_load = env->dst_stats.load + load;
2394		src_load = env->src_stats.load - load;
2395		maymove = !load_too_imbalanced(src_load, dst_load, env);
2396	}
2397
2398	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2399		/* Skip this CPU if the source task cannot migrate */
2400		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2401			continue;
2402
2403		env->dst_cpu = cpu;
2404		if (task_numa_compare(env, taskimp, groupimp, maymove))
2405			break;
2406	}
2407}
2408
2409static int task_numa_migrate(struct task_struct *p)
2410{
2411	struct task_numa_env env = {
2412		.p = p,
2413
2414		.src_cpu = task_cpu(p),
2415		.src_nid = task_node(p),
2416
2417		.imbalance_pct = 112,
2418
2419		.best_task = NULL,
2420		.best_imp = 0,
2421		.best_cpu = -1,
2422	};
2423	unsigned long taskweight, groupweight;
2424	struct sched_domain *sd;
2425	long taskimp, groupimp;
2426	struct numa_group *ng;
2427	struct rq *best_rq;
2428	int nid, ret, dist;
2429
2430	/*
2431	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2432	 * imbalance and would be the first to start moving tasks about.
2433	 *
2434	 * And we want to avoid any moving of tasks about, as that would create
2435	 * random movement of tasks -- counter the numa conditions we're trying
2436	 * to satisfy here.
2437	 */
2438	rcu_read_lock();
2439	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2440	if (sd) {
2441		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2442		env.imb_numa_nr = sd->imb_numa_nr;
2443	}
2444	rcu_read_unlock();
2445
2446	/*
2447	 * Cpusets can break the scheduler domain tree into smaller
2448	 * balance domains, some of which do not cross NUMA boundaries.
2449	 * Tasks that are "trapped" in such domains cannot be migrated
2450	 * elsewhere, so there is no point in (re)trying.
2451	 */
2452	if (unlikely(!sd)) {
2453		sched_setnuma(p, task_node(p));
2454		return -EINVAL;
2455	}
2456
2457	env.dst_nid = p->numa_preferred_nid;
2458	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2459	taskweight = task_weight(p, env.src_nid, dist);
2460	groupweight = group_weight(p, env.src_nid, dist);
2461	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2462	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2463	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2464	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2465
2466	/* Try to find a spot on the preferred nid. */
2467	task_numa_find_cpu(&env, taskimp, groupimp);
2468
2469	/*
2470	 * Look at other nodes in these cases:
2471	 * - there is no space available on the preferred_nid
2472	 * - the task is part of a numa_group that is interleaved across
2473	 *   multiple NUMA nodes; in order to better consolidate the group,
2474	 *   we need to check other locations.
2475	 */
2476	ng = deref_curr_numa_group(p);
2477	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2478		for_each_node_state(nid, N_CPU) {
2479			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2480				continue;
2481
2482			dist = node_distance(env.src_nid, env.dst_nid);
2483			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2484						dist != env.dist) {
2485				taskweight = task_weight(p, env.src_nid, dist);
2486				groupweight = group_weight(p, env.src_nid, dist);
2487			}
2488
2489			/* Only consider nodes where both task and groups benefit */
2490			taskimp = task_weight(p, nid, dist) - taskweight;
2491			groupimp = group_weight(p, nid, dist) - groupweight;
2492			if (taskimp < 0 && groupimp < 0)
2493				continue;
2494
2495			env.dist = dist;
2496			env.dst_nid = nid;
2497			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2498			task_numa_find_cpu(&env, taskimp, groupimp);
2499		}
2500	}
2501
2502	/*
2503	 * If the task is part of a workload that spans multiple NUMA nodes,
2504	 * and is migrating into one of the workload's active nodes, remember
2505	 * this node as the task's preferred numa node, so the workload can
2506	 * settle down.
2507	 * A task that migrated to a second choice node will be better off
2508	 * trying for a better one later. Do not set the preferred node here.
2509	 */
2510	if (ng) {
2511		if (env.best_cpu == -1)
2512			nid = env.src_nid;
2513		else
2514			nid = cpu_to_node(env.best_cpu);
2515
2516		if (nid != p->numa_preferred_nid)
2517			sched_setnuma(p, nid);
2518	}
2519
2520	/* No better CPU than the current one was found. */
2521	if (env.best_cpu == -1) {
2522		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2523		return -EAGAIN;
2524	}
2525
2526	best_rq = cpu_rq(env.best_cpu);
2527	if (env.best_task == NULL) {
2528		ret = migrate_task_to(p, env.best_cpu);
2529		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2530		if (ret != 0)
2531			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2532		return ret;
2533	}
2534
2535	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2536	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2537
2538	if (ret != 0)
2539		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2540	put_task_struct(env.best_task);
2541	return ret;
2542}
2543
2544/* Attempt to migrate a task to a CPU on the preferred node. */
2545static void numa_migrate_preferred(struct task_struct *p)
2546{
2547	unsigned long interval = HZ;
2548
2549	/* This task has no NUMA fault statistics yet */
2550	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2551		return;
2552
2553	/* Periodically retry migrating the task to the preferred node */
2554	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2555	p->numa_migrate_retry = jiffies + interval;
2556
2557	/* Success if task is already running on preferred CPU */
2558	if (task_node(p) == p->numa_preferred_nid)
2559		return;
2560
2561	/* Otherwise, try migrate to a CPU on the preferred node */
2562	task_numa_migrate(p);
2563}
2564
2565/*
2566 * Find out how many nodes the workload is actively running on. Do this by
2567 * tracking the nodes from which NUMA hinting faults are triggered. This can
2568 * be different from the set of nodes where the workload's memory is currently
2569 * located.
2570 */
2571static void numa_group_count_active_nodes(struct numa_group *numa_group)
2572{
2573	unsigned long faults, max_faults = 0;
2574	int nid, active_nodes = 0;
2575
2576	for_each_node_state(nid, N_CPU) {
2577		faults = group_faults_cpu(numa_group, nid);
2578		if (faults > max_faults)
2579			max_faults = faults;
2580	}
2581
2582	for_each_node_state(nid, N_CPU) {
2583		faults = group_faults_cpu(numa_group, nid);
2584		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2585			active_nodes++;
2586	}
2587
2588	numa_group->max_faults_cpu = max_faults;
2589	numa_group->active_nodes = active_nodes;
2590}
2591
2592/*
2593 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2594 * increments. The more local the fault statistics are, the higher the scan
2595 * period will be for the next scan window. If local/(local+remote) ratio is
2596 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2597 * the scan period will decrease. Aim for 70% local accesses.
2598 */
2599#define NUMA_PERIOD_SLOTS 10
2600#define NUMA_PERIOD_THRESHOLD 7
2601
2602/*
2603 * Increase the scan period (slow down scanning) if the majority of
2604 * our memory is already on our local node, or if the majority of
2605 * the page accesses are shared with other processes.
2606 * Otherwise, decrease the scan period.
2607 */
2608static void update_task_scan_period(struct task_struct *p,
2609			unsigned long shared, unsigned long private)
2610{
2611	unsigned int period_slot;
2612	int lr_ratio, ps_ratio;
2613	int diff;
2614
2615	unsigned long remote = p->numa_faults_locality[0];
2616	unsigned long local = p->numa_faults_locality[1];
2617
2618	/*
2619	 * If there were no record hinting faults then either the task is
2620	 * completely idle or all activity is in areas that are not of interest
2621	 * to automatic numa balancing. Related to that, if there were failed
2622	 * migration then it implies we are migrating too quickly or the local
2623	 * node is overloaded. In either case, scan slower
2624	 */
2625	if (local + shared == 0 || p->numa_faults_locality[2]) {
2626		p->numa_scan_period = min(p->numa_scan_period_max,
2627			p->numa_scan_period << 1);
2628
2629		p->mm->numa_next_scan = jiffies +
2630			msecs_to_jiffies(p->numa_scan_period);
2631
2632		return;
2633	}
2634
2635	/*
2636	 * Prepare to scale scan period relative to the current period.
2637	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2638	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2639	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2640	 */
2641	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2642	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2643	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2644
2645	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2646		/*
2647		 * Most memory accesses are local. There is no need to
2648		 * do fast NUMA scanning, since memory is already local.
2649		 */
2650		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2651		if (!slot)
2652			slot = 1;
2653		diff = slot * period_slot;
2654	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2655		/*
2656		 * Most memory accesses are shared with other tasks.
2657		 * There is no point in continuing fast NUMA scanning,
2658		 * since other tasks may just move the memory elsewhere.
2659		 */
2660		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2661		if (!slot)
2662			slot = 1;
2663		diff = slot * period_slot;
2664	} else {
2665		/*
2666		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2667		 * yet they are not on the local NUMA node. Speed up
2668		 * NUMA scanning to get the memory moved over.
2669		 */
2670		int ratio = max(lr_ratio, ps_ratio);
2671		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2672	}
2673
2674	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2675			task_scan_min(p), task_scan_max(p));
2676	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2677}
2678
2679/*
2680 * Get the fraction of time the task has been running since the last
2681 * NUMA placement cycle. The scheduler keeps similar statistics, but
2682 * decays those on a 32ms period, which is orders of magnitude off
2683 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2684 * stats only if the task is so new there are no NUMA statistics yet.
2685 */
2686static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2687{
2688	u64 runtime, delta, now;
2689	/* Use the start of this time slice to avoid calculations. */
2690	now = p->se.exec_start;
2691	runtime = p->se.sum_exec_runtime;
2692
2693	if (p->last_task_numa_placement) {
2694		delta = runtime - p->last_sum_exec_runtime;
2695		*period = now - p->last_task_numa_placement;
2696
2697		/* Avoid time going backwards, prevent potential divide error: */
2698		if (unlikely((s64)*period < 0))
2699			*period = 0;
2700	} else {
2701		delta = p->se.avg.load_sum;
2702		*period = LOAD_AVG_MAX;
2703	}
2704
2705	p->last_sum_exec_runtime = runtime;
2706	p->last_task_numa_placement = now;
2707
2708	return delta;
2709}
2710
2711/*
2712 * Determine the preferred nid for a task in a numa_group. This needs to
2713 * be done in a way that produces consistent results with group_weight,
2714 * otherwise workloads might not converge.
2715 */
2716static int preferred_group_nid(struct task_struct *p, int nid)
2717{
2718	nodemask_t nodes;
2719	int dist;
2720
2721	/* Direct connections between all NUMA nodes. */
2722	if (sched_numa_topology_type == NUMA_DIRECT)
2723		return nid;
2724
2725	/*
2726	 * On a system with glueless mesh NUMA topology, group_weight
2727	 * scores nodes according to the number of NUMA hinting faults on
2728	 * both the node itself, and on nearby nodes.
2729	 */
2730	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2731		unsigned long score, max_score = 0;
2732		int node, max_node = nid;
2733
2734		dist = sched_max_numa_distance;
2735
2736		for_each_node_state(node, N_CPU) {
2737			score = group_weight(p, node, dist);
2738			if (score > max_score) {
2739				max_score = score;
2740				max_node = node;
2741			}
2742		}
2743		return max_node;
2744	}
2745
2746	/*
2747	 * Finding the preferred nid in a system with NUMA backplane
2748	 * interconnect topology is more involved. The goal is to locate
2749	 * tasks from numa_groups near each other in the system, and
2750	 * untangle workloads from different sides of the system. This requires
2751	 * searching down the hierarchy of node groups, recursively searching
2752	 * inside the highest scoring group of nodes. The nodemask tricks
2753	 * keep the complexity of the search down.
2754	 */
2755	nodes = node_states[N_CPU];
2756	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2757		unsigned long max_faults = 0;
2758		nodemask_t max_group = NODE_MASK_NONE;
2759		int a, b;
2760
2761		/* Are there nodes at this distance from each other? */
2762		if (!find_numa_distance(dist))
2763			continue;
2764
2765		for_each_node_mask(a, nodes) {
2766			unsigned long faults = 0;
2767			nodemask_t this_group;
2768			nodes_clear(this_group);
2769
2770			/* Sum group's NUMA faults; includes a==b case. */
2771			for_each_node_mask(b, nodes) {
2772				if (node_distance(a, b) < dist) {
2773					faults += group_faults(p, b);
2774					node_set(b, this_group);
2775					node_clear(b, nodes);
2776				}
2777			}
2778
2779			/* Remember the top group. */
2780			if (faults > max_faults) {
2781				max_faults = faults;
2782				max_group = this_group;
2783				/*
2784				 * subtle: at the smallest distance there is
2785				 * just one node left in each "group", the
2786				 * winner is the preferred nid.
2787				 */
2788				nid = a;
2789			}
2790		}
2791		/* Next round, evaluate the nodes within max_group. */
2792		if (!max_faults)
2793			break;
2794		nodes = max_group;
2795	}
2796	return nid;
2797}
2798
2799static void task_numa_placement(struct task_struct *p)
2800{
2801	int seq, nid, max_nid = NUMA_NO_NODE;
2802	unsigned long max_faults = 0;
2803	unsigned long fault_types[2] = { 0, 0 };
2804	unsigned long total_faults;
2805	u64 runtime, period;
2806	spinlock_t *group_lock = NULL;
2807	struct numa_group *ng;
2808
2809	/*
2810	 * The p->mm->numa_scan_seq field gets updated without
2811	 * exclusive access. Use READ_ONCE() here to ensure
2812	 * that the field is read in a single access:
2813	 */
2814	seq = READ_ONCE(p->mm->numa_scan_seq);
2815	if (p->numa_scan_seq == seq)
2816		return;
2817	p->numa_scan_seq = seq;
2818	p->numa_scan_period_max = task_scan_max(p);
2819
2820	total_faults = p->numa_faults_locality[0] +
2821		       p->numa_faults_locality[1];
2822	runtime = numa_get_avg_runtime(p, &period);
2823
2824	/* If the task is part of a group prevent parallel updates to group stats */
2825	ng = deref_curr_numa_group(p);
2826	if (ng) {
2827		group_lock = &ng->lock;
2828		spin_lock_irq(group_lock);
2829	}
2830
2831	/* Find the node with the highest number of faults */
2832	for_each_online_node(nid) {
2833		/* Keep track of the offsets in numa_faults array */
2834		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2835		unsigned long faults = 0, group_faults = 0;
2836		int priv;
2837
2838		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2839			long diff, f_diff, f_weight;
2840
2841			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2842			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2843			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2844			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2845
2846			/* Decay existing window, copy faults since last scan */
2847			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2848			fault_types[priv] += p->numa_faults[membuf_idx];
2849			p->numa_faults[membuf_idx] = 0;
2850
2851			/*
2852			 * Normalize the faults_from, so all tasks in a group
2853			 * count according to CPU use, instead of by the raw
2854			 * number of faults. Tasks with little runtime have
2855			 * little over-all impact on throughput, and thus their
2856			 * faults are less important.
2857			 */
2858			f_weight = div64_u64(runtime << 16, period + 1);
2859			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2860				   (total_faults + 1);
2861			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2862			p->numa_faults[cpubuf_idx] = 0;
2863
2864			p->numa_faults[mem_idx] += diff;
2865			p->numa_faults[cpu_idx] += f_diff;
2866			faults += p->numa_faults[mem_idx];
2867			p->total_numa_faults += diff;
2868			if (ng) {
2869				/*
2870				 * safe because we can only change our own group
2871				 *
2872				 * mem_idx represents the offset for a given
2873				 * nid and priv in a specific region because it
2874				 * is at the beginning of the numa_faults array.
2875				 */
2876				ng->faults[mem_idx] += diff;
2877				ng->faults[cpu_idx] += f_diff;
2878				ng->total_faults += diff;
2879				group_faults += ng->faults[mem_idx];
2880			}
2881		}
2882
2883		if (!ng) {
2884			if (faults > max_faults) {
2885				max_faults = faults;
2886				max_nid = nid;
2887			}
2888		} else if (group_faults > max_faults) {
2889			max_faults = group_faults;
2890			max_nid = nid;
2891		}
2892	}
2893
2894	/* Cannot migrate task to CPU-less node */
2895	max_nid = numa_nearest_node(max_nid, N_CPU);
2896
2897	if (ng) {
2898		numa_group_count_active_nodes(ng);
2899		spin_unlock_irq(group_lock);
2900		max_nid = preferred_group_nid(p, max_nid);
2901	}
2902
2903	if (max_faults) {
2904		/* Set the new preferred node */
2905		if (max_nid != p->numa_preferred_nid)
2906			sched_setnuma(p, max_nid);
2907	}
2908
2909	update_task_scan_period(p, fault_types[0], fault_types[1]);
2910}
2911
2912static inline int get_numa_group(struct numa_group *grp)
2913{
2914	return refcount_inc_not_zero(&grp->refcount);
2915}
2916
2917static inline void put_numa_group(struct numa_group *grp)
2918{
2919	if (refcount_dec_and_test(&grp->refcount))
2920		kfree_rcu(grp, rcu);
2921}
2922
2923static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2924			int *priv)
2925{
2926	struct numa_group *grp, *my_grp;
2927	struct task_struct *tsk;
2928	bool join = false;
2929	int cpu = cpupid_to_cpu(cpupid);
2930	int i;
2931
2932	if (unlikely(!deref_curr_numa_group(p))) {
2933		unsigned int size = sizeof(struct numa_group) +
2934				    NR_NUMA_HINT_FAULT_STATS *
2935				    nr_node_ids * sizeof(unsigned long);
2936
2937		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2938		if (!grp)
2939			return;
2940
2941		refcount_set(&grp->refcount, 1);
2942		grp->active_nodes = 1;
2943		grp->max_faults_cpu = 0;
2944		spin_lock_init(&grp->lock);
2945		grp->gid = p->pid;
2946
2947		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2948			grp->faults[i] = p->numa_faults[i];
2949
2950		grp->total_faults = p->total_numa_faults;
2951
2952		grp->nr_tasks++;
2953		rcu_assign_pointer(p->numa_group, grp);
2954	}
2955
2956	rcu_read_lock();
2957	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2958
2959	if (!cpupid_match_pid(tsk, cpupid))
2960		goto no_join;
2961
2962	grp = rcu_dereference(tsk->numa_group);
2963	if (!grp)
2964		goto no_join;
2965
2966	my_grp = deref_curr_numa_group(p);
2967	if (grp == my_grp)
2968		goto no_join;
2969
2970	/*
2971	 * Only join the other group if its bigger; if we're the bigger group,
2972	 * the other task will join us.
2973	 */
2974	if (my_grp->nr_tasks > grp->nr_tasks)
2975		goto no_join;
2976
2977	/*
2978	 * Tie-break on the grp address.
2979	 */
2980	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2981		goto no_join;
2982
2983	/* Always join threads in the same process. */
2984	if (tsk->mm == current->mm)
2985		join = true;
2986
2987	/* Simple filter to avoid false positives due to PID collisions */
2988	if (flags & TNF_SHARED)
2989		join = true;
2990
2991	/* Update priv based on whether false sharing was detected */
2992	*priv = !join;
2993
2994	if (join && !get_numa_group(grp))
2995		goto no_join;
2996
2997	rcu_read_unlock();
2998
2999	if (!join)
3000		return;
3001
3002	WARN_ON_ONCE(irqs_disabled());
3003	double_lock_irq(&my_grp->lock, &grp->lock);
3004
3005	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3006		my_grp->faults[i] -= p->numa_faults[i];
3007		grp->faults[i] += p->numa_faults[i];
3008	}
3009	my_grp->total_faults -= p->total_numa_faults;
3010	grp->total_faults += p->total_numa_faults;
3011
3012	my_grp->nr_tasks--;
3013	grp->nr_tasks++;
3014
3015	spin_unlock(&my_grp->lock);
3016	spin_unlock_irq(&grp->lock);
3017
3018	rcu_assign_pointer(p->numa_group, grp);
3019
3020	put_numa_group(my_grp);
3021	return;
3022
3023no_join:
3024	rcu_read_unlock();
3025	return;
3026}
3027
3028/*
3029 * Get rid of NUMA statistics associated with a task (either current or dead).
3030 * If @final is set, the task is dead and has reached refcount zero, so we can
3031 * safely free all relevant data structures. Otherwise, there might be
3032 * concurrent reads from places like load balancing and procfs, and we should
3033 * reset the data back to default state without freeing ->numa_faults.
3034 */
3035void task_numa_free(struct task_struct *p, bool final)
3036{
3037	/* safe: p either is current or is being freed by current */
3038	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3039	unsigned long *numa_faults = p->numa_faults;
3040	unsigned long flags;
3041	int i;
3042
3043	if (!numa_faults)
3044		return;
3045
3046	if (grp) {
3047		spin_lock_irqsave(&grp->lock, flags);
3048		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3049			grp->faults[i] -= p->numa_faults[i];
3050		grp->total_faults -= p->total_numa_faults;
3051
3052		grp->nr_tasks--;
3053		spin_unlock_irqrestore(&grp->lock, flags);
3054		RCU_INIT_POINTER(p->numa_group, NULL);
3055		put_numa_group(grp);
3056	}
3057
3058	if (final) {
3059		p->numa_faults = NULL;
3060		kfree(numa_faults);
3061	} else {
3062		p->total_numa_faults = 0;
3063		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3064			numa_faults[i] = 0;
3065	}
3066}
3067
3068/*
3069 * Got a PROT_NONE fault for a page on @node.
3070 */
3071void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3072{
3073	struct task_struct *p = current;
3074	bool migrated = flags & TNF_MIGRATED;
3075	int cpu_node = task_node(current);
3076	int local = !!(flags & TNF_FAULT_LOCAL);
3077	struct numa_group *ng;
3078	int priv;
3079
3080	if (!static_branch_likely(&sched_numa_balancing))
3081		return;
3082
3083	/* for example, ksmd faulting in a user's mm */
3084	if (!p->mm)
3085		return;
3086
3087	/*
3088	 * NUMA faults statistics are unnecessary for the slow memory
3089	 * node for memory tiering mode.
3090	 */
3091	if (!node_is_toptier(mem_node) &&
3092	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3093	     !cpupid_valid(last_cpupid)))
3094		return;
3095
3096	/* Allocate buffer to track faults on a per-node basis */
3097	if (unlikely(!p->numa_faults)) {
3098		int size = sizeof(*p->numa_faults) *
3099			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3100
3101		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3102		if (!p->numa_faults)
3103			return;
3104
3105		p->total_numa_faults = 0;
3106		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3107	}
3108
3109	/*
3110	 * First accesses are treated as private, otherwise consider accesses
3111	 * to be private if the accessing pid has not changed
3112	 */
3113	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3114		priv = 1;
3115	} else {
3116		priv = cpupid_match_pid(p, last_cpupid);
3117		if (!priv && !(flags & TNF_NO_GROUP))
3118			task_numa_group(p, last_cpupid, flags, &priv);
3119	}
3120
3121	/*
3122	 * If a workload spans multiple NUMA nodes, a shared fault that
3123	 * occurs wholly within the set of nodes that the workload is
3124	 * actively using should be counted as local. This allows the
3125	 * scan rate to slow down when a workload has settled down.
3126	 */
3127	ng = deref_curr_numa_group(p);
3128	if (!priv && !local && ng && ng->active_nodes > 1 &&
3129				numa_is_active_node(cpu_node, ng) &&
3130				numa_is_active_node(mem_node, ng))
3131		local = 1;
3132
3133	/*
3134	 * Retry to migrate task to preferred node periodically, in case it
3135	 * previously failed, or the scheduler moved us.
3136	 */
3137	if (time_after(jiffies, p->numa_migrate_retry)) {
3138		task_numa_placement(p);
3139		numa_migrate_preferred(p);
3140	}
3141
3142	if (migrated)
3143		p->numa_pages_migrated += pages;
3144	if (flags & TNF_MIGRATE_FAIL)
3145		p->numa_faults_locality[2] += pages;
3146
3147	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3148	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3149	p->numa_faults_locality[local] += pages;
3150}
3151
3152static void reset_ptenuma_scan(struct task_struct *p)
3153{
3154	/*
3155	 * We only did a read acquisition of the mmap sem, so
3156	 * p->mm->numa_scan_seq is written to without exclusive access
3157	 * and the update is not guaranteed to be atomic. That's not
3158	 * much of an issue though, since this is just used for
3159	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3160	 * expensive, to avoid any form of compiler optimizations:
3161	 */
3162	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3163	p->mm->numa_scan_offset = 0;
3164}
3165
3166static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3167{
3168	unsigned long pids;
3169	/*
3170	 * Allow unconditional access first two times, so that all the (pages)
3171	 * of VMAs get prot_none fault introduced irrespective of accesses.
3172	 * This is also done to avoid any side effect of task scanning
3173	 * amplifying the unfairness of disjoint set of VMAs' access.
3174	 */
3175	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3176		return true;
3177
3178	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3179	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3180		return true;
3181
3182	/*
3183	 * Complete a scan that has already started regardless of PID access, or
3184	 * some VMAs may never be scanned in multi-threaded applications:
3185	 */
3186	if (mm->numa_scan_offset > vma->vm_start) {
3187		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3188		return true;
3189	}
3190
3191	return false;
3192}
3193
3194#define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3195
3196/*
3197 * The expensive part of numa migration is done from task_work context.
3198 * Triggered from task_tick_numa().
3199 */
3200static void task_numa_work(struct callback_head *work)
3201{
3202	unsigned long migrate, next_scan, now = jiffies;
3203	struct task_struct *p = current;
3204	struct mm_struct *mm = p->mm;
3205	u64 runtime = p->se.sum_exec_runtime;
3206	struct vm_area_struct *vma;
3207	unsigned long start, end;
3208	unsigned long nr_pte_updates = 0;
3209	long pages, virtpages;
3210	struct vma_iterator vmi;
3211	bool vma_pids_skipped;
3212	bool vma_pids_forced = false;
3213
3214	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3215
3216	work->next = work;
3217	/*
3218	 * Who cares about NUMA placement when they're dying.
3219	 *
3220	 * NOTE: make sure not to dereference p->mm before this check,
3221	 * exit_task_work() happens _after_ exit_mm() so we could be called
3222	 * without p->mm even though we still had it when we enqueued this
3223	 * work.
3224	 */
3225	if (p->flags & PF_EXITING)
3226		return;
3227
3228	if (!mm->numa_next_scan) {
3229		mm->numa_next_scan = now +
3230			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3231	}
3232
3233	/*
3234	 * Enforce maximal scan/migration frequency..
3235	 */
3236	migrate = mm->numa_next_scan;
3237	if (time_before(now, migrate))
3238		return;
3239
3240	if (p->numa_scan_period == 0) {
3241		p->numa_scan_period_max = task_scan_max(p);
3242		p->numa_scan_period = task_scan_start(p);
3243	}
3244
3245	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3246	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3247		return;
3248
3249	/*
3250	 * Delay this task enough that another task of this mm will likely win
3251	 * the next time around.
3252	 */
3253	p->node_stamp += 2 * TICK_NSEC;
3254
3255	pages = sysctl_numa_balancing_scan_size;
3256	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3257	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3258	if (!pages)
3259		return;
3260
3261
3262	if (!mmap_read_trylock(mm))
3263		return;
3264
3265	/*
3266	 * VMAs are skipped if the current PID has not trapped a fault within
3267	 * the VMA recently. Allow scanning to be forced if there is no
3268	 * suitable VMA remaining.
3269	 */
3270	vma_pids_skipped = false;
3271
3272retry_pids:
3273	start = mm->numa_scan_offset;
3274	vma_iter_init(&vmi, mm, start);
3275	vma = vma_next(&vmi);
3276	if (!vma) {
3277		reset_ptenuma_scan(p);
3278		start = 0;
3279		vma_iter_set(&vmi, start);
3280		vma = vma_next(&vmi);
3281	}
3282
3283	do {
3284		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3285			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3286			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3287			continue;
3288		}
3289
3290		/*
3291		 * Shared library pages mapped by multiple processes are not
3292		 * migrated as it is expected they are cache replicated. Avoid
3293		 * hinting faults in read-only file-backed mappings or the vdso
3294		 * as migrating the pages will be of marginal benefit.
3295		 */
3296		if (!vma->vm_mm ||
3297		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3298			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3299			continue;
3300		}
3301
3302		/*
3303		 * Skip inaccessible VMAs to avoid any confusion between
3304		 * PROT_NONE and NUMA hinting ptes
3305		 */
3306		if (!vma_is_accessible(vma)) {
3307			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3308			continue;
3309		}
3310
3311		/* Initialise new per-VMA NUMAB state. */
3312		if (!vma->numab_state) {
3313			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3314				GFP_KERNEL);
3315			if (!vma->numab_state)
3316				continue;
3317
3318			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3319
3320			vma->numab_state->next_scan = now +
3321				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3322
3323			/* Reset happens after 4 times scan delay of scan start */
3324			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3325				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3326
3327			/*
3328			 * Ensure prev_scan_seq does not match numa_scan_seq,
3329			 * to prevent VMAs being skipped prematurely on the
3330			 * first scan:
3331			 */
3332			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3333		}
3334
3335		/*
3336		 * Scanning the VMA's of short lived tasks add more overhead. So
3337		 * delay the scan for new VMAs.
3338		 */
3339		if (mm->numa_scan_seq && time_before(jiffies,
3340						vma->numab_state->next_scan)) {
3341			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3342			continue;
3343		}
3344
3345		/* RESET access PIDs regularly for old VMAs. */
3346		if (mm->numa_scan_seq &&
3347				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3348			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3349				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3350			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3351			vma->numab_state->pids_active[1] = 0;
3352		}
3353
3354		/* Do not rescan VMAs twice within the same sequence. */
3355		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3356			mm->numa_scan_offset = vma->vm_end;
3357			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3358			continue;
3359		}
3360
3361		/*
3362		 * Do not scan the VMA if task has not accessed it, unless no other
3363		 * VMA candidate exists.
3364		 */
3365		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3366			vma_pids_skipped = true;
3367			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3368			continue;
3369		}
3370
3371		do {
3372			start = max(start, vma->vm_start);
3373			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3374			end = min(end, vma->vm_end);
3375			nr_pte_updates = change_prot_numa(vma, start, end);
3376
3377			/*
3378			 * Try to scan sysctl_numa_balancing_size worth of
3379			 * hpages that have at least one present PTE that
3380			 * is not already pte-numa. If the VMA contains
3381			 * areas that are unused or already full of prot_numa
3382			 * PTEs, scan up to virtpages, to skip through those
3383			 * areas faster.
3384			 */
3385			if (nr_pte_updates)
3386				pages -= (end - start) >> PAGE_SHIFT;
3387			virtpages -= (end - start) >> PAGE_SHIFT;
3388
3389			start = end;
3390			if (pages <= 0 || virtpages <= 0)
3391				goto out;
3392
3393			cond_resched();
3394		} while (end != vma->vm_end);
3395
3396		/* VMA scan is complete, do not scan until next sequence. */
3397		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3398
3399		/*
3400		 * Only force scan within one VMA at a time, to limit the
3401		 * cost of scanning a potentially uninteresting VMA.
3402		 */
3403		if (vma_pids_forced)
3404			break;
3405	} for_each_vma(vmi, vma);
3406
3407	/*
3408	 * If no VMAs are remaining and VMAs were skipped due to the PID
3409	 * not accessing the VMA previously, then force a scan to ensure
3410	 * forward progress:
3411	 */
3412	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3413		vma_pids_forced = true;
3414		goto retry_pids;
3415	}
3416
3417out:
3418	/*
3419	 * It is possible to reach the end of the VMA list but the last few
3420	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3421	 * would find the !migratable VMA on the next scan but not reset the
3422	 * scanner to the start so check it now.
3423	 */
3424	if (vma)
3425		mm->numa_scan_offset = start;
3426	else
3427		reset_ptenuma_scan(p);
3428	mmap_read_unlock(mm);
3429
3430	/*
3431	 * Make sure tasks use at least 32x as much time to run other code
3432	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3433	 * Usually update_task_scan_period slows down scanning enough; on an
3434	 * overloaded system we need to limit overhead on a per task basis.
3435	 */
3436	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3437		u64 diff = p->se.sum_exec_runtime - runtime;
3438		p->node_stamp += 32 * diff;
3439	}
3440}
3441
3442void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3443{
3444	int mm_users = 0;
3445	struct mm_struct *mm = p->mm;
3446
3447	if (mm) {
3448		mm_users = atomic_read(&mm->mm_users);
3449		if (mm_users == 1) {
3450			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3451			mm->numa_scan_seq = 0;
3452		}
3453	}
3454	p->node_stamp			= 0;
3455	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3456	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3457	p->numa_migrate_retry		= 0;
3458	/* Protect against double add, see task_tick_numa and task_numa_work */
3459	p->numa_work.next		= &p->numa_work;
3460	p->numa_faults			= NULL;
3461	p->numa_pages_migrated		= 0;
3462	p->total_numa_faults		= 0;
3463	RCU_INIT_POINTER(p->numa_group, NULL);
3464	p->last_task_numa_placement	= 0;
3465	p->last_sum_exec_runtime	= 0;
3466
3467	init_task_work(&p->numa_work, task_numa_work);
3468
3469	/* New address space, reset the preferred nid */
3470	if (!(clone_flags & CLONE_VM)) {
3471		p->numa_preferred_nid = NUMA_NO_NODE;
3472		return;
3473	}
3474
3475	/*
3476	 * New thread, keep existing numa_preferred_nid which should be copied
3477	 * already by arch_dup_task_struct but stagger when scans start.
3478	 */
3479	if (mm) {
3480		unsigned int delay;
3481
3482		delay = min_t(unsigned int, task_scan_max(current),
3483			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3484		delay += 2 * TICK_NSEC;
3485		p->node_stamp = delay;
3486	}
3487}
3488
3489/*
3490 * Drive the periodic memory faults..
3491 */
3492static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3493{
3494	struct callback_head *work = &curr->numa_work;
3495	u64 period, now;
3496
3497	/*
3498	 * We don't care about NUMA placement if we don't have memory.
3499	 */
3500	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3501		return;
3502
3503	/*
3504	 * Using runtime rather than walltime has the dual advantage that
3505	 * we (mostly) drive the selection from busy threads and that the
3506	 * task needs to have done some actual work before we bother with
3507	 * NUMA placement.
3508	 */
3509	now = curr->se.sum_exec_runtime;
3510	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3511
3512	if (now > curr->node_stamp + period) {
3513		if (!curr->node_stamp)
3514			curr->numa_scan_period = task_scan_start(curr);
3515		curr->node_stamp += period;
3516
3517		if (!time_before(jiffies, curr->mm->numa_next_scan))
3518			task_work_add(curr, work, TWA_RESUME);
3519	}
3520}
3521
3522static void update_scan_period(struct task_struct *p, int new_cpu)
3523{
3524	int src_nid = cpu_to_node(task_cpu(p));
3525	int dst_nid = cpu_to_node(new_cpu);
3526
3527	if (!static_branch_likely(&sched_numa_balancing))
3528		return;
3529
3530	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3531		return;
3532
3533	if (src_nid == dst_nid)
3534		return;
3535
3536	/*
3537	 * Allow resets if faults have been trapped before one scan
3538	 * has completed. This is most likely due to a new task that
3539	 * is pulled cross-node due to wakeups or load balancing.
3540	 */
3541	if (p->numa_scan_seq) {
3542		/*
3543		 * Avoid scan adjustments if moving to the preferred
3544		 * node or if the task was not previously running on
3545		 * the preferred node.
3546		 */
3547		if (dst_nid == p->numa_preferred_nid ||
3548		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3549			src_nid != p->numa_preferred_nid))
3550			return;
3551	}
3552
3553	p->numa_scan_period = task_scan_start(p);
3554}
3555
3556#else
3557static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3558{
3559}
3560
3561static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3562{
3563}
3564
3565static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3566{
3567}
3568
3569static inline void update_scan_period(struct task_struct *p, int new_cpu)
3570{
3571}
3572
3573#endif /* CONFIG_NUMA_BALANCING */
3574
3575static void
3576account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3577{
3578	update_load_add(&cfs_rq->load, se->load.weight);
3579#ifdef CONFIG_SMP
3580	if (entity_is_task(se)) {
3581		struct rq *rq = rq_of(cfs_rq);
3582
3583		account_numa_enqueue(rq, task_of(se));
3584		list_add(&se->group_node, &rq->cfs_tasks);
3585	}
3586#endif
3587	cfs_rq->nr_running++;
3588	if (se_is_idle(se))
3589		cfs_rq->idle_nr_running++;
3590}
3591
3592static void
3593account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3594{
3595	update_load_sub(&cfs_rq->load, se->load.weight);
3596#ifdef CONFIG_SMP
3597	if (entity_is_task(se)) {
3598		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3599		list_del_init(&se->group_node);
3600	}
3601#endif
3602	cfs_rq->nr_running--;
3603	if (se_is_idle(se))
3604		cfs_rq->idle_nr_running--;
3605}
3606
3607/*
3608 * Signed add and clamp on underflow.
3609 *
3610 * Explicitly do a load-store to ensure the intermediate value never hits
3611 * memory. This allows lockless observations without ever seeing the negative
3612 * values.
3613 */
3614#define add_positive(_ptr, _val) do {                           \
3615	typeof(_ptr) ptr = (_ptr);                              \
3616	typeof(_val) val = (_val);                              \
3617	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3618								\
3619	res = var + val;                                        \
3620								\
3621	if (val < 0 && res > var)                               \
3622		res = 0;                                        \
3623								\
3624	WRITE_ONCE(*ptr, res);                                  \
3625} while (0)
3626
3627/*
3628 * Unsigned subtract and clamp on underflow.
3629 *
3630 * Explicitly do a load-store to ensure the intermediate value never hits
3631 * memory. This allows lockless observations without ever seeing the negative
3632 * values.
3633 */
3634#define sub_positive(_ptr, _val) do {				\
3635	typeof(_ptr) ptr = (_ptr);				\
3636	typeof(*ptr) val = (_val);				\
3637	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3638	res = var - val;					\
3639	if (res > var)						\
3640		res = 0;					\
3641	WRITE_ONCE(*ptr, res);					\
3642} while (0)
3643
3644/*
3645 * Remove and clamp on negative, from a local variable.
3646 *
3647 * A variant of sub_positive(), which does not use explicit load-store
3648 * and is thus optimized for local variable updates.
3649 */
3650#define lsub_positive(_ptr, _val) do {				\
3651	typeof(_ptr) ptr = (_ptr);				\
3652	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3653} while (0)
3654
3655#ifdef CONFIG_SMP
3656static inline void
3657enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3658{
3659	cfs_rq->avg.load_avg += se->avg.load_avg;
3660	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3661}
3662
3663static inline void
3664dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3665{
3666	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3667	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3668	/* See update_cfs_rq_load_avg() */
3669	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3670					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3671}
3672#else
3673static inline void
3674enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3675static inline void
3676dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3677#endif
3678
3679static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se,
3680			   unsigned long weight)
3681{
3682	unsigned long old_weight = se->load.weight;
3683	u64 avruntime = avg_vruntime(cfs_rq);
3684	s64 vlag, vslice;
3685
3686	/*
3687	 * VRUNTIME
3688	 * ========
3689	 *
3690	 * COROLLARY #1: The virtual runtime of the entity needs to be
3691	 * adjusted if re-weight at !0-lag point.
3692	 *
3693	 * Proof: For contradiction assume this is not true, so we can
3694	 * re-weight without changing vruntime at !0-lag point.
3695	 *
3696	 *             Weight	VRuntime   Avg-VRuntime
3697	 *     before    w          v            V
3698	 *      after    w'         v'           V'
3699	 *
3700	 * Since lag needs to be preserved through re-weight:
3701	 *
3702	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3703	 *	==>	V' = (V - v)*w/w' + v		(1)
3704	 *
3705	 * Let W be the total weight of the entities before reweight,
3706	 * since V' is the new weighted average of entities:
3707	 *
3708	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3709	 *
3710	 * by using (1) & (2) we obtain:
3711	 *
3712	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3713	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3714	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3715	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3716	 *
3717	 * Since we are doing at !0-lag point which means V != v, we
3718	 * can simplify (3):
3719	 *
3720	 *	==>	W / (W + w' - w) = w / w'
3721	 *	==>	Ww' = Ww + ww' - ww
3722	 *	==>	W * (w' - w) = w * (w' - w)
3723	 *	==>	W = w	(re-weight indicates w' != w)
3724	 *
3725	 * So the cfs_rq contains only one entity, hence vruntime of
3726	 * the entity @v should always equal to the cfs_rq's weighted
3727	 * average vruntime @V, which means we will always re-weight
3728	 * at 0-lag point, thus breach assumption. Proof completed.
3729	 *
3730	 *
3731	 * COROLLARY #2: Re-weight does NOT affect weighted average
3732	 * vruntime of all the entities.
3733	 *
3734	 * Proof: According to corollary #1, Eq. (1) should be:
3735	 *
3736	 *	(V - v)*w = (V' - v')*w'
3737	 *	==>    v' = V' - (V - v)*w/w'		(4)
3738	 *
3739	 * According to the weighted average formula, we have:
3740	 *
3741	 *	V' = (WV - wv + w'v') / (W - w + w')
3742	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3743	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3744	 *	   = (WV + w'V' - Vw) / (W - w + w')
3745	 *
3746	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3747	 *	==>	V' * (W - w) = (W - w) * V	(5)
3748	 *
3749	 * If the entity is the only one in the cfs_rq, then reweight
3750	 * always occurs at 0-lag point, so V won't change. Or else
3751	 * there are other entities, hence W != w, then Eq. (5) turns
3752	 * into V' = V. So V won't change in either case, proof done.
3753	 *
3754	 *
3755	 * So according to corollary #1 & #2, the effect of re-weight
3756	 * on vruntime should be:
3757	 *
3758	 *	v' = V' - (V - v) * w / w'		(4)
3759	 *	   = V  - (V - v) * w / w'
3760	 *	   = V  - vl * w / w'
3761	 *	   = V  - vl'
3762	 */
3763	if (avruntime != se->vruntime) {
3764		vlag = (s64)(avruntime - se->vruntime);
3765		vlag = div_s64(vlag * old_weight, weight);
3766		se->vruntime = avruntime - vlag;
3767	}
3768
3769	/*
3770	 * DEADLINE
3771	 * ========
3772	 *
3773	 * When the weight changes, the virtual time slope changes and
3774	 * we should adjust the relative virtual deadline accordingly.
3775	 *
3776	 *	d' = v' + (d - v)*w/w'
3777	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3778	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3779	 *	   = V  + (d - V)*w/w'
3780	 */
3781	vslice = (s64)(se->deadline - avruntime);
3782	vslice = div_s64(vslice * old_weight, weight);
3783	se->deadline = avruntime + vslice;
3784}
3785
3786static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3787			    unsigned long weight)
3788{
3789	bool curr = cfs_rq->curr == se;
3790
3791	if (se->on_rq) {
3792		/* commit outstanding execution time */
3793		if (curr)
3794			update_curr(cfs_rq);
3795		else
3796			__dequeue_entity(cfs_rq, se);
3797		update_load_sub(&cfs_rq->load, se->load.weight);
3798	}
3799	dequeue_load_avg(cfs_rq, se);
3800
3801	if (!se->on_rq) {
3802		/*
3803		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3804		 * we need to scale se->vlag when w_i changes.
3805		 */
3806		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3807	} else {
3808		reweight_eevdf(cfs_rq, se, weight);
3809	}
3810
3811	update_load_set(&se->load, weight);
3812
3813#ifdef CONFIG_SMP
3814	do {
3815		u32 divider = get_pelt_divider(&se->avg);
3816
3817		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3818	} while (0);
3819#endif
3820
3821	enqueue_load_avg(cfs_rq, se);
3822	if (se->on_rq) {
3823		update_load_add(&cfs_rq->load, se->load.weight);
3824		if (!curr)
3825			__enqueue_entity(cfs_rq, se);
3826
3827		/*
3828		 * The entity's vruntime has been adjusted, so let's check
3829		 * whether the rq-wide min_vruntime needs updated too. Since
3830		 * the calculations above require stable min_vruntime rather
3831		 * than up-to-date one, we do the update at the end of the
3832		 * reweight process.
3833		 */
3834		update_min_vruntime(cfs_rq);
3835	}
3836}
3837
3838void reweight_task(struct task_struct *p, int prio)
3839{
3840	struct sched_entity *se = &p->se;
3841	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3842	struct load_weight *load = &se->load;
3843	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3844
3845	reweight_entity(cfs_rq, se, weight);
3846	load->inv_weight = sched_prio_to_wmult[prio];
3847}
3848
3849static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3850
3851#ifdef CONFIG_FAIR_GROUP_SCHED
3852#ifdef CONFIG_SMP
3853/*
3854 * All this does is approximate the hierarchical proportion which includes that
3855 * global sum we all love to hate.
3856 *
3857 * That is, the weight of a group entity, is the proportional share of the
3858 * group weight based on the group runqueue weights. That is:
3859 *
3860 *                     tg->weight * grq->load.weight
3861 *   ge->load.weight = -----------------------------               (1)
3862 *                       \Sum grq->load.weight
3863 *
3864 * Now, because computing that sum is prohibitively expensive to compute (been
3865 * there, done that) we approximate it with this average stuff. The average
3866 * moves slower and therefore the approximation is cheaper and more stable.
3867 *
3868 * So instead of the above, we substitute:
3869 *
3870 *   grq->load.weight -> grq->avg.load_avg                         (2)
3871 *
3872 * which yields the following:
3873 *
3874 *                     tg->weight * grq->avg.load_avg
3875 *   ge->load.weight = ------------------------------              (3)
3876 *                             tg->load_avg
3877 *
3878 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3879 *
3880 * That is shares_avg, and it is right (given the approximation (2)).
3881 *
3882 * The problem with it is that because the average is slow -- it was designed
3883 * to be exactly that of course -- this leads to transients in boundary
3884 * conditions. In specific, the case where the group was idle and we start the
3885 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3886 * yielding bad latency etc..
3887 *
3888 * Now, in that special case (1) reduces to:
3889 *
3890 *                     tg->weight * grq->load.weight
3891 *   ge->load.weight = ----------------------------- = tg->weight   (4)
3892 *                         grp->load.weight
3893 *
3894 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3895 *
3896 * So what we do is modify our approximation (3) to approach (4) in the (near)
3897 * UP case, like:
3898 *
3899 *   ge->load.weight =
3900 *
3901 *              tg->weight * grq->load.weight
3902 *     ---------------------------------------------------         (5)
3903 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3904 *
3905 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3906 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3907 *
3908 *
3909 *                     tg->weight * grq->load.weight
3910 *   ge->load.weight = -----------------------------		   (6)
3911 *                             tg_load_avg'
3912 *
3913 * Where:
3914 *
3915 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3916 *                  max(grq->load.weight, grq->avg.load_avg)
3917 *
3918 * And that is shares_weight and is icky. In the (near) UP case it approaches
3919 * (4) while in the normal case it approaches (3). It consistently
3920 * overestimates the ge->load.weight and therefore:
3921 *
3922 *   \Sum ge->load.weight >= tg->weight
3923 *
3924 * hence icky!
3925 */
3926static long calc_group_shares(struct cfs_rq *cfs_rq)
3927{
3928	long tg_weight, tg_shares, load, shares;
3929	struct task_group *tg = cfs_rq->tg;
3930
3931	tg_shares = READ_ONCE(tg->shares);
3932
3933	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3934
3935	tg_weight = atomic_long_read(&tg->load_avg);
3936
3937	/* Ensure tg_weight >= load */
3938	tg_weight -= cfs_rq->tg_load_avg_contrib;
3939	tg_weight += load;
3940
3941	shares = (tg_shares * load);
3942	if (tg_weight)
3943		shares /= tg_weight;
3944
3945	/*
3946	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3947	 * of a group with small tg->shares value. It is a floor value which is
3948	 * assigned as a minimum load.weight to the sched_entity representing
3949	 * the group on a CPU.
3950	 *
3951	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3952	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3953	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3954	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3955	 * instead of 0.
3956	 */
3957	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3958}
3959#endif /* CONFIG_SMP */
3960
3961/*
3962 * Recomputes the group entity based on the current state of its group
3963 * runqueue.
3964 */
3965static void update_cfs_group(struct sched_entity *se)
3966{
3967	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3968	long shares;
3969
3970	if (!gcfs_rq)
3971		return;
3972
3973	if (throttled_hierarchy(gcfs_rq))
3974		return;
3975
3976#ifndef CONFIG_SMP
3977	shares = READ_ONCE(gcfs_rq->tg->shares);
3978#else
3979	shares = calc_group_shares(gcfs_rq);
3980#endif
3981	if (unlikely(se->load.weight != shares))
3982		reweight_entity(cfs_rq_of(se), se, shares);
3983}
3984
3985#else /* CONFIG_FAIR_GROUP_SCHED */
3986static inline void update_cfs_group(struct sched_entity *se)
3987{
3988}
3989#endif /* CONFIG_FAIR_GROUP_SCHED */
3990
3991static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3992{
3993	struct rq *rq = rq_of(cfs_rq);
3994
3995	if (&rq->cfs == cfs_rq) {
3996		/*
3997		 * There are a few boundary cases this might miss but it should
3998		 * get called often enough that that should (hopefully) not be
3999		 * a real problem.
4000		 *
4001		 * It will not get called when we go idle, because the idle
4002		 * thread is a different class (!fair), nor will the utilization
4003		 * number include things like RT tasks.
4004		 *
4005		 * As is, the util number is not freq-invariant (we'd have to
4006		 * implement arch_scale_freq_capacity() for that).
4007		 *
4008		 * See cpu_util_cfs().
4009		 */
4010		cpufreq_update_util(rq, flags);
4011	}
4012}
4013
4014#ifdef CONFIG_SMP
4015static inline bool load_avg_is_decayed(struct sched_avg *sa)
4016{
4017	if (sa->load_sum)
4018		return false;
4019
4020	if (sa->util_sum)
4021		return false;
4022
4023	if (sa->runnable_sum)
4024		return false;
4025
4026	/*
4027	 * _avg must be null when _sum are null because _avg = _sum / divider
4028	 * Make sure that rounding and/or propagation of PELT values never
4029	 * break this.
4030	 */
4031	SCHED_WARN_ON(sa->load_avg ||
4032		      sa->util_avg ||
4033		      sa->runnable_avg);
4034
4035	return true;
4036}
4037
4038static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4039{
4040	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4041				 cfs_rq->last_update_time_copy);
4042}
4043#ifdef CONFIG_FAIR_GROUP_SCHED
4044/*
4045 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4046 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4047 * bottom-up, we only have to test whether the cfs_rq before us on the list
4048 * is our child.
4049 * If cfs_rq is not on the list, test whether a child needs its to be added to
4050 * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4051 */
4052static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4053{
4054	struct cfs_rq *prev_cfs_rq;
4055	struct list_head *prev;
4056
4057	if (cfs_rq->on_list) {
4058		prev = cfs_rq->leaf_cfs_rq_list.prev;
4059	} else {
4060		struct rq *rq = rq_of(cfs_rq);
4061
4062		prev = rq->tmp_alone_branch;
4063	}
4064
4065	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4066
4067	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4068}
4069
4070static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4071{
4072	if (cfs_rq->load.weight)
4073		return false;
4074
4075	if (!load_avg_is_decayed(&cfs_rq->avg))
4076		return false;
4077
4078	if (child_cfs_rq_on_list(cfs_rq))
4079		return false;
4080
4081	return true;
4082}
4083
4084/**
4085 * update_tg_load_avg - update the tg's load avg
4086 * @cfs_rq: the cfs_rq whose avg changed
4087 *
4088 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4089 * However, because tg->load_avg is a global value there are performance
4090 * considerations.
4091 *
4092 * In order to avoid having to look at the other cfs_rq's, we use a
4093 * differential update where we store the last value we propagated. This in
4094 * turn allows skipping updates if the differential is 'small'.
4095 *
4096 * Updating tg's load_avg is necessary before update_cfs_share().
4097 */
4098static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4099{
4100	long delta;
4101	u64 now;
4102
4103	/*
4104	 * No need to update load_avg for root_task_group as it is not used.
4105	 */
4106	if (cfs_rq->tg == &root_task_group)
4107		return;
4108
4109	/* rq has been offline and doesn't contribute to the share anymore: */
4110	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4111		return;
4112
4113	/*
4114	 * For migration heavy workloads, access to tg->load_avg can be
4115	 * unbound. Limit the update rate to at most once per ms.
4116	 */
4117	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4118	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4119		return;
4120
4121	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4122	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4123		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4124		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4125		cfs_rq->last_update_tg_load_avg = now;
4126	}
4127}
4128
4129static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4130{
4131	long delta;
4132	u64 now;
4133
4134	/*
4135	 * No need to update load_avg for root_task_group, as it is not used.
4136	 */
4137	if (cfs_rq->tg == &root_task_group)
4138		return;
4139
4140	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4141	delta = 0 - cfs_rq->tg_load_avg_contrib;
4142	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4143	cfs_rq->tg_load_avg_contrib = 0;
4144	cfs_rq->last_update_tg_load_avg = now;
4145}
4146
4147/* CPU offline callback: */
4148static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4149{
4150	struct task_group *tg;
4151
4152	lockdep_assert_rq_held(rq);
4153
4154	/*
4155	 * The rq clock has already been updated in
4156	 * set_rq_offline(), so we should skip updating
4157	 * the rq clock again in unthrottle_cfs_rq().
4158	 */
4159	rq_clock_start_loop_update(rq);
4160
4161	rcu_read_lock();
4162	list_for_each_entry_rcu(tg, &task_groups, list) {
4163		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4164
4165		clear_tg_load_avg(cfs_rq);
4166	}
4167	rcu_read_unlock();
4168
4169	rq_clock_stop_loop_update(rq);
4170}
4171
4172/*
4173 * Called within set_task_rq() right before setting a task's CPU. The
4174 * caller only guarantees p->pi_lock is held; no other assumptions,
4175 * including the state of rq->lock, should be made.
4176 */
4177void set_task_rq_fair(struct sched_entity *se,
4178		      struct cfs_rq *prev, struct cfs_rq *next)
4179{
4180	u64 p_last_update_time;
4181	u64 n_last_update_time;
4182
4183	if (!sched_feat(ATTACH_AGE_LOAD))
4184		return;
4185
4186	/*
4187	 * We are supposed to update the task to "current" time, then its up to
4188	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4189	 * getting what current time is, so simply throw away the out-of-date
4190	 * time. This will result in the wakee task is less decayed, but giving
4191	 * the wakee more load sounds not bad.
4192	 */
4193	if (!(se->avg.last_update_time && prev))
4194		return;
4195
4196	p_last_update_time = cfs_rq_last_update_time(prev);
4197	n_last_update_time = cfs_rq_last_update_time(next);
4198
4199	__update_load_avg_blocked_se(p_last_update_time, se);
4200	se->avg.last_update_time = n_last_update_time;
4201}
4202
4203/*
4204 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4205 * propagate its contribution. The key to this propagation is the invariant
4206 * that for each group:
4207 *
4208 *   ge->avg == grq->avg						(1)
4209 *
4210 * _IFF_ we look at the pure running and runnable sums. Because they
4211 * represent the very same entity, just at different points in the hierarchy.
4212 *
4213 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4214 * and simply copies the running/runnable sum over (but still wrong, because
4215 * the group entity and group rq do not have their PELT windows aligned).
4216 *
4217 * However, update_tg_cfs_load() is more complex. So we have:
4218 *
4219 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4220 *
4221 * And since, like util, the runnable part should be directly transferable,
4222 * the following would _appear_ to be the straight forward approach:
4223 *
4224 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4225 *
4226 * And per (1) we have:
4227 *
4228 *   ge->avg.runnable_avg == grq->avg.runnable_avg
4229 *
4230 * Which gives:
4231 *
4232 *                      ge->load.weight * grq->avg.load_avg
4233 *   ge->avg.load_avg = -----------------------------------		(4)
4234 *                               grq->load.weight
4235 *
4236 * Except that is wrong!
4237 *
4238 * Because while for entities historical weight is not important and we
4239 * really only care about our future and therefore can consider a pure
4240 * runnable sum, runqueues can NOT do this.
4241 *
4242 * We specifically want runqueues to have a load_avg that includes
4243 * historical weights. Those represent the blocked load, the load we expect
4244 * to (shortly) return to us. This only works by keeping the weights as
4245 * integral part of the sum. We therefore cannot decompose as per (3).
4246 *
4247 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4248 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4249 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4250 * runnable section of these tasks overlap (or not). If they were to perfectly
4251 * align the rq as a whole would be runnable 2/3 of the time. If however we
4252 * always have at least 1 runnable task, the rq as a whole is always runnable.
4253 *
4254 * So we'll have to approximate.. :/
4255 *
4256 * Given the constraint:
4257 *
4258 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4259 *
4260 * We can construct a rule that adds runnable to a rq by assuming minimal
4261 * overlap.
4262 *
4263 * On removal, we'll assume each task is equally runnable; which yields:
4264 *
4265 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4266 *
4267 * XXX: only do this for the part of runnable > running ?
4268 *
4269 */
4270static inline void
4271update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4272{
4273	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4274	u32 new_sum, divider;
4275
4276	/* Nothing to update */
4277	if (!delta_avg)
4278		return;
4279
4280	/*
4281	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4282	 * See ___update_load_avg() for details.
4283	 */
4284	divider = get_pelt_divider(&cfs_rq->avg);
4285
4286
4287	/* Set new sched_entity's utilization */
4288	se->avg.util_avg = gcfs_rq->avg.util_avg;
4289	new_sum = se->avg.util_avg * divider;
4290	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4291	se->avg.util_sum = new_sum;
4292
4293	/* Update parent cfs_rq utilization */
4294	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4295	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4296
4297	/* See update_cfs_rq_load_avg() */
4298	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4299					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4300}
4301
4302static inline void
4303update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4304{
4305	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4306	u32 new_sum, divider;
4307
4308	/* Nothing to update */
4309	if (!delta_avg)
4310		return;
4311
4312	/*
4313	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4314	 * See ___update_load_avg() for details.
4315	 */
4316	divider = get_pelt_divider(&cfs_rq->avg);
4317
4318	/* Set new sched_entity's runnable */
4319	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4320	new_sum = se->avg.runnable_avg * divider;
4321	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4322	se->avg.runnable_sum = new_sum;
4323
4324	/* Update parent cfs_rq runnable */
4325	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4326	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4327	/* See update_cfs_rq_load_avg() */
4328	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4329					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4330}
4331
4332static inline void
4333update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4334{
4335	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4336	unsigned long load_avg;
4337	u64 load_sum = 0;
4338	s64 delta_sum;
4339	u32 divider;
4340
4341	if (!runnable_sum)
4342		return;
4343
4344	gcfs_rq->prop_runnable_sum = 0;
4345
4346	/*
4347	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4348	 * See ___update_load_avg() for details.
4349	 */
4350	divider = get_pelt_divider(&cfs_rq->avg);
4351
4352	if (runnable_sum >= 0) {
4353		/*
4354		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4355		 * the CPU is saturated running == runnable.
4356		 */
4357		runnable_sum += se->avg.load_sum;
4358		runnable_sum = min_t(long, runnable_sum, divider);
4359	} else {
4360		/*
4361		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4362		 * assuming all tasks are equally runnable.
4363		 */
4364		if (scale_load_down(gcfs_rq->load.weight)) {
4365			load_sum = div_u64(gcfs_rq->avg.load_sum,
4366				scale_load_down(gcfs_rq->load.weight));
4367		}
4368
4369		/* But make sure to not inflate se's runnable */
4370		runnable_sum = min(se->avg.load_sum, load_sum);
4371	}
4372
4373	/*
4374	 * runnable_sum can't be lower than running_sum
4375	 * Rescale running sum to be in the same range as runnable sum
4376	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4377	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4378	 */
4379	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4380	runnable_sum = max(runnable_sum, running_sum);
4381
4382	load_sum = se_weight(se) * runnable_sum;
4383	load_avg = div_u64(load_sum, divider);
4384
4385	delta_avg = load_avg - se->avg.load_avg;
4386	if (!delta_avg)
4387		return;
4388
4389	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4390
4391	se->avg.load_sum = runnable_sum;
4392	se->avg.load_avg = load_avg;
4393	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4394	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4395	/* See update_cfs_rq_load_avg() */
4396	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4397					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4398}
4399
4400static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4401{
4402	cfs_rq->propagate = 1;
4403	cfs_rq->prop_runnable_sum += runnable_sum;
4404}
4405
4406/* Update task and its cfs_rq load average */
4407static inline int propagate_entity_load_avg(struct sched_entity *se)
4408{
4409	struct cfs_rq *cfs_rq, *gcfs_rq;
4410
4411	if (entity_is_task(se))
4412		return 0;
4413
4414	gcfs_rq = group_cfs_rq(se);
4415	if (!gcfs_rq->propagate)
4416		return 0;
4417
4418	gcfs_rq->propagate = 0;
4419
4420	cfs_rq = cfs_rq_of(se);
4421
4422	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4423
4424	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4425	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4426	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4427
4428	trace_pelt_cfs_tp(cfs_rq);
4429	trace_pelt_se_tp(se);
4430
4431	return 1;
4432}
4433
4434/*
4435 * Check if we need to update the load and the utilization of a blocked
4436 * group_entity:
4437 */
4438static inline bool skip_blocked_update(struct sched_entity *se)
4439{
4440	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4441
4442	/*
4443	 * If sched_entity still have not zero load or utilization, we have to
4444	 * decay it:
4445	 */
4446	if (se->avg.load_avg || se->avg.util_avg)
4447		return false;
4448
4449	/*
4450	 * If there is a pending propagation, we have to update the load and
4451	 * the utilization of the sched_entity:
4452	 */
4453	if (gcfs_rq->propagate)
4454		return false;
4455
4456	/*
4457	 * Otherwise, the load and the utilization of the sched_entity is
4458	 * already zero and there is no pending propagation, so it will be a
4459	 * waste of time to try to decay it:
4460	 */
4461	return true;
4462}
4463
4464#else /* CONFIG_FAIR_GROUP_SCHED */
4465
4466static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4467
4468static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4469
4470static inline int propagate_entity_load_avg(struct sched_entity *se)
4471{
4472	return 0;
4473}
4474
4475static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4476
4477#endif /* CONFIG_FAIR_GROUP_SCHED */
4478
4479#ifdef CONFIG_NO_HZ_COMMON
4480static inline void migrate_se_pelt_lag(struct sched_entity *se)
4481{
4482	u64 throttled = 0, now, lut;
4483	struct cfs_rq *cfs_rq;
4484	struct rq *rq;
4485	bool is_idle;
4486
4487	if (load_avg_is_decayed(&se->avg))
4488		return;
4489
4490	cfs_rq = cfs_rq_of(se);
4491	rq = rq_of(cfs_rq);
4492
4493	rcu_read_lock();
4494	is_idle = is_idle_task(rcu_dereference(rq->curr));
4495	rcu_read_unlock();
4496
4497	/*
4498	 * The lag estimation comes with a cost we don't want to pay all the
4499	 * time. Hence, limiting to the case where the source CPU is idle and
4500	 * we know we are at the greatest risk to have an outdated clock.
4501	 */
4502	if (!is_idle)
4503		return;
4504
4505	/*
4506	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4507	 *
4508	 *   last_update_time (the cfs_rq's last_update_time)
4509	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4510	 *      = rq_clock_pelt()@cfs_rq_idle
4511	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4512	 *
4513	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4514	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4515	 *
4516	 *   rq_idle_lag (delta between now and rq's update)
4517	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4518	 *
4519	 * We can then write:
4520	 *
4521	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4522	 *          sched_clock_cpu() - rq_clock()@rq_idle
4523	 * Where:
4524	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4525	 *      rq_clock()@rq_idle      is rq->clock_idle
4526	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4527	 *                              is cfs_rq->throttled_pelt_idle
4528	 */
4529
4530#ifdef CONFIG_CFS_BANDWIDTH
4531	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4532	/* The clock has been stopped for throttling */
4533	if (throttled == U64_MAX)
4534		return;
4535#endif
4536	now = u64_u32_load(rq->clock_pelt_idle);
4537	/*
4538	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4539	 * is observed the old clock_pelt_idle value and the new clock_idle,
4540	 * which lead to an underestimation. The opposite would lead to an
4541	 * overestimation.
4542	 */
4543	smp_rmb();
4544	lut = cfs_rq_last_update_time(cfs_rq);
4545
4546	now -= throttled;
4547	if (now < lut)
4548		/*
4549		 * cfs_rq->avg.last_update_time is more recent than our
4550		 * estimation, let's use it.
4551		 */
4552		now = lut;
4553	else
4554		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4555
4556	__update_load_avg_blocked_se(now, se);
4557}
4558#else
4559static void migrate_se_pelt_lag(struct sched_entity *se) {}
4560#endif
4561
4562/**
4563 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4564 * @now: current time, as per cfs_rq_clock_pelt()
4565 * @cfs_rq: cfs_rq to update
4566 *
4567 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4568 * avg. The immediate corollary is that all (fair) tasks must be attached.
4569 *
4570 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4571 *
4572 * Return: true if the load decayed or we removed load.
4573 *
4574 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4575 * call update_tg_load_avg() when this function returns true.
4576 */
4577static inline int
4578update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4579{
4580	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4581	struct sched_avg *sa = &cfs_rq->avg;
4582	int decayed = 0;
4583
4584	if (cfs_rq->removed.nr) {
4585		unsigned long r;
4586		u32 divider = get_pelt_divider(&cfs_rq->avg);
4587
4588		raw_spin_lock(&cfs_rq->removed.lock);
4589		swap(cfs_rq->removed.util_avg, removed_util);
4590		swap(cfs_rq->removed.load_avg, removed_load);
4591		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4592		cfs_rq->removed.nr = 0;
4593		raw_spin_unlock(&cfs_rq->removed.lock);
4594
4595		r = removed_load;
4596		sub_positive(&sa->load_avg, r);
4597		sub_positive(&sa->load_sum, r * divider);
4598		/* See sa->util_sum below */
4599		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4600
4601		r = removed_util;
4602		sub_positive(&sa->util_avg, r);
4603		sub_positive(&sa->util_sum, r * divider);
4604		/*
4605		 * Because of rounding, se->util_sum might ends up being +1 more than
4606		 * cfs->util_sum. Although this is not a problem by itself, detaching
4607		 * a lot of tasks with the rounding problem between 2 updates of
4608		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4609		 * cfs_util_avg is not.
4610		 * Check that util_sum is still above its lower bound for the new
4611		 * util_avg. Given that period_contrib might have moved since the last
4612		 * sync, we are only sure that util_sum must be above or equal to
4613		 *    util_avg * minimum possible divider
4614		 */
4615		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4616
4617		r = removed_runnable;
4618		sub_positive(&sa->runnable_avg, r);
4619		sub_positive(&sa->runnable_sum, r * divider);
4620		/* See sa->util_sum above */
4621		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4622					      sa->runnable_avg * PELT_MIN_DIVIDER);
4623
4624		/*
4625		 * removed_runnable is the unweighted version of removed_load so we
4626		 * can use it to estimate removed_load_sum.
4627		 */
4628		add_tg_cfs_propagate(cfs_rq,
4629			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4630
4631		decayed = 1;
4632	}
4633
4634	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4635	u64_u32_store_copy(sa->last_update_time,
4636			   cfs_rq->last_update_time_copy,
4637			   sa->last_update_time);
4638	return decayed;
4639}
4640
4641/**
4642 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4643 * @cfs_rq: cfs_rq to attach to
4644 * @se: sched_entity to attach
4645 *
4646 * Must call update_cfs_rq_load_avg() before this, since we rely on
4647 * cfs_rq->avg.last_update_time being current.
4648 */
4649static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4650{
4651	/*
4652	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4653	 * See ___update_load_avg() for details.
4654	 */
4655	u32 divider = get_pelt_divider(&cfs_rq->avg);
4656
4657	/*
4658	 * When we attach the @se to the @cfs_rq, we must align the decay
4659	 * window because without that, really weird and wonderful things can
4660	 * happen.
4661	 *
4662	 * XXX illustrate
4663	 */
4664	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4665	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4666
4667	/*
4668	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4669	 * period_contrib. This isn't strictly correct, but since we're
4670	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4671	 * _sum a little.
4672	 */
4673	se->avg.util_sum = se->avg.util_avg * divider;
4674
4675	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4676
4677	se->avg.load_sum = se->avg.load_avg * divider;
4678	if (se_weight(se) < se->avg.load_sum)
4679		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4680	else
4681		se->avg.load_sum = 1;
4682
4683	enqueue_load_avg(cfs_rq, se);
4684	cfs_rq->avg.util_avg += se->avg.util_avg;
4685	cfs_rq->avg.util_sum += se->avg.util_sum;
4686	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4687	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4688
4689	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4690
4691	cfs_rq_util_change(cfs_rq, 0);
4692
4693	trace_pelt_cfs_tp(cfs_rq);
4694}
4695
4696/**
4697 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4698 * @cfs_rq: cfs_rq to detach from
4699 * @se: sched_entity to detach
4700 *
4701 * Must call update_cfs_rq_load_avg() before this, since we rely on
4702 * cfs_rq->avg.last_update_time being current.
4703 */
4704static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4705{
4706	dequeue_load_avg(cfs_rq, se);
4707	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4708	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4709	/* See update_cfs_rq_load_avg() */
4710	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4711					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4712
4713	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4714	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4715	/* See update_cfs_rq_load_avg() */
4716	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4717					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4718
4719	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4720
4721	cfs_rq_util_change(cfs_rq, 0);
4722
4723	trace_pelt_cfs_tp(cfs_rq);
4724}
4725
4726/*
4727 * Optional action to be done while updating the load average
4728 */
4729#define UPDATE_TG	0x1
4730#define SKIP_AGE_LOAD	0x2
4731#define DO_ATTACH	0x4
4732#define DO_DETACH	0x8
4733
4734/* Update task and its cfs_rq load average */
4735static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4736{
4737	u64 now = cfs_rq_clock_pelt(cfs_rq);
4738	int decayed;
4739
4740	/*
4741	 * Track task load average for carrying it to new CPU after migrated, and
4742	 * track group sched_entity load average for task_h_load calc in migration
4743	 */
4744	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4745		__update_load_avg_se(now, cfs_rq, se);
4746
4747	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4748	decayed |= propagate_entity_load_avg(se);
4749
4750	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4751
4752		/*
4753		 * DO_ATTACH means we're here from enqueue_entity().
4754		 * !last_update_time means we've passed through
4755		 * migrate_task_rq_fair() indicating we migrated.
4756		 *
4757		 * IOW we're enqueueing a task on a new CPU.
4758		 */
4759		attach_entity_load_avg(cfs_rq, se);
4760		update_tg_load_avg(cfs_rq);
4761
4762	} else if (flags & DO_DETACH) {
4763		/*
4764		 * DO_DETACH means we're here from dequeue_entity()
4765		 * and we are migrating task out of the CPU.
4766		 */
4767		detach_entity_load_avg(cfs_rq, se);
4768		update_tg_load_avg(cfs_rq);
4769	} else if (decayed) {
4770		cfs_rq_util_change(cfs_rq, 0);
4771
4772		if (flags & UPDATE_TG)
4773			update_tg_load_avg(cfs_rq);
4774	}
4775}
4776
4777/*
4778 * Synchronize entity load avg of dequeued entity without locking
4779 * the previous rq.
4780 */
4781static void sync_entity_load_avg(struct sched_entity *se)
4782{
4783	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4784	u64 last_update_time;
4785
4786	last_update_time = cfs_rq_last_update_time(cfs_rq);
4787	__update_load_avg_blocked_se(last_update_time, se);
4788}
4789
4790/*
4791 * Task first catches up with cfs_rq, and then subtract
4792 * itself from the cfs_rq (task must be off the queue now).
4793 */
4794static void remove_entity_load_avg(struct sched_entity *se)
4795{
4796	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4797	unsigned long flags;
4798
4799	/*
4800	 * tasks cannot exit without having gone through wake_up_new_task() ->
4801	 * enqueue_task_fair() which will have added things to the cfs_rq,
4802	 * so we can remove unconditionally.
4803	 */
4804
4805	sync_entity_load_avg(se);
4806
4807	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4808	++cfs_rq->removed.nr;
4809	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4810	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4811	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4812	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4813}
4814
4815static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4816{
4817	return cfs_rq->avg.runnable_avg;
4818}
4819
4820static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4821{
4822	return cfs_rq->avg.load_avg;
4823}
4824
4825static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4826
4827static inline unsigned long task_util(struct task_struct *p)
4828{
4829	return READ_ONCE(p->se.avg.util_avg);
4830}
4831
4832static inline unsigned long task_runnable(struct task_struct *p)
4833{
4834	return READ_ONCE(p->se.avg.runnable_avg);
4835}
4836
4837static inline unsigned long _task_util_est(struct task_struct *p)
4838{
4839	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4840}
4841
4842static inline unsigned long task_util_est(struct task_struct *p)
4843{
4844	return max(task_util(p), _task_util_est(p));
4845}
4846
4847static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4848				    struct task_struct *p)
4849{
4850	unsigned int enqueued;
4851
4852	if (!sched_feat(UTIL_EST))
4853		return;
4854
4855	/* Update root cfs_rq's estimated utilization */
4856	enqueued  = cfs_rq->avg.util_est;
4857	enqueued += _task_util_est(p);
4858	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4859
4860	trace_sched_util_est_cfs_tp(cfs_rq);
4861}
4862
4863static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4864				    struct task_struct *p)
4865{
4866	unsigned int enqueued;
4867
4868	if (!sched_feat(UTIL_EST))
4869		return;
4870
4871	/* Update root cfs_rq's estimated utilization */
4872	enqueued  = cfs_rq->avg.util_est;
4873	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4874	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4875
4876	trace_sched_util_est_cfs_tp(cfs_rq);
4877}
4878
4879#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4880
4881static inline void util_est_update(struct cfs_rq *cfs_rq,
4882				   struct task_struct *p,
4883				   bool task_sleep)
4884{
4885	unsigned int ewma, dequeued, last_ewma_diff;
4886
4887	if (!sched_feat(UTIL_EST))
4888		return;
4889
4890	/*
4891	 * Skip update of task's estimated utilization when the task has not
4892	 * yet completed an activation, e.g. being migrated.
4893	 */
4894	if (!task_sleep)
4895		return;
4896
4897	/* Get current estimate of utilization */
4898	ewma = READ_ONCE(p->se.avg.util_est);
4899
4900	/*
4901	 * If the PELT values haven't changed since enqueue time,
4902	 * skip the util_est update.
4903	 */
4904	if (ewma & UTIL_AVG_UNCHANGED)
4905		return;
4906
4907	/* Get utilization at dequeue */
4908	dequeued = task_util(p);
4909
4910	/*
4911	 * Reset EWMA on utilization increases, the moving average is used only
4912	 * to smooth utilization decreases.
4913	 */
4914	if (ewma <= dequeued) {
4915		ewma = dequeued;
4916		goto done;
4917	}
4918
4919	/*
4920	 * Skip update of task's estimated utilization when its members are
4921	 * already ~1% close to its last activation value.
4922	 */
4923	last_ewma_diff = ewma - dequeued;
4924	if (last_ewma_diff < UTIL_EST_MARGIN)
4925		goto done;
4926
4927	/*
4928	 * To avoid overestimation of actual task utilization, skip updates if
4929	 * we cannot grant there is idle time in this CPU.
4930	 */
4931	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4932		return;
4933
4934	/*
4935	 * To avoid underestimate of task utilization, skip updates of EWMA if
4936	 * we cannot grant that thread got all CPU time it wanted.
4937	 */
4938	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4939		goto done;
4940
4941
4942	/*
4943	 * Update Task's estimated utilization
4944	 *
4945	 * When *p completes an activation we can consolidate another sample
4946	 * of the task size. This is done by using this value to update the
4947	 * Exponential Weighted Moving Average (EWMA):
4948	 *
4949	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4950	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4951	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4952	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4953	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4954	 *
4955	 * Where 'w' is the weight of new samples, which is configured to be
4956	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4957	 */
4958	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4959	ewma  -= last_ewma_diff;
4960	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4961done:
4962	ewma |= UTIL_AVG_UNCHANGED;
4963	WRITE_ONCE(p->se.avg.util_est, ewma);
4964
4965	trace_sched_util_est_se_tp(&p->se);
4966}
4967
4968static inline int util_fits_cpu(unsigned long util,
4969				unsigned long uclamp_min,
4970				unsigned long uclamp_max,
4971				int cpu)
4972{
4973	unsigned long capacity_orig, capacity_orig_thermal;
4974	unsigned long capacity = capacity_of(cpu);
4975	bool fits, uclamp_max_fits;
4976
4977	/*
4978	 * Check if the real util fits without any uclamp boost/cap applied.
4979	 */
4980	fits = fits_capacity(util, capacity);
4981
4982	if (!uclamp_is_used())
4983		return fits;
4984
4985	/*
4986	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4987	 * uclamp_max. We only care about capacity pressure (by using
4988	 * capacity_of()) for comparing against the real util.
4989	 *
4990	 * If a task is boosted to 1024 for example, we don't want a tiny
4991	 * pressure to skew the check whether it fits a CPU or not.
4992	 *
4993	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4994	 * should fit a little cpu even if there's some pressure.
4995	 *
4996	 * Only exception is for thermal pressure since it has a direct impact
4997	 * on available OPP of the system.
4998	 *
4999	 * We honour it for uclamp_min only as a drop in performance level
5000	 * could result in not getting the requested minimum performance level.
5001	 *
5002	 * For uclamp_max, we can tolerate a drop in performance level as the
5003	 * goal is to cap the task. So it's okay if it's getting less.
5004	 */
5005	capacity_orig = arch_scale_cpu_capacity(cpu);
5006	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5007
5008	/*
5009	 * We want to force a task to fit a cpu as implied by uclamp_max.
5010	 * But we do have some corner cases to cater for..
5011	 *
5012	 *
5013	 *                                 C=z
5014	 *   |                             ___
5015	 *   |                  C=y       |   |
5016	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5017	 *   |      C=x        |   |      |   |
5018	 *   |      ___        |   |      |   |
5019	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5020	 *   |     |   |       |   |      |   |
5021	 *   |     |   |       |   |      |   |
5022	 *   +----------------------------------------
5023	 *         cpu0        cpu1       cpu2
5024	 *
5025	 *   In the above example if a task is capped to a specific performance
5026	 *   point, y, then when:
5027	 *
5028	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
5029	 *     to cpu1
5030	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
5031	 *     uclamp_max request.
5032	 *
5033	 *   which is what we're enforcing here. A task always fits if
5034	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5035	 *   the normal upmigration rules should withhold still.
5036	 *
5037	 *   Only exception is when we are on max capacity, then we need to be
5038	 *   careful not to block overutilized state. This is so because:
5039	 *
5040	 *     1. There's no concept of capping at max_capacity! We can't go
5041	 *        beyond this performance level anyway.
5042	 *     2. The system is being saturated when we're operating near
5043	 *        max capacity, it doesn't make sense to block overutilized.
5044	 */
5045	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5046	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5047	fits = fits || uclamp_max_fits;
5048
5049	/*
5050	 *
5051	 *                                 C=z
5052	 *   |                             ___       (region a, capped, util >= uclamp_max)
5053	 *   |                  C=y       |   |
5054	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5055	 *   |      C=x        |   |      |   |
5056	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5057	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5058	 *   |     |   |       |   |      |   |
5059	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5060	 *   +----------------------------------------
5061	 *         cpu0        cpu1       cpu2
5062	 *
5063	 * a) If util > uclamp_max, then we're capped, we don't care about
5064	 *    actual fitness value here. We only care if uclamp_max fits
5065	 *    capacity without taking margin/pressure into account.
5066	 *    See comment above.
5067	 *
5068	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5069	 *    fits_capacity() rules apply. Except we need to ensure that we
5070	 *    enforce we remain within uclamp_max, see comment above.
5071	 *
5072	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5073	 *    need to take into account the boosted value fits the CPU without
5074	 *    taking margin/pressure into account.
5075	 *
5076	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5077	 * just need to consider an extra check for case (c) after ensuring we
5078	 * handle the case uclamp_min > uclamp_max.
5079	 */
5080	uclamp_min = min(uclamp_min, uclamp_max);
5081	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5082		return -1;
5083
5084	return fits;
5085}
5086
5087static inline int task_fits_cpu(struct task_struct *p, int cpu)
5088{
5089	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5090	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5091	unsigned long util = task_util_est(p);
5092	/*
5093	 * Return true only if the cpu fully fits the task requirements, which
5094	 * include the utilization but also the performance hints.
5095	 */
5096	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5097}
5098
5099static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5100{
5101	if (!sched_asym_cpucap_active())
5102		return;
5103
5104	if (!p || p->nr_cpus_allowed == 1) {
5105		rq->misfit_task_load = 0;
5106		return;
5107	}
5108
5109	if (task_fits_cpu(p, cpu_of(rq))) {
5110		rq->misfit_task_load = 0;
5111		return;
5112	}
5113
5114	/*
5115	 * Make sure that misfit_task_load will not be null even if
5116	 * task_h_load() returns 0.
5117	 */
5118	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5119}
5120
5121#else /* CONFIG_SMP */
5122
5123static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5124{
5125	return !cfs_rq->nr_running;
5126}
5127
5128#define UPDATE_TG	0x0
5129#define SKIP_AGE_LOAD	0x0
5130#define DO_ATTACH	0x0
5131#define DO_DETACH	0x0
5132
5133static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5134{
5135	cfs_rq_util_change(cfs_rq, 0);
5136}
5137
5138static inline void remove_entity_load_avg(struct sched_entity *se) {}
5139
5140static inline void
5141attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5142static inline void
5143detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5144
5145static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5146{
5147	return 0;
5148}
5149
5150static inline void
5151util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5152
5153static inline void
5154util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5155
5156static inline void
5157util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5158		bool task_sleep) {}
5159static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5160
5161#endif /* CONFIG_SMP */
5162
5163static void
5164place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5165{
5166	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5167	s64 lag = 0;
5168
5169	se->slice = sysctl_sched_base_slice;
5170	vslice = calc_delta_fair(se->slice, se);
5171
5172	/*
5173	 * Due to how V is constructed as the weighted average of entities,
5174	 * adding tasks with positive lag, or removing tasks with negative lag
5175	 * will move 'time' backwards, this can screw around with the lag of
5176	 * other tasks.
5177	 *
5178	 * EEVDF: placement strategy #1 / #2
5179	 */
5180	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5181		struct sched_entity *curr = cfs_rq->curr;
5182		unsigned long load;
5183
5184		lag = se->vlag;
5185
5186		/*
5187		 * If we want to place a task and preserve lag, we have to
5188		 * consider the effect of the new entity on the weighted
5189		 * average and compensate for this, otherwise lag can quickly
5190		 * evaporate.
5191		 *
5192		 * Lag is defined as:
5193		 *
5194		 *   lag_i = S - s_i = w_i * (V - v_i)
5195		 *
5196		 * To avoid the 'w_i' term all over the place, we only track
5197		 * the virtual lag:
5198		 *
5199		 *   vl_i = V - v_i <=> v_i = V - vl_i
5200		 *
5201		 * And we take V to be the weighted average of all v:
5202		 *
5203		 *   V = (\Sum w_j*v_j) / W
5204		 *
5205		 * Where W is: \Sum w_j
5206		 *
5207		 * Then, the weighted average after adding an entity with lag
5208		 * vl_i is given by:
5209		 *
5210		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5211		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5212		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5213		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5214		 *      = V - w_i*vl_i / (W + w_i)
5215		 *
5216		 * And the actual lag after adding an entity with vl_i is:
5217		 *
5218		 *   vl'_i = V' - v_i
5219		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5220		 *         = vl_i - w_i*vl_i / (W + w_i)
5221		 *
5222		 * Which is strictly less than vl_i. So in order to preserve lag
5223		 * we should inflate the lag before placement such that the
5224		 * effective lag after placement comes out right.
5225		 *
5226		 * As such, invert the above relation for vl'_i to get the vl_i
5227		 * we need to use such that the lag after placement is the lag
5228		 * we computed before dequeue.
5229		 *
5230		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5231		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5232		 *
5233		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5234		 *                   = W*vl_i
5235		 *
5236		 *   vl_i = (W + w_i)*vl'_i / W
5237		 */
5238		load = cfs_rq->avg_load;
5239		if (curr && curr->on_rq)
5240			load += scale_load_down(curr->load.weight);
5241
5242		lag *= load + scale_load_down(se->load.weight);
5243		if (WARN_ON_ONCE(!load))
5244			load = 1;
5245		lag = div_s64(lag, load);
5246	}
5247
5248	se->vruntime = vruntime - lag;
5249
5250	/*
5251	 * When joining the competition; the exisiting tasks will be,
5252	 * on average, halfway through their slice, as such start tasks
5253	 * off with half a slice to ease into the competition.
5254	 */
5255	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5256		vslice /= 2;
5257
5258	/*
5259	 * EEVDF: vd_i = ve_i + r_i/w_i
5260	 */
5261	se->deadline = se->vruntime + vslice;
5262}
5263
5264static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5265static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5266
5267static inline bool cfs_bandwidth_used(void);
5268
5269static void
5270enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5271{
5272	bool curr = cfs_rq->curr == se;
5273
5274	/*
5275	 * If we're the current task, we must renormalise before calling
5276	 * update_curr().
5277	 */
5278	if (curr)
5279		place_entity(cfs_rq, se, flags);
5280
5281	update_curr(cfs_rq);
5282
5283	/*
5284	 * When enqueuing a sched_entity, we must:
5285	 *   - Update loads to have both entity and cfs_rq synced with now.
5286	 *   - For group_entity, update its runnable_weight to reflect the new
5287	 *     h_nr_running of its group cfs_rq.
5288	 *   - For group_entity, update its weight to reflect the new share of
5289	 *     its group cfs_rq
5290	 *   - Add its new weight to cfs_rq->load.weight
5291	 */
5292	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5293	se_update_runnable(se);
5294	/*
5295	 * XXX update_load_avg() above will have attached us to the pelt sum;
5296	 * but update_cfs_group() here will re-adjust the weight and have to
5297	 * undo/redo all that. Seems wasteful.
5298	 */
5299	update_cfs_group(se);
5300
5301	/*
5302	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5303	 * we can place the entity.
5304	 */
5305	if (!curr)
5306		place_entity(cfs_rq, se, flags);
5307
5308	account_entity_enqueue(cfs_rq, se);
5309
5310	/* Entity has migrated, no longer consider this task hot */
5311	if (flags & ENQUEUE_MIGRATED)
5312		se->exec_start = 0;
5313
5314	check_schedstat_required();
5315	update_stats_enqueue_fair(cfs_rq, se, flags);
5316	if (!curr)
5317		__enqueue_entity(cfs_rq, se);
5318	se->on_rq = 1;
5319
5320	if (cfs_rq->nr_running == 1) {
5321		check_enqueue_throttle(cfs_rq);
5322		if (!throttled_hierarchy(cfs_rq)) {
5323			list_add_leaf_cfs_rq(cfs_rq);
5324		} else {
5325#ifdef CONFIG_CFS_BANDWIDTH
5326			struct rq *rq = rq_of(cfs_rq);
5327
5328			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5329				cfs_rq->throttled_clock = rq_clock(rq);
5330			if (!cfs_rq->throttled_clock_self)
5331				cfs_rq->throttled_clock_self = rq_clock(rq);
5332#endif
5333		}
5334	}
5335}
5336
5337static void __clear_buddies_next(struct sched_entity *se)
5338{
5339	for_each_sched_entity(se) {
5340		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5341		if (cfs_rq->next != se)
5342			break;
5343
5344		cfs_rq->next = NULL;
5345	}
5346}
5347
5348static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5349{
5350	if (cfs_rq->next == se)
5351		__clear_buddies_next(se);
5352}
5353
5354static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5355
5356static void
5357dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5358{
5359	int action = UPDATE_TG;
5360
5361	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5362		action |= DO_DETACH;
5363
5364	/*
5365	 * Update run-time statistics of the 'current'.
5366	 */
5367	update_curr(cfs_rq);
5368
5369	/*
5370	 * When dequeuing a sched_entity, we must:
5371	 *   - Update loads to have both entity and cfs_rq synced with now.
5372	 *   - For group_entity, update its runnable_weight to reflect the new
5373	 *     h_nr_running of its group cfs_rq.
5374	 *   - Subtract its previous weight from cfs_rq->load.weight.
5375	 *   - For group entity, update its weight to reflect the new share
5376	 *     of its group cfs_rq.
5377	 */
5378	update_load_avg(cfs_rq, se, action);
5379	se_update_runnable(se);
5380
5381	update_stats_dequeue_fair(cfs_rq, se, flags);
5382
5383	clear_buddies(cfs_rq, se);
5384
5385	update_entity_lag(cfs_rq, se);
5386	if (se != cfs_rq->curr)
5387		__dequeue_entity(cfs_rq, se);
5388	se->on_rq = 0;
5389	account_entity_dequeue(cfs_rq, se);
5390
5391	/* return excess runtime on last dequeue */
5392	return_cfs_rq_runtime(cfs_rq);
5393
5394	update_cfs_group(se);
5395
5396	/*
5397	 * Now advance min_vruntime if @se was the entity holding it back,
5398	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5399	 * put back on, and if we advance min_vruntime, we'll be placed back
5400	 * further than we started -- ie. we'll be penalized.
5401	 */
5402	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5403		update_min_vruntime(cfs_rq);
5404
5405	if (cfs_rq->nr_running == 0)
5406		update_idle_cfs_rq_clock_pelt(cfs_rq);
5407}
5408
5409static void
5410set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5411{
5412	clear_buddies(cfs_rq, se);
5413
5414	/* 'current' is not kept within the tree. */
5415	if (se->on_rq) {
5416		/*
5417		 * Any task has to be enqueued before it get to execute on
5418		 * a CPU. So account for the time it spent waiting on the
5419		 * runqueue.
5420		 */
5421		update_stats_wait_end_fair(cfs_rq, se);
5422		__dequeue_entity(cfs_rq, se);
5423		update_load_avg(cfs_rq, se, UPDATE_TG);
5424		/*
5425		 * HACK, stash a copy of deadline at the point of pick in vlag,
5426		 * which isn't used until dequeue.
5427		 */
5428		se->vlag = se->deadline;
5429	}
5430
5431	update_stats_curr_start(cfs_rq, se);
5432	cfs_rq->curr = se;
5433
5434	/*
5435	 * Track our maximum slice length, if the CPU's load is at
5436	 * least twice that of our own weight (i.e. dont track it
5437	 * when there are only lesser-weight tasks around):
5438	 */
5439	if (schedstat_enabled() &&
5440	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5441		struct sched_statistics *stats;
5442
5443		stats = __schedstats_from_se(se);
5444		__schedstat_set(stats->slice_max,
5445				max((u64)stats->slice_max,
5446				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5447	}
5448
5449	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5450}
5451
5452/*
5453 * Pick the next process, keeping these things in mind, in this order:
5454 * 1) keep things fair between processes/task groups
5455 * 2) pick the "next" process, since someone really wants that to run
5456 * 3) pick the "last" process, for cache locality
5457 * 4) do not run the "skip" process, if something else is available
5458 */
5459static struct sched_entity *
5460pick_next_entity(struct cfs_rq *cfs_rq)
5461{
5462	/*
5463	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5464	 */
5465	if (sched_feat(NEXT_BUDDY) &&
5466	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5467		return cfs_rq->next;
5468
5469	return pick_eevdf(cfs_rq);
5470}
5471
5472static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5473
5474static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5475{
5476	/*
5477	 * If still on the runqueue then deactivate_task()
5478	 * was not called and update_curr() has to be done:
5479	 */
5480	if (prev->on_rq)
5481		update_curr(cfs_rq);
5482
5483	/* throttle cfs_rqs exceeding runtime */
5484	check_cfs_rq_runtime(cfs_rq);
5485
5486	if (prev->on_rq) {
5487		update_stats_wait_start_fair(cfs_rq, prev);
5488		/* Put 'current' back into the tree. */
5489		__enqueue_entity(cfs_rq, prev);
5490		/* in !on_rq case, update occurred at dequeue */
5491		update_load_avg(cfs_rq, prev, 0);
5492	}
5493	cfs_rq->curr = NULL;
5494}
5495
5496static void
5497entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5498{
5499	/*
5500	 * Update run-time statistics of the 'current'.
5501	 */
5502	update_curr(cfs_rq);
5503
5504	/*
5505	 * Ensure that runnable average is periodically updated.
5506	 */
5507	update_load_avg(cfs_rq, curr, UPDATE_TG);
5508	update_cfs_group(curr);
5509
5510#ifdef CONFIG_SCHED_HRTICK
5511	/*
5512	 * queued ticks are scheduled to match the slice, so don't bother
5513	 * validating it and just reschedule.
5514	 */
5515	if (queued) {
5516		resched_curr(rq_of(cfs_rq));
5517		return;
5518	}
5519	/*
5520	 * don't let the period tick interfere with the hrtick preemption
5521	 */
5522	if (!sched_feat(DOUBLE_TICK) &&
5523			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5524		return;
5525#endif
5526}
5527
5528
5529/**************************************************
5530 * CFS bandwidth control machinery
5531 */
5532
5533#ifdef CONFIG_CFS_BANDWIDTH
5534
5535#ifdef CONFIG_JUMP_LABEL
5536static struct static_key __cfs_bandwidth_used;
5537
5538static inline bool cfs_bandwidth_used(void)
5539{
5540	return static_key_false(&__cfs_bandwidth_used);
5541}
5542
5543void cfs_bandwidth_usage_inc(void)
5544{
5545	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5546}
5547
5548void cfs_bandwidth_usage_dec(void)
5549{
5550	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5551}
5552#else /* CONFIG_JUMP_LABEL */
5553static bool cfs_bandwidth_used(void)
5554{
5555	return true;
5556}
5557
5558void cfs_bandwidth_usage_inc(void) {}
5559void cfs_bandwidth_usage_dec(void) {}
5560#endif /* CONFIG_JUMP_LABEL */
5561
5562/*
5563 * default period for cfs group bandwidth.
5564 * default: 0.1s, units: nanoseconds
5565 */
5566static inline u64 default_cfs_period(void)
5567{
5568	return 100000000ULL;
5569}
5570
5571static inline u64 sched_cfs_bandwidth_slice(void)
5572{
5573	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5574}
5575
5576/*
5577 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5578 * directly instead of rq->clock to avoid adding additional synchronization
5579 * around rq->lock.
5580 *
5581 * requires cfs_b->lock
5582 */
5583void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5584{
5585	s64 runtime;
5586
5587	if (unlikely(cfs_b->quota == RUNTIME_INF))
5588		return;
5589
5590	cfs_b->runtime += cfs_b->quota;
5591	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5592	if (runtime > 0) {
5593		cfs_b->burst_time += runtime;
5594		cfs_b->nr_burst++;
5595	}
5596
5597	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5598	cfs_b->runtime_snap = cfs_b->runtime;
5599}
5600
5601static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5602{
5603	return &tg->cfs_bandwidth;
5604}
5605
5606/* returns 0 on failure to allocate runtime */
5607static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5608				   struct cfs_rq *cfs_rq, u64 target_runtime)
5609{
5610	u64 min_amount, amount = 0;
5611
5612	lockdep_assert_held(&cfs_b->lock);
5613
5614	/* note: this is a positive sum as runtime_remaining <= 0 */
5615	min_amount = target_runtime - cfs_rq->runtime_remaining;
5616
5617	if (cfs_b->quota == RUNTIME_INF)
5618		amount = min_amount;
5619	else {
5620		start_cfs_bandwidth(cfs_b);
5621
5622		if (cfs_b->runtime > 0) {
5623			amount = min(cfs_b->runtime, min_amount);
5624			cfs_b->runtime -= amount;
5625			cfs_b->idle = 0;
5626		}
5627	}
5628
5629	cfs_rq->runtime_remaining += amount;
5630
5631	return cfs_rq->runtime_remaining > 0;
5632}
5633
5634/* returns 0 on failure to allocate runtime */
5635static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5636{
5637	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5638	int ret;
5639
5640	raw_spin_lock(&cfs_b->lock);
5641	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5642	raw_spin_unlock(&cfs_b->lock);
5643
5644	return ret;
5645}
5646
5647static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5648{
5649	/* dock delta_exec before expiring quota (as it could span periods) */
5650	cfs_rq->runtime_remaining -= delta_exec;
5651
5652	if (likely(cfs_rq->runtime_remaining > 0))
5653		return;
5654
5655	if (cfs_rq->throttled)
5656		return;
5657	/*
5658	 * if we're unable to extend our runtime we resched so that the active
5659	 * hierarchy can be throttled
5660	 */
5661	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5662		resched_curr(rq_of(cfs_rq));
5663}
5664
5665static __always_inline
5666void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5667{
5668	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5669		return;
5670
5671	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5672}
5673
5674static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5675{
5676	return cfs_bandwidth_used() && cfs_rq->throttled;
5677}
5678
5679/* check whether cfs_rq, or any parent, is throttled */
5680static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5681{
5682	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5683}
5684
5685/*
5686 * Ensure that neither of the group entities corresponding to src_cpu or
5687 * dest_cpu are members of a throttled hierarchy when performing group
5688 * load-balance operations.
5689 */
5690static inline int throttled_lb_pair(struct task_group *tg,
5691				    int src_cpu, int dest_cpu)
5692{
5693	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5694
5695	src_cfs_rq = tg->cfs_rq[src_cpu];
5696	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5697
5698	return throttled_hierarchy(src_cfs_rq) ||
5699	       throttled_hierarchy(dest_cfs_rq);
5700}
5701
5702static int tg_unthrottle_up(struct task_group *tg, void *data)
5703{
5704	struct rq *rq = data;
5705	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5706
5707	cfs_rq->throttle_count--;
5708	if (!cfs_rq->throttle_count) {
5709		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5710					     cfs_rq->throttled_clock_pelt;
5711
5712		/* Add cfs_rq with load or one or more already running entities to the list */
5713		if (!cfs_rq_is_decayed(cfs_rq))
5714			list_add_leaf_cfs_rq(cfs_rq);
5715
5716		if (cfs_rq->throttled_clock_self) {
5717			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5718
5719			cfs_rq->throttled_clock_self = 0;
5720
5721			if (SCHED_WARN_ON((s64)delta < 0))
5722				delta = 0;
5723
5724			cfs_rq->throttled_clock_self_time += delta;
5725		}
5726	}
5727
5728	return 0;
5729}
5730
5731static int tg_throttle_down(struct task_group *tg, void *data)
5732{
5733	struct rq *rq = data;
5734	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5735
5736	/* group is entering throttled state, stop time */
5737	if (!cfs_rq->throttle_count) {
5738		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5739		list_del_leaf_cfs_rq(cfs_rq);
5740
5741		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5742		if (cfs_rq->nr_running)
5743			cfs_rq->throttled_clock_self = rq_clock(rq);
5744	}
5745	cfs_rq->throttle_count++;
5746
5747	return 0;
5748}
5749
5750static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5751{
5752	struct rq *rq = rq_of(cfs_rq);
5753	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5754	struct sched_entity *se;
5755	long task_delta, idle_task_delta, dequeue = 1;
5756
5757	raw_spin_lock(&cfs_b->lock);
5758	/* This will start the period timer if necessary */
5759	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5760		/*
5761		 * We have raced with bandwidth becoming available, and if we
5762		 * actually throttled the timer might not unthrottle us for an
5763		 * entire period. We additionally needed to make sure that any
5764		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5765		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5766		 * for 1ns of runtime rather than just check cfs_b.
5767		 */
5768		dequeue = 0;
5769	} else {
5770		list_add_tail_rcu(&cfs_rq->throttled_list,
5771				  &cfs_b->throttled_cfs_rq);
5772	}
5773	raw_spin_unlock(&cfs_b->lock);
5774
5775	if (!dequeue)
5776		return false;  /* Throttle no longer required. */
5777
5778	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5779
5780	/* freeze hierarchy runnable averages while throttled */
5781	rcu_read_lock();
5782	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5783	rcu_read_unlock();
5784
5785	task_delta = cfs_rq->h_nr_running;
5786	idle_task_delta = cfs_rq->idle_h_nr_running;
5787	for_each_sched_entity(se) {
5788		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5789		/* throttled entity or throttle-on-deactivate */
5790		if (!se->on_rq)
5791			goto done;
5792
5793		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5794
5795		if (cfs_rq_is_idle(group_cfs_rq(se)))
5796			idle_task_delta = cfs_rq->h_nr_running;
5797
5798		qcfs_rq->h_nr_running -= task_delta;
5799		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5800
5801		if (qcfs_rq->load.weight) {
5802			/* Avoid re-evaluating load for this entity: */
5803			se = parent_entity(se);
5804			break;
5805		}
5806	}
5807
5808	for_each_sched_entity(se) {
5809		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5810		/* throttled entity or throttle-on-deactivate */
5811		if (!se->on_rq)
5812			goto done;
5813
5814		update_load_avg(qcfs_rq, se, 0);
5815		se_update_runnable(se);
5816
5817		if (cfs_rq_is_idle(group_cfs_rq(se)))
5818			idle_task_delta = cfs_rq->h_nr_running;
5819
5820		qcfs_rq->h_nr_running -= task_delta;
5821		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5822	}
5823
5824	/* At this point se is NULL and we are at root level*/
5825	sub_nr_running(rq, task_delta);
5826
5827done:
5828	/*
5829	 * Note: distribution will already see us throttled via the
5830	 * throttled-list.  rq->lock protects completion.
5831	 */
5832	cfs_rq->throttled = 1;
5833	SCHED_WARN_ON(cfs_rq->throttled_clock);
5834	if (cfs_rq->nr_running)
5835		cfs_rq->throttled_clock = rq_clock(rq);
5836	return true;
5837}
5838
5839void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5840{
5841	struct rq *rq = rq_of(cfs_rq);
5842	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5843	struct sched_entity *se;
5844	long task_delta, idle_task_delta;
5845
5846	se = cfs_rq->tg->se[cpu_of(rq)];
5847
5848	cfs_rq->throttled = 0;
5849
5850	update_rq_clock(rq);
5851
5852	raw_spin_lock(&cfs_b->lock);
5853	if (cfs_rq->throttled_clock) {
5854		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5855		cfs_rq->throttled_clock = 0;
5856	}
5857	list_del_rcu(&cfs_rq->throttled_list);
5858	raw_spin_unlock(&cfs_b->lock);
5859
5860	/* update hierarchical throttle state */
5861	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5862
5863	if (!cfs_rq->load.weight) {
5864		if (!cfs_rq->on_list)
5865			return;
5866		/*
5867		 * Nothing to run but something to decay (on_list)?
5868		 * Complete the branch.
5869		 */
5870		for_each_sched_entity(se) {
5871			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5872				break;
5873		}
5874		goto unthrottle_throttle;
5875	}
5876
5877	task_delta = cfs_rq->h_nr_running;
5878	idle_task_delta = cfs_rq->idle_h_nr_running;
5879	for_each_sched_entity(se) {
5880		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5881
5882		if (se->on_rq)
5883			break;
5884		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5885
5886		if (cfs_rq_is_idle(group_cfs_rq(se)))
5887			idle_task_delta = cfs_rq->h_nr_running;
5888
5889		qcfs_rq->h_nr_running += task_delta;
5890		qcfs_rq->idle_h_nr_running += idle_task_delta;
5891
5892		/* end evaluation on encountering a throttled cfs_rq */
5893		if (cfs_rq_throttled(qcfs_rq))
5894			goto unthrottle_throttle;
5895	}
5896
5897	for_each_sched_entity(se) {
5898		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5899
5900		update_load_avg(qcfs_rq, se, UPDATE_TG);
5901		se_update_runnable(se);
5902
5903		if (cfs_rq_is_idle(group_cfs_rq(se)))
5904			idle_task_delta = cfs_rq->h_nr_running;
5905
5906		qcfs_rq->h_nr_running += task_delta;
5907		qcfs_rq->idle_h_nr_running += idle_task_delta;
5908
5909		/* end evaluation on encountering a throttled cfs_rq */
5910		if (cfs_rq_throttled(qcfs_rq))
5911			goto unthrottle_throttle;
5912	}
5913
5914	/* At this point se is NULL and we are at root level*/
5915	add_nr_running(rq, task_delta);
5916
5917unthrottle_throttle:
5918	assert_list_leaf_cfs_rq(rq);
5919
5920	/* Determine whether we need to wake up potentially idle CPU: */
5921	if (rq->curr == rq->idle && rq->cfs.nr_running)
5922		resched_curr(rq);
5923}
5924
5925#ifdef CONFIG_SMP
5926static void __cfsb_csd_unthrottle(void *arg)
5927{
5928	struct cfs_rq *cursor, *tmp;
5929	struct rq *rq = arg;
5930	struct rq_flags rf;
5931
5932	rq_lock(rq, &rf);
5933
5934	/*
5935	 * Iterating over the list can trigger several call to
5936	 * update_rq_clock() in unthrottle_cfs_rq().
5937	 * Do it once and skip the potential next ones.
5938	 */
5939	update_rq_clock(rq);
5940	rq_clock_start_loop_update(rq);
5941
5942	/*
5943	 * Since we hold rq lock we're safe from concurrent manipulation of
5944	 * the CSD list. However, this RCU critical section annotates the
5945	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5946	 * race with group being freed in the window between removing it
5947	 * from the list and advancing to the next entry in the list.
5948	 */
5949	rcu_read_lock();
5950
5951	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5952				 throttled_csd_list) {
5953		list_del_init(&cursor->throttled_csd_list);
5954
5955		if (cfs_rq_throttled(cursor))
5956			unthrottle_cfs_rq(cursor);
5957	}
5958
5959	rcu_read_unlock();
5960
5961	rq_clock_stop_loop_update(rq);
5962	rq_unlock(rq, &rf);
5963}
5964
5965static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5966{
5967	struct rq *rq = rq_of(cfs_rq);
5968	bool first;
5969
5970	if (rq == this_rq()) {
5971		unthrottle_cfs_rq(cfs_rq);
5972		return;
5973	}
5974
5975	/* Already enqueued */
5976	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5977		return;
5978
5979	first = list_empty(&rq->cfsb_csd_list);
5980	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5981	if (first)
5982		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5983}
5984#else
5985static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5986{
5987	unthrottle_cfs_rq(cfs_rq);
5988}
5989#endif
5990
5991static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5992{
5993	lockdep_assert_rq_held(rq_of(cfs_rq));
5994
5995	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5996	    cfs_rq->runtime_remaining <= 0))
5997		return;
5998
5999	__unthrottle_cfs_rq_async(cfs_rq);
6000}
6001
6002static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6003{
6004	int this_cpu = smp_processor_id();
6005	u64 runtime, remaining = 1;
6006	bool throttled = false;
6007	struct cfs_rq *cfs_rq, *tmp;
6008	struct rq_flags rf;
6009	struct rq *rq;
6010	LIST_HEAD(local_unthrottle);
6011
6012	rcu_read_lock();
6013	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6014				throttled_list) {
6015		rq = rq_of(cfs_rq);
6016
6017		if (!remaining) {
6018			throttled = true;
6019			break;
6020		}
6021
6022		rq_lock_irqsave(rq, &rf);
6023		if (!cfs_rq_throttled(cfs_rq))
6024			goto next;
6025
6026		/* Already queued for async unthrottle */
6027		if (!list_empty(&cfs_rq->throttled_csd_list))
6028			goto next;
6029
6030		/* By the above checks, this should never be true */
6031		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6032
6033		raw_spin_lock(&cfs_b->lock);
6034		runtime = -cfs_rq->runtime_remaining + 1;
6035		if (runtime > cfs_b->runtime)
6036			runtime = cfs_b->runtime;
6037		cfs_b->runtime -= runtime;
6038		remaining = cfs_b->runtime;
6039		raw_spin_unlock(&cfs_b->lock);
6040
6041		cfs_rq->runtime_remaining += runtime;
6042
6043		/* we check whether we're throttled above */
6044		if (cfs_rq->runtime_remaining > 0) {
6045			if (cpu_of(rq) != this_cpu) {
6046				unthrottle_cfs_rq_async(cfs_rq);
6047			} else {
6048				/*
6049				 * We currently only expect to be unthrottling
6050				 * a single cfs_rq locally.
6051				 */
6052				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6053				list_add_tail(&cfs_rq->throttled_csd_list,
6054					      &local_unthrottle);
6055			}
6056		} else {
6057			throttled = true;
6058		}
6059
6060next:
6061		rq_unlock_irqrestore(rq, &rf);
6062	}
6063
6064	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6065				 throttled_csd_list) {
6066		struct rq *rq = rq_of(cfs_rq);
6067
6068		rq_lock_irqsave(rq, &rf);
6069
6070		list_del_init(&cfs_rq->throttled_csd_list);
6071
6072		if (cfs_rq_throttled(cfs_rq))
6073			unthrottle_cfs_rq(cfs_rq);
6074
6075		rq_unlock_irqrestore(rq, &rf);
6076	}
6077	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6078
6079	rcu_read_unlock();
6080
6081	return throttled;
6082}
6083
6084/*
6085 * Responsible for refilling a task_group's bandwidth and unthrottling its
6086 * cfs_rqs as appropriate. If there has been no activity within the last
6087 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6088 * used to track this state.
6089 */
6090static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6091{
6092	int throttled;
6093
6094	/* no need to continue the timer with no bandwidth constraint */
6095	if (cfs_b->quota == RUNTIME_INF)
6096		goto out_deactivate;
6097
6098	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6099	cfs_b->nr_periods += overrun;
6100
6101	/* Refill extra burst quota even if cfs_b->idle */
6102	__refill_cfs_bandwidth_runtime(cfs_b);
6103
6104	/*
6105	 * idle depends on !throttled (for the case of a large deficit), and if
6106	 * we're going inactive then everything else can be deferred
6107	 */
6108	if (cfs_b->idle && !throttled)
6109		goto out_deactivate;
6110
6111	if (!throttled) {
6112		/* mark as potentially idle for the upcoming period */
6113		cfs_b->idle = 1;
6114		return 0;
6115	}
6116
6117	/* account preceding periods in which throttling occurred */
6118	cfs_b->nr_throttled += overrun;
6119
6120	/*
6121	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6122	 */
6123	while (throttled && cfs_b->runtime > 0) {
6124		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6125		/* we can't nest cfs_b->lock while distributing bandwidth */
6126		throttled = distribute_cfs_runtime(cfs_b);
6127		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6128	}
6129
6130	/*
6131	 * While we are ensured activity in the period following an
6132	 * unthrottle, this also covers the case in which the new bandwidth is
6133	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6134	 * timer to remain active while there are any throttled entities.)
6135	 */
6136	cfs_b->idle = 0;
6137
6138	return 0;
6139
6140out_deactivate:
6141	return 1;
6142}
6143
6144/* a cfs_rq won't donate quota below this amount */
6145static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6146/* minimum remaining period time to redistribute slack quota */
6147static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6148/* how long we wait to gather additional slack before distributing */
6149static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6150
6151/*
6152 * Are we near the end of the current quota period?
6153 *
6154 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6155 * hrtimer base being cleared by hrtimer_start. In the case of
6156 * migrate_hrtimers, base is never cleared, so we are fine.
6157 */
6158static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6159{
6160	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6161	s64 remaining;
6162
6163	/* if the call-back is running a quota refresh is already occurring */
6164	if (hrtimer_callback_running(refresh_timer))
6165		return 1;
6166
6167	/* is a quota refresh about to occur? */
6168	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6169	if (remaining < (s64)min_expire)
6170		return 1;
6171
6172	return 0;
6173}
6174
6175static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6176{
6177	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6178
6179	/* if there's a quota refresh soon don't bother with slack */
6180	if (runtime_refresh_within(cfs_b, min_left))
6181		return;
6182
6183	/* don't push forwards an existing deferred unthrottle */
6184	if (cfs_b->slack_started)
6185		return;
6186	cfs_b->slack_started = true;
6187
6188	hrtimer_start(&cfs_b->slack_timer,
6189			ns_to_ktime(cfs_bandwidth_slack_period),
6190			HRTIMER_MODE_REL);
6191}
6192
6193/* we know any runtime found here is valid as update_curr() precedes return */
6194static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6195{
6196	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6197	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6198
6199	if (slack_runtime <= 0)
6200		return;
6201
6202	raw_spin_lock(&cfs_b->lock);
6203	if (cfs_b->quota != RUNTIME_INF) {
6204		cfs_b->runtime += slack_runtime;
6205
6206		/* we are under rq->lock, defer unthrottling using a timer */
6207		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6208		    !list_empty(&cfs_b->throttled_cfs_rq))
6209			start_cfs_slack_bandwidth(cfs_b);
6210	}
6211	raw_spin_unlock(&cfs_b->lock);
6212
6213	/* even if it's not valid for return we don't want to try again */
6214	cfs_rq->runtime_remaining -= slack_runtime;
6215}
6216
6217static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6218{
6219	if (!cfs_bandwidth_used())
6220		return;
6221
6222	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6223		return;
6224
6225	__return_cfs_rq_runtime(cfs_rq);
6226}
6227
6228/*
6229 * This is done with a timer (instead of inline with bandwidth return) since
6230 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6231 */
6232static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6233{
6234	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6235	unsigned long flags;
6236
6237	/* confirm we're still not at a refresh boundary */
6238	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6239	cfs_b->slack_started = false;
6240
6241	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6242		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6243		return;
6244	}
6245
6246	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6247		runtime = cfs_b->runtime;
6248
6249	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6250
6251	if (!runtime)
6252		return;
6253
6254	distribute_cfs_runtime(cfs_b);
6255}
6256
6257/*
6258 * When a group wakes up we want to make sure that its quota is not already
6259 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6260 * runtime as update_curr() throttling can not trigger until it's on-rq.
6261 */
6262static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6263{
6264	if (!cfs_bandwidth_used())
6265		return;
6266
6267	/* an active group must be handled by the update_curr()->put() path */
6268	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6269		return;
6270
6271	/* ensure the group is not already throttled */
6272	if (cfs_rq_throttled(cfs_rq))
6273		return;
6274
6275	/* update runtime allocation */
6276	account_cfs_rq_runtime(cfs_rq, 0);
6277	if (cfs_rq->runtime_remaining <= 0)
6278		throttle_cfs_rq(cfs_rq);
6279}
6280
6281static void sync_throttle(struct task_group *tg, int cpu)
6282{
6283	struct cfs_rq *pcfs_rq, *cfs_rq;
6284
6285	if (!cfs_bandwidth_used())
6286		return;
6287
6288	if (!tg->parent)
6289		return;
6290
6291	cfs_rq = tg->cfs_rq[cpu];
6292	pcfs_rq = tg->parent->cfs_rq[cpu];
6293
6294	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6295	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6296}
6297
6298/* conditionally throttle active cfs_rq's from put_prev_entity() */
6299static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6300{
6301	if (!cfs_bandwidth_used())
6302		return false;
6303
6304	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6305		return false;
6306
6307	/*
6308	 * it's possible for a throttled entity to be forced into a running
6309	 * state (e.g. set_curr_task), in this case we're finished.
6310	 */
6311	if (cfs_rq_throttled(cfs_rq))
6312		return true;
6313
6314	return throttle_cfs_rq(cfs_rq);
6315}
6316
6317static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6318{
6319	struct cfs_bandwidth *cfs_b =
6320		container_of(timer, struct cfs_bandwidth, slack_timer);
6321
6322	do_sched_cfs_slack_timer(cfs_b);
6323
6324	return HRTIMER_NORESTART;
6325}
6326
6327extern const u64 max_cfs_quota_period;
6328
6329static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6330{
6331	struct cfs_bandwidth *cfs_b =
6332		container_of(timer, struct cfs_bandwidth, period_timer);
6333	unsigned long flags;
6334	int overrun;
6335	int idle = 0;
6336	int count = 0;
6337
6338	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6339	for (;;) {
6340		overrun = hrtimer_forward_now(timer, cfs_b->period);
6341		if (!overrun)
6342			break;
6343
6344		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6345
6346		if (++count > 3) {
6347			u64 new, old = ktime_to_ns(cfs_b->period);
6348
6349			/*
6350			 * Grow period by a factor of 2 to avoid losing precision.
6351			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6352			 * to fail.
6353			 */
6354			new = old * 2;
6355			if (new < max_cfs_quota_period) {
6356				cfs_b->period = ns_to_ktime(new);
6357				cfs_b->quota *= 2;
6358				cfs_b->burst *= 2;
6359
6360				pr_warn_ratelimited(
6361	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6362					smp_processor_id(),
6363					div_u64(new, NSEC_PER_USEC),
6364					div_u64(cfs_b->quota, NSEC_PER_USEC));
6365			} else {
6366				pr_warn_ratelimited(
6367	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6368					smp_processor_id(),
6369					div_u64(old, NSEC_PER_USEC),
6370					div_u64(cfs_b->quota, NSEC_PER_USEC));
6371			}
6372
6373			/* reset count so we don't come right back in here */
6374			count = 0;
6375		}
6376	}
6377	if (idle)
6378		cfs_b->period_active = 0;
6379	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6380
6381	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6382}
6383
6384void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6385{
6386	raw_spin_lock_init(&cfs_b->lock);
6387	cfs_b->runtime = 0;
6388	cfs_b->quota = RUNTIME_INF;
6389	cfs_b->period = ns_to_ktime(default_cfs_period());
6390	cfs_b->burst = 0;
6391	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6392
6393	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6394	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6395	cfs_b->period_timer.function = sched_cfs_period_timer;
6396
6397	/* Add a random offset so that timers interleave */
6398	hrtimer_set_expires(&cfs_b->period_timer,
6399			    get_random_u32_below(cfs_b->period));
6400	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6401	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6402	cfs_b->slack_started = false;
6403}
6404
6405static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6406{
6407	cfs_rq->runtime_enabled = 0;
6408	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6409	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6410}
6411
6412void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6413{
6414	lockdep_assert_held(&cfs_b->lock);
6415
6416	if (cfs_b->period_active)
6417		return;
6418
6419	cfs_b->period_active = 1;
6420	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6421	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6422}
6423
6424static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6425{
6426	int __maybe_unused i;
6427
6428	/* init_cfs_bandwidth() was not called */
6429	if (!cfs_b->throttled_cfs_rq.next)
6430		return;
6431
6432	hrtimer_cancel(&cfs_b->period_timer);
6433	hrtimer_cancel(&cfs_b->slack_timer);
6434
6435	/*
6436	 * It is possible that we still have some cfs_rq's pending on a CSD
6437	 * list, though this race is very rare. In order for this to occur, we
6438	 * must have raced with the last task leaving the group while there
6439	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6440	 * CSD item but the remote cpu has not yet processed it. To handle this,
6441	 * we can simply flush all pending CSD work inline here. We're
6442	 * guaranteed at this point that no additional cfs_rq of this group can
6443	 * join a CSD list.
6444	 */
6445#ifdef CONFIG_SMP
6446	for_each_possible_cpu(i) {
6447		struct rq *rq = cpu_rq(i);
6448		unsigned long flags;
6449
6450		if (list_empty(&rq->cfsb_csd_list))
6451			continue;
6452
6453		local_irq_save(flags);
6454		__cfsb_csd_unthrottle(rq);
6455		local_irq_restore(flags);
6456	}
6457#endif
6458}
6459
6460/*
6461 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6462 *
6463 * The race is harmless, since modifying bandwidth settings of unhooked group
6464 * bits doesn't do much.
6465 */
6466
6467/* cpu online callback */
6468static void __maybe_unused update_runtime_enabled(struct rq *rq)
6469{
6470	struct task_group *tg;
6471
6472	lockdep_assert_rq_held(rq);
6473
6474	rcu_read_lock();
6475	list_for_each_entry_rcu(tg, &task_groups, list) {
6476		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6477		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6478
6479		raw_spin_lock(&cfs_b->lock);
6480		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6481		raw_spin_unlock(&cfs_b->lock);
6482	}
6483	rcu_read_unlock();
6484}
6485
6486/* cpu offline callback */
6487static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6488{
6489	struct task_group *tg;
6490
6491	lockdep_assert_rq_held(rq);
6492
6493	/*
6494	 * The rq clock has already been updated in the
6495	 * set_rq_offline(), so we should skip updating
6496	 * the rq clock again in unthrottle_cfs_rq().
6497	 */
6498	rq_clock_start_loop_update(rq);
6499
6500	rcu_read_lock();
6501	list_for_each_entry_rcu(tg, &task_groups, list) {
6502		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6503
6504		if (!cfs_rq->runtime_enabled)
6505			continue;
6506
6507		/*
6508		 * clock_task is not advancing so we just need to make sure
6509		 * there's some valid quota amount
6510		 */
6511		cfs_rq->runtime_remaining = 1;
6512		/*
6513		 * Offline rq is schedulable till CPU is completely disabled
6514		 * in take_cpu_down(), so we prevent new cfs throttling here.
6515		 */
6516		cfs_rq->runtime_enabled = 0;
6517
6518		if (cfs_rq_throttled(cfs_rq))
6519			unthrottle_cfs_rq(cfs_rq);
6520	}
6521	rcu_read_unlock();
6522
6523	rq_clock_stop_loop_update(rq);
6524}
6525
6526bool cfs_task_bw_constrained(struct task_struct *p)
6527{
6528	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6529
6530	if (!cfs_bandwidth_used())
6531		return false;
6532
6533	if (cfs_rq->runtime_enabled ||
6534	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6535		return true;
6536
6537	return false;
6538}
6539
6540#ifdef CONFIG_NO_HZ_FULL
6541/* called from pick_next_task_fair() */
6542static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6543{
6544	int cpu = cpu_of(rq);
6545
6546	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6547		return;
6548
6549	if (!tick_nohz_full_cpu(cpu))
6550		return;
6551
6552	if (rq->nr_running != 1)
6553		return;
6554
6555	/*
6556	 *  We know there is only one task runnable and we've just picked it. The
6557	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6558	 *  be otherwise able to stop the tick. Just need to check if we are using
6559	 *  bandwidth control.
6560	 */
6561	if (cfs_task_bw_constrained(p))
6562		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6563}
6564#endif
6565
6566#else /* CONFIG_CFS_BANDWIDTH */
6567
6568static inline bool cfs_bandwidth_used(void)
6569{
6570	return false;
6571}
6572
6573static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6574static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6575static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6576static inline void sync_throttle(struct task_group *tg, int cpu) {}
6577static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6578
6579static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6580{
6581	return 0;
6582}
6583
6584static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6585{
6586	return 0;
6587}
6588
6589static inline int throttled_lb_pair(struct task_group *tg,
6590				    int src_cpu, int dest_cpu)
6591{
6592	return 0;
6593}
6594
6595#ifdef CONFIG_FAIR_GROUP_SCHED
6596void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6597static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6598#endif
6599
6600static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6601{
6602	return NULL;
6603}
6604static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6605static inline void update_runtime_enabled(struct rq *rq) {}
6606static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6607#ifdef CONFIG_CGROUP_SCHED
6608bool cfs_task_bw_constrained(struct task_struct *p)
6609{
6610	return false;
6611}
6612#endif
6613#endif /* CONFIG_CFS_BANDWIDTH */
6614
6615#if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6616static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6617#endif
6618
6619/**************************************************
6620 * CFS operations on tasks:
6621 */
6622
6623#ifdef CONFIG_SCHED_HRTICK
6624static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6625{
6626	struct sched_entity *se = &p->se;
6627
6628	SCHED_WARN_ON(task_rq(p) != rq);
6629
6630	if (rq->cfs.h_nr_running > 1) {
6631		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6632		u64 slice = se->slice;
6633		s64 delta = slice - ran;
6634
6635		if (delta < 0) {
6636			if (task_current(rq, p))
6637				resched_curr(rq);
6638			return;
6639		}
6640		hrtick_start(rq, delta);
6641	}
6642}
6643
6644/*
6645 * called from enqueue/dequeue and updates the hrtick when the
6646 * current task is from our class and nr_running is low enough
6647 * to matter.
6648 */
6649static void hrtick_update(struct rq *rq)
6650{
6651	struct task_struct *curr = rq->curr;
6652
6653	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6654		return;
6655
6656	hrtick_start_fair(rq, curr);
6657}
6658#else /* !CONFIG_SCHED_HRTICK */
6659static inline void
6660hrtick_start_fair(struct rq *rq, struct task_struct *p)
6661{
6662}
6663
6664static inline void hrtick_update(struct rq *rq)
6665{
6666}
6667#endif
6668
6669#ifdef CONFIG_SMP
6670static inline bool cpu_overutilized(int cpu)
6671{
6672	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6673	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6674
6675	/* Return true only if the utilization doesn't fit CPU's capacity */
6676	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6677}
6678
6679static inline void update_overutilized_status(struct rq *rq)
6680{
6681	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6682		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6683		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6684	}
6685}
6686#else
6687static inline void update_overutilized_status(struct rq *rq) { }
6688#endif
6689
6690/* Runqueue only has SCHED_IDLE tasks enqueued */
6691static int sched_idle_rq(struct rq *rq)
6692{
6693	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6694			rq->nr_running);
6695}
6696
6697#ifdef CONFIG_SMP
6698static int sched_idle_cpu(int cpu)
6699{
6700	return sched_idle_rq(cpu_rq(cpu));
6701}
6702#endif
6703
6704/*
6705 * The enqueue_task method is called before nr_running is
6706 * increased. Here we update the fair scheduling stats and
6707 * then put the task into the rbtree:
6708 */
6709static void
6710enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6711{
6712	struct cfs_rq *cfs_rq;
6713	struct sched_entity *se = &p->se;
6714	int idle_h_nr_running = task_has_idle_policy(p);
6715	int task_new = !(flags & ENQUEUE_WAKEUP);
6716
6717	/*
6718	 * The code below (indirectly) updates schedutil which looks at
6719	 * the cfs_rq utilization to select a frequency.
6720	 * Let's add the task's estimated utilization to the cfs_rq's
6721	 * estimated utilization, before we update schedutil.
6722	 */
6723	util_est_enqueue(&rq->cfs, p);
6724
6725	/*
6726	 * If in_iowait is set, the code below may not trigger any cpufreq
6727	 * utilization updates, so do it here explicitly with the IOWAIT flag
6728	 * passed.
6729	 */
6730	if (p->in_iowait)
6731		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6732
6733	for_each_sched_entity(se) {
6734		if (se->on_rq)
6735			break;
6736		cfs_rq = cfs_rq_of(se);
6737		enqueue_entity(cfs_rq, se, flags);
6738
6739		cfs_rq->h_nr_running++;
6740		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6741
6742		if (cfs_rq_is_idle(cfs_rq))
6743			idle_h_nr_running = 1;
6744
6745		/* end evaluation on encountering a throttled cfs_rq */
6746		if (cfs_rq_throttled(cfs_rq))
6747			goto enqueue_throttle;
6748
6749		flags = ENQUEUE_WAKEUP;
6750	}
6751
6752	for_each_sched_entity(se) {
6753		cfs_rq = cfs_rq_of(se);
6754
6755		update_load_avg(cfs_rq, se, UPDATE_TG);
6756		se_update_runnable(se);
6757		update_cfs_group(se);
6758
6759		cfs_rq->h_nr_running++;
6760		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6761
6762		if (cfs_rq_is_idle(cfs_rq))
6763			idle_h_nr_running = 1;
6764
6765		/* end evaluation on encountering a throttled cfs_rq */
6766		if (cfs_rq_throttled(cfs_rq))
6767			goto enqueue_throttle;
6768	}
6769
6770	/* At this point se is NULL and we are at root level*/
6771	add_nr_running(rq, 1);
6772
6773	/*
6774	 * Since new tasks are assigned an initial util_avg equal to
6775	 * half of the spare capacity of their CPU, tiny tasks have the
6776	 * ability to cross the overutilized threshold, which will
6777	 * result in the load balancer ruining all the task placement
6778	 * done by EAS. As a way to mitigate that effect, do not account
6779	 * for the first enqueue operation of new tasks during the
6780	 * overutilized flag detection.
6781	 *
6782	 * A better way of solving this problem would be to wait for
6783	 * the PELT signals of tasks to converge before taking them
6784	 * into account, but that is not straightforward to implement,
6785	 * and the following generally works well enough in practice.
6786	 */
6787	if (!task_new)
6788		update_overutilized_status(rq);
6789
6790enqueue_throttle:
6791	assert_list_leaf_cfs_rq(rq);
6792
6793	hrtick_update(rq);
6794}
6795
6796static void set_next_buddy(struct sched_entity *se);
6797
6798/*
6799 * The dequeue_task method is called before nr_running is
6800 * decreased. We remove the task from the rbtree and
6801 * update the fair scheduling stats:
6802 */
6803static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6804{
6805	struct cfs_rq *cfs_rq;
6806	struct sched_entity *se = &p->se;
6807	int task_sleep = flags & DEQUEUE_SLEEP;
6808	int idle_h_nr_running = task_has_idle_policy(p);
6809	bool was_sched_idle = sched_idle_rq(rq);
6810
6811	util_est_dequeue(&rq->cfs, p);
6812
6813	for_each_sched_entity(se) {
6814		cfs_rq = cfs_rq_of(se);
6815		dequeue_entity(cfs_rq, se, flags);
6816
6817		cfs_rq->h_nr_running--;
6818		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6819
6820		if (cfs_rq_is_idle(cfs_rq))
6821			idle_h_nr_running = 1;
6822
6823		/* end evaluation on encountering a throttled cfs_rq */
6824		if (cfs_rq_throttled(cfs_rq))
6825			goto dequeue_throttle;
6826
6827		/* Don't dequeue parent if it has other entities besides us */
6828		if (cfs_rq->load.weight) {
6829			/* Avoid re-evaluating load for this entity: */
6830			se = parent_entity(se);
6831			/*
6832			 * Bias pick_next to pick a task from this cfs_rq, as
6833			 * p is sleeping when it is within its sched_slice.
6834			 */
6835			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6836				set_next_buddy(se);
6837			break;
6838		}
6839		flags |= DEQUEUE_SLEEP;
6840	}
6841
6842	for_each_sched_entity(se) {
6843		cfs_rq = cfs_rq_of(se);
6844
6845		update_load_avg(cfs_rq, se, UPDATE_TG);
6846		se_update_runnable(se);
6847		update_cfs_group(se);
6848
6849		cfs_rq->h_nr_running--;
6850		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6851
6852		if (cfs_rq_is_idle(cfs_rq))
6853			idle_h_nr_running = 1;
6854
6855		/* end evaluation on encountering a throttled cfs_rq */
6856		if (cfs_rq_throttled(cfs_rq))
6857			goto dequeue_throttle;
6858
6859	}
6860
6861	/* At this point se is NULL and we are at root level*/
6862	sub_nr_running(rq, 1);
6863
6864	/* balance early to pull high priority tasks */
6865	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6866		rq->next_balance = jiffies;
6867
6868dequeue_throttle:
6869	util_est_update(&rq->cfs, p, task_sleep);
6870	hrtick_update(rq);
6871}
6872
6873#ifdef CONFIG_SMP
6874
6875/* Working cpumask for: load_balance, load_balance_newidle. */
6876static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6877static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6878static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6879
6880#ifdef CONFIG_NO_HZ_COMMON
6881
6882static struct {
6883	cpumask_var_t idle_cpus_mask;
6884	atomic_t nr_cpus;
6885	int has_blocked;		/* Idle CPUS has blocked load */
6886	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6887	unsigned long next_balance;     /* in jiffy units */
6888	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6889} nohz ____cacheline_aligned;
6890
6891#endif /* CONFIG_NO_HZ_COMMON */
6892
6893static unsigned long cpu_load(struct rq *rq)
6894{
6895	return cfs_rq_load_avg(&rq->cfs);
6896}
6897
6898/*
6899 * cpu_load_without - compute CPU load without any contributions from *p
6900 * @cpu: the CPU which load is requested
6901 * @p: the task which load should be discounted
6902 *
6903 * The load of a CPU is defined by the load of tasks currently enqueued on that
6904 * CPU as well as tasks which are currently sleeping after an execution on that
6905 * CPU.
6906 *
6907 * This method returns the load of the specified CPU by discounting the load of
6908 * the specified task, whenever the task is currently contributing to the CPU
6909 * load.
6910 */
6911static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6912{
6913	struct cfs_rq *cfs_rq;
6914	unsigned int load;
6915
6916	/* Task has no contribution or is new */
6917	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6918		return cpu_load(rq);
6919
6920	cfs_rq = &rq->cfs;
6921	load = READ_ONCE(cfs_rq->avg.load_avg);
6922
6923	/* Discount task's util from CPU's util */
6924	lsub_positive(&load, task_h_load(p));
6925
6926	return load;
6927}
6928
6929static unsigned long cpu_runnable(struct rq *rq)
6930{
6931	return cfs_rq_runnable_avg(&rq->cfs);
6932}
6933
6934static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6935{
6936	struct cfs_rq *cfs_rq;
6937	unsigned int runnable;
6938
6939	/* Task has no contribution or is new */
6940	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6941		return cpu_runnable(rq);
6942
6943	cfs_rq = &rq->cfs;
6944	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6945
6946	/* Discount task's runnable from CPU's runnable */
6947	lsub_positive(&runnable, p->se.avg.runnable_avg);
6948
6949	return runnable;
6950}
6951
6952static unsigned long capacity_of(int cpu)
6953{
6954	return cpu_rq(cpu)->cpu_capacity;
6955}
6956
6957static void record_wakee(struct task_struct *p)
6958{
6959	/*
6960	 * Only decay a single time; tasks that have less then 1 wakeup per
6961	 * jiffy will not have built up many flips.
6962	 */
6963	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6964		current->wakee_flips >>= 1;
6965		current->wakee_flip_decay_ts = jiffies;
6966	}
6967
6968	if (current->last_wakee != p) {
6969		current->last_wakee = p;
6970		current->wakee_flips++;
6971	}
6972}
6973
6974/*
6975 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6976 *
6977 * A waker of many should wake a different task than the one last awakened
6978 * at a frequency roughly N times higher than one of its wakees.
6979 *
6980 * In order to determine whether we should let the load spread vs consolidating
6981 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6982 * partner, and a factor of lls_size higher frequency in the other.
6983 *
6984 * With both conditions met, we can be relatively sure that the relationship is
6985 * non-monogamous, with partner count exceeding socket size.
6986 *
6987 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6988 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6989 * socket size.
6990 */
6991static int wake_wide(struct task_struct *p)
6992{
6993	unsigned int master = current->wakee_flips;
6994	unsigned int slave = p->wakee_flips;
6995	int factor = __this_cpu_read(sd_llc_size);
6996
6997	if (master < slave)
6998		swap(master, slave);
6999	if (slave < factor || master < slave * factor)
7000		return 0;
7001	return 1;
7002}
7003
7004/*
7005 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7006 * soonest. For the purpose of speed we only consider the waking and previous
7007 * CPU.
7008 *
7009 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7010 *			cache-affine and is (or	will be) idle.
7011 *
7012 * wake_affine_weight() - considers the weight to reflect the average
7013 *			  scheduling latency of the CPUs. This seems to work
7014 *			  for the overloaded case.
7015 */
7016static int
7017wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7018{
7019	/*
7020	 * If this_cpu is idle, it implies the wakeup is from interrupt
7021	 * context. Only allow the move if cache is shared. Otherwise an
7022	 * interrupt intensive workload could force all tasks onto one
7023	 * node depending on the IO topology or IRQ affinity settings.
7024	 *
7025	 * If the prev_cpu is idle and cache affine then avoid a migration.
7026	 * There is no guarantee that the cache hot data from an interrupt
7027	 * is more important than cache hot data on the prev_cpu and from
7028	 * a cpufreq perspective, it's better to have higher utilisation
7029	 * on one CPU.
7030	 */
7031	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7032		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7033
7034	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7035		return this_cpu;
7036
7037	if (available_idle_cpu(prev_cpu))
7038		return prev_cpu;
7039
7040	return nr_cpumask_bits;
7041}
7042
7043static int
7044wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7045		   int this_cpu, int prev_cpu, int sync)
7046{
7047	s64 this_eff_load, prev_eff_load;
7048	unsigned long task_load;
7049
7050	this_eff_load = cpu_load(cpu_rq(this_cpu));
7051
7052	if (sync) {
7053		unsigned long current_load = task_h_load(current);
7054
7055		if (current_load > this_eff_load)
7056			return this_cpu;
7057
7058		this_eff_load -= current_load;
7059	}
7060
7061	task_load = task_h_load(p);
7062
7063	this_eff_load += task_load;
7064	if (sched_feat(WA_BIAS))
7065		this_eff_load *= 100;
7066	this_eff_load *= capacity_of(prev_cpu);
7067
7068	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7069	prev_eff_load -= task_load;
7070	if (sched_feat(WA_BIAS))
7071		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7072	prev_eff_load *= capacity_of(this_cpu);
7073
7074	/*
7075	 * If sync, adjust the weight of prev_eff_load such that if
7076	 * prev_eff == this_eff that select_idle_sibling() will consider
7077	 * stacking the wakee on top of the waker if no other CPU is
7078	 * idle.
7079	 */
7080	if (sync)
7081		prev_eff_load += 1;
7082
7083	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7084}
7085
7086static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7087		       int this_cpu, int prev_cpu, int sync)
7088{
7089	int target = nr_cpumask_bits;
7090
7091	if (sched_feat(WA_IDLE))
7092		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7093
7094	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7095		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7096
7097	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7098	if (target != this_cpu)
7099		return prev_cpu;
7100
7101	schedstat_inc(sd->ttwu_move_affine);
7102	schedstat_inc(p->stats.nr_wakeups_affine);
7103	return target;
7104}
7105
7106static struct sched_group *
7107find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7108
7109/*
7110 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7111 */
7112static int
7113find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7114{
7115	unsigned long load, min_load = ULONG_MAX;
7116	unsigned int min_exit_latency = UINT_MAX;
7117	u64 latest_idle_timestamp = 0;
7118	int least_loaded_cpu = this_cpu;
7119	int shallowest_idle_cpu = -1;
7120	int i;
7121
7122	/* Check if we have any choice: */
7123	if (group->group_weight == 1)
7124		return cpumask_first(sched_group_span(group));
7125
7126	/* Traverse only the allowed CPUs */
7127	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7128		struct rq *rq = cpu_rq(i);
7129
7130		if (!sched_core_cookie_match(rq, p))
7131			continue;
7132
7133		if (sched_idle_cpu(i))
7134			return i;
7135
7136		if (available_idle_cpu(i)) {
7137			struct cpuidle_state *idle = idle_get_state(rq);
7138			if (idle && idle->exit_latency < min_exit_latency) {
7139				/*
7140				 * We give priority to a CPU whose idle state
7141				 * has the smallest exit latency irrespective
7142				 * of any idle timestamp.
7143				 */
7144				min_exit_latency = idle->exit_latency;
7145				latest_idle_timestamp = rq->idle_stamp;
7146				shallowest_idle_cpu = i;
7147			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7148				   rq->idle_stamp > latest_idle_timestamp) {
7149				/*
7150				 * If equal or no active idle state, then
7151				 * the most recently idled CPU might have
7152				 * a warmer cache.
7153				 */
7154				latest_idle_timestamp = rq->idle_stamp;
7155				shallowest_idle_cpu = i;
7156			}
7157		} else if (shallowest_idle_cpu == -1) {
7158			load = cpu_load(cpu_rq(i));
7159			if (load < min_load) {
7160				min_load = load;
7161				least_loaded_cpu = i;
7162			}
7163		}
7164	}
7165
7166	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7167}
7168
7169static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7170				  int cpu, int prev_cpu, int sd_flag)
7171{
7172	int new_cpu = cpu;
7173
7174	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7175		return prev_cpu;
7176
7177	/*
7178	 * We need task's util for cpu_util_without, sync it up to
7179	 * prev_cpu's last_update_time.
7180	 */
7181	if (!(sd_flag & SD_BALANCE_FORK))
7182		sync_entity_load_avg(&p->se);
7183
7184	while (sd) {
7185		struct sched_group *group;
7186		struct sched_domain *tmp;
7187		int weight;
7188
7189		if (!(sd->flags & sd_flag)) {
7190			sd = sd->child;
7191			continue;
7192		}
7193
7194		group = find_idlest_group(sd, p, cpu);
7195		if (!group) {
7196			sd = sd->child;
7197			continue;
7198		}
7199
7200		new_cpu = find_idlest_group_cpu(group, p, cpu);
7201		if (new_cpu == cpu) {
7202			/* Now try balancing at a lower domain level of 'cpu': */
7203			sd = sd->child;
7204			continue;
7205		}
7206
7207		/* Now try balancing at a lower domain level of 'new_cpu': */
7208		cpu = new_cpu;
7209		weight = sd->span_weight;
7210		sd = NULL;
7211		for_each_domain(cpu, tmp) {
7212			if (weight <= tmp->span_weight)
7213				break;
7214			if (tmp->flags & sd_flag)
7215				sd = tmp;
7216		}
7217	}
7218
7219	return new_cpu;
7220}
7221
7222static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7223{
7224	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7225	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7226		return cpu;
7227
7228	return -1;
7229}
7230
7231#ifdef CONFIG_SCHED_SMT
7232DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7233EXPORT_SYMBOL_GPL(sched_smt_present);
7234
7235static inline void set_idle_cores(int cpu, int val)
7236{
7237	struct sched_domain_shared *sds;
7238
7239	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7240	if (sds)
7241		WRITE_ONCE(sds->has_idle_cores, val);
7242}
7243
7244static inline bool test_idle_cores(int cpu)
7245{
7246	struct sched_domain_shared *sds;
7247
7248	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7249	if (sds)
7250		return READ_ONCE(sds->has_idle_cores);
7251
7252	return false;
7253}
7254
7255/*
7256 * Scans the local SMT mask to see if the entire core is idle, and records this
7257 * information in sd_llc_shared->has_idle_cores.
7258 *
7259 * Since SMT siblings share all cache levels, inspecting this limited remote
7260 * state should be fairly cheap.
7261 */
7262void __update_idle_core(struct rq *rq)
7263{
7264	int core = cpu_of(rq);
7265	int cpu;
7266
7267	rcu_read_lock();
7268	if (test_idle_cores(core))
7269		goto unlock;
7270
7271	for_each_cpu(cpu, cpu_smt_mask(core)) {
7272		if (cpu == core)
7273			continue;
7274
7275		if (!available_idle_cpu(cpu))
7276			goto unlock;
7277	}
7278
7279	set_idle_cores(core, 1);
7280unlock:
7281	rcu_read_unlock();
7282}
7283
7284/*
7285 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7286 * there are no idle cores left in the system; tracked through
7287 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7288 */
7289static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7290{
7291	bool idle = true;
7292	int cpu;
7293
7294	for_each_cpu(cpu, cpu_smt_mask(core)) {
7295		if (!available_idle_cpu(cpu)) {
7296			idle = false;
7297			if (*idle_cpu == -1) {
7298				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7299					*idle_cpu = cpu;
7300					break;
7301				}
7302				continue;
7303			}
7304			break;
7305		}
7306		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7307			*idle_cpu = cpu;
7308	}
7309
7310	if (idle)
7311		return core;
7312
7313	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7314	return -1;
7315}
7316
7317/*
7318 * Scan the local SMT mask for idle CPUs.
7319 */
7320static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7321{
7322	int cpu;
7323
7324	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7325		if (cpu == target)
7326			continue;
7327		/*
7328		 * Check if the CPU is in the LLC scheduling domain of @target.
7329		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7330		 */
7331		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7332			continue;
7333		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7334			return cpu;
7335	}
7336
7337	return -1;
7338}
7339
7340#else /* CONFIG_SCHED_SMT */
7341
7342static inline void set_idle_cores(int cpu, int val)
7343{
7344}
7345
7346static inline bool test_idle_cores(int cpu)
7347{
7348	return false;
7349}
7350
7351static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7352{
7353	return __select_idle_cpu(core, p);
7354}
7355
7356static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7357{
7358	return -1;
7359}
7360
7361#endif /* CONFIG_SCHED_SMT */
7362
7363/*
7364 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7365 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7366 * average idle time for this rq (as found in rq->avg_idle).
7367 */
7368static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7369{
7370	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7371	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7372	struct sched_domain_shared *sd_share;
7373
7374	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7375
7376	if (sched_feat(SIS_UTIL)) {
7377		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7378		if (sd_share) {
7379			/* because !--nr is the condition to stop scan */
7380			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7381			/* overloaded LLC is unlikely to have idle cpu/core */
7382			if (nr == 1)
7383				return -1;
7384		}
7385	}
7386
7387	if (static_branch_unlikely(&sched_cluster_active)) {
7388		struct sched_group *sg = sd->groups;
7389
7390		if (sg->flags & SD_CLUSTER) {
7391			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7392				if (!cpumask_test_cpu(cpu, cpus))
7393					continue;
7394
7395				if (has_idle_core) {
7396					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7397					if ((unsigned int)i < nr_cpumask_bits)
7398						return i;
7399				} else {
7400					if (--nr <= 0)
7401						return -1;
7402					idle_cpu = __select_idle_cpu(cpu, p);
7403					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7404						return idle_cpu;
7405				}
7406			}
7407			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7408		}
7409	}
7410
7411	for_each_cpu_wrap(cpu, cpus, target + 1) {
7412		if (has_idle_core) {
7413			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7414			if ((unsigned int)i < nr_cpumask_bits)
7415				return i;
7416
7417		} else {
7418			if (--nr <= 0)
7419				return -1;
7420			idle_cpu = __select_idle_cpu(cpu, p);
7421			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7422				break;
7423		}
7424	}
7425
7426	if (has_idle_core)
7427		set_idle_cores(target, false);
7428
7429	return idle_cpu;
7430}
7431
7432/*
7433 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7434 * the task fits. If no CPU is big enough, but there are idle ones, try to
7435 * maximize capacity.
7436 */
7437static int
7438select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7439{
7440	unsigned long task_util, util_min, util_max, best_cap = 0;
7441	int fits, best_fits = 0;
7442	int cpu, best_cpu = -1;
7443	struct cpumask *cpus;
7444
7445	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7446	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7447
7448	task_util = task_util_est(p);
7449	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7450	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7451
7452	for_each_cpu_wrap(cpu, cpus, target) {
7453		unsigned long cpu_cap = capacity_of(cpu);
7454
7455		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7456			continue;
7457
7458		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7459
7460		/* This CPU fits with all requirements */
7461		if (fits > 0)
7462			return cpu;
7463		/*
7464		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7465		 * Look for the CPU with best capacity.
7466		 */
7467		else if (fits < 0)
7468			cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
7469
7470		/*
7471		 * First, select CPU which fits better (-1 being better than 0).
7472		 * Then, select the one with best capacity at same level.
7473		 */
7474		if ((fits < best_fits) ||
7475		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7476			best_cap = cpu_cap;
7477			best_cpu = cpu;
7478			best_fits = fits;
7479		}
7480	}
7481
7482	return best_cpu;
7483}
7484
7485static inline bool asym_fits_cpu(unsigned long util,
7486				 unsigned long util_min,
7487				 unsigned long util_max,
7488				 int cpu)
7489{
7490	if (sched_asym_cpucap_active())
7491		/*
7492		 * Return true only if the cpu fully fits the task requirements
7493		 * which include the utilization and the performance hints.
7494		 */
7495		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7496
7497	return true;
7498}
7499
7500/*
7501 * Try and locate an idle core/thread in the LLC cache domain.
7502 */
7503static int select_idle_sibling(struct task_struct *p, int prev, int target)
7504{
7505	bool has_idle_core = false;
7506	struct sched_domain *sd;
7507	unsigned long task_util, util_min, util_max;
7508	int i, recent_used_cpu, prev_aff = -1;
7509
7510	/*
7511	 * On asymmetric system, update task utilization because we will check
7512	 * that the task fits with cpu's capacity.
7513	 */
7514	if (sched_asym_cpucap_active()) {
7515		sync_entity_load_avg(&p->se);
7516		task_util = task_util_est(p);
7517		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7518		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7519	}
7520
7521	/*
7522	 * per-cpu select_rq_mask usage
7523	 */
7524	lockdep_assert_irqs_disabled();
7525
7526	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7527	    asym_fits_cpu(task_util, util_min, util_max, target))
7528		return target;
7529
7530	/*
7531	 * If the previous CPU is cache affine and idle, don't be stupid:
7532	 */
7533	if (prev != target && cpus_share_cache(prev, target) &&
7534	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7535	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7536
7537		if (!static_branch_unlikely(&sched_cluster_active) ||
7538		    cpus_share_resources(prev, target))
7539			return prev;
7540
7541		prev_aff = prev;
7542	}
7543
7544	/*
7545	 * Allow a per-cpu kthread to stack with the wakee if the
7546	 * kworker thread and the tasks previous CPUs are the same.
7547	 * The assumption is that the wakee queued work for the
7548	 * per-cpu kthread that is now complete and the wakeup is
7549	 * essentially a sync wakeup. An obvious example of this
7550	 * pattern is IO completions.
7551	 */
7552	if (is_per_cpu_kthread(current) &&
7553	    in_task() &&
7554	    prev == smp_processor_id() &&
7555	    this_rq()->nr_running <= 1 &&
7556	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7557		return prev;
7558	}
7559
7560	/* Check a recently used CPU as a potential idle candidate: */
7561	recent_used_cpu = p->recent_used_cpu;
7562	p->recent_used_cpu = prev;
7563	if (recent_used_cpu != prev &&
7564	    recent_used_cpu != target &&
7565	    cpus_share_cache(recent_used_cpu, target) &&
7566	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7567	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7568	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7569
7570		if (!static_branch_unlikely(&sched_cluster_active) ||
7571		    cpus_share_resources(recent_used_cpu, target))
7572			return recent_used_cpu;
7573
7574	} else {
7575		recent_used_cpu = -1;
7576	}
7577
7578	/*
7579	 * For asymmetric CPU capacity systems, our domain of interest is
7580	 * sd_asym_cpucapacity rather than sd_llc.
7581	 */
7582	if (sched_asym_cpucap_active()) {
7583		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7584		/*
7585		 * On an asymmetric CPU capacity system where an exclusive
7586		 * cpuset defines a symmetric island (i.e. one unique
7587		 * capacity_orig value through the cpuset), the key will be set
7588		 * but the CPUs within that cpuset will not have a domain with
7589		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7590		 * capacity path.
7591		 */
7592		if (sd) {
7593			i = select_idle_capacity(p, sd, target);
7594			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7595		}
7596	}
7597
7598	sd = rcu_dereference(per_cpu(sd_llc, target));
7599	if (!sd)
7600		return target;
7601
7602	if (sched_smt_active()) {
7603		has_idle_core = test_idle_cores(target);
7604
7605		if (!has_idle_core && cpus_share_cache(prev, target)) {
7606			i = select_idle_smt(p, sd, prev);
7607			if ((unsigned int)i < nr_cpumask_bits)
7608				return i;
7609		}
7610	}
7611
7612	i = select_idle_cpu(p, sd, has_idle_core, target);
7613	if ((unsigned)i < nr_cpumask_bits)
7614		return i;
7615
7616	/*
7617	 * For cluster machines which have lower sharing cache like L2 or
7618	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7619	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7620	 * use them if possible when no idle CPU found in select_idle_cpu().
7621	 */
7622	if ((unsigned int)prev_aff < nr_cpumask_bits)
7623		return prev_aff;
7624	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7625		return recent_used_cpu;
7626
7627	return target;
7628}
7629
7630/**
7631 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7632 * @cpu: the CPU to get the utilization for
7633 * @p: task for which the CPU utilization should be predicted or NULL
7634 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7635 * @boost: 1 to enable boosting, otherwise 0
7636 *
7637 * The unit of the return value must be the same as the one of CPU capacity
7638 * so that CPU utilization can be compared with CPU capacity.
7639 *
7640 * CPU utilization is the sum of running time of runnable tasks plus the
7641 * recent utilization of currently non-runnable tasks on that CPU.
7642 * It represents the amount of CPU capacity currently used by CFS tasks in
7643 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7644 * capacity at f_max.
7645 *
7646 * The estimated CPU utilization is defined as the maximum between CPU
7647 * utilization and sum of the estimated utilization of the currently
7648 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7649 * previously-executed tasks, which helps better deduce how busy a CPU will
7650 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7651 * of such a task would be significantly decayed at this point of time.
7652 *
7653 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7654 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7655 * utilization. Boosting is implemented in cpu_util() so that internal
7656 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7657 * latter via cpu_util_cfs_boost().
7658 *
7659 * CPU utilization can be higher than the current CPU capacity
7660 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7661 * of rounding errors as well as task migrations or wakeups of new tasks.
7662 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7663 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7664 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7665 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7666 * though since this is useful for predicting the CPU capacity required
7667 * after task migrations (scheduler-driven DVFS).
7668 *
7669 * Return: (Boosted) (estimated) utilization for the specified CPU.
7670 */
7671static unsigned long
7672cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7673{
7674	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7675	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7676	unsigned long runnable;
7677
7678	if (boost) {
7679		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7680		util = max(util, runnable);
7681	}
7682
7683	/*
7684	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7685	 * contribution. If @p migrates from another CPU to @cpu add its
7686	 * contribution. In all the other cases @cpu is not impacted by the
7687	 * migration so its util_avg is already correct.
7688	 */
7689	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7690		lsub_positive(&util, task_util(p));
7691	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7692		util += task_util(p);
7693
7694	if (sched_feat(UTIL_EST)) {
7695		unsigned long util_est;
7696
7697		util_est = READ_ONCE(cfs_rq->avg.util_est);
7698
7699		/*
7700		 * During wake-up @p isn't enqueued yet and doesn't contribute
7701		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7702		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7703		 * has been enqueued.
7704		 *
7705		 * During exec (@dst_cpu = -1) @p is enqueued and does
7706		 * contribute to cpu_rq(cpu)->cfs.util_est.
7707		 * Remove it to "simulate" cpu_util without @p's contribution.
7708		 *
7709		 * Despite the task_on_rq_queued(@p) check there is still a
7710		 * small window for a possible race when an exec
7711		 * select_task_rq_fair() races with LB's detach_task().
7712		 *
7713		 *   detach_task()
7714		 *     deactivate_task()
7715		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7716		 *       -------------------------------- A
7717		 *       dequeue_task()                    \
7718		 *         dequeue_task_fair()              + Race Time
7719		 *           util_est_dequeue()            /
7720		 *       -------------------------------- B
7721		 *
7722		 * The additional check "current == p" is required to further
7723		 * reduce the race window.
7724		 */
7725		if (dst_cpu == cpu)
7726			util_est += _task_util_est(p);
7727		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7728			lsub_positive(&util_est, _task_util_est(p));
7729
7730		util = max(util, util_est);
7731	}
7732
7733	return min(util, arch_scale_cpu_capacity(cpu));
7734}
7735
7736unsigned long cpu_util_cfs(int cpu)
7737{
7738	return cpu_util(cpu, NULL, -1, 0);
7739}
7740
7741unsigned long cpu_util_cfs_boost(int cpu)
7742{
7743	return cpu_util(cpu, NULL, -1, 1);
7744}
7745
7746/*
7747 * cpu_util_without: compute cpu utilization without any contributions from *p
7748 * @cpu: the CPU which utilization is requested
7749 * @p: the task which utilization should be discounted
7750 *
7751 * The utilization of a CPU is defined by the utilization of tasks currently
7752 * enqueued on that CPU as well as tasks which are currently sleeping after an
7753 * execution on that CPU.
7754 *
7755 * This method returns the utilization of the specified CPU by discounting the
7756 * utilization of the specified task, whenever the task is currently
7757 * contributing to the CPU utilization.
7758 */
7759static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7760{
7761	/* Task has no contribution or is new */
7762	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7763		p = NULL;
7764
7765	return cpu_util(cpu, p, -1, 0);
7766}
7767
7768/*
7769 * energy_env - Utilization landscape for energy estimation.
7770 * @task_busy_time: Utilization contribution by the task for which we test the
7771 *                  placement. Given by eenv_task_busy_time().
7772 * @pd_busy_time:   Utilization of the whole perf domain without the task
7773 *                  contribution. Given by eenv_pd_busy_time().
7774 * @cpu_cap:        Maximum CPU capacity for the perf domain.
7775 * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7776 */
7777struct energy_env {
7778	unsigned long task_busy_time;
7779	unsigned long pd_busy_time;
7780	unsigned long cpu_cap;
7781	unsigned long pd_cap;
7782};
7783
7784/*
7785 * Compute the task busy time for compute_energy(). This time cannot be
7786 * injected directly into effective_cpu_util() because of the IRQ scaling.
7787 * The latter only makes sense with the most recent CPUs where the task has
7788 * run.
7789 */
7790static inline void eenv_task_busy_time(struct energy_env *eenv,
7791				       struct task_struct *p, int prev_cpu)
7792{
7793	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7794	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7795
7796	if (unlikely(irq >= max_cap))
7797		busy_time = max_cap;
7798	else
7799		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7800
7801	eenv->task_busy_time = busy_time;
7802}
7803
7804/*
7805 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7806 * utilization for each @pd_cpus, it however doesn't take into account
7807 * clamping since the ratio (utilization / cpu_capacity) is already enough to
7808 * scale the EM reported power consumption at the (eventually clamped)
7809 * cpu_capacity.
7810 *
7811 * The contribution of the task @p for which we want to estimate the
7812 * energy cost is removed (by cpu_util()) and must be calculated
7813 * separately (see eenv_task_busy_time). This ensures:
7814 *
7815 *   - A stable PD utilization, no matter which CPU of that PD we want to place
7816 *     the task on.
7817 *
7818 *   - A fair comparison between CPUs as the task contribution (task_util())
7819 *     will always be the same no matter which CPU utilization we rely on
7820 *     (util_avg or util_est).
7821 *
7822 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7823 * exceed @eenv->pd_cap.
7824 */
7825static inline void eenv_pd_busy_time(struct energy_env *eenv,
7826				     struct cpumask *pd_cpus,
7827				     struct task_struct *p)
7828{
7829	unsigned long busy_time = 0;
7830	int cpu;
7831
7832	for_each_cpu(cpu, pd_cpus) {
7833		unsigned long util = cpu_util(cpu, p, -1, 0);
7834
7835		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
7836	}
7837
7838	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7839}
7840
7841/*
7842 * Compute the maximum utilization for compute_energy() when the task @p
7843 * is placed on the cpu @dst_cpu.
7844 *
7845 * Returns the maximum utilization among @eenv->cpus. This utilization can't
7846 * exceed @eenv->cpu_cap.
7847 */
7848static inline unsigned long
7849eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7850		 struct task_struct *p, int dst_cpu)
7851{
7852	unsigned long max_util = 0;
7853	int cpu;
7854
7855	for_each_cpu(cpu, pd_cpus) {
7856		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7857		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7858		unsigned long eff_util, min, max;
7859
7860		/*
7861		 * Performance domain frequency: utilization clamping
7862		 * must be considered since it affects the selection
7863		 * of the performance domain frequency.
7864		 * NOTE: in case RT tasks are running, by default the
7865		 * FREQUENCY_UTIL's utilization can be max OPP.
7866		 */
7867		eff_util = effective_cpu_util(cpu, util, &min, &max);
7868
7869		/* Task's uclamp can modify min and max value */
7870		if (tsk && uclamp_is_used()) {
7871			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7872
7873			/*
7874			 * If there is no active max uclamp constraint,
7875			 * directly use task's one, otherwise keep max.
7876			 */
7877			if (uclamp_rq_is_idle(cpu_rq(cpu)))
7878				max = uclamp_eff_value(p, UCLAMP_MAX);
7879			else
7880				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7881		}
7882
7883		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
7884		max_util = max(max_util, eff_util);
7885	}
7886
7887	return min(max_util, eenv->cpu_cap);
7888}
7889
7890/*
7891 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7892 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7893 * contribution is ignored.
7894 */
7895static inline unsigned long
7896compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7897	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7898{
7899	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7900	unsigned long busy_time = eenv->pd_busy_time;
7901	unsigned long energy;
7902
7903	if (dst_cpu >= 0)
7904		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7905
7906	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7907
7908	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7909
7910	return energy;
7911}
7912
7913/*
7914 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7915 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7916 * spare capacity in each performance domain and uses it as a potential
7917 * candidate to execute the task. Then, it uses the Energy Model to figure
7918 * out which of the CPU candidates is the most energy-efficient.
7919 *
7920 * The rationale for this heuristic is as follows. In a performance domain,
7921 * all the most energy efficient CPU candidates (according to the Energy
7922 * Model) are those for which we'll request a low frequency. When there are
7923 * several CPUs for which the frequency request will be the same, we don't
7924 * have enough data to break the tie between them, because the Energy Model
7925 * only includes active power costs. With this model, if we assume that
7926 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7927 * the maximum spare capacity in a performance domain is guaranteed to be among
7928 * the best candidates of the performance domain.
7929 *
7930 * In practice, it could be preferable from an energy standpoint to pack
7931 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7932 * but that could also hurt our chances to go cluster idle, and we have no
7933 * ways to tell with the current Energy Model if this is actually a good
7934 * idea or not. So, find_energy_efficient_cpu() basically favors
7935 * cluster-packing, and spreading inside a cluster. That should at least be
7936 * a good thing for latency, and this is consistent with the idea that most
7937 * of the energy savings of EAS come from the asymmetry of the system, and
7938 * not so much from breaking the tie between identical CPUs. That's also the
7939 * reason why EAS is enabled in the topology code only for systems where
7940 * SD_ASYM_CPUCAPACITY is set.
7941 *
7942 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7943 * they don't have any useful utilization data yet and it's not possible to
7944 * forecast their impact on energy consumption. Consequently, they will be
7945 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7946 * to be energy-inefficient in some use-cases. The alternative would be to
7947 * bias new tasks towards specific types of CPUs first, or to try to infer
7948 * their util_avg from the parent task, but those heuristics could hurt
7949 * other use-cases too. So, until someone finds a better way to solve this,
7950 * let's keep things simple by re-using the existing slow path.
7951 */
7952static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7953{
7954	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7955	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7956	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7957	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7958	struct root_domain *rd = this_rq()->rd;
7959	int cpu, best_energy_cpu, target = -1;
7960	int prev_fits = -1, best_fits = -1;
7961	unsigned long best_thermal_cap = 0;
7962	unsigned long prev_thermal_cap = 0;
7963	struct sched_domain *sd;
7964	struct perf_domain *pd;
7965	struct energy_env eenv;
7966
7967	rcu_read_lock();
7968	pd = rcu_dereference(rd->pd);
7969	if (!pd || READ_ONCE(rd->overutilized))
7970		goto unlock;
7971
7972	/*
7973	 * Energy-aware wake-up happens on the lowest sched_domain starting
7974	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7975	 */
7976	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7977	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7978		sd = sd->parent;
7979	if (!sd)
7980		goto unlock;
7981
7982	target = prev_cpu;
7983
7984	sync_entity_load_avg(&p->se);
7985	if (!task_util_est(p) && p_util_min == 0)
7986		goto unlock;
7987
7988	eenv_task_busy_time(&eenv, p, prev_cpu);
7989
7990	for (; pd; pd = pd->next) {
7991		unsigned long util_min = p_util_min, util_max = p_util_max;
7992		unsigned long cpu_cap, cpu_thermal_cap, util;
7993		long prev_spare_cap = -1, max_spare_cap = -1;
7994		unsigned long rq_util_min, rq_util_max;
7995		unsigned long cur_delta, base_energy;
7996		int max_spare_cap_cpu = -1;
7997		int fits, max_fits = -1;
7998
7999		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8000
8001		if (cpumask_empty(cpus))
8002			continue;
8003
8004		/* Account thermal pressure for the energy estimation */
8005		cpu = cpumask_first(cpus);
8006		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
8007		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
8008
8009		eenv.cpu_cap = cpu_thermal_cap;
8010		eenv.pd_cap = 0;
8011
8012		for_each_cpu(cpu, cpus) {
8013			struct rq *rq = cpu_rq(cpu);
8014
8015			eenv.pd_cap += cpu_thermal_cap;
8016
8017			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8018				continue;
8019
8020			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8021				continue;
8022
8023			util = cpu_util(cpu, p, cpu, 0);
8024			cpu_cap = capacity_of(cpu);
8025
8026			/*
8027			 * Skip CPUs that cannot satisfy the capacity request.
8028			 * IOW, placing the task there would make the CPU
8029			 * overutilized. Take uclamp into account to see how
8030			 * much capacity we can get out of the CPU; this is
8031			 * aligned with sched_cpu_util().
8032			 */
8033			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8034				/*
8035				 * Open code uclamp_rq_util_with() except for
8036				 * the clamp() part. Ie: apply max aggregation
8037				 * only. util_fits_cpu() logic requires to
8038				 * operate on non clamped util but must use the
8039				 * max-aggregated uclamp_{min, max}.
8040				 */
8041				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8042				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8043
8044				util_min = max(rq_util_min, p_util_min);
8045				util_max = max(rq_util_max, p_util_max);
8046			}
8047
8048			fits = util_fits_cpu(util, util_min, util_max, cpu);
8049			if (!fits)
8050				continue;
8051
8052			lsub_positive(&cpu_cap, util);
8053
8054			if (cpu == prev_cpu) {
8055				/* Always use prev_cpu as a candidate. */
8056				prev_spare_cap = cpu_cap;
8057				prev_fits = fits;
8058			} else if ((fits > max_fits) ||
8059				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8060				/*
8061				 * Find the CPU with the maximum spare capacity
8062				 * among the remaining CPUs in the performance
8063				 * domain.
8064				 */
8065				max_spare_cap = cpu_cap;
8066				max_spare_cap_cpu = cpu;
8067				max_fits = fits;
8068			}
8069		}
8070
8071		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8072			continue;
8073
8074		eenv_pd_busy_time(&eenv, cpus, p);
8075		/* Compute the 'base' energy of the pd, without @p */
8076		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8077
8078		/* Evaluate the energy impact of using prev_cpu. */
8079		if (prev_spare_cap > -1) {
8080			prev_delta = compute_energy(&eenv, pd, cpus, p,
8081						    prev_cpu);
8082			/* CPU utilization has changed */
8083			if (prev_delta < base_energy)
8084				goto unlock;
8085			prev_delta -= base_energy;
8086			prev_thermal_cap = cpu_thermal_cap;
8087			best_delta = min(best_delta, prev_delta);
8088		}
8089
8090		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8091		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8092			/* Current best energy cpu fits better */
8093			if (max_fits < best_fits)
8094				continue;
8095
8096			/*
8097			 * Both don't fit performance hint (i.e. uclamp_min)
8098			 * but best energy cpu has better capacity.
8099			 */
8100			if ((max_fits < 0) &&
8101			    (cpu_thermal_cap <= best_thermal_cap))
8102				continue;
8103
8104			cur_delta = compute_energy(&eenv, pd, cpus, p,
8105						   max_spare_cap_cpu);
8106			/* CPU utilization has changed */
8107			if (cur_delta < base_energy)
8108				goto unlock;
8109			cur_delta -= base_energy;
8110
8111			/*
8112			 * Both fit for the task but best energy cpu has lower
8113			 * energy impact.
8114			 */
8115			if ((max_fits > 0) && (best_fits > 0) &&
8116			    (cur_delta >= best_delta))
8117				continue;
8118
8119			best_delta = cur_delta;
8120			best_energy_cpu = max_spare_cap_cpu;
8121			best_fits = max_fits;
8122			best_thermal_cap = cpu_thermal_cap;
8123		}
8124	}
8125	rcu_read_unlock();
8126
8127	if ((best_fits > prev_fits) ||
8128	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8129	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8130		target = best_energy_cpu;
8131
8132	return target;
8133
8134unlock:
8135	rcu_read_unlock();
8136
8137	return target;
8138}
8139
8140/*
8141 * select_task_rq_fair: Select target runqueue for the waking task in domains
8142 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8143 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8144 *
8145 * Balances load by selecting the idlest CPU in the idlest group, or under
8146 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8147 *
8148 * Returns the target CPU number.
8149 */
8150static int
8151select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8152{
8153	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8154	struct sched_domain *tmp, *sd = NULL;
8155	int cpu = smp_processor_id();
8156	int new_cpu = prev_cpu;
8157	int want_affine = 0;
8158	/* SD_flags and WF_flags share the first nibble */
8159	int sd_flag = wake_flags & 0xF;
8160
8161	/*
8162	 * required for stable ->cpus_allowed
8163	 */
8164	lockdep_assert_held(&p->pi_lock);
8165	if (wake_flags & WF_TTWU) {
8166		record_wakee(p);
8167
8168		if ((wake_flags & WF_CURRENT_CPU) &&
8169		    cpumask_test_cpu(cpu, p->cpus_ptr))
8170			return cpu;
8171
8172		if (sched_energy_enabled()) {
8173			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8174			if (new_cpu >= 0)
8175				return new_cpu;
8176			new_cpu = prev_cpu;
8177		}
8178
8179		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8180	}
8181
8182	rcu_read_lock();
8183	for_each_domain(cpu, tmp) {
8184		/*
8185		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8186		 * cpu is a valid SD_WAKE_AFFINE target.
8187		 */
8188		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8189		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8190			if (cpu != prev_cpu)
8191				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8192
8193			sd = NULL; /* Prefer wake_affine over balance flags */
8194			break;
8195		}
8196
8197		/*
8198		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8199		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8200		 * will usually go to the fast path.
8201		 */
8202		if (tmp->flags & sd_flag)
8203			sd = tmp;
8204		else if (!want_affine)
8205			break;
8206	}
8207
8208	if (unlikely(sd)) {
8209		/* Slow path */
8210		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8211	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8212		/* Fast path */
8213		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8214	}
8215	rcu_read_unlock();
8216
8217	return new_cpu;
8218}
8219
8220/*
8221 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8222 * cfs_rq_of(p) references at time of call are still valid and identify the
8223 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8224 */
8225static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8226{
8227	struct sched_entity *se = &p->se;
8228
8229	if (!task_on_rq_migrating(p)) {
8230		remove_entity_load_avg(se);
8231
8232		/*
8233		 * Here, the task's PELT values have been updated according to
8234		 * the current rq's clock. But if that clock hasn't been
8235		 * updated in a while, a substantial idle time will be missed,
8236		 * leading to an inflation after wake-up on the new rq.
8237		 *
8238		 * Estimate the missing time from the cfs_rq last_update_time
8239		 * and update sched_avg to improve the PELT continuity after
8240		 * migration.
8241		 */
8242		migrate_se_pelt_lag(se);
8243	}
8244
8245	/* Tell new CPU we are migrated */
8246	se->avg.last_update_time = 0;
8247
8248	update_scan_period(p, new_cpu);
8249}
8250
8251static void task_dead_fair(struct task_struct *p)
8252{
8253	remove_entity_load_avg(&p->se);
8254}
8255
8256static int
8257balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8258{
8259	if (rq->nr_running)
8260		return 1;
8261
8262	return newidle_balance(rq, rf) != 0;
8263}
8264#endif /* CONFIG_SMP */
8265
8266static void set_next_buddy(struct sched_entity *se)
8267{
8268	for_each_sched_entity(se) {
8269		if (SCHED_WARN_ON(!se->on_rq))
8270			return;
8271		if (se_is_idle(se))
8272			return;
8273		cfs_rq_of(se)->next = se;
8274	}
8275}
8276
8277/*
8278 * Preempt the current task with a newly woken task if needed:
8279 */
8280static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8281{
8282	struct task_struct *curr = rq->curr;
8283	struct sched_entity *se = &curr->se, *pse = &p->se;
8284	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8285	int cse_is_idle, pse_is_idle;
8286
8287	if (unlikely(se == pse))
8288		return;
8289
8290	/*
8291	 * This is possible from callers such as attach_tasks(), in which we
8292	 * unconditionally wakeup_preempt() after an enqueue (which may have
8293	 * lead to a throttle).  This both saves work and prevents false
8294	 * next-buddy nomination below.
8295	 */
8296	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8297		return;
8298
8299	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8300		set_next_buddy(pse);
8301	}
8302
8303	/*
8304	 * We can come here with TIF_NEED_RESCHED already set from new task
8305	 * wake up path.
8306	 *
8307	 * Note: this also catches the edge-case of curr being in a throttled
8308	 * group (e.g. via set_curr_task), since update_curr() (in the
8309	 * enqueue of curr) will have resulted in resched being set.  This
8310	 * prevents us from potentially nominating it as a false LAST_BUDDY
8311	 * below.
8312	 */
8313	if (test_tsk_need_resched(curr))
8314		return;
8315
8316	/* Idle tasks are by definition preempted by non-idle tasks. */
8317	if (unlikely(task_has_idle_policy(curr)) &&
8318	    likely(!task_has_idle_policy(p)))
8319		goto preempt;
8320
8321	/*
8322	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8323	 * is driven by the tick):
8324	 */
8325	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8326		return;
8327
8328	find_matching_se(&se, &pse);
8329	WARN_ON_ONCE(!pse);
8330
8331	cse_is_idle = se_is_idle(se);
8332	pse_is_idle = se_is_idle(pse);
8333
8334	/*
8335	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8336	 * in the inverse case).
8337	 */
8338	if (cse_is_idle && !pse_is_idle)
8339		goto preempt;
8340	if (cse_is_idle != pse_is_idle)
8341		return;
8342
8343	cfs_rq = cfs_rq_of(se);
8344	update_curr(cfs_rq);
8345
8346	/*
8347	 * XXX pick_eevdf(cfs_rq) != se ?
8348	 */
8349	if (pick_eevdf(cfs_rq) == pse)
8350		goto preempt;
8351
8352	return;
8353
8354preempt:
8355	resched_curr(rq);
8356}
8357
8358#ifdef CONFIG_SMP
8359static struct task_struct *pick_task_fair(struct rq *rq)
8360{
8361	struct sched_entity *se;
8362	struct cfs_rq *cfs_rq;
8363
8364again:
8365	cfs_rq = &rq->cfs;
8366	if (!cfs_rq->nr_running)
8367		return NULL;
8368
8369	do {
8370		struct sched_entity *curr = cfs_rq->curr;
8371
8372		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8373		if (curr) {
8374			if (curr->on_rq)
8375				update_curr(cfs_rq);
8376			else
8377				curr = NULL;
8378
8379			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8380				goto again;
8381		}
8382
8383		se = pick_next_entity(cfs_rq);
8384		cfs_rq = group_cfs_rq(se);
8385	} while (cfs_rq);
8386
8387	return task_of(se);
8388}
8389#endif
8390
8391struct task_struct *
8392pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8393{
8394	struct cfs_rq *cfs_rq = &rq->cfs;
8395	struct sched_entity *se;
8396	struct task_struct *p;
8397	int new_tasks;
8398
8399again:
8400	if (!sched_fair_runnable(rq))
8401		goto idle;
8402
8403#ifdef CONFIG_FAIR_GROUP_SCHED
8404	if (!prev || prev->sched_class != &fair_sched_class)
8405		goto simple;
8406
8407	/*
8408	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8409	 * likely that a next task is from the same cgroup as the current.
8410	 *
8411	 * Therefore attempt to avoid putting and setting the entire cgroup
8412	 * hierarchy, only change the part that actually changes.
8413	 */
8414
8415	do {
8416		struct sched_entity *curr = cfs_rq->curr;
8417
8418		/*
8419		 * Since we got here without doing put_prev_entity() we also
8420		 * have to consider cfs_rq->curr. If it is still a runnable
8421		 * entity, update_curr() will update its vruntime, otherwise
8422		 * forget we've ever seen it.
8423		 */
8424		if (curr) {
8425			if (curr->on_rq)
8426				update_curr(cfs_rq);
8427			else
8428				curr = NULL;
8429
8430			/*
8431			 * This call to check_cfs_rq_runtime() will do the
8432			 * throttle and dequeue its entity in the parent(s).
8433			 * Therefore the nr_running test will indeed
8434			 * be correct.
8435			 */
8436			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8437				cfs_rq = &rq->cfs;
8438
8439				if (!cfs_rq->nr_running)
8440					goto idle;
8441
8442				goto simple;
8443			}
8444		}
8445
8446		se = pick_next_entity(cfs_rq);
8447		cfs_rq = group_cfs_rq(se);
8448	} while (cfs_rq);
8449
8450	p = task_of(se);
8451
8452	/*
8453	 * Since we haven't yet done put_prev_entity and if the selected task
8454	 * is a different task than we started out with, try and touch the
8455	 * least amount of cfs_rqs.
8456	 */
8457	if (prev != p) {
8458		struct sched_entity *pse = &prev->se;
8459
8460		while (!(cfs_rq = is_same_group(se, pse))) {
8461			int se_depth = se->depth;
8462			int pse_depth = pse->depth;
8463
8464			if (se_depth <= pse_depth) {
8465				put_prev_entity(cfs_rq_of(pse), pse);
8466				pse = parent_entity(pse);
8467			}
8468			if (se_depth >= pse_depth) {
8469				set_next_entity(cfs_rq_of(se), se);
8470				se = parent_entity(se);
8471			}
8472		}
8473
8474		put_prev_entity(cfs_rq, pse);
8475		set_next_entity(cfs_rq, se);
8476	}
8477
8478	goto done;
8479simple:
8480#endif
8481	if (prev)
8482		put_prev_task(rq, prev);
8483
8484	do {
8485		se = pick_next_entity(cfs_rq);
8486		set_next_entity(cfs_rq, se);
8487		cfs_rq = group_cfs_rq(se);
8488	} while (cfs_rq);
8489
8490	p = task_of(se);
8491
8492done: __maybe_unused;
8493#ifdef CONFIG_SMP
8494	/*
8495	 * Move the next running task to the front of
8496	 * the list, so our cfs_tasks list becomes MRU
8497	 * one.
8498	 */
8499	list_move(&p->se.group_node, &rq->cfs_tasks);
8500#endif
8501
8502	if (hrtick_enabled_fair(rq))
8503		hrtick_start_fair(rq, p);
8504
8505	update_misfit_status(p, rq);
8506	sched_fair_update_stop_tick(rq, p);
8507
8508	return p;
8509
8510idle:
8511	if (!rf)
8512		return NULL;
8513
8514	new_tasks = newidle_balance(rq, rf);
8515
8516	/*
8517	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8518	 * possible for any higher priority task to appear. In that case we
8519	 * must re-start the pick_next_entity() loop.
8520	 */
8521	if (new_tasks < 0)
8522		return RETRY_TASK;
8523
8524	if (new_tasks > 0)
8525		goto again;
8526
8527	/*
8528	 * rq is about to be idle, check if we need to update the
8529	 * lost_idle_time of clock_pelt
8530	 */
8531	update_idle_rq_clock_pelt(rq);
8532
8533	return NULL;
8534}
8535
8536static struct task_struct *__pick_next_task_fair(struct rq *rq)
8537{
8538	return pick_next_task_fair(rq, NULL, NULL);
8539}
8540
8541/*
8542 * Account for a descheduled task:
8543 */
8544static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8545{
8546	struct sched_entity *se = &prev->se;
8547	struct cfs_rq *cfs_rq;
8548
8549	for_each_sched_entity(se) {
8550		cfs_rq = cfs_rq_of(se);
8551		put_prev_entity(cfs_rq, se);
8552	}
8553}
8554
8555/*
8556 * sched_yield() is very simple
8557 */
8558static void yield_task_fair(struct rq *rq)
8559{
8560	struct task_struct *curr = rq->curr;
8561	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8562	struct sched_entity *se = &curr->se;
8563
8564	/*
8565	 * Are we the only task in the tree?
8566	 */
8567	if (unlikely(rq->nr_running == 1))
8568		return;
8569
8570	clear_buddies(cfs_rq, se);
8571
8572	update_rq_clock(rq);
8573	/*
8574	 * Update run-time statistics of the 'current'.
8575	 */
8576	update_curr(cfs_rq);
8577	/*
8578	 * Tell update_rq_clock() that we've just updated,
8579	 * so we don't do microscopic update in schedule()
8580	 * and double the fastpath cost.
8581	 */
8582	rq_clock_skip_update(rq);
8583
8584	se->deadline += calc_delta_fair(se->slice, se);
8585}
8586
8587static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8588{
8589	struct sched_entity *se = &p->se;
8590
8591	/* throttled hierarchies are not runnable */
8592	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8593		return false;
8594
8595	/* Tell the scheduler that we'd really like pse to run next. */
8596	set_next_buddy(se);
8597
8598	yield_task_fair(rq);
8599
8600	return true;
8601}
8602
8603#ifdef CONFIG_SMP
8604/**************************************************
8605 * Fair scheduling class load-balancing methods.
8606 *
8607 * BASICS
8608 *
8609 * The purpose of load-balancing is to achieve the same basic fairness the
8610 * per-CPU scheduler provides, namely provide a proportional amount of compute
8611 * time to each task. This is expressed in the following equation:
8612 *
8613 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8614 *
8615 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8616 * W_i,0 is defined as:
8617 *
8618 *   W_i,0 = \Sum_j w_i,j                                             (2)
8619 *
8620 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8621 * is derived from the nice value as per sched_prio_to_weight[].
8622 *
8623 * The weight average is an exponential decay average of the instantaneous
8624 * weight:
8625 *
8626 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8627 *
8628 * C_i is the compute capacity of CPU i, typically it is the
8629 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8630 * can also include other factors [XXX].
8631 *
8632 * To achieve this balance we define a measure of imbalance which follows
8633 * directly from (1):
8634 *
8635 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8636 *
8637 * We them move tasks around to minimize the imbalance. In the continuous
8638 * function space it is obvious this converges, in the discrete case we get
8639 * a few fun cases generally called infeasible weight scenarios.
8640 *
8641 * [XXX expand on:
8642 *     - infeasible weights;
8643 *     - local vs global optima in the discrete case. ]
8644 *
8645 *
8646 * SCHED DOMAINS
8647 *
8648 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8649 * for all i,j solution, we create a tree of CPUs that follows the hardware
8650 * topology where each level pairs two lower groups (or better). This results
8651 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8652 * tree to only the first of the previous level and we decrease the frequency
8653 * of load-balance at each level inv. proportional to the number of CPUs in
8654 * the groups.
8655 *
8656 * This yields:
8657 *
8658 *     log_2 n     1     n
8659 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8660 *     i = 0      2^i   2^i
8661 *                               `- size of each group
8662 *         |         |     `- number of CPUs doing load-balance
8663 *         |         `- freq
8664 *         `- sum over all levels
8665 *
8666 * Coupled with a limit on how many tasks we can migrate every balance pass,
8667 * this makes (5) the runtime complexity of the balancer.
8668 *
8669 * An important property here is that each CPU is still (indirectly) connected
8670 * to every other CPU in at most O(log n) steps:
8671 *
8672 * The adjacency matrix of the resulting graph is given by:
8673 *
8674 *             log_2 n
8675 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8676 *             k = 0
8677 *
8678 * And you'll find that:
8679 *
8680 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8681 *
8682 * Showing there's indeed a path between every CPU in at most O(log n) steps.
8683 * The task movement gives a factor of O(m), giving a convergence complexity
8684 * of:
8685 *
8686 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8687 *
8688 *
8689 * WORK CONSERVING
8690 *
8691 * In order to avoid CPUs going idle while there's still work to do, new idle
8692 * balancing is more aggressive and has the newly idle CPU iterate up the domain
8693 * tree itself instead of relying on other CPUs to bring it work.
8694 *
8695 * This adds some complexity to both (5) and (8) but it reduces the total idle
8696 * time.
8697 *
8698 * [XXX more?]
8699 *
8700 *
8701 * CGROUPS
8702 *
8703 * Cgroups make a horror show out of (2), instead of a simple sum we get:
8704 *
8705 *                                s_k,i
8706 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8707 *                                 S_k
8708 *
8709 * Where
8710 *
8711 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8712 *
8713 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8714 *
8715 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8716 * property.
8717 *
8718 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8719 *      rewrite all of this once again.]
8720 */
8721
8722static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8723
8724enum fbq_type { regular, remote, all };
8725
8726/*
8727 * 'group_type' describes the group of CPUs at the moment of load balancing.
8728 *
8729 * The enum is ordered by pulling priority, with the group with lowest priority
8730 * first so the group_type can simply be compared when selecting the busiest
8731 * group. See update_sd_pick_busiest().
8732 */
8733enum group_type {
8734	/* The group has spare capacity that can be used to run more tasks.  */
8735	group_has_spare = 0,
8736	/*
8737	 * The group is fully used and the tasks don't compete for more CPU
8738	 * cycles. Nevertheless, some tasks might wait before running.
8739	 */
8740	group_fully_busy,
8741	/*
8742	 * One task doesn't fit with CPU's capacity and must be migrated to a
8743	 * more powerful CPU.
8744	 */
8745	group_misfit_task,
8746	/*
8747	 * Balance SMT group that's fully busy. Can benefit from migration
8748	 * a task on SMT with busy sibling to another CPU on idle core.
8749	 */
8750	group_smt_balance,
8751	/*
8752	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8753	 * and the task should be migrated to it instead of running on the
8754	 * current CPU.
8755	 */
8756	group_asym_packing,
8757	/*
8758	 * The tasks' affinity constraints previously prevented the scheduler
8759	 * from balancing the load across the system.
8760	 */
8761	group_imbalanced,
8762	/*
8763	 * The CPU is overloaded and can't provide expected CPU cycles to all
8764	 * tasks.
8765	 */
8766	group_overloaded
8767};
8768
8769enum migration_type {
8770	migrate_load = 0,
8771	migrate_util,
8772	migrate_task,
8773	migrate_misfit
8774};
8775
8776#define LBF_ALL_PINNED	0x01
8777#define LBF_NEED_BREAK	0x02
8778#define LBF_DST_PINNED  0x04
8779#define LBF_SOME_PINNED	0x08
8780#define LBF_ACTIVE_LB	0x10
8781
8782struct lb_env {
8783	struct sched_domain	*sd;
8784
8785	struct rq		*src_rq;
8786	int			src_cpu;
8787
8788	int			dst_cpu;
8789	struct rq		*dst_rq;
8790
8791	struct cpumask		*dst_grpmask;
8792	int			new_dst_cpu;
8793	enum cpu_idle_type	idle;
8794	long			imbalance;
8795	/* The set of CPUs under consideration for load-balancing */
8796	struct cpumask		*cpus;
8797
8798	unsigned int		flags;
8799
8800	unsigned int		loop;
8801	unsigned int		loop_break;
8802	unsigned int		loop_max;
8803
8804	enum fbq_type		fbq_type;
8805	enum migration_type	migration_type;
8806	struct list_head	tasks;
8807};
8808
8809/*
8810 * Is this task likely cache-hot:
8811 */
8812static int task_hot(struct task_struct *p, struct lb_env *env)
8813{
8814	s64 delta;
8815
8816	lockdep_assert_rq_held(env->src_rq);
8817
8818	if (p->sched_class != &fair_sched_class)
8819		return 0;
8820
8821	if (unlikely(task_has_idle_policy(p)))
8822		return 0;
8823
8824	/* SMT siblings share cache */
8825	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8826		return 0;
8827
8828	/*
8829	 * Buddy candidates are cache hot:
8830	 */
8831	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8832	    (&p->se == cfs_rq_of(&p->se)->next))
8833		return 1;
8834
8835	if (sysctl_sched_migration_cost == -1)
8836		return 1;
8837
8838	/*
8839	 * Don't migrate task if the task's cookie does not match
8840	 * with the destination CPU's core cookie.
8841	 */
8842	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8843		return 1;
8844
8845	if (sysctl_sched_migration_cost == 0)
8846		return 0;
8847
8848	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8849
8850	return delta < (s64)sysctl_sched_migration_cost;
8851}
8852
8853#ifdef CONFIG_NUMA_BALANCING
8854/*
8855 * Returns 1, if task migration degrades locality
8856 * Returns 0, if task migration improves locality i.e migration preferred.
8857 * Returns -1, if task migration is not affected by locality.
8858 */
8859static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8860{
8861	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8862	unsigned long src_weight, dst_weight;
8863	int src_nid, dst_nid, dist;
8864
8865	if (!static_branch_likely(&sched_numa_balancing))
8866		return -1;
8867
8868	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8869		return -1;
8870
8871	src_nid = cpu_to_node(env->src_cpu);
8872	dst_nid = cpu_to_node(env->dst_cpu);
8873
8874	if (src_nid == dst_nid)
8875		return -1;
8876
8877	/* Migrating away from the preferred node is always bad. */
8878	if (src_nid == p->numa_preferred_nid) {
8879		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8880			return 1;
8881		else
8882			return -1;
8883	}
8884
8885	/* Encourage migration to the preferred node. */
8886	if (dst_nid == p->numa_preferred_nid)
8887		return 0;
8888
8889	/* Leaving a core idle is often worse than degrading locality. */
8890	if (env->idle == CPU_IDLE)
8891		return -1;
8892
8893	dist = node_distance(src_nid, dst_nid);
8894	if (numa_group) {
8895		src_weight = group_weight(p, src_nid, dist);
8896		dst_weight = group_weight(p, dst_nid, dist);
8897	} else {
8898		src_weight = task_weight(p, src_nid, dist);
8899		dst_weight = task_weight(p, dst_nid, dist);
8900	}
8901
8902	return dst_weight < src_weight;
8903}
8904
8905#else
8906static inline int migrate_degrades_locality(struct task_struct *p,
8907					     struct lb_env *env)
8908{
8909	return -1;
8910}
8911#endif
8912
8913/*
8914 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8915 */
8916static
8917int can_migrate_task(struct task_struct *p, struct lb_env *env)
8918{
8919	int tsk_cache_hot;
8920
8921	lockdep_assert_rq_held(env->src_rq);
8922
8923	/*
8924	 * We do not migrate tasks that are:
8925	 * 1) throttled_lb_pair, or
8926	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8927	 * 3) running (obviously), or
8928	 * 4) are cache-hot on their current CPU.
8929	 */
8930	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8931		return 0;
8932
8933	/* Disregard pcpu kthreads; they are where they need to be. */
8934	if (kthread_is_per_cpu(p))
8935		return 0;
8936
8937	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8938		int cpu;
8939
8940		schedstat_inc(p->stats.nr_failed_migrations_affine);
8941
8942		env->flags |= LBF_SOME_PINNED;
8943
8944		/*
8945		 * Remember if this task can be migrated to any other CPU in
8946		 * our sched_group. We may want to revisit it if we couldn't
8947		 * meet load balance goals by pulling other tasks on src_cpu.
8948		 *
8949		 * Avoid computing new_dst_cpu
8950		 * - for NEWLY_IDLE
8951		 * - if we have already computed one in current iteration
8952		 * - if it's an active balance
8953		 */
8954		if (env->idle == CPU_NEWLY_IDLE ||
8955		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8956			return 0;
8957
8958		/* Prevent to re-select dst_cpu via env's CPUs: */
8959		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8960			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8961				env->flags |= LBF_DST_PINNED;
8962				env->new_dst_cpu = cpu;
8963				break;
8964			}
8965		}
8966
8967		return 0;
8968	}
8969
8970	/* Record that we found at least one task that could run on dst_cpu */
8971	env->flags &= ~LBF_ALL_PINNED;
8972
8973	if (task_on_cpu(env->src_rq, p)) {
8974		schedstat_inc(p->stats.nr_failed_migrations_running);
8975		return 0;
8976	}
8977
8978	/*
8979	 * Aggressive migration if:
8980	 * 1) active balance
8981	 * 2) destination numa is preferred
8982	 * 3) task is cache cold, or
8983	 * 4) too many balance attempts have failed.
8984	 */
8985	if (env->flags & LBF_ACTIVE_LB)
8986		return 1;
8987
8988	tsk_cache_hot = migrate_degrades_locality(p, env);
8989	if (tsk_cache_hot == -1)
8990		tsk_cache_hot = task_hot(p, env);
8991
8992	if (tsk_cache_hot <= 0 ||
8993	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8994		if (tsk_cache_hot == 1) {
8995			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8996			schedstat_inc(p->stats.nr_forced_migrations);
8997		}
8998		return 1;
8999	}
9000
9001	schedstat_inc(p->stats.nr_failed_migrations_hot);
9002	return 0;
9003}
9004
9005/*
9006 * detach_task() -- detach the task for the migration specified in env
9007 */
9008static void detach_task(struct task_struct *p, struct lb_env *env)
9009{
9010	lockdep_assert_rq_held(env->src_rq);
9011
9012	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9013	set_task_cpu(p, env->dst_cpu);
9014}
9015
9016/*
9017 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9018 * part of active balancing operations within "domain".
9019 *
9020 * Returns a task if successful and NULL otherwise.
9021 */
9022static struct task_struct *detach_one_task(struct lb_env *env)
9023{
9024	struct task_struct *p;
9025
9026	lockdep_assert_rq_held(env->src_rq);
9027
9028	list_for_each_entry_reverse(p,
9029			&env->src_rq->cfs_tasks, se.group_node) {
9030		if (!can_migrate_task(p, env))
9031			continue;
9032
9033		detach_task(p, env);
9034
9035		/*
9036		 * Right now, this is only the second place where
9037		 * lb_gained[env->idle] is updated (other is detach_tasks)
9038		 * so we can safely collect stats here rather than
9039		 * inside detach_tasks().
9040		 */
9041		schedstat_inc(env->sd->lb_gained[env->idle]);
9042		return p;
9043	}
9044	return NULL;
9045}
9046
9047/*
9048 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9049 * busiest_rq, as part of a balancing operation within domain "sd".
9050 *
9051 * Returns number of detached tasks if successful and 0 otherwise.
9052 */
9053static int detach_tasks(struct lb_env *env)
9054{
9055	struct list_head *tasks = &env->src_rq->cfs_tasks;
9056	unsigned long util, load;
9057	struct task_struct *p;
9058	int detached = 0;
9059
9060	lockdep_assert_rq_held(env->src_rq);
9061
9062	/*
9063	 * Source run queue has been emptied by another CPU, clear
9064	 * LBF_ALL_PINNED flag as we will not test any task.
9065	 */
9066	if (env->src_rq->nr_running <= 1) {
9067		env->flags &= ~LBF_ALL_PINNED;
9068		return 0;
9069	}
9070
9071	if (env->imbalance <= 0)
9072		return 0;
9073
9074	while (!list_empty(tasks)) {
9075		/*
9076		 * We don't want to steal all, otherwise we may be treated likewise,
9077		 * which could at worst lead to a livelock crash.
9078		 */
9079		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9080			break;
9081
9082		env->loop++;
9083		/*
9084		 * We've more or less seen every task there is, call it quits
9085		 * unless we haven't found any movable task yet.
9086		 */
9087		if (env->loop > env->loop_max &&
9088		    !(env->flags & LBF_ALL_PINNED))
9089			break;
9090
9091		/* take a breather every nr_migrate tasks */
9092		if (env->loop > env->loop_break) {
9093			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9094			env->flags |= LBF_NEED_BREAK;
9095			break;
9096		}
9097
9098		p = list_last_entry(tasks, struct task_struct, se.group_node);
9099
9100		if (!can_migrate_task(p, env))
9101			goto next;
9102
9103		switch (env->migration_type) {
9104		case migrate_load:
9105			/*
9106			 * Depending of the number of CPUs and tasks and the
9107			 * cgroup hierarchy, task_h_load() can return a null
9108			 * value. Make sure that env->imbalance decreases
9109			 * otherwise detach_tasks() will stop only after
9110			 * detaching up to loop_max tasks.
9111			 */
9112			load = max_t(unsigned long, task_h_load(p), 1);
9113
9114			if (sched_feat(LB_MIN) &&
9115			    load < 16 && !env->sd->nr_balance_failed)
9116				goto next;
9117
9118			/*
9119			 * Make sure that we don't migrate too much load.
9120			 * Nevertheless, let relax the constraint if
9121			 * scheduler fails to find a good waiting task to
9122			 * migrate.
9123			 */
9124			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9125				goto next;
9126
9127			env->imbalance -= load;
9128			break;
9129
9130		case migrate_util:
9131			util = task_util_est(p);
9132
9133			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9134				goto next;
9135
9136			env->imbalance -= util;
9137			break;
9138
9139		case migrate_task:
9140			env->imbalance--;
9141			break;
9142
9143		case migrate_misfit:
9144			/* This is not a misfit task */
9145			if (task_fits_cpu(p, env->src_cpu))
9146				goto next;
9147
9148			env->imbalance = 0;
9149			break;
9150		}
9151
9152		detach_task(p, env);
9153		list_add(&p->se.group_node, &env->tasks);
9154
9155		detached++;
9156
9157#ifdef CONFIG_PREEMPTION
9158		/*
9159		 * NEWIDLE balancing is a source of latency, so preemptible
9160		 * kernels will stop after the first task is detached to minimize
9161		 * the critical section.
9162		 */
9163		if (env->idle == CPU_NEWLY_IDLE)
9164			break;
9165#endif
9166
9167		/*
9168		 * We only want to steal up to the prescribed amount of
9169		 * load/util/tasks.
9170		 */
9171		if (env->imbalance <= 0)
9172			break;
9173
9174		continue;
9175next:
9176		list_move(&p->se.group_node, tasks);
9177	}
9178
9179	/*
9180	 * Right now, this is one of only two places we collect this stat
9181	 * so we can safely collect detach_one_task() stats here rather
9182	 * than inside detach_one_task().
9183	 */
9184	schedstat_add(env->sd->lb_gained[env->idle], detached);
9185
9186	return detached;
9187}
9188
9189/*
9190 * attach_task() -- attach the task detached by detach_task() to its new rq.
9191 */
9192static void attach_task(struct rq *rq, struct task_struct *p)
9193{
9194	lockdep_assert_rq_held(rq);
9195
9196	WARN_ON_ONCE(task_rq(p) != rq);
9197	activate_task(rq, p, ENQUEUE_NOCLOCK);
9198	wakeup_preempt(rq, p, 0);
9199}
9200
9201/*
9202 * attach_one_task() -- attaches the task returned from detach_one_task() to
9203 * its new rq.
9204 */
9205static void attach_one_task(struct rq *rq, struct task_struct *p)
9206{
9207	struct rq_flags rf;
9208
9209	rq_lock(rq, &rf);
9210	update_rq_clock(rq);
9211	attach_task(rq, p);
9212	rq_unlock(rq, &rf);
9213}
9214
9215/*
9216 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9217 * new rq.
9218 */
9219static void attach_tasks(struct lb_env *env)
9220{
9221	struct list_head *tasks = &env->tasks;
9222	struct task_struct *p;
9223	struct rq_flags rf;
9224
9225	rq_lock(env->dst_rq, &rf);
9226	update_rq_clock(env->dst_rq);
9227
9228	while (!list_empty(tasks)) {
9229		p = list_first_entry(tasks, struct task_struct, se.group_node);
9230		list_del_init(&p->se.group_node);
9231
9232		attach_task(env->dst_rq, p);
9233	}
9234
9235	rq_unlock(env->dst_rq, &rf);
9236}
9237
9238#ifdef CONFIG_NO_HZ_COMMON
9239static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9240{
9241	if (cfs_rq->avg.load_avg)
9242		return true;
9243
9244	if (cfs_rq->avg.util_avg)
9245		return true;
9246
9247	return false;
9248}
9249
9250static inline bool others_have_blocked(struct rq *rq)
9251{
9252	if (cpu_util_rt(rq))
9253		return true;
9254
9255	if (cpu_util_dl(rq))
9256		return true;
9257
9258	if (thermal_load_avg(rq))
9259		return true;
9260
9261	if (cpu_util_irq(rq))
9262		return true;
9263
9264	return false;
9265}
9266
9267static inline void update_blocked_load_tick(struct rq *rq)
9268{
9269	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9270}
9271
9272static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9273{
9274	if (!has_blocked)
9275		rq->has_blocked_load = 0;
9276}
9277#else
9278static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9279static inline bool others_have_blocked(struct rq *rq) { return false; }
9280static inline void update_blocked_load_tick(struct rq *rq) {}
9281static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9282#endif
9283
9284static bool __update_blocked_others(struct rq *rq, bool *done)
9285{
9286	const struct sched_class *curr_class;
9287	u64 now = rq_clock_pelt(rq);
9288	unsigned long thermal_pressure;
9289	bool decayed;
9290
9291	/*
9292	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9293	 * DL and IRQ signals have been updated before updating CFS.
9294	 */
9295	curr_class = rq->curr->sched_class;
9296
9297	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9298
9299	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9300		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9301		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9302		  update_irq_load_avg(rq, 0);
9303
9304	if (others_have_blocked(rq))
9305		*done = false;
9306
9307	return decayed;
9308}
9309
9310#ifdef CONFIG_FAIR_GROUP_SCHED
9311
9312static bool __update_blocked_fair(struct rq *rq, bool *done)
9313{
9314	struct cfs_rq *cfs_rq, *pos;
9315	bool decayed = false;
9316	int cpu = cpu_of(rq);
9317
9318	/*
9319	 * Iterates the task_group tree in a bottom up fashion, see
9320	 * list_add_leaf_cfs_rq() for details.
9321	 */
9322	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9323		struct sched_entity *se;
9324
9325		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9326			update_tg_load_avg(cfs_rq);
9327
9328			if (cfs_rq->nr_running == 0)
9329				update_idle_cfs_rq_clock_pelt(cfs_rq);
9330
9331			if (cfs_rq == &rq->cfs)
9332				decayed = true;
9333		}
9334
9335		/* Propagate pending load changes to the parent, if any: */
9336		se = cfs_rq->tg->se[cpu];
9337		if (se && !skip_blocked_update(se))
9338			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9339
9340		/*
9341		 * There can be a lot of idle CPU cgroups.  Don't let fully
9342		 * decayed cfs_rqs linger on the list.
9343		 */
9344		if (cfs_rq_is_decayed(cfs_rq))
9345			list_del_leaf_cfs_rq(cfs_rq);
9346
9347		/* Don't need periodic decay once load/util_avg are null */
9348		if (cfs_rq_has_blocked(cfs_rq))
9349			*done = false;
9350	}
9351
9352	return decayed;
9353}
9354
9355/*
9356 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9357 * This needs to be done in a top-down fashion because the load of a child
9358 * group is a fraction of its parents load.
9359 */
9360static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9361{
9362	struct rq *rq = rq_of(cfs_rq);
9363	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9364	unsigned long now = jiffies;
9365	unsigned long load;
9366
9367	if (cfs_rq->last_h_load_update == now)
9368		return;
9369
9370	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9371	for_each_sched_entity(se) {
9372		cfs_rq = cfs_rq_of(se);
9373		WRITE_ONCE(cfs_rq->h_load_next, se);
9374		if (cfs_rq->last_h_load_update == now)
9375			break;
9376	}
9377
9378	if (!se) {
9379		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9380		cfs_rq->last_h_load_update = now;
9381	}
9382
9383	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9384		load = cfs_rq->h_load;
9385		load = div64_ul(load * se->avg.load_avg,
9386			cfs_rq_load_avg(cfs_rq) + 1);
9387		cfs_rq = group_cfs_rq(se);
9388		cfs_rq->h_load = load;
9389		cfs_rq->last_h_load_update = now;
9390	}
9391}
9392
9393static unsigned long task_h_load(struct task_struct *p)
9394{
9395	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9396
9397	update_cfs_rq_h_load(cfs_rq);
9398	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9399			cfs_rq_load_avg(cfs_rq) + 1);
9400}
9401#else
9402static bool __update_blocked_fair(struct rq *rq, bool *done)
9403{
9404	struct cfs_rq *cfs_rq = &rq->cfs;
9405	bool decayed;
9406
9407	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9408	if (cfs_rq_has_blocked(cfs_rq))
9409		*done = false;
9410
9411	return decayed;
9412}
9413
9414static unsigned long task_h_load(struct task_struct *p)
9415{
9416	return p->se.avg.load_avg;
9417}
9418#endif
9419
9420static void update_blocked_averages(int cpu)
9421{
9422	bool decayed = false, done = true;
9423	struct rq *rq = cpu_rq(cpu);
9424	struct rq_flags rf;
9425
9426	rq_lock_irqsave(rq, &rf);
9427	update_blocked_load_tick(rq);
9428	update_rq_clock(rq);
9429
9430	decayed |= __update_blocked_others(rq, &done);
9431	decayed |= __update_blocked_fair(rq, &done);
9432
9433	update_blocked_load_status(rq, !done);
9434	if (decayed)
9435		cpufreq_update_util(rq, 0);
9436	rq_unlock_irqrestore(rq, &rf);
9437}
9438
9439/********** Helpers for find_busiest_group ************************/
9440
9441/*
9442 * sg_lb_stats - stats of a sched_group required for load_balancing
9443 */
9444struct sg_lb_stats {
9445	unsigned long avg_load; /*Avg load across the CPUs of the group */
9446	unsigned long group_load; /* Total load over the CPUs of the group */
9447	unsigned long group_capacity;
9448	unsigned long group_util; /* Total utilization over the CPUs of the group */
9449	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9450	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9451	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9452	unsigned int idle_cpus;
9453	unsigned int group_weight;
9454	enum group_type group_type;
9455	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9456	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9457	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9458#ifdef CONFIG_NUMA_BALANCING
9459	unsigned int nr_numa_running;
9460	unsigned int nr_preferred_running;
9461#endif
9462};
9463
9464/*
9465 * sd_lb_stats - Structure to store the statistics of a sched_domain
9466 *		 during load balancing.
9467 */
9468struct sd_lb_stats {
9469	struct sched_group *busiest;	/* Busiest group in this sd */
9470	struct sched_group *local;	/* Local group in this sd */
9471	unsigned long total_load;	/* Total load of all groups in sd */
9472	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9473	unsigned long avg_load;	/* Average load across all groups in sd */
9474	unsigned int prefer_sibling; /* tasks should go to sibling first */
9475
9476	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9477	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9478};
9479
9480static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9481{
9482	/*
9483	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9484	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9485	 * We must however set busiest_stat::group_type and
9486	 * busiest_stat::idle_cpus to the worst busiest group because
9487	 * update_sd_pick_busiest() reads these before assignment.
9488	 */
9489	*sds = (struct sd_lb_stats){
9490		.busiest = NULL,
9491		.local = NULL,
9492		.total_load = 0UL,
9493		.total_capacity = 0UL,
9494		.busiest_stat = {
9495			.idle_cpus = UINT_MAX,
9496			.group_type = group_has_spare,
9497		},
9498	};
9499}
9500
9501static unsigned long scale_rt_capacity(int cpu)
9502{
9503	struct rq *rq = cpu_rq(cpu);
9504	unsigned long max = arch_scale_cpu_capacity(cpu);
9505	unsigned long used, free;
9506	unsigned long irq;
9507
9508	irq = cpu_util_irq(rq);
9509
9510	if (unlikely(irq >= max))
9511		return 1;
9512
9513	/*
9514	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9515	 * (running and not running) with weights 0 and 1024 respectively.
9516	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9517	 * average uses the actual delta max capacity(load).
9518	 */
9519	used = cpu_util_rt(rq);
9520	used += cpu_util_dl(rq);
9521	used += thermal_load_avg(rq);
9522
9523	if (unlikely(used >= max))
9524		return 1;
9525
9526	free = max - used;
9527
9528	return scale_irq_capacity(free, irq, max);
9529}
9530
9531static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9532{
9533	unsigned long capacity = scale_rt_capacity(cpu);
9534	struct sched_group *sdg = sd->groups;
9535
9536	if (!capacity)
9537		capacity = 1;
9538
9539	cpu_rq(cpu)->cpu_capacity = capacity;
9540	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9541
9542	sdg->sgc->capacity = capacity;
9543	sdg->sgc->min_capacity = capacity;
9544	sdg->sgc->max_capacity = capacity;
9545}
9546
9547void update_group_capacity(struct sched_domain *sd, int cpu)
9548{
9549	struct sched_domain *child = sd->child;
9550	struct sched_group *group, *sdg = sd->groups;
9551	unsigned long capacity, min_capacity, max_capacity;
9552	unsigned long interval;
9553
9554	interval = msecs_to_jiffies(sd->balance_interval);
9555	interval = clamp(interval, 1UL, max_load_balance_interval);
9556	sdg->sgc->next_update = jiffies + interval;
9557
9558	if (!child) {
9559		update_cpu_capacity(sd, cpu);
9560		return;
9561	}
9562
9563	capacity = 0;
9564	min_capacity = ULONG_MAX;
9565	max_capacity = 0;
9566
9567	if (child->flags & SD_OVERLAP) {
9568		/*
9569		 * SD_OVERLAP domains cannot assume that child groups
9570		 * span the current group.
9571		 */
9572
9573		for_each_cpu(cpu, sched_group_span(sdg)) {
9574			unsigned long cpu_cap = capacity_of(cpu);
9575
9576			capacity += cpu_cap;
9577			min_capacity = min(cpu_cap, min_capacity);
9578			max_capacity = max(cpu_cap, max_capacity);
9579		}
9580	} else  {
9581		/*
9582		 * !SD_OVERLAP domains can assume that child groups
9583		 * span the current group.
9584		 */
9585
9586		group = child->groups;
9587		do {
9588			struct sched_group_capacity *sgc = group->sgc;
9589
9590			capacity += sgc->capacity;
9591			min_capacity = min(sgc->min_capacity, min_capacity);
9592			max_capacity = max(sgc->max_capacity, max_capacity);
9593			group = group->next;
9594		} while (group != child->groups);
9595	}
9596
9597	sdg->sgc->capacity = capacity;
9598	sdg->sgc->min_capacity = min_capacity;
9599	sdg->sgc->max_capacity = max_capacity;
9600}
9601
9602/*
9603 * Check whether the capacity of the rq has been noticeably reduced by side
9604 * activity. The imbalance_pct is used for the threshold.
9605 * Return true is the capacity is reduced
9606 */
9607static inline int
9608check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9609{
9610	return ((rq->cpu_capacity * sd->imbalance_pct) <
9611				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9612}
9613
9614/*
9615 * Check whether a rq has a misfit task and if it looks like we can actually
9616 * help that task: we can migrate the task to a CPU of higher capacity, or
9617 * the task's current CPU is heavily pressured.
9618 */
9619static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9620{
9621	return rq->misfit_task_load &&
9622		(arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
9623		 check_cpu_capacity(rq, sd));
9624}
9625
9626/*
9627 * Group imbalance indicates (and tries to solve) the problem where balancing
9628 * groups is inadequate due to ->cpus_ptr constraints.
9629 *
9630 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9631 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9632 * Something like:
9633 *
9634 *	{ 0 1 2 3 } { 4 5 6 7 }
9635 *	        *     * * *
9636 *
9637 * If we were to balance group-wise we'd place two tasks in the first group and
9638 * two tasks in the second group. Clearly this is undesired as it will overload
9639 * cpu 3 and leave one of the CPUs in the second group unused.
9640 *
9641 * The current solution to this issue is detecting the skew in the first group
9642 * by noticing the lower domain failed to reach balance and had difficulty
9643 * moving tasks due to affinity constraints.
9644 *
9645 * When this is so detected; this group becomes a candidate for busiest; see
9646 * update_sd_pick_busiest(). And calculate_imbalance() and
9647 * find_busiest_group() avoid some of the usual balance conditions to allow it
9648 * to create an effective group imbalance.
9649 *
9650 * This is a somewhat tricky proposition since the next run might not find the
9651 * group imbalance and decide the groups need to be balanced again. A most
9652 * subtle and fragile situation.
9653 */
9654
9655static inline int sg_imbalanced(struct sched_group *group)
9656{
9657	return group->sgc->imbalance;
9658}
9659
9660/*
9661 * group_has_capacity returns true if the group has spare capacity that could
9662 * be used by some tasks.
9663 * We consider that a group has spare capacity if the number of task is
9664 * smaller than the number of CPUs or if the utilization is lower than the
9665 * available capacity for CFS tasks.
9666 * For the latter, we use a threshold to stabilize the state, to take into
9667 * account the variance of the tasks' load and to return true if the available
9668 * capacity in meaningful for the load balancer.
9669 * As an example, an available capacity of 1% can appear but it doesn't make
9670 * any benefit for the load balance.
9671 */
9672static inline bool
9673group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9674{
9675	if (sgs->sum_nr_running < sgs->group_weight)
9676		return true;
9677
9678	if ((sgs->group_capacity * imbalance_pct) <
9679			(sgs->group_runnable * 100))
9680		return false;
9681
9682	if ((sgs->group_capacity * 100) >
9683			(sgs->group_util * imbalance_pct))
9684		return true;
9685
9686	return false;
9687}
9688
9689/*
9690 *  group_is_overloaded returns true if the group has more tasks than it can
9691 *  handle.
9692 *  group_is_overloaded is not equals to !group_has_capacity because a group
9693 *  with the exact right number of tasks, has no more spare capacity but is not
9694 *  overloaded so both group_has_capacity and group_is_overloaded return
9695 *  false.
9696 */
9697static inline bool
9698group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9699{
9700	if (sgs->sum_nr_running <= sgs->group_weight)
9701		return false;
9702
9703	if ((sgs->group_capacity * 100) <
9704			(sgs->group_util * imbalance_pct))
9705		return true;
9706
9707	if ((sgs->group_capacity * imbalance_pct) <
9708			(sgs->group_runnable * 100))
9709		return true;
9710
9711	return false;
9712}
9713
9714static inline enum
9715group_type group_classify(unsigned int imbalance_pct,
9716			  struct sched_group *group,
9717			  struct sg_lb_stats *sgs)
9718{
9719	if (group_is_overloaded(imbalance_pct, sgs))
9720		return group_overloaded;
9721
9722	if (sg_imbalanced(group))
9723		return group_imbalanced;
9724
9725	if (sgs->group_asym_packing)
9726		return group_asym_packing;
9727
9728	if (sgs->group_smt_balance)
9729		return group_smt_balance;
9730
9731	if (sgs->group_misfit_task_load)
9732		return group_misfit_task;
9733
9734	if (!group_has_capacity(imbalance_pct, sgs))
9735		return group_fully_busy;
9736
9737	return group_has_spare;
9738}
9739
9740/**
9741 * sched_use_asym_prio - Check whether asym_packing priority must be used
9742 * @sd:		The scheduling domain of the load balancing
9743 * @cpu:	A CPU
9744 *
9745 * Always use CPU priority when balancing load between SMT siblings. When
9746 * balancing load between cores, it is not sufficient that @cpu is idle. Only
9747 * use CPU priority if the whole core is idle.
9748 *
9749 * Returns: True if the priority of @cpu must be followed. False otherwise.
9750 */
9751static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9752{
9753	if (!(sd->flags & SD_ASYM_PACKING))
9754		return false;
9755
9756	if (!sched_smt_active())
9757		return true;
9758
9759	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9760}
9761
9762static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
9763{
9764	/*
9765	 * First check if @dst_cpu can do asym_packing load balance. Only do it
9766	 * if it has higher priority than @src_cpu.
9767	 */
9768	return sched_use_asym_prio(sd, dst_cpu) &&
9769		sched_asym_prefer(dst_cpu, src_cpu);
9770}
9771
9772/**
9773 * sched_group_asym - Check if the destination CPU can do asym_packing balance
9774 * @env:	The load balancing environment
9775 * @sgs:	Load-balancing statistics of the candidate busiest group
9776 * @group:	The candidate busiest group
9777 *
9778 * @env::dst_cpu can do asym_packing if it has higher priority than the
9779 * preferred CPU of @group.
9780 *
9781 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9782 * otherwise.
9783 */
9784static inline bool
9785sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
9786{
9787	/*
9788	 * CPU priorities do not make sense for SMT cores with more than one
9789	 * busy sibling.
9790	 */
9791	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
9792	    (sgs->group_weight - sgs->idle_cpus != 1))
9793		return false;
9794
9795	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
9796}
9797
9798/* One group has more than one SMT CPU while the other group does not */
9799static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9800				    struct sched_group *sg2)
9801{
9802	if (!sg1 || !sg2)
9803		return false;
9804
9805	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9806		(sg2->flags & SD_SHARE_CPUCAPACITY);
9807}
9808
9809static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9810			       struct sched_group *group)
9811{
9812	if (env->idle == CPU_NOT_IDLE)
9813		return false;
9814
9815	/*
9816	 * For SMT source group, it is better to move a task
9817	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9818	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9819	 * will not be on.
9820	 */
9821	if (group->flags & SD_SHARE_CPUCAPACITY &&
9822	    sgs->sum_h_nr_running > 1)
9823		return true;
9824
9825	return false;
9826}
9827
9828static inline long sibling_imbalance(struct lb_env *env,
9829				    struct sd_lb_stats *sds,
9830				    struct sg_lb_stats *busiest,
9831				    struct sg_lb_stats *local)
9832{
9833	int ncores_busiest, ncores_local;
9834	long imbalance;
9835
9836	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9837		return 0;
9838
9839	ncores_busiest = sds->busiest->cores;
9840	ncores_local = sds->local->cores;
9841
9842	if (ncores_busiest == ncores_local) {
9843		imbalance = busiest->sum_nr_running;
9844		lsub_positive(&imbalance, local->sum_nr_running);
9845		return imbalance;
9846	}
9847
9848	/* Balance such that nr_running/ncores ratio are same on both groups */
9849	imbalance = ncores_local * busiest->sum_nr_running;
9850	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9851	/* Normalize imbalance and do rounding on normalization */
9852	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9853	imbalance /= ncores_local + ncores_busiest;
9854
9855	/* Take advantage of resource in an empty sched group */
9856	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9857	    busiest->sum_nr_running > 1)
9858		imbalance = 2;
9859
9860	return imbalance;
9861}
9862
9863static inline bool
9864sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9865{
9866	/*
9867	 * When there is more than 1 task, the group_overloaded case already
9868	 * takes care of cpu with reduced capacity
9869	 */
9870	if (rq->cfs.h_nr_running != 1)
9871		return false;
9872
9873	return check_cpu_capacity(rq, sd);
9874}
9875
9876/**
9877 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9878 * @env: The load balancing environment.
9879 * @sds: Load-balancing data with statistics of the local group.
9880 * @group: sched_group whose statistics are to be updated.
9881 * @sgs: variable to hold the statistics for this group.
9882 * @sg_status: Holds flag indicating the status of the sched_group
9883 */
9884static inline void update_sg_lb_stats(struct lb_env *env,
9885				      struct sd_lb_stats *sds,
9886				      struct sched_group *group,
9887				      struct sg_lb_stats *sgs,
9888				      int *sg_status)
9889{
9890	int i, nr_running, local_group;
9891
9892	memset(sgs, 0, sizeof(*sgs));
9893
9894	local_group = group == sds->local;
9895
9896	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9897		struct rq *rq = cpu_rq(i);
9898		unsigned long load = cpu_load(rq);
9899
9900		sgs->group_load += load;
9901		sgs->group_util += cpu_util_cfs(i);
9902		sgs->group_runnable += cpu_runnable(rq);
9903		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9904
9905		nr_running = rq->nr_running;
9906		sgs->sum_nr_running += nr_running;
9907
9908		if (nr_running > 1)
9909			*sg_status |= SG_OVERLOAD;
9910
9911		if (cpu_overutilized(i))
9912			*sg_status |= SG_OVERUTILIZED;
9913
9914#ifdef CONFIG_NUMA_BALANCING
9915		sgs->nr_numa_running += rq->nr_numa_running;
9916		sgs->nr_preferred_running += rq->nr_preferred_running;
9917#endif
9918		/*
9919		 * No need to call idle_cpu() if nr_running is not 0
9920		 */
9921		if (!nr_running && idle_cpu(i)) {
9922			sgs->idle_cpus++;
9923			/* Idle cpu can't have misfit task */
9924			continue;
9925		}
9926
9927		if (local_group)
9928			continue;
9929
9930		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9931			/* Check for a misfit task on the cpu */
9932			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9933				sgs->group_misfit_task_load = rq->misfit_task_load;
9934				*sg_status |= SG_OVERLOAD;
9935			}
9936		} else if ((env->idle != CPU_NOT_IDLE) &&
9937			   sched_reduced_capacity(rq, env->sd)) {
9938			/* Check for a task running on a CPU with reduced capacity */
9939			if (sgs->group_misfit_task_load < load)
9940				sgs->group_misfit_task_load = load;
9941		}
9942	}
9943
9944	sgs->group_capacity = group->sgc->capacity;
9945
9946	sgs->group_weight = group->group_weight;
9947
9948	/* Check if dst CPU is idle and preferred to this group */
9949	if (!local_group && env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9950	    sched_group_asym(env, sgs, group))
9951		sgs->group_asym_packing = 1;
9952
9953	/* Check for loaded SMT group to be balanced to dst CPU */
9954	if (!local_group && smt_balance(env, sgs, group))
9955		sgs->group_smt_balance = 1;
9956
9957	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9958
9959	/* Computing avg_load makes sense only when group is overloaded */
9960	if (sgs->group_type == group_overloaded)
9961		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9962				sgs->group_capacity;
9963}
9964
9965/**
9966 * update_sd_pick_busiest - return 1 on busiest group
9967 * @env: The load balancing environment.
9968 * @sds: sched_domain statistics
9969 * @sg: sched_group candidate to be checked for being the busiest
9970 * @sgs: sched_group statistics
9971 *
9972 * Determine if @sg is a busier group than the previously selected
9973 * busiest group.
9974 *
9975 * Return: %true if @sg is a busier group than the previously selected
9976 * busiest group. %false otherwise.
9977 */
9978static bool update_sd_pick_busiest(struct lb_env *env,
9979				   struct sd_lb_stats *sds,
9980				   struct sched_group *sg,
9981				   struct sg_lb_stats *sgs)
9982{
9983	struct sg_lb_stats *busiest = &sds->busiest_stat;
9984
9985	/* Make sure that there is at least one task to pull */
9986	if (!sgs->sum_h_nr_running)
9987		return false;
9988
9989	/*
9990	 * Don't try to pull misfit tasks we can't help.
9991	 * We can use max_capacity here as reduction in capacity on some
9992	 * CPUs in the group should either be possible to resolve
9993	 * internally or be covered by avg_load imbalance (eventually).
9994	 */
9995	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9996	    (sgs->group_type == group_misfit_task) &&
9997	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9998	     sds->local_stat.group_type != group_has_spare))
9999		return false;
10000
10001	if (sgs->group_type > busiest->group_type)
10002		return true;
10003
10004	if (sgs->group_type < busiest->group_type)
10005		return false;
10006
10007	/*
10008	 * The candidate and the current busiest group are the same type of
10009	 * group. Let check which one is the busiest according to the type.
10010	 */
10011
10012	switch (sgs->group_type) {
10013	case group_overloaded:
10014		/* Select the overloaded group with highest avg_load. */
10015		return sgs->avg_load > busiest->avg_load;
10016
10017	case group_imbalanced:
10018		/*
10019		 * Select the 1st imbalanced group as we don't have any way to
10020		 * choose one more than another.
10021		 */
10022		return false;
10023
10024	case group_asym_packing:
10025		/* Prefer to move from lowest priority CPU's work */
10026		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10027
10028	case group_misfit_task:
10029		/*
10030		 * If we have more than one misfit sg go with the biggest
10031		 * misfit.
10032		 */
10033		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10034
10035	case group_smt_balance:
10036		/*
10037		 * Check if we have spare CPUs on either SMT group to
10038		 * choose has spare or fully busy handling.
10039		 */
10040		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10041			goto has_spare;
10042
10043		fallthrough;
10044
10045	case group_fully_busy:
10046		/*
10047		 * Select the fully busy group with highest avg_load. In
10048		 * theory, there is no need to pull task from such kind of
10049		 * group because tasks have all compute capacity that they need
10050		 * but we can still improve the overall throughput by reducing
10051		 * contention when accessing shared HW resources.
10052		 *
10053		 * XXX for now avg_load is not computed and always 0 so we
10054		 * select the 1st one, except if @sg is composed of SMT
10055		 * siblings.
10056		 */
10057
10058		if (sgs->avg_load < busiest->avg_load)
10059			return false;
10060
10061		if (sgs->avg_load == busiest->avg_load) {
10062			/*
10063			 * SMT sched groups need more help than non-SMT groups.
10064			 * If @sg happens to also be SMT, either choice is good.
10065			 */
10066			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10067				return false;
10068		}
10069
10070		break;
10071
10072	case group_has_spare:
10073		/*
10074		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10075		 * as we do not want to pull task off SMT core with one task
10076		 * and make the core idle.
10077		 */
10078		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10079			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10080				return false;
10081			else
10082				return true;
10083		}
10084has_spare:
10085
10086		/*
10087		 * Select not overloaded group with lowest number of idle cpus
10088		 * and highest number of running tasks. We could also compare
10089		 * the spare capacity which is more stable but it can end up
10090		 * that the group has less spare capacity but finally more idle
10091		 * CPUs which means less opportunity to pull tasks.
10092		 */
10093		if (sgs->idle_cpus > busiest->idle_cpus)
10094			return false;
10095		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10096			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10097			return false;
10098
10099		break;
10100	}
10101
10102	/*
10103	 * Candidate sg has no more than one task per CPU and has higher
10104	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10105	 * throughput. Maximize throughput, power/energy consequences are not
10106	 * considered.
10107	 */
10108	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10109	    (sgs->group_type <= group_fully_busy) &&
10110	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10111		return false;
10112
10113	return true;
10114}
10115
10116#ifdef CONFIG_NUMA_BALANCING
10117static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10118{
10119	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10120		return regular;
10121	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10122		return remote;
10123	return all;
10124}
10125
10126static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10127{
10128	if (rq->nr_running > rq->nr_numa_running)
10129		return regular;
10130	if (rq->nr_running > rq->nr_preferred_running)
10131		return remote;
10132	return all;
10133}
10134#else
10135static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10136{
10137	return all;
10138}
10139
10140static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10141{
10142	return regular;
10143}
10144#endif /* CONFIG_NUMA_BALANCING */
10145
10146
10147struct sg_lb_stats;
10148
10149/*
10150 * task_running_on_cpu - return 1 if @p is running on @cpu.
10151 */
10152
10153static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10154{
10155	/* Task has no contribution or is new */
10156	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10157		return 0;
10158
10159	if (task_on_rq_queued(p))
10160		return 1;
10161
10162	return 0;
10163}
10164
10165/**
10166 * idle_cpu_without - would a given CPU be idle without p ?
10167 * @cpu: the processor on which idleness is tested.
10168 * @p: task which should be ignored.
10169 *
10170 * Return: 1 if the CPU would be idle. 0 otherwise.
10171 */
10172static int idle_cpu_without(int cpu, struct task_struct *p)
10173{
10174	struct rq *rq = cpu_rq(cpu);
10175
10176	if (rq->curr != rq->idle && rq->curr != p)
10177		return 0;
10178
10179	/*
10180	 * rq->nr_running can't be used but an updated version without the
10181	 * impact of p on cpu must be used instead. The updated nr_running
10182	 * be computed and tested before calling idle_cpu_without().
10183	 */
10184
10185	if (rq->ttwu_pending)
10186		return 0;
10187
10188	return 1;
10189}
10190
10191/*
10192 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10193 * @sd: The sched_domain level to look for idlest group.
10194 * @group: sched_group whose statistics are to be updated.
10195 * @sgs: variable to hold the statistics for this group.
10196 * @p: The task for which we look for the idlest group/CPU.
10197 */
10198static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10199					  struct sched_group *group,
10200					  struct sg_lb_stats *sgs,
10201					  struct task_struct *p)
10202{
10203	int i, nr_running;
10204
10205	memset(sgs, 0, sizeof(*sgs));
10206
10207	/* Assume that task can't fit any CPU of the group */
10208	if (sd->flags & SD_ASYM_CPUCAPACITY)
10209		sgs->group_misfit_task_load = 1;
10210
10211	for_each_cpu(i, sched_group_span(group)) {
10212		struct rq *rq = cpu_rq(i);
10213		unsigned int local;
10214
10215		sgs->group_load += cpu_load_without(rq, p);
10216		sgs->group_util += cpu_util_without(i, p);
10217		sgs->group_runnable += cpu_runnable_without(rq, p);
10218		local = task_running_on_cpu(i, p);
10219		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10220
10221		nr_running = rq->nr_running - local;
10222		sgs->sum_nr_running += nr_running;
10223
10224		/*
10225		 * No need to call idle_cpu_without() if nr_running is not 0
10226		 */
10227		if (!nr_running && idle_cpu_without(i, p))
10228			sgs->idle_cpus++;
10229
10230		/* Check if task fits in the CPU */
10231		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10232		    sgs->group_misfit_task_load &&
10233		    task_fits_cpu(p, i))
10234			sgs->group_misfit_task_load = 0;
10235
10236	}
10237
10238	sgs->group_capacity = group->sgc->capacity;
10239
10240	sgs->group_weight = group->group_weight;
10241
10242	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10243
10244	/*
10245	 * Computing avg_load makes sense only when group is fully busy or
10246	 * overloaded
10247	 */
10248	if (sgs->group_type == group_fully_busy ||
10249		sgs->group_type == group_overloaded)
10250		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10251				sgs->group_capacity;
10252}
10253
10254static bool update_pick_idlest(struct sched_group *idlest,
10255			       struct sg_lb_stats *idlest_sgs,
10256			       struct sched_group *group,
10257			       struct sg_lb_stats *sgs)
10258{
10259	if (sgs->group_type < idlest_sgs->group_type)
10260		return true;
10261
10262	if (sgs->group_type > idlest_sgs->group_type)
10263		return false;
10264
10265	/*
10266	 * The candidate and the current idlest group are the same type of
10267	 * group. Let check which one is the idlest according to the type.
10268	 */
10269
10270	switch (sgs->group_type) {
10271	case group_overloaded:
10272	case group_fully_busy:
10273		/* Select the group with lowest avg_load. */
10274		if (idlest_sgs->avg_load <= sgs->avg_load)
10275			return false;
10276		break;
10277
10278	case group_imbalanced:
10279	case group_asym_packing:
10280	case group_smt_balance:
10281		/* Those types are not used in the slow wakeup path */
10282		return false;
10283
10284	case group_misfit_task:
10285		/* Select group with the highest max capacity */
10286		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10287			return false;
10288		break;
10289
10290	case group_has_spare:
10291		/* Select group with most idle CPUs */
10292		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10293			return false;
10294
10295		/* Select group with lowest group_util */
10296		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10297			idlest_sgs->group_util <= sgs->group_util)
10298			return false;
10299
10300		break;
10301	}
10302
10303	return true;
10304}
10305
10306/*
10307 * find_idlest_group() finds and returns the least busy CPU group within the
10308 * domain.
10309 *
10310 * Assumes p is allowed on at least one CPU in sd.
10311 */
10312static struct sched_group *
10313find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10314{
10315	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10316	struct sg_lb_stats local_sgs, tmp_sgs;
10317	struct sg_lb_stats *sgs;
10318	unsigned long imbalance;
10319	struct sg_lb_stats idlest_sgs = {
10320			.avg_load = UINT_MAX,
10321			.group_type = group_overloaded,
10322	};
10323
10324	do {
10325		int local_group;
10326
10327		/* Skip over this group if it has no CPUs allowed */
10328		if (!cpumask_intersects(sched_group_span(group),
10329					p->cpus_ptr))
10330			continue;
10331
10332		/* Skip over this group if no cookie matched */
10333		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10334			continue;
10335
10336		local_group = cpumask_test_cpu(this_cpu,
10337					       sched_group_span(group));
10338
10339		if (local_group) {
10340			sgs = &local_sgs;
10341			local = group;
10342		} else {
10343			sgs = &tmp_sgs;
10344		}
10345
10346		update_sg_wakeup_stats(sd, group, sgs, p);
10347
10348		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10349			idlest = group;
10350			idlest_sgs = *sgs;
10351		}
10352
10353	} while (group = group->next, group != sd->groups);
10354
10355
10356	/* There is no idlest group to push tasks to */
10357	if (!idlest)
10358		return NULL;
10359
10360	/* The local group has been skipped because of CPU affinity */
10361	if (!local)
10362		return idlest;
10363
10364	/*
10365	 * If the local group is idler than the selected idlest group
10366	 * don't try and push the task.
10367	 */
10368	if (local_sgs.group_type < idlest_sgs.group_type)
10369		return NULL;
10370
10371	/*
10372	 * If the local group is busier than the selected idlest group
10373	 * try and push the task.
10374	 */
10375	if (local_sgs.group_type > idlest_sgs.group_type)
10376		return idlest;
10377
10378	switch (local_sgs.group_type) {
10379	case group_overloaded:
10380	case group_fully_busy:
10381
10382		/* Calculate allowed imbalance based on load */
10383		imbalance = scale_load_down(NICE_0_LOAD) *
10384				(sd->imbalance_pct-100) / 100;
10385
10386		/*
10387		 * When comparing groups across NUMA domains, it's possible for
10388		 * the local domain to be very lightly loaded relative to the
10389		 * remote domains but "imbalance" skews the comparison making
10390		 * remote CPUs look much more favourable. When considering
10391		 * cross-domain, add imbalance to the load on the remote node
10392		 * and consider staying local.
10393		 */
10394
10395		if ((sd->flags & SD_NUMA) &&
10396		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10397			return NULL;
10398
10399		/*
10400		 * If the local group is less loaded than the selected
10401		 * idlest group don't try and push any tasks.
10402		 */
10403		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10404			return NULL;
10405
10406		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10407			return NULL;
10408		break;
10409
10410	case group_imbalanced:
10411	case group_asym_packing:
10412	case group_smt_balance:
10413		/* Those type are not used in the slow wakeup path */
10414		return NULL;
10415
10416	case group_misfit_task:
10417		/* Select group with the highest max capacity */
10418		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10419			return NULL;
10420		break;
10421
10422	case group_has_spare:
10423#ifdef CONFIG_NUMA
10424		if (sd->flags & SD_NUMA) {
10425			int imb_numa_nr = sd->imb_numa_nr;
10426#ifdef CONFIG_NUMA_BALANCING
10427			int idlest_cpu;
10428			/*
10429			 * If there is spare capacity at NUMA, try to select
10430			 * the preferred node
10431			 */
10432			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10433				return NULL;
10434
10435			idlest_cpu = cpumask_first(sched_group_span(idlest));
10436			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10437				return idlest;
10438#endif /* CONFIG_NUMA_BALANCING */
10439			/*
10440			 * Otherwise, keep the task close to the wakeup source
10441			 * and improve locality if the number of running tasks
10442			 * would remain below threshold where an imbalance is
10443			 * allowed while accounting for the possibility the
10444			 * task is pinned to a subset of CPUs. If there is a
10445			 * real need of migration, periodic load balance will
10446			 * take care of it.
10447			 */
10448			if (p->nr_cpus_allowed != NR_CPUS) {
10449				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10450
10451				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10452				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10453			}
10454
10455			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10456			if (!adjust_numa_imbalance(imbalance,
10457						   local_sgs.sum_nr_running + 1,
10458						   imb_numa_nr)) {
10459				return NULL;
10460			}
10461		}
10462#endif /* CONFIG_NUMA */
10463
10464		/*
10465		 * Select group with highest number of idle CPUs. We could also
10466		 * compare the utilization which is more stable but it can end
10467		 * up that the group has less spare capacity but finally more
10468		 * idle CPUs which means more opportunity to run task.
10469		 */
10470		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10471			return NULL;
10472		break;
10473	}
10474
10475	return idlest;
10476}
10477
10478static void update_idle_cpu_scan(struct lb_env *env,
10479				 unsigned long sum_util)
10480{
10481	struct sched_domain_shared *sd_share;
10482	int llc_weight, pct;
10483	u64 x, y, tmp;
10484	/*
10485	 * Update the number of CPUs to scan in LLC domain, which could
10486	 * be used as a hint in select_idle_cpu(). The update of sd_share
10487	 * could be expensive because it is within a shared cache line.
10488	 * So the write of this hint only occurs during periodic load
10489	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10490	 * can fire way more frequently than the former.
10491	 */
10492	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10493		return;
10494
10495	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10496	if (env->sd->span_weight != llc_weight)
10497		return;
10498
10499	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10500	if (!sd_share)
10501		return;
10502
10503	/*
10504	 * The number of CPUs to search drops as sum_util increases, when
10505	 * sum_util hits 85% or above, the scan stops.
10506	 * The reason to choose 85% as the threshold is because this is the
10507	 * imbalance_pct(117) when a LLC sched group is overloaded.
10508	 *
10509	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10510	 * and y'= y / SCHED_CAPACITY_SCALE
10511	 *
10512	 * x is the ratio of sum_util compared to the CPU capacity:
10513	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10514	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10515	 * and the number of CPUs to scan is calculated by:
10516	 *
10517	 * nr_scan = llc_weight * y'                                    [2]
10518	 *
10519	 * When x hits the threshold of overloaded, AKA, when
10520	 * x = 100 / pct, y drops to 0. According to [1],
10521	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10522	 *
10523	 * Scale x by SCHED_CAPACITY_SCALE:
10524	 * x' = sum_util / llc_weight;                                  [3]
10525	 *
10526	 * and finally [1] becomes:
10527	 * y = SCHED_CAPACITY_SCALE -
10528	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10529	 *
10530	 */
10531	/* equation [3] */
10532	x = sum_util;
10533	do_div(x, llc_weight);
10534
10535	/* equation [4] */
10536	pct = env->sd->imbalance_pct;
10537	tmp = x * x * pct * pct;
10538	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10539	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10540	y = SCHED_CAPACITY_SCALE - tmp;
10541
10542	/* equation [2] */
10543	y *= llc_weight;
10544	do_div(y, SCHED_CAPACITY_SCALE);
10545	if ((int)y != sd_share->nr_idle_scan)
10546		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10547}
10548
10549/**
10550 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10551 * @env: The load balancing environment.
10552 * @sds: variable to hold the statistics for this sched_domain.
10553 */
10554
10555static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10556{
10557	struct sched_group *sg = env->sd->groups;
10558	struct sg_lb_stats *local = &sds->local_stat;
10559	struct sg_lb_stats tmp_sgs;
10560	unsigned long sum_util = 0;
10561	int sg_status = 0;
10562
10563	do {
10564		struct sg_lb_stats *sgs = &tmp_sgs;
10565		int local_group;
10566
10567		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10568		if (local_group) {
10569			sds->local = sg;
10570			sgs = local;
10571
10572			if (env->idle != CPU_NEWLY_IDLE ||
10573			    time_after_eq(jiffies, sg->sgc->next_update))
10574				update_group_capacity(env->sd, env->dst_cpu);
10575		}
10576
10577		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10578
10579		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10580			sds->busiest = sg;
10581			sds->busiest_stat = *sgs;
10582		}
10583
10584		/* Now, start updating sd_lb_stats */
10585		sds->total_load += sgs->group_load;
10586		sds->total_capacity += sgs->group_capacity;
10587
10588		sum_util += sgs->group_util;
10589		sg = sg->next;
10590	} while (sg != env->sd->groups);
10591
10592	/*
10593	 * Indicate that the child domain of the busiest group prefers tasks
10594	 * go to a child's sibling domains first. NB the flags of a sched group
10595	 * are those of the child domain.
10596	 */
10597	if (sds->busiest)
10598		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10599
10600
10601	if (env->sd->flags & SD_NUMA)
10602		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10603
10604	if (!env->sd->parent) {
10605		struct root_domain *rd = env->dst_rq->rd;
10606
10607		/* update overload indicator if we are at root domain */
10608		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10609
10610		/* Update over-utilization (tipping point, U >= 0) indicator */
10611		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10612		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10613	} else if (sg_status & SG_OVERUTILIZED) {
10614		struct root_domain *rd = env->dst_rq->rd;
10615
10616		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10617		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10618	}
10619
10620	update_idle_cpu_scan(env, sum_util);
10621}
10622
10623/**
10624 * calculate_imbalance - Calculate the amount of imbalance present within the
10625 *			 groups of a given sched_domain during load balance.
10626 * @env: load balance environment
10627 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10628 */
10629static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10630{
10631	struct sg_lb_stats *local, *busiest;
10632
10633	local = &sds->local_stat;
10634	busiest = &sds->busiest_stat;
10635
10636	if (busiest->group_type == group_misfit_task) {
10637		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10638			/* Set imbalance to allow misfit tasks to be balanced. */
10639			env->migration_type = migrate_misfit;
10640			env->imbalance = 1;
10641		} else {
10642			/*
10643			 * Set load imbalance to allow moving task from cpu
10644			 * with reduced capacity.
10645			 */
10646			env->migration_type = migrate_load;
10647			env->imbalance = busiest->group_misfit_task_load;
10648		}
10649		return;
10650	}
10651
10652	if (busiest->group_type == group_asym_packing) {
10653		/*
10654		 * In case of asym capacity, we will try to migrate all load to
10655		 * the preferred CPU.
10656		 */
10657		env->migration_type = migrate_task;
10658		env->imbalance = busiest->sum_h_nr_running;
10659		return;
10660	}
10661
10662	if (busiest->group_type == group_smt_balance) {
10663		/* Reduce number of tasks sharing CPU capacity */
10664		env->migration_type = migrate_task;
10665		env->imbalance = 1;
10666		return;
10667	}
10668
10669	if (busiest->group_type == group_imbalanced) {
10670		/*
10671		 * In the group_imb case we cannot rely on group-wide averages
10672		 * to ensure CPU-load equilibrium, try to move any task to fix
10673		 * the imbalance. The next load balance will take care of
10674		 * balancing back the system.
10675		 */
10676		env->migration_type = migrate_task;
10677		env->imbalance = 1;
10678		return;
10679	}
10680
10681	/*
10682	 * Try to use spare capacity of local group without overloading it or
10683	 * emptying busiest.
10684	 */
10685	if (local->group_type == group_has_spare) {
10686		if ((busiest->group_type > group_fully_busy) &&
10687		    !(env->sd->flags & SD_SHARE_LLC)) {
10688			/*
10689			 * If busiest is overloaded, try to fill spare
10690			 * capacity. This might end up creating spare capacity
10691			 * in busiest or busiest still being overloaded but
10692			 * there is no simple way to directly compute the
10693			 * amount of load to migrate in order to balance the
10694			 * system.
10695			 */
10696			env->migration_type = migrate_util;
10697			env->imbalance = max(local->group_capacity, local->group_util) -
10698					 local->group_util;
10699
10700			/*
10701			 * In some cases, the group's utilization is max or even
10702			 * higher than capacity because of migrations but the
10703			 * local CPU is (newly) idle. There is at least one
10704			 * waiting task in this overloaded busiest group. Let's
10705			 * try to pull it.
10706			 */
10707			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10708				env->migration_type = migrate_task;
10709				env->imbalance = 1;
10710			}
10711
10712			return;
10713		}
10714
10715		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10716			/*
10717			 * When prefer sibling, evenly spread running tasks on
10718			 * groups.
10719			 */
10720			env->migration_type = migrate_task;
10721			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10722		} else {
10723
10724			/*
10725			 * If there is no overload, we just want to even the number of
10726			 * idle cpus.
10727			 */
10728			env->migration_type = migrate_task;
10729			env->imbalance = max_t(long, 0,
10730					       (local->idle_cpus - busiest->idle_cpus));
10731		}
10732
10733#ifdef CONFIG_NUMA
10734		/* Consider allowing a small imbalance between NUMA groups */
10735		if (env->sd->flags & SD_NUMA) {
10736			env->imbalance = adjust_numa_imbalance(env->imbalance,
10737							       local->sum_nr_running + 1,
10738							       env->sd->imb_numa_nr);
10739		}
10740#endif
10741
10742		/* Number of tasks to move to restore balance */
10743		env->imbalance >>= 1;
10744
10745		return;
10746	}
10747
10748	/*
10749	 * Local is fully busy but has to take more load to relieve the
10750	 * busiest group
10751	 */
10752	if (local->group_type < group_overloaded) {
10753		/*
10754		 * Local will become overloaded so the avg_load metrics are
10755		 * finally needed.
10756		 */
10757
10758		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10759				  local->group_capacity;
10760
10761		/*
10762		 * If the local group is more loaded than the selected
10763		 * busiest group don't try to pull any tasks.
10764		 */
10765		if (local->avg_load >= busiest->avg_load) {
10766			env->imbalance = 0;
10767			return;
10768		}
10769
10770		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10771				sds->total_capacity;
10772
10773		/*
10774		 * If the local group is more loaded than the average system
10775		 * load, don't try to pull any tasks.
10776		 */
10777		if (local->avg_load >= sds->avg_load) {
10778			env->imbalance = 0;
10779			return;
10780		}
10781
10782	}
10783
10784	/*
10785	 * Both group are or will become overloaded and we're trying to get all
10786	 * the CPUs to the average_load, so we don't want to push ourselves
10787	 * above the average load, nor do we wish to reduce the max loaded CPU
10788	 * below the average load. At the same time, we also don't want to
10789	 * reduce the group load below the group capacity. Thus we look for
10790	 * the minimum possible imbalance.
10791	 */
10792	env->migration_type = migrate_load;
10793	env->imbalance = min(
10794		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10795		(sds->avg_load - local->avg_load) * local->group_capacity
10796	) / SCHED_CAPACITY_SCALE;
10797}
10798
10799/******* find_busiest_group() helpers end here *********************/
10800
10801/*
10802 * Decision matrix according to the local and busiest group type:
10803 *
10804 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10805 * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10806 * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10807 * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10808 * asym_packing     force     force      N/A    N/A  force      force
10809 * imbalanced       force     force      N/A    N/A  force      force
10810 * overloaded       force     force      N/A    N/A  force      avg_load
10811 *
10812 * N/A :      Not Applicable because already filtered while updating
10813 *            statistics.
10814 * balanced : The system is balanced for these 2 groups.
10815 * force :    Calculate the imbalance as load migration is probably needed.
10816 * avg_load : Only if imbalance is significant enough.
10817 * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10818 *            different in groups.
10819 */
10820
10821/**
10822 * find_busiest_group - Returns the busiest group within the sched_domain
10823 * if there is an imbalance.
10824 * @env: The load balancing environment.
10825 *
10826 * Also calculates the amount of runnable load which should be moved
10827 * to restore balance.
10828 *
10829 * Return:	- The busiest group if imbalance exists.
10830 */
10831static struct sched_group *find_busiest_group(struct lb_env *env)
10832{
10833	struct sg_lb_stats *local, *busiest;
10834	struct sd_lb_stats sds;
10835
10836	init_sd_lb_stats(&sds);
10837
10838	/*
10839	 * Compute the various statistics relevant for load balancing at
10840	 * this level.
10841	 */
10842	update_sd_lb_stats(env, &sds);
10843
10844	/* There is no busy sibling group to pull tasks from */
10845	if (!sds.busiest)
10846		goto out_balanced;
10847
10848	busiest = &sds.busiest_stat;
10849
10850	/* Misfit tasks should be dealt with regardless of the avg load */
10851	if (busiest->group_type == group_misfit_task)
10852		goto force_balance;
10853
10854	if (sched_energy_enabled()) {
10855		struct root_domain *rd = env->dst_rq->rd;
10856
10857		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10858			goto out_balanced;
10859	}
10860
10861	/* ASYM feature bypasses nice load balance check */
10862	if (busiest->group_type == group_asym_packing)
10863		goto force_balance;
10864
10865	/*
10866	 * If the busiest group is imbalanced the below checks don't
10867	 * work because they assume all things are equal, which typically
10868	 * isn't true due to cpus_ptr constraints and the like.
10869	 */
10870	if (busiest->group_type == group_imbalanced)
10871		goto force_balance;
10872
10873	local = &sds.local_stat;
10874	/*
10875	 * If the local group is busier than the selected busiest group
10876	 * don't try and pull any tasks.
10877	 */
10878	if (local->group_type > busiest->group_type)
10879		goto out_balanced;
10880
10881	/*
10882	 * When groups are overloaded, use the avg_load to ensure fairness
10883	 * between tasks.
10884	 */
10885	if (local->group_type == group_overloaded) {
10886		/*
10887		 * If the local group is more loaded than the selected
10888		 * busiest group don't try to pull any tasks.
10889		 */
10890		if (local->avg_load >= busiest->avg_load)
10891			goto out_balanced;
10892
10893		/* XXX broken for overlapping NUMA groups */
10894		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10895				sds.total_capacity;
10896
10897		/*
10898		 * Don't pull any tasks if this group is already above the
10899		 * domain average load.
10900		 */
10901		if (local->avg_load >= sds.avg_load)
10902			goto out_balanced;
10903
10904		/*
10905		 * If the busiest group is more loaded, use imbalance_pct to be
10906		 * conservative.
10907		 */
10908		if (100 * busiest->avg_load <=
10909				env->sd->imbalance_pct * local->avg_load)
10910			goto out_balanced;
10911	}
10912
10913	/*
10914	 * Try to move all excess tasks to a sibling domain of the busiest
10915	 * group's child domain.
10916	 */
10917	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10918	    sibling_imbalance(env, &sds, busiest, local) > 1)
10919		goto force_balance;
10920
10921	if (busiest->group_type != group_overloaded) {
10922		if (env->idle == CPU_NOT_IDLE) {
10923			/*
10924			 * If the busiest group is not overloaded (and as a
10925			 * result the local one too) but this CPU is already
10926			 * busy, let another idle CPU try to pull task.
10927			 */
10928			goto out_balanced;
10929		}
10930
10931		if (busiest->group_type == group_smt_balance &&
10932		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10933			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10934			goto force_balance;
10935		}
10936
10937		if (busiest->group_weight > 1 &&
10938		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10939			/*
10940			 * If the busiest group is not overloaded
10941			 * and there is no imbalance between this and busiest
10942			 * group wrt idle CPUs, it is balanced. The imbalance
10943			 * becomes significant if the diff is greater than 1
10944			 * otherwise we might end up to just move the imbalance
10945			 * on another group. Of course this applies only if
10946			 * there is more than 1 CPU per group.
10947			 */
10948			goto out_balanced;
10949		}
10950
10951		if (busiest->sum_h_nr_running == 1) {
10952			/*
10953			 * busiest doesn't have any tasks waiting to run
10954			 */
10955			goto out_balanced;
10956		}
10957	}
10958
10959force_balance:
10960	/* Looks like there is an imbalance. Compute it */
10961	calculate_imbalance(env, &sds);
10962	return env->imbalance ? sds.busiest : NULL;
10963
10964out_balanced:
10965	env->imbalance = 0;
10966	return NULL;
10967}
10968
10969/*
10970 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10971 */
10972static struct rq *find_busiest_queue(struct lb_env *env,
10973				     struct sched_group *group)
10974{
10975	struct rq *busiest = NULL, *rq;
10976	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10977	unsigned int busiest_nr = 0;
10978	int i;
10979
10980	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10981		unsigned long capacity, load, util;
10982		unsigned int nr_running;
10983		enum fbq_type rt;
10984
10985		rq = cpu_rq(i);
10986		rt = fbq_classify_rq(rq);
10987
10988		/*
10989		 * We classify groups/runqueues into three groups:
10990		 *  - regular: there are !numa tasks
10991		 *  - remote:  there are numa tasks that run on the 'wrong' node
10992		 *  - all:     there is no distinction
10993		 *
10994		 * In order to avoid migrating ideally placed numa tasks,
10995		 * ignore those when there's better options.
10996		 *
10997		 * If we ignore the actual busiest queue to migrate another
10998		 * task, the next balance pass can still reduce the busiest
10999		 * queue by moving tasks around inside the node.
11000		 *
11001		 * If we cannot move enough load due to this classification
11002		 * the next pass will adjust the group classification and
11003		 * allow migration of more tasks.
11004		 *
11005		 * Both cases only affect the total convergence complexity.
11006		 */
11007		if (rt > env->fbq_type)
11008			continue;
11009
11010		nr_running = rq->cfs.h_nr_running;
11011		if (!nr_running)
11012			continue;
11013
11014		capacity = capacity_of(i);
11015
11016		/*
11017		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11018		 * eventually lead to active_balancing high->low capacity.
11019		 * Higher per-CPU capacity is considered better than balancing
11020		 * average load.
11021		 */
11022		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11023		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11024		    nr_running == 1)
11025			continue;
11026
11027		/*
11028		 * Make sure we only pull tasks from a CPU of lower priority
11029		 * when balancing between SMT siblings.
11030		 *
11031		 * If balancing between cores, let lower priority CPUs help
11032		 * SMT cores with more than one busy sibling.
11033		 */
11034		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11035			continue;
11036
11037		switch (env->migration_type) {
11038		case migrate_load:
11039			/*
11040			 * When comparing with load imbalance, use cpu_load()
11041			 * which is not scaled with the CPU capacity.
11042			 */
11043			load = cpu_load(rq);
11044
11045			if (nr_running == 1 && load > env->imbalance &&
11046			    !check_cpu_capacity(rq, env->sd))
11047				break;
11048
11049			/*
11050			 * For the load comparisons with the other CPUs,
11051			 * consider the cpu_load() scaled with the CPU
11052			 * capacity, so that the load can be moved away
11053			 * from the CPU that is potentially running at a
11054			 * lower capacity.
11055			 *
11056			 * Thus we're looking for max(load_i / capacity_i),
11057			 * crosswise multiplication to rid ourselves of the
11058			 * division works out to:
11059			 * load_i * capacity_j > load_j * capacity_i;
11060			 * where j is our previous maximum.
11061			 */
11062			if (load * busiest_capacity > busiest_load * capacity) {
11063				busiest_load = load;
11064				busiest_capacity = capacity;
11065				busiest = rq;
11066			}
11067			break;
11068
11069		case migrate_util:
11070			util = cpu_util_cfs_boost(i);
11071
11072			/*
11073			 * Don't try to pull utilization from a CPU with one
11074			 * running task. Whatever its utilization, we will fail
11075			 * detach the task.
11076			 */
11077			if (nr_running <= 1)
11078				continue;
11079
11080			if (busiest_util < util) {
11081				busiest_util = util;
11082				busiest = rq;
11083			}
11084			break;
11085
11086		case migrate_task:
11087			if (busiest_nr < nr_running) {
11088				busiest_nr = nr_running;
11089				busiest = rq;
11090			}
11091			break;
11092
11093		case migrate_misfit:
11094			/*
11095			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11096			 * simply seek the "biggest" misfit task.
11097			 */
11098			if (rq->misfit_task_load > busiest_load) {
11099				busiest_load = rq->misfit_task_load;
11100				busiest = rq;
11101			}
11102
11103			break;
11104
11105		}
11106	}
11107
11108	return busiest;
11109}
11110
11111/*
11112 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11113 * so long as it is large enough.
11114 */
11115#define MAX_PINNED_INTERVAL	512
11116
11117static inline bool
11118asym_active_balance(struct lb_env *env)
11119{
11120	/*
11121	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11122	 * priority CPUs in order to pack all tasks in the highest priority
11123	 * CPUs. When done between cores, do it only if the whole core if the
11124	 * whole core is idle.
11125	 *
11126	 * If @env::src_cpu is an SMT core with busy siblings, let
11127	 * the lower priority @env::dst_cpu help it. Do not follow
11128	 * CPU priority.
11129	 */
11130	return env->idle != CPU_NOT_IDLE && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11131	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11132		!sched_use_asym_prio(env->sd, env->src_cpu));
11133}
11134
11135static inline bool
11136imbalanced_active_balance(struct lb_env *env)
11137{
11138	struct sched_domain *sd = env->sd;
11139
11140	/*
11141	 * The imbalanced case includes the case of pinned tasks preventing a fair
11142	 * distribution of the load on the system but also the even distribution of the
11143	 * threads on a system with spare capacity
11144	 */
11145	if ((env->migration_type == migrate_task) &&
11146	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11147		return 1;
11148
11149	return 0;
11150}
11151
11152static int need_active_balance(struct lb_env *env)
11153{
11154	struct sched_domain *sd = env->sd;
11155
11156	if (asym_active_balance(env))
11157		return 1;
11158
11159	if (imbalanced_active_balance(env))
11160		return 1;
11161
11162	/*
11163	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11164	 * It's worth migrating the task if the src_cpu's capacity is reduced
11165	 * because of other sched_class or IRQs if more capacity stays
11166	 * available on dst_cpu.
11167	 */
11168	if ((env->idle != CPU_NOT_IDLE) &&
11169	    (env->src_rq->cfs.h_nr_running == 1)) {
11170		if ((check_cpu_capacity(env->src_rq, sd)) &&
11171		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11172			return 1;
11173	}
11174
11175	if (env->migration_type == migrate_misfit)
11176		return 1;
11177
11178	return 0;
11179}
11180
11181static int active_load_balance_cpu_stop(void *data);
11182
11183static int should_we_balance(struct lb_env *env)
11184{
11185	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11186	struct sched_group *sg = env->sd->groups;
11187	int cpu, idle_smt = -1;
11188
11189	/*
11190	 * Ensure the balancing environment is consistent; can happen
11191	 * when the softirq triggers 'during' hotplug.
11192	 */
11193	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11194		return 0;
11195
11196	/*
11197	 * In the newly idle case, we will allow all the CPUs
11198	 * to do the newly idle load balance.
11199	 *
11200	 * However, we bail out if we already have tasks or a wakeup pending,
11201	 * to optimize wakeup latency.
11202	 */
11203	if (env->idle == CPU_NEWLY_IDLE) {
11204		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11205			return 0;
11206		return 1;
11207	}
11208
11209	cpumask_copy(swb_cpus, group_balance_mask(sg));
11210	/* Try to find first idle CPU */
11211	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11212		if (!idle_cpu(cpu))
11213			continue;
11214
11215		/*
11216		 * Don't balance to idle SMT in busy core right away when
11217		 * balancing cores, but remember the first idle SMT CPU for
11218		 * later consideration.  Find CPU on an idle core first.
11219		 */
11220		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11221			if (idle_smt == -1)
11222				idle_smt = cpu;
11223			/*
11224			 * If the core is not idle, and first SMT sibling which is
11225			 * idle has been found, then its not needed to check other
11226			 * SMT siblings for idleness:
11227			 */
11228#ifdef CONFIG_SCHED_SMT
11229			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11230#endif
11231			continue;
11232		}
11233
11234		/*
11235		 * Are we the first idle core in a non-SMT domain or higher,
11236		 * or the first idle CPU in a SMT domain?
11237		 */
11238		return cpu == env->dst_cpu;
11239	}
11240
11241	/* Are we the first idle CPU with busy siblings? */
11242	if (idle_smt != -1)
11243		return idle_smt == env->dst_cpu;
11244
11245	/* Are we the first CPU of this group ? */
11246	return group_balance_cpu(sg) == env->dst_cpu;
11247}
11248
11249/*
11250 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11251 * tasks if there is an imbalance.
11252 */
11253static int load_balance(int this_cpu, struct rq *this_rq,
11254			struct sched_domain *sd, enum cpu_idle_type idle,
11255			int *continue_balancing)
11256{
11257	int ld_moved, cur_ld_moved, active_balance = 0;
11258	struct sched_domain *sd_parent = sd->parent;
11259	struct sched_group *group;
11260	struct rq *busiest;
11261	struct rq_flags rf;
11262	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11263	struct lb_env env = {
11264		.sd		= sd,
11265		.dst_cpu	= this_cpu,
11266		.dst_rq		= this_rq,
11267		.dst_grpmask    = group_balance_mask(sd->groups),
11268		.idle		= idle,
11269		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11270		.cpus		= cpus,
11271		.fbq_type	= all,
11272		.tasks		= LIST_HEAD_INIT(env.tasks),
11273	};
11274
11275	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11276
11277	schedstat_inc(sd->lb_count[idle]);
11278
11279redo:
11280	if (!should_we_balance(&env)) {
11281		*continue_balancing = 0;
11282		goto out_balanced;
11283	}
11284
11285	group = find_busiest_group(&env);
11286	if (!group) {
11287		schedstat_inc(sd->lb_nobusyg[idle]);
11288		goto out_balanced;
11289	}
11290
11291	busiest = find_busiest_queue(&env, group);
11292	if (!busiest) {
11293		schedstat_inc(sd->lb_nobusyq[idle]);
11294		goto out_balanced;
11295	}
11296
11297	WARN_ON_ONCE(busiest == env.dst_rq);
11298
11299	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11300
11301	env.src_cpu = busiest->cpu;
11302	env.src_rq = busiest;
11303
11304	ld_moved = 0;
11305	/* Clear this flag as soon as we find a pullable task */
11306	env.flags |= LBF_ALL_PINNED;
11307	if (busiest->nr_running > 1) {
11308		/*
11309		 * Attempt to move tasks. If find_busiest_group has found
11310		 * an imbalance but busiest->nr_running <= 1, the group is
11311		 * still unbalanced. ld_moved simply stays zero, so it is
11312		 * correctly treated as an imbalance.
11313		 */
11314		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11315
11316more_balance:
11317		rq_lock_irqsave(busiest, &rf);
11318		update_rq_clock(busiest);
11319
11320		/*
11321		 * cur_ld_moved - load moved in current iteration
11322		 * ld_moved     - cumulative load moved across iterations
11323		 */
11324		cur_ld_moved = detach_tasks(&env);
11325
11326		/*
11327		 * We've detached some tasks from busiest_rq. Every
11328		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11329		 * unlock busiest->lock, and we are able to be sure
11330		 * that nobody can manipulate the tasks in parallel.
11331		 * See task_rq_lock() family for the details.
11332		 */
11333
11334		rq_unlock(busiest, &rf);
11335
11336		if (cur_ld_moved) {
11337			attach_tasks(&env);
11338			ld_moved += cur_ld_moved;
11339		}
11340
11341		local_irq_restore(rf.flags);
11342
11343		if (env.flags & LBF_NEED_BREAK) {
11344			env.flags &= ~LBF_NEED_BREAK;
11345			/* Stop if we tried all running tasks */
11346			if (env.loop < busiest->nr_running)
11347				goto more_balance;
11348		}
11349
11350		/*
11351		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11352		 * us and move them to an alternate dst_cpu in our sched_group
11353		 * where they can run. The upper limit on how many times we
11354		 * iterate on same src_cpu is dependent on number of CPUs in our
11355		 * sched_group.
11356		 *
11357		 * This changes load balance semantics a bit on who can move
11358		 * load to a given_cpu. In addition to the given_cpu itself
11359		 * (or a ilb_cpu acting on its behalf where given_cpu is
11360		 * nohz-idle), we now have balance_cpu in a position to move
11361		 * load to given_cpu. In rare situations, this may cause
11362		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11363		 * _independently_ and at _same_ time to move some load to
11364		 * given_cpu) causing excess load to be moved to given_cpu.
11365		 * This however should not happen so much in practice and
11366		 * moreover subsequent load balance cycles should correct the
11367		 * excess load moved.
11368		 */
11369		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11370
11371			/* Prevent to re-select dst_cpu via env's CPUs */
11372			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11373
11374			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11375			env.dst_cpu	 = env.new_dst_cpu;
11376			env.flags	&= ~LBF_DST_PINNED;
11377			env.loop	 = 0;
11378			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11379
11380			/*
11381			 * Go back to "more_balance" rather than "redo" since we
11382			 * need to continue with same src_cpu.
11383			 */
11384			goto more_balance;
11385		}
11386
11387		/*
11388		 * We failed to reach balance because of affinity.
11389		 */
11390		if (sd_parent) {
11391			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11392
11393			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11394				*group_imbalance = 1;
11395		}
11396
11397		/* All tasks on this runqueue were pinned by CPU affinity */
11398		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11399			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11400			/*
11401			 * Attempting to continue load balancing at the current
11402			 * sched_domain level only makes sense if there are
11403			 * active CPUs remaining as possible busiest CPUs to
11404			 * pull load from which are not contained within the
11405			 * destination group that is receiving any migrated
11406			 * load.
11407			 */
11408			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11409				env.loop = 0;
11410				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11411				goto redo;
11412			}
11413			goto out_all_pinned;
11414		}
11415	}
11416
11417	if (!ld_moved) {
11418		schedstat_inc(sd->lb_failed[idle]);
11419		/*
11420		 * Increment the failure counter only on periodic balance.
11421		 * We do not want newidle balance, which can be very
11422		 * frequent, pollute the failure counter causing
11423		 * excessive cache_hot migrations and active balances.
11424		 */
11425		if (idle != CPU_NEWLY_IDLE)
11426			sd->nr_balance_failed++;
11427
11428		if (need_active_balance(&env)) {
11429			unsigned long flags;
11430
11431			raw_spin_rq_lock_irqsave(busiest, flags);
11432
11433			/*
11434			 * Don't kick the active_load_balance_cpu_stop,
11435			 * if the curr task on busiest CPU can't be
11436			 * moved to this_cpu:
11437			 */
11438			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11439				raw_spin_rq_unlock_irqrestore(busiest, flags);
11440				goto out_one_pinned;
11441			}
11442
11443			/* Record that we found at least one task that could run on this_cpu */
11444			env.flags &= ~LBF_ALL_PINNED;
11445
11446			/*
11447			 * ->active_balance synchronizes accesses to
11448			 * ->active_balance_work.  Once set, it's cleared
11449			 * only after active load balance is finished.
11450			 */
11451			if (!busiest->active_balance) {
11452				busiest->active_balance = 1;
11453				busiest->push_cpu = this_cpu;
11454				active_balance = 1;
11455			}
11456
11457			preempt_disable();
11458			raw_spin_rq_unlock_irqrestore(busiest, flags);
11459			if (active_balance) {
11460				stop_one_cpu_nowait(cpu_of(busiest),
11461					active_load_balance_cpu_stop, busiest,
11462					&busiest->active_balance_work);
11463			}
11464			preempt_enable();
11465		}
11466	} else {
11467		sd->nr_balance_failed = 0;
11468	}
11469
11470	if (likely(!active_balance) || need_active_balance(&env)) {
11471		/* We were unbalanced, so reset the balancing interval */
11472		sd->balance_interval = sd->min_interval;
11473	}
11474
11475	goto out;
11476
11477out_balanced:
11478	/*
11479	 * We reach balance although we may have faced some affinity
11480	 * constraints. Clear the imbalance flag only if other tasks got
11481	 * a chance to move and fix the imbalance.
11482	 */
11483	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11484		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11485
11486		if (*group_imbalance)
11487			*group_imbalance = 0;
11488	}
11489
11490out_all_pinned:
11491	/*
11492	 * We reach balance because all tasks are pinned at this level so
11493	 * we can't migrate them. Let the imbalance flag set so parent level
11494	 * can try to migrate them.
11495	 */
11496	schedstat_inc(sd->lb_balanced[idle]);
11497
11498	sd->nr_balance_failed = 0;
11499
11500out_one_pinned:
11501	ld_moved = 0;
11502
11503	/*
11504	 * newidle_balance() disregards balance intervals, so we could
11505	 * repeatedly reach this code, which would lead to balance_interval
11506	 * skyrocketing in a short amount of time. Skip the balance_interval
11507	 * increase logic to avoid that.
11508	 */
11509	if (env.idle == CPU_NEWLY_IDLE)
11510		goto out;
11511
11512	/* tune up the balancing interval */
11513	if ((env.flags & LBF_ALL_PINNED &&
11514	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11515	    sd->balance_interval < sd->max_interval)
11516		sd->balance_interval *= 2;
11517out:
11518	return ld_moved;
11519}
11520
11521static inline unsigned long
11522get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11523{
11524	unsigned long interval = sd->balance_interval;
11525
11526	if (cpu_busy)
11527		interval *= sd->busy_factor;
11528
11529	/* scale ms to jiffies */
11530	interval = msecs_to_jiffies(interval);
11531
11532	/*
11533	 * Reduce likelihood of busy balancing at higher domains racing with
11534	 * balancing at lower domains by preventing their balancing periods
11535	 * from being multiples of each other.
11536	 */
11537	if (cpu_busy)
11538		interval -= 1;
11539
11540	interval = clamp(interval, 1UL, max_load_balance_interval);
11541
11542	return interval;
11543}
11544
11545static inline void
11546update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11547{
11548	unsigned long interval, next;
11549
11550	/* used by idle balance, so cpu_busy = 0 */
11551	interval = get_sd_balance_interval(sd, 0);
11552	next = sd->last_balance + interval;
11553
11554	if (time_after(*next_balance, next))
11555		*next_balance = next;
11556}
11557
11558/*
11559 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11560 * running tasks off the busiest CPU onto idle CPUs. It requires at
11561 * least 1 task to be running on each physical CPU where possible, and
11562 * avoids physical / logical imbalances.
11563 */
11564static int active_load_balance_cpu_stop(void *data)
11565{
11566	struct rq *busiest_rq = data;
11567	int busiest_cpu = cpu_of(busiest_rq);
11568	int target_cpu = busiest_rq->push_cpu;
11569	struct rq *target_rq = cpu_rq(target_cpu);
11570	struct sched_domain *sd;
11571	struct task_struct *p = NULL;
11572	struct rq_flags rf;
11573
11574	rq_lock_irq(busiest_rq, &rf);
11575	/*
11576	 * Between queueing the stop-work and running it is a hole in which
11577	 * CPUs can become inactive. We should not move tasks from or to
11578	 * inactive CPUs.
11579	 */
11580	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11581		goto out_unlock;
11582
11583	/* Make sure the requested CPU hasn't gone down in the meantime: */
11584	if (unlikely(busiest_cpu != smp_processor_id() ||
11585		     !busiest_rq->active_balance))
11586		goto out_unlock;
11587
11588	/* Is there any task to move? */
11589	if (busiest_rq->nr_running <= 1)
11590		goto out_unlock;
11591
11592	/*
11593	 * This condition is "impossible", if it occurs
11594	 * we need to fix it. Originally reported by
11595	 * Bjorn Helgaas on a 128-CPU setup.
11596	 */
11597	WARN_ON_ONCE(busiest_rq == target_rq);
11598
11599	/* Search for an sd spanning us and the target CPU. */
11600	rcu_read_lock();
11601	for_each_domain(target_cpu, sd) {
11602		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11603			break;
11604	}
11605
11606	if (likely(sd)) {
11607		struct lb_env env = {
11608			.sd		= sd,
11609			.dst_cpu	= target_cpu,
11610			.dst_rq		= target_rq,
11611			.src_cpu	= busiest_rq->cpu,
11612			.src_rq		= busiest_rq,
11613			.idle		= CPU_IDLE,
11614			.flags		= LBF_ACTIVE_LB,
11615		};
11616
11617		schedstat_inc(sd->alb_count);
11618		update_rq_clock(busiest_rq);
11619
11620		p = detach_one_task(&env);
11621		if (p) {
11622			schedstat_inc(sd->alb_pushed);
11623			/* Active balancing done, reset the failure counter. */
11624			sd->nr_balance_failed = 0;
11625		} else {
11626			schedstat_inc(sd->alb_failed);
11627		}
11628	}
11629	rcu_read_unlock();
11630out_unlock:
11631	busiest_rq->active_balance = 0;
11632	rq_unlock(busiest_rq, &rf);
11633
11634	if (p)
11635		attach_one_task(target_rq, p);
11636
11637	local_irq_enable();
11638
11639	return 0;
11640}
11641
11642static DEFINE_SPINLOCK(balancing);
11643
11644/*
11645 * Scale the max load_balance interval with the number of CPUs in the system.
11646 * This trades load-balance latency on larger machines for less cross talk.
11647 */
11648void update_max_interval(void)
11649{
11650	max_load_balance_interval = HZ*num_online_cpus()/10;
11651}
11652
11653static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11654{
11655	if (cost > sd->max_newidle_lb_cost) {
11656		/*
11657		 * Track max cost of a domain to make sure to not delay the
11658		 * next wakeup on the CPU.
11659		 */
11660		sd->max_newidle_lb_cost = cost;
11661		sd->last_decay_max_lb_cost = jiffies;
11662	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11663		/*
11664		 * Decay the newidle max times by ~1% per second to ensure that
11665		 * it is not outdated and the current max cost is actually
11666		 * shorter.
11667		 */
11668		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11669		sd->last_decay_max_lb_cost = jiffies;
11670
11671		return true;
11672	}
11673
11674	return false;
11675}
11676
11677/*
11678 * It checks each scheduling domain to see if it is due to be balanced,
11679 * and initiates a balancing operation if so.
11680 *
11681 * Balancing parameters are set up in init_sched_domains.
11682 */
11683static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11684{
11685	int continue_balancing = 1;
11686	int cpu = rq->cpu;
11687	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11688	unsigned long interval;
11689	struct sched_domain *sd;
11690	/* Earliest time when we have to do rebalance again */
11691	unsigned long next_balance = jiffies + 60*HZ;
11692	int update_next_balance = 0;
11693	int need_serialize, need_decay = 0;
11694	u64 max_cost = 0;
11695
11696	rcu_read_lock();
11697	for_each_domain(cpu, sd) {
11698		/*
11699		 * Decay the newidle max times here because this is a regular
11700		 * visit to all the domains.
11701		 */
11702		need_decay = update_newidle_cost(sd, 0);
11703		max_cost += sd->max_newidle_lb_cost;
11704
11705		/*
11706		 * Stop the load balance at this level. There is another
11707		 * CPU in our sched group which is doing load balancing more
11708		 * actively.
11709		 */
11710		if (!continue_balancing) {
11711			if (need_decay)
11712				continue;
11713			break;
11714		}
11715
11716		interval = get_sd_balance_interval(sd, busy);
11717
11718		need_serialize = sd->flags & SD_SERIALIZE;
11719		if (need_serialize) {
11720			if (!spin_trylock(&balancing))
11721				goto out;
11722		}
11723
11724		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11725			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11726				/*
11727				 * The LBF_DST_PINNED logic could have changed
11728				 * env->dst_cpu, so we can't know our idle
11729				 * state even if we migrated tasks. Update it.
11730				 */
11731				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11732				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11733			}
11734			sd->last_balance = jiffies;
11735			interval = get_sd_balance_interval(sd, busy);
11736		}
11737		if (need_serialize)
11738			spin_unlock(&balancing);
11739out:
11740		if (time_after(next_balance, sd->last_balance + interval)) {
11741			next_balance = sd->last_balance + interval;
11742			update_next_balance = 1;
11743		}
11744	}
11745	if (need_decay) {
11746		/*
11747		 * Ensure the rq-wide value also decays but keep it at a
11748		 * reasonable floor to avoid funnies with rq->avg_idle.
11749		 */
11750		rq->max_idle_balance_cost =
11751			max((u64)sysctl_sched_migration_cost, max_cost);
11752	}
11753	rcu_read_unlock();
11754
11755	/*
11756	 * next_balance will be updated only when there is a need.
11757	 * When the cpu is attached to null domain for ex, it will not be
11758	 * updated.
11759	 */
11760	if (likely(update_next_balance))
11761		rq->next_balance = next_balance;
11762
11763}
11764
11765static inline int on_null_domain(struct rq *rq)
11766{
11767	return unlikely(!rcu_dereference_sched(rq->sd));
11768}
11769
11770#ifdef CONFIG_NO_HZ_COMMON
11771/*
11772 * NOHZ idle load balancing (ILB) details:
11773 *
11774 * - When one of the busy CPUs notices that there may be an idle rebalancing
11775 *   needed, they will kick the idle load balancer, which then does idle
11776 *   load balancing for all the idle CPUs.
11777 *
11778 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11779 *   anywhere yet.
11780 */
11781static inline int find_new_ilb(void)
11782{
11783	const struct cpumask *hk_mask;
11784	int ilb_cpu;
11785
11786	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11787
11788	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11789
11790		if (ilb_cpu == smp_processor_id())
11791			continue;
11792
11793		if (idle_cpu(ilb_cpu))
11794			return ilb_cpu;
11795	}
11796
11797	return -1;
11798}
11799
11800/*
11801 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11802 * SMP function call (IPI).
11803 *
11804 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11805 */
11806static void kick_ilb(unsigned int flags)
11807{
11808	int ilb_cpu;
11809
11810	/*
11811	 * Increase nohz.next_balance only when if full ilb is triggered but
11812	 * not if we only update stats.
11813	 */
11814	if (flags & NOHZ_BALANCE_KICK)
11815		nohz.next_balance = jiffies+1;
11816
11817	ilb_cpu = find_new_ilb();
11818	if (ilb_cpu < 0)
11819		return;
11820
11821	/*
11822	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11823	 * the first flag owns it; cleared by nohz_csd_func().
11824	 */
11825	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11826	if (flags & NOHZ_KICK_MASK)
11827		return;
11828
11829	/*
11830	 * This way we generate an IPI on the target CPU which
11831	 * is idle, and the softirq performing NOHZ idle load balancing
11832	 * will be run before returning from the IPI.
11833	 */
11834	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11835}
11836
11837/*
11838 * Current decision point for kicking the idle load balancer in the presence
11839 * of idle CPUs in the system.
11840 */
11841static void nohz_balancer_kick(struct rq *rq)
11842{
11843	unsigned long now = jiffies;
11844	struct sched_domain_shared *sds;
11845	struct sched_domain *sd;
11846	int nr_busy, i, cpu = rq->cpu;
11847	unsigned int flags = 0;
11848
11849	if (unlikely(rq->idle_balance))
11850		return;
11851
11852	/*
11853	 * We may be recently in ticked or tickless idle mode. At the first
11854	 * busy tick after returning from idle, we will update the busy stats.
11855	 */
11856	nohz_balance_exit_idle(rq);
11857
11858	/*
11859	 * None are in tickless mode and hence no need for NOHZ idle load
11860	 * balancing:
11861	 */
11862	if (likely(!atomic_read(&nohz.nr_cpus)))
11863		return;
11864
11865	if (READ_ONCE(nohz.has_blocked) &&
11866	    time_after(now, READ_ONCE(nohz.next_blocked)))
11867		flags = NOHZ_STATS_KICK;
11868
11869	if (time_before(now, nohz.next_balance))
11870		goto out;
11871
11872	if (rq->nr_running >= 2) {
11873		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11874		goto out;
11875	}
11876
11877	rcu_read_lock();
11878
11879	sd = rcu_dereference(rq->sd);
11880	if (sd) {
11881		/*
11882		 * If there's a runnable CFS task and the current CPU has reduced
11883		 * capacity, kick the ILB to see if there's a better CPU to run on:
11884		 */
11885		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11886			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11887			goto unlock;
11888		}
11889	}
11890
11891	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11892	if (sd) {
11893		/*
11894		 * When ASYM_PACKING; see if there's a more preferred CPU
11895		 * currently idle; in which case, kick the ILB to move tasks
11896		 * around.
11897		 *
11898		 * When balancing betwen cores, all the SMT siblings of the
11899		 * preferred CPU must be idle.
11900		 */
11901		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11902			if (sched_asym(sd, i, cpu)) {
11903				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11904				goto unlock;
11905			}
11906		}
11907	}
11908
11909	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11910	if (sd) {
11911		/*
11912		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11913		 * to run the misfit task on.
11914		 */
11915		if (check_misfit_status(rq, sd)) {
11916			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11917			goto unlock;
11918		}
11919
11920		/*
11921		 * For asymmetric systems, we do not want to nicely balance
11922		 * cache use, instead we want to embrace asymmetry and only
11923		 * ensure tasks have enough CPU capacity.
11924		 *
11925		 * Skip the LLC logic because it's not relevant in that case.
11926		 */
11927		goto unlock;
11928	}
11929
11930	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11931	if (sds) {
11932		/*
11933		 * If there is an imbalance between LLC domains (IOW we could
11934		 * increase the overall cache utilization), we need a less-loaded LLC
11935		 * domain to pull some load from. Likewise, we may need to spread
11936		 * load within the current LLC domain (e.g. packed SMT cores but
11937		 * other CPUs are idle). We can't really know from here how busy
11938		 * the others are - so just get a NOHZ balance going if it looks
11939		 * like this LLC domain has tasks we could move.
11940		 */
11941		nr_busy = atomic_read(&sds->nr_busy_cpus);
11942		if (nr_busy > 1) {
11943			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11944			goto unlock;
11945		}
11946	}
11947unlock:
11948	rcu_read_unlock();
11949out:
11950	if (READ_ONCE(nohz.needs_update))
11951		flags |= NOHZ_NEXT_KICK;
11952
11953	if (flags)
11954		kick_ilb(flags);
11955}
11956
11957static void set_cpu_sd_state_busy(int cpu)
11958{
11959	struct sched_domain *sd;
11960
11961	rcu_read_lock();
11962	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11963
11964	if (!sd || !sd->nohz_idle)
11965		goto unlock;
11966	sd->nohz_idle = 0;
11967
11968	atomic_inc(&sd->shared->nr_busy_cpus);
11969unlock:
11970	rcu_read_unlock();
11971}
11972
11973void nohz_balance_exit_idle(struct rq *rq)
11974{
11975	SCHED_WARN_ON(rq != this_rq());
11976
11977	if (likely(!rq->nohz_tick_stopped))
11978		return;
11979
11980	rq->nohz_tick_stopped = 0;
11981	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11982	atomic_dec(&nohz.nr_cpus);
11983
11984	set_cpu_sd_state_busy(rq->cpu);
11985}
11986
11987static void set_cpu_sd_state_idle(int cpu)
11988{
11989	struct sched_domain *sd;
11990
11991	rcu_read_lock();
11992	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11993
11994	if (!sd || sd->nohz_idle)
11995		goto unlock;
11996	sd->nohz_idle = 1;
11997
11998	atomic_dec(&sd->shared->nr_busy_cpus);
11999unlock:
12000	rcu_read_unlock();
12001}
12002
12003/*
12004 * This routine will record that the CPU is going idle with tick stopped.
12005 * This info will be used in performing idle load balancing in the future.
12006 */
12007void nohz_balance_enter_idle(int cpu)
12008{
12009	struct rq *rq = cpu_rq(cpu);
12010
12011	SCHED_WARN_ON(cpu != smp_processor_id());
12012
12013	/* If this CPU is going down, then nothing needs to be done: */
12014	if (!cpu_active(cpu))
12015		return;
12016
12017	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12018	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12019		return;
12020
12021	/*
12022	 * Can be set safely without rq->lock held
12023	 * If a clear happens, it will have evaluated last additions because
12024	 * rq->lock is held during the check and the clear
12025	 */
12026	rq->has_blocked_load = 1;
12027
12028	/*
12029	 * The tick is still stopped but load could have been added in the
12030	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12031	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12032	 * of nohz.has_blocked can only happen after checking the new load
12033	 */
12034	if (rq->nohz_tick_stopped)
12035		goto out;
12036
12037	/* If we're a completely isolated CPU, we don't play: */
12038	if (on_null_domain(rq))
12039		return;
12040
12041	rq->nohz_tick_stopped = 1;
12042
12043	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12044	atomic_inc(&nohz.nr_cpus);
12045
12046	/*
12047	 * Ensures that if nohz_idle_balance() fails to observe our
12048	 * @idle_cpus_mask store, it must observe the @has_blocked
12049	 * and @needs_update stores.
12050	 */
12051	smp_mb__after_atomic();
12052
12053	set_cpu_sd_state_idle(cpu);
12054
12055	WRITE_ONCE(nohz.needs_update, 1);
12056out:
12057	/*
12058	 * Each time a cpu enter idle, we assume that it has blocked load and
12059	 * enable the periodic update of the load of idle cpus
12060	 */
12061	WRITE_ONCE(nohz.has_blocked, 1);
12062}
12063
12064static bool update_nohz_stats(struct rq *rq)
12065{
12066	unsigned int cpu = rq->cpu;
12067
12068	if (!rq->has_blocked_load)
12069		return false;
12070
12071	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12072		return false;
12073
12074	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12075		return true;
12076
12077	update_blocked_averages(cpu);
12078
12079	return rq->has_blocked_load;
12080}
12081
12082/*
12083 * Internal function that runs load balance for all idle cpus. The load balance
12084 * can be a simple update of blocked load or a complete load balance with
12085 * tasks movement depending of flags.
12086 */
12087static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12088{
12089	/* Earliest time when we have to do rebalance again */
12090	unsigned long now = jiffies;
12091	unsigned long next_balance = now + 60*HZ;
12092	bool has_blocked_load = false;
12093	int update_next_balance = 0;
12094	int this_cpu = this_rq->cpu;
12095	int balance_cpu;
12096	struct rq *rq;
12097
12098	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12099
12100	/*
12101	 * We assume there will be no idle load after this update and clear
12102	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12103	 * set the has_blocked flag and trigger another update of idle load.
12104	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12105	 * setting the flag, we are sure to not clear the state and not
12106	 * check the load of an idle cpu.
12107	 *
12108	 * Same applies to idle_cpus_mask vs needs_update.
12109	 */
12110	if (flags & NOHZ_STATS_KICK)
12111		WRITE_ONCE(nohz.has_blocked, 0);
12112	if (flags & NOHZ_NEXT_KICK)
12113		WRITE_ONCE(nohz.needs_update, 0);
12114
12115	/*
12116	 * Ensures that if we miss the CPU, we must see the has_blocked
12117	 * store from nohz_balance_enter_idle().
12118	 */
12119	smp_mb();
12120
12121	/*
12122	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12123	 * chance for other idle cpu to pull load.
12124	 */
12125	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12126		if (!idle_cpu(balance_cpu))
12127			continue;
12128
12129		/*
12130		 * If this CPU gets work to do, stop the load balancing
12131		 * work being done for other CPUs. Next load
12132		 * balancing owner will pick it up.
12133		 */
12134		if (need_resched()) {
12135			if (flags & NOHZ_STATS_KICK)
12136				has_blocked_load = true;
12137			if (flags & NOHZ_NEXT_KICK)
12138				WRITE_ONCE(nohz.needs_update, 1);
12139			goto abort;
12140		}
12141
12142		rq = cpu_rq(balance_cpu);
12143
12144		if (flags & NOHZ_STATS_KICK)
12145			has_blocked_load |= update_nohz_stats(rq);
12146
12147		/*
12148		 * If time for next balance is due,
12149		 * do the balance.
12150		 */
12151		if (time_after_eq(jiffies, rq->next_balance)) {
12152			struct rq_flags rf;
12153
12154			rq_lock_irqsave(rq, &rf);
12155			update_rq_clock(rq);
12156			rq_unlock_irqrestore(rq, &rf);
12157
12158			if (flags & NOHZ_BALANCE_KICK)
12159				rebalance_domains(rq, CPU_IDLE);
12160		}
12161
12162		if (time_after(next_balance, rq->next_balance)) {
12163			next_balance = rq->next_balance;
12164			update_next_balance = 1;
12165		}
12166	}
12167
12168	/*
12169	 * next_balance will be updated only when there is a need.
12170	 * When the CPU is attached to null domain for ex, it will not be
12171	 * updated.
12172	 */
12173	if (likely(update_next_balance))
12174		nohz.next_balance = next_balance;
12175
12176	if (flags & NOHZ_STATS_KICK)
12177		WRITE_ONCE(nohz.next_blocked,
12178			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12179
12180abort:
12181	/* There is still blocked load, enable periodic update */
12182	if (has_blocked_load)
12183		WRITE_ONCE(nohz.has_blocked, 1);
12184}
12185
12186/*
12187 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12188 * rebalancing for all the cpus for whom scheduler ticks are stopped.
12189 */
12190static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12191{
12192	unsigned int flags = this_rq->nohz_idle_balance;
12193
12194	if (!flags)
12195		return false;
12196
12197	this_rq->nohz_idle_balance = 0;
12198
12199	if (idle != CPU_IDLE)
12200		return false;
12201
12202	_nohz_idle_balance(this_rq, flags);
12203
12204	return true;
12205}
12206
12207/*
12208 * Check if we need to directly run the ILB for updating blocked load before
12209 * entering idle state. Here we run ILB directly without issuing IPIs.
12210 *
12211 * Note that when this function is called, the tick may not yet be stopped on
12212 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12213 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12214 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12215 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12216 * called from this function on (this) CPU that's not yet in the mask. That's
12217 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12218 * updating the blocked load of already idle CPUs without waking up one of
12219 * those idle CPUs and outside the preempt disable / irq off phase of the local
12220 * cpu about to enter idle, because it can take a long time.
12221 */
12222void nohz_run_idle_balance(int cpu)
12223{
12224	unsigned int flags;
12225
12226	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12227
12228	/*
12229	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12230	 * (ie NOHZ_STATS_KICK set) and will do the same.
12231	 */
12232	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12233		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12234}
12235
12236static void nohz_newidle_balance(struct rq *this_rq)
12237{
12238	int this_cpu = this_rq->cpu;
12239
12240	/*
12241	 * This CPU doesn't want to be disturbed by scheduler
12242	 * housekeeping
12243	 */
12244	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12245		return;
12246
12247	/* Will wake up very soon. No time for doing anything else*/
12248	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12249		return;
12250
12251	/* Don't need to update blocked load of idle CPUs*/
12252	if (!READ_ONCE(nohz.has_blocked) ||
12253	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12254		return;
12255
12256	/*
12257	 * Set the need to trigger ILB in order to update blocked load
12258	 * before entering idle state.
12259	 */
12260	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12261}
12262
12263#else /* !CONFIG_NO_HZ_COMMON */
12264static inline void nohz_balancer_kick(struct rq *rq) { }
12265
12266static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12267{
12268	return false;
12269}
12270
12271static inline void nohz_newidle_balance(struct rq *this_rq) { }
12272#endif /* CONFIG_NO_HZ_COMMON */
12273
12274/*
12275 * newidle_balance is called by schedule() if this_cpu is about to become
12276 * idle. Attempts to pull tasks from other CPUs.
12277 *
12278 * Returns:
12279 *   < 0 - we released the lock and there are !fair tasks present
12280 *     0 - failed, no new tasks
12281 *   > 0 - success, new (fair) tasks present
12282 */
12283static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12284{
12285	unsigned long next_balance = jiffies + HZ;
12286	int this_cpu = this_rq->cpu;
12287	u64 t0, t1, curr_cost = 0;
12288	struct sched_domain *sd;
12289	int pulled_task = 0;
12290
12291	update_misfit_status(NULL, this_rq);
12292
12293	/*
12294	 * There is a task waiting to run. No need to search for one.
12295	 * Return 0; the task will be enqueued when switching to idle.
12296	 */
12297	if (this_rq->ttwu_pending)
12298		return 0;
12299
12300	/*
12301	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12302	 * measure the duration of idle_balance() as idle time.
12303	 */
12304	this_rq->idle_stamp = rq_clock(this_rq);
12305
12306	/*
12307	 * Do not pull tasks towards !active CPUs...
12308	 */
12309	if (!cpu_active(this_cpu))
12310		return 0;
12311
12312	/*
12313	 * This is OK, because current is on_cpu, which avoids it being picked
12314	 * for load-balance and preemption/IRQs are still disabled avoiding
12315	 * further scheduler activity on it and we're being very careful to
12316	 * re-start the picking loop.
12317	 */
12318	rq_unpin_lock(this_rq, rf);
12319
12320	rcu_read_lock();
12321	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12322
12323	if (!READ_ONCE(this_rq->rd->overload) ||
12324	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12325
12326		if (sd)
12327			update_next_balance(sd, &next_balance);
12328		rcu_read_unlock();
12329
12330		goto out;
12331	}
12332	rcu_read_unlock();
12333
12334	raw_spin_rq_unlock(this_rq);
12335
12336	t0 = sched_clock_cpu(this_cpu);
12337	update_blocked_averages(this_cpu);
12338
12339	rcu_read_lock();
12340	for_each_domain(this_cpu, sd) {
12341		int continue_balancing = 1;
12342		u64 domain_cost;
12343
12344		update_next_balance(sd, &next_balance);
12345
12346		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12347			break;
12348
12349		if (sd->flags & SD_BALANCE_NEWIDLE) {
12350
12351			pulled_task = load_balance(this_cpu, this_rq,
12352						   sd, CPU_NEWLY_IDLE,
12353						   &continue_balancing);
12354
12355			t1 = sched_clock_cpu(this_cpu);
12356			domain_cost = t1 - t0;
12357			update_newidle_cost(sd, domain_cost);
12358
12359			curr_cost += domain_cost;
12360			t0 = t1;
12361		}
12362
12363		/*
12364		 * Stop searching for tasks to pull if there are
12365		 * now runnable tasks on this rq.
12366		 */
12367		if (pulled_task || this_rq->nr_running > 0 ||
12368		    this_rq->ttwu_pending)
12369			break;
12370	}
12371	rcu_read_unlock();
12372
12373	raw_spin_rq_lock(this_rq);
12374
12375	if (curr_cost > this_rq->max_idle_balance_cost)
12376		this_rq->max_idle_balance_cost = curr_cost;
12377
12378	/*
12379	 * While browsing the domains, we released the rq lock, a task could
12380	 * have been enqueued in the meantime. Since we're not going idle,
12381	 * pretend we pulled a task.
12382	 */
12383	if (this_rq->cfs.h_nr_running && !pulled_task)
12384		pulled_task = 1;
12385
12386	/* Is there a task of a high priority class? */
12387	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12388		pulled_task = -1;
12389
12390out:
12391	/* Move the next balance forward */
12392	if (time_after(this_rq->next_balance, next_balance))
12393		this_rq->next_balance = next_balance;
12394
12395	if (pulled_task)
12396		this_rq->idle_stamp = 0;
12397	else
12398		nohz_newidle_balance(this_rq);
12399
12400	rq_repin_lock(this_rq, rf);
12401
12402	return pulled_task;
12403}
12404
12405/*
12406 * run_rebalance_domains is triggered when needed from the scheduler tick.
12407 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12408 */
12409static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12410{
12411	struct rq *this_rq = this_rq();
12412	enum cpu_idle_type idle = this_rq->idle_balance ?
12413						CPU_IDLE : CPU_NOT_IDLE;
12414
12415	/*
12416	 * If this CPU has a pending nohz_balance_kick, then do the
12417	 * balancing on behalf of the other idle CPUs whose ticks are
12418	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12419	 * give the idle CPUs a chance to load balance. Else we may
12420	 * load balance only within the local sched_domain hierarchy
12421	 * and abort nohz_idle_balance altogether if we pull some load.
12422	 */
12423	if (nohz_idle_balance(this_rq, idle))
12424		return;
12425
12426	/* normal load balance */
12427	update_blocked_averages(this_rq->cpu);
12428	rebalance_domains(this_rq, idle);
12429}
12430
12431/*
12432 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12433 */
12434void trigger_load_balance(struct rq *rq)
12435{
12436	/*
12437	 * Don't need to rebalance while attached to NULL domain or
12438	 * runqueue CPU is not active
12439	 */
12440	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12441		return;
12442
12443	if (time_after_eq(jiffies, rq->next_balance))
12444		raise_softirq(SCHED_SOFTIRQ);
12445
12446	nohz_balancer_kick(rq);
12447}
12448
12449static void rq_online_fair(struct rq *rq)
12450{
12451	update_sysctl();
12452
12453	update_runtime_enabled(rq);
12454}
12455
12456static void rq_offline_fair(struct rq *rq)
12457{
12458	update_sysctl();
12459
12460	/* Ensure any throttled groups are reachable by pick_next_task */
12461	unthrottle_offline_cfs_rqs(rq);
12462
12463	/* Ensure that we remove rq contribution to group share: */
12464	clear_tg_offline_cfs_rqs(rq);
12465}
12466
12467#endif /* CONFIG_SMP */
12468
12469#ifdef CONFIG_SCHED_CORE
12470static inline bool
12471__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12472{
12473	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12474	u64 slice = se->slice;
12475
12476	return (rtime * min_nr_tasks > slice);
12477}
12478
12479#define MIN_NR_TASKS_DURING_FORCEIDLE	2
12480static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12481{
12482	if (!sched_core_enabled(rq))
12483		return;
12484
12485	/*
12486	 * If runqueue has only one task which used up its slice and
12487	 * if the sibling is forced idle, then trigger schedule to
12488	 * give forced idle task a chance.
12489	 *
12490	 * sched_slice() considers only this active rq and it gets the
12491	 * whole slice. But during force idle, we have siblings acting
12492	 * like a single runqueue and hence we need to consider runnable
12493	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12494	 * go through the forced idle rq, but that would be a perf hit.
12495	 * We can assume that the forced idle CPU has at least
12496	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12497	 * if we need to give up the CPU.
12498	 */
12499	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12500	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12501		resched_curr(rq);
12502}
12503
12504/*
12505 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12506 */
12507static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12508			 bool forceidle)
12509{
12510	for_each_sched_entity(se) {
12511		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12512
12513		if (forceidle) {
12514			if (cfs_rq->forceidle_seq == fi_seq)
12515				break;
12516			cfs_rq->forceidle_seq = fi_seq;
12517		}
12518
12519		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12520	}
12521}
12522
12523void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12524{
12525	struct sched_entity *se = &p->se;
12526
12527	if (p->sched_class != &fair_sched_class)
12528		return;
12529
12530	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12531}
12532
12533bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12534			bool in_fi)
12535{
12536	struct rq *rq = task_rq(a);
12537	const struct sched_entity *sea = &a->se;
12538	const struct sched_entity *seb = &b->se;
12539	struct cfs_rq *cfs_rqa;
12540	struct cfs_rq *cfs_rqb;
12541	s64 delta;
12542
12543	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12544
12545#ifdef CONFIG_FAIR_GROUP_SCHED
12546	/*
12547	 * Find an se in the hierarchy for tasks a and b, such that the se's
12548	 * are immediate siblings.
12549	 */
12550	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12551		int sea_depth = sea->depth;
12552		int seb_depth = seb->depth;
12553
12554		if (sea_depth >= seb_depth)
12555			sea = parent_entity(sea);
12556		if (sea_depth <= seb_depth)
12557			seb = parent_entity(seb);
12558	}
12559
12560	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12561	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12562
12563	cfs_rqa = sea->cfs_rq;
12564	cfs_rqb = seb->cfs_rq;
12565#else
12566	cfs_rqa = &task_rq(a)->cfs;
12567	cfs_rqb = &task_rq(b)->cfs;
12568#endif
12569
12570	/*
12571	 * Find delta after normalizing se's vruntime with its cfs_rq's
12572	 * min_vruntime_fi, which would have been updated in prior calls
12573	 * to se_fi_update().
12574	 */
12575	delta = (s64)(sea->vruntime - seb->vruntime) +
12576		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12577
12578	return delta > 0;
12579}
12580
12581static int task_is_throttled_fair(struct task_struct *p, int cpu)
12582{
12583	struct cfs_rq *cfs_rq;
12584
12585#ifdef CONFIG_FAIR_GROUP_SCHED
12586	cfs_rq = task_group(p)->cfs_rq[cpu];
12587#else
12588	cfs_rq = &cpu_rq(cpu)->cfs;
12589#endif
12590	return throttled_hierarchy(cfs_rq);
12591}
12592#else
12593static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12594#endif
12595
12596/*
12597 * scheduler tick hitting a task of our scheduling class.
12598 *
12599 * NOTE: This function can be called remotely by the tick offload that
12600 * goes along full dynticks. Therefore no local assumption can be made
12601 * and everything must be accessed through the @rq and @curr passed in
12602 * parameters.
12603 */
12604static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12605{
12606	struct cfs_rq *cfs_rq;
12607	struct sched_entity *se = &curr->se;
12608
12609	for_each_sched_entity(se) {
12610		cfs_rq = cfs_rq_of(se);
12611		entity_tick(cfs_rq, se, queued);
12612	}
12613
12614	if (static_branch_unlikely(&sched_numa_balancing))
12615		task_tick_numa(rq, curr);
12616
12617	update_misfit_status(curr, rq);
12618	update_overutilized_status(task_rq(curr));
12619
12620	task_tick_core(rq, curr);
12621}
12622
12623/*
12624 * called on fork with the child task as argument from the parent's context
12625 *  - child not yet on the tasklist
12626 *  - preemption disabled
12627 */
12628static void task_fork_fair(struct task_struct *p)
12629{
12630	struct sched_entity *se = &p->se, *curr;
12631	struct cfs_rq *cfs_rq;
12632	struct rq *rq = this_rq();
12633	struct rq_flags rf;
12634
12635	rq_lock(rq, &rf);
12636	update_rq_clock(rq);
12637
12638	cfs_rq = task_cfs_rq(current);
12639	curr = cfs_rq->curr;
12640	if (curr)
12641		update_curr(cfs_rq);
12642	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12643	rq_unlock(rq, &rf);
12644}
12645
12646/*
12647 * Priority of the task has changed. Check to see if we preempt
12648 * the current task.
12649 */
12650static void
12651prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12652{
12653	if (!task_on_rq_queued(p))
12654		return;
12655
12656	if (rq->cfs.nr_running == 1)
12657		return;
12658
12659	/*
12660	 * Reschedule if we are currently running on this runqueue and
12661	 * our priority decreased, or if we are not currently running on
12662	 * this runqueue and our priority is higher than the current's
12663	 */
12664	if (task_current(rq, p)) {
12665		if (p->prio > oldprio)
12666			resched_curr(rq);
12667	} else
12668		wakeup_preempt(rq, p, 0);
12669}
12670
12671#ifdef CONFIG_FAIR_GROUP_SCHED
12672/*
12673 * Propagate the changes of the sched_entity across the tg tree to make it
12674 * visible to the root
12675 */
12676static void propagate_entity_cfs_rq(struct sched_entity *se)
12677{
12678	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12679
12680	if (cfs_rq_throttled(cfs_rq))
12681		return;
12682
12683	if (!throttled_hierarchy(cfs_rq))
12684		list_add_leaf_cfs_rq(cfs_rq);
12685
12686	/* Start to propagate at parent */
12687	se = se->parent;
12688
12689	for_each_sched_entity(se) {
12690		cfs_rq = cfs_rq_of(se);
12691
12692		update_load_avg(cfs_rq, se, UPDATE_TG);
12693
12694		if (cfs_rq_throttled(cfs_rq))
12695			break;
12696
12697		if (!throttled_hierarchy(cfs_rq))
12698			list_add_leaf_cfs_rq(cfs_rq);
12699	}
12700}
12701#else
12702static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12703#endif
12704
12705static void detach_entity_cfs_rq(struct sched_entity *se)
12706{
12707	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12708
12709#ifdef CONFIG_SMP
12710	/*
12711	 * In case the task sched_avg hasn't been attached:
12712	 * - A forked task which hasn't been woken up by wake_up_new_task().
12713	 * - A task which has been woken up by try_to_wake_up() but is
12714	 *   waiting for actually being woken up by sched_ttwu_pending().
12715	 */
12716	if (!se->avg.last_update_time)
12717		return;
12718#endif
12719
12720	/* Catch up with the cfs_rq and remove our load when we leave */
12721	update_load_avg(cfs_rq, se, 0);
12722	detach_entity_load_avg(cfs_rq, se);
12723	update_tg_load_avg(cfs_rq);
12724	propagate_entity_cfs_rq(se);
12725}
12726
12727static void attach_entity_cfs_rq(struct sched_entity *se)
12728{
12729	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12730
12731	/* Synchronize entity with its cfs_rq */
12732	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12733	attach_entity_load_avg(cfs_rq, se);
12734	update_tg_load_avg(cfs_rq);
12735	propagate_entity_cfs_rq(se);
12736}
12737
12738static void detach_task_cfs_rq(struct task_struct *p)
12739{
12740	struct sched_entity *se = &p->se;
12741
12742	detach_entity_cfs_rq(se);
12743}
12744
12745static void attach_task_cfs_rq(struct task_struct *p)
12746{
12747	struct sched_entity *se = &p->se;
12748
12749	attach_entity_cfs_rq(se);
12750}
12751
12752static void switched_from_fair(struct rq *rq, struct task_struct *p)
12753{
12754	detach_task_cfs_rq(p);
12755}
12756
12757static void switched_to_fair(struct rq *rq, struct task_struct *p)
12758{
12759	attach_task_cfs_rq(p);
12760
12761	if (task_on_rq_queued(p)) {
12762		/*
12763		 * We were most likely switched from sched_rt, so
12764		 * kick off the schedule if running, otherwise just see
12765		 * if we can still preempt the current task.
12766		 */
12767		if (task_current(rq, p))
12768			resched_curr(rq);
12769		else
12770			wakeup_preempt(rq, p, 0);
12771	}
12772}
12773
12774/* Account for a task changing its policy or group.
12775 *
12776 * This routine is mostly called to set cfs_rq->curr field when a task
12777 * migrates between groups/classes.
12778 */
12779static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12780{
12781	struct sched_entity *se = &p->se;
12782
12783#ifdef CONFIG_SMP
12784	if (task_on_rq_queued(p)) {
12785		/*
12786		 * Move the next running task to the front of the list, so our
12787		 * cfs_tasks list becomes MRU one.
12788		 */
12789		list_move(&se->group_node, &rq->cfs_tasks);
12790	}
12791#endif
12792
12793	for_each_sched_entity(se) {
12794		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12795
12796		set_next_entity(cfs_rq, se);
12797		/* ensure bandwidth has been allocated on our new cfs_rq */
12798		account_cfs_rq_runtime(cfs_rq, 0);
12799	}
12800}
12801
12802void init_cfs_rq(struct cfs_rq *cfs_rq)
12803{
12804	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12805	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12806#ifdef CONFIG_SMP
12807	raw_spin_lock_init(&cfs_rq->removed.lock);
12808#endif
12809}
12810
12811#ifdef CONFIG_FAIR_GROUP_SCHED
12812static void task_change_group_fair(struct task_struct *p)
12813{
12814	/*
12815	 * We couldn't detach or attach a forked task which
12816	 * hasn't been woken up by wake_up_new_task().
12817	 */
12818	if (READ_ONCE(p->__state) == TASK_NEW)
12819		return;
12820
12821	detach_task_cfs_rq(p);
12822
12823#ifdef CONFIG_SMP
12824	/* Tell se's cfs_rq has been changed -- migrated */
12825	p->se.avg.last_update_time = 0;
12826#endif
12827	set_task_rq(p, task_cpu(p));
12828	attach_task_cfs_rq(p);
12829}
12830
12831void free_fair_sched_group(struct task_group *tg)
12832{
12833	int i;
12834
12835	for_each_possible_cpu(i) {
12836		if (tg->cfs_rq)
12837			kfree(tg->cfs_rq[i]);
12838		if (tg->se)
12839			kfree(tg->se[i]);
12840	}
12841
12842	kfree(tg->cfs_rq);
12843	kfree(tg->se);
12844}
12845
12846int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12847{
12848	struct sched_entity *se;
12849	struct cfs_rq *cfs_rq;
12850	int i;
12851
12852	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12853	if (!tg->cfs_rq)
12854		goto err;
12855	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12856	if (!tg->se)
12857		goto err;
12858
12859	tg->shares = NICE_0_LOAD;
12860
12861	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12862
12863	for_each_possible_cpu(i) {
12864		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12865				      GFP_KERNEL, cpu_to_node(i));
12866		if (!cfs_rq)
12867			goto err;
12868
12869		se = kzalloc_node(sizeof(struct sched_entity_stats),
12870				  GFP_KERNEL, cpu_to_node(i));
12871		if (!se)
12872			goto err_free_rq;
12873
12874		init_cfs_rq(cfs_rq);
12875		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12876		init_entity_runnable_average(se);
12877	}
12878
12879	return 1;
12880
12881err_free_rq:
12882	kfree(cfs_rq);
12883err:
12884	return 0;
12885}
12886
12887void online_fair_sched_group(struct task_group *tg)
12888{
12889	struct sched_entity *se;
12890	struct rq_flags rf;
12891	struct rq *rq;
12892	int i;
12893
12894	for_each_possible_cpu(i) {
12895		rq = cpu_rq(i);
12896		se = tg->se[i];
12897		rq_lock_irq(rq, &rf);
12898		update_rq_clock(rq);
12899		attach_entity_cfs_rq(se);
12900		sync_throttle(tg, i);
12901		rq_unlock_irq(rq, &rf);
12902	}
12903}
12904
12905void unregister_fair_sched_group(struct task_group *tg)
12906{
12907	unsigned long flags;
12908	struct rq *rq;
12909	int cpu;
12910
12911	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12912
12913	for_each_possible_cpu(cpu) {
12914		if (tg->se[cpu])
12915			remove_entity_load_avg(tg->se[cpu]);
12916
12917		/*
12918		 * Only empty task groups can be destroyed; so we can speculatively
12919		 * check on_list without danger of it being re-added.
12920		 */
12921		if (!tg->cfs_rq[cpu]->on_list)
12922			continue;
12923
12924		rq = cpu_rq(cpu);
12925
12926		raw_spin_rq_lock_irqsave(rq, flags);
12927		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12928		raw_spin_rq_unlock_irqrestore(rq, flags);
12929	}
12930}
12931
12932void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12933			struct sched_entity *se, int cpu,
12934			struct sched_entity *parent)
12935{
12936	struct rq *rq = cpu_rq(cpu);
12937
12938	cfs_rq->tg = tg;
12939	cfs_rq->rq = rq;
12940	init_cfs_rq_runtime(cfs_rq);
12941
12942	tg->cfs_rq[cpu] = cfs_rq;
12943	tg->se[cpu] = se;
12944
12945	/* se could be NULL for root_task_group */
12946	if (!se)
12947		return;
12948
12949	if (!parent) {
12950		se->cfs_rq = &rq->cfs;
12951		se->depth = 0;
12952	} else {
12953		se->cfs_rq = parent->my_q;
12954		se->depth = parent->depth + 1;
12955	}
12956
12957	se->my_q = cfs_rq;
12958	/* guarantee group entities always have weight */
12959	update_load_set(&se->load, NICE_0_LOAD);
12960	se->parent = parent;
12961}
12962
12963static DEFINE_MUTEX(shares_mutex);
12964
12965static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12966{
12967	int i;
12968
12969	lockdep_assert_held(&shares_mutex);
12970
12971	/*
12972	 * We can't change the weight of the root cgroup.
12973	 */
12974	if (!tg->se[0])
12975		return -EINVAL;
12976
12977	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12978
12979	if (tg->shares == shares)
12980		return 0;
12981
12982	tg->shares = shares;
12983	for_each_possible_cpu(i) {
12984		struct rq *rq = cpu_rq(i);
12985		struct sched_entity *se = tg->se[i];
12986		struct rq_flags rf;
12987
12988		/* Propagate contribution to hierarchy */
12989		rq_lock_irqsave(rq, &rf);
12990		update_rq_clock(rq);
12991		for_each_sched_entity(se) {
12992			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12993			update_cfs_group(se);
12994		}
12995		rq_unlock_irqrestore(rq, &rf);
12996	}
12997
12998	return 0;
12999}
13000
13001int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13002{
13003	int ret;
13004
13005	mutex_lock(&shares_mutex);
13006	if (tg_is_idle(tg))
13007		ret = -EINVAL;
13008	else
13009		ret = __sched_group_set_shares(tg, shares);
13010	mutex_unlock(&shares_mutex);
13011
13012	return ret;
13013}
13014
13015int sched_group_set_idle(struct task_group *tg, long idle)
13016{
13017	int i;
13018
13019	if (tg == &root_task_group)
13020		return -EINVAL;
13021
13022	if (idle < 0 || idle > 1)
13023		return -EINVAL;
13024
13025	mutex_lock(&shares_mutex);
13026
13027	if (tg->idle == idle) {
13028		mutex_unlock(&shares_mutex);
13029		return 0;
13030	}
13031
13032	tg->idle = idle;
13033
13034	for_each_possible_cpu(i) {
13035		struct rq *rq = cpu_rq(i);
13036		struct sched_entity *se = tg->se[i];
13037		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13038		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13039		long idle_task_delta;
13040		struct rq_flags rf;
13041
13042		rq_lock_irqsave(rq, &rf);
13043
13044		grp_cfs_rq->idle = idle;
13045		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13046			goto next_cpu;
13047
13048		if (se->on_rq) {
13049			parent_cfs_rq = cfs_rq_of(se);
13050			if (cfs_rq_is_idle(grp_cfs_rq))
13051				parent_cfs_rq->idle_nr_running++;
13052			else
13053				parent_cfs_rq->idle_nr_running--;
13054		}
13055
13056		idle_task_delta = grp_cfs_rq->h_nr_running -
13057				  grp_cfs_rq->idle_h_nr_running;
13058		if (!cfs_rq_is_idle(grp_cfs_rq))
13059			idle_task_delta *= -1;
13060
13061		for_each_sched_entity(se) {
13062			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13063
13064			if (!se->on_rq)
13065				break;
13066
13067			cfs_rq->idle_h_nr_running += idle_task_delta;
13068
13069			/* Already accounted at parent level and above. */
13070			if (cfs_rq_is_idle(cfs_rq))
13071				break;
13072		}
13073
13074next_cpu:
13075		rq_unlock_irqrestore(rq, &rf);
13076	}
13077
13078	/* Idle groups have minimum weight. */
13079	if (tg_is_idle(tg))
13080		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13081	else
13082		__sched_group_set_shares(tg, NICE_0_LOAD);
13083
13084	mutex_unlock(&shares_mutex);
13085	return 0;
13086}
13087
13088#endif /* CONFIG_FAIR_GROUP_SCHED */
13089
13090
13091static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13092{
13093	struct sched_entity *se = &task->se;
13094	unsigned int rr_interval = 0;
13095
13096	/*
13097	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13098	 * idle runqueue:
13099	 */
13100	if (rq->cfs.load.weight)
13101		rr_interval = NS_TO_JIFFIES(se->slice);
13102
13103	return rr_interval;
13104}
13105
13106/*
13107 * All the scheduling class methods:
13108 */
13109DEFINE_SCHED_CLASS(fair) = {
13110
13111	.enqueue_task		= enqueue_task_fair,
13112	.dequeue_task		= dequeue_task_fair,
13113	.yield_task		= yield_task_fair,
13114	.yield_to_task		= yield_to_task_fair,
13115
13116	.wakeup_preempt		= check_preempt_wakeup_fair,
13117
13118	.pick_next_task		= __pick_next_task_fair,
13119	.put_prev_task		= put_prev_task_fair,
13120	.set_next_task          = set_next_task_fair,
13121
13122#ifdef CONFIG_SMP
13123	.balance		= balance_fair,
13124	.pick_task		= pick_task_fair,
13125	.select_task_rq		= select_task_rq_fair,
13126	.migrate_task_rq	= migrate_task_rq_fair,
13127
13128	.rq_online		= rq_online_fair,
13129	.rq_offline		= rq_offline_fair,
13130
13131	.task_dead		= task_dead_fair,
13132	.set_cpus_allowed	= set_cpus_allowed_common,
13133#endif
13134
13135	.task_tick		= task_tick_fair,
13136	.task_fork		= task_fork_fair,
13137
13138	.prio_changed		= prio_changed_fair,
13139	.switched_from		= switched_from_fair,
13140	.switched_to		= switched_to_fair,
13141
13142	.get_rr_interval	= get_rr_interval_fair,
13143
13144	.update_curr		= update_curr_fair,
13145
13146#ifdef CONFIG_FAIR_GROUP_SCHED
13147	.task_change_group	= task_change_group_fair,
13148#endif
13149
13150#ifdef CONFIG_SCHED_CORE
13151	.task_is_throttled	= task_is_throttled_fair,
13152#endif
13153
13154#ifdef CONFIG_UCLAMP_TASK
13155	.uclamp_enabled		= 1,
13156#endif
13157};
13158
13159#ifdef CONFIG_SCHED_DEBUG
13160void print_cfs_stats(struct seq_file *m, int cpu)
13161{
13162	struct cfs_rq *cfs_rq, *pos;
13163
13164	rcu_read_lock();
13165	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13166		print_cfs_rq(m, cpu, cfs_rq);
13167	rcu_read_unlock();
13168}
13169
13170#ifdef CONFIG_NUMA_BALANCING
13171void show_numa_stats(struct task_struct *p, struct seq_file *m)
13172{
13173	int node;
13174	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13175	struct numa_group *ng;
13176
13177	rcu_read_lock();
13178	ng = rcu_dereference(p->numa_group);
13179	for_each_online_node(node) {
13180		if (p->numa_faults) {
13181			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13182			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13183		}
13184		if (ng) {
13185			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13186			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13187		}
13188		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13189	}
13190	rcu_read_unlock();
13191}
13192#endif /* CONFIG_NUMA_BALANCING */
13193#endif /* CONFIG_SCHED_DEBUG */
13194
13195__init void init_sched_fair_class(void)
13196{
13197#ifdef CONFIG_SMP
13198	int i;
13199
13200	for_each_possible_cpu(i) {
13201		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13202		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13203		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13204					GFP_KERNEL, cpu_to_node(i));
13205
13206#ifdef CONFIG_CFS_BANDWIDTH
13207		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13208		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13209#endif
13210	}
13211
13212	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13213
13214#ifdef CONFIG_NO_HZ_COMMON
13215	nohz.next_balance = jiffies;
13216	nohz.next_blocked = jiffies;
13217	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13218#endif
13219#endif /* SMP */
13220
13221}
13222