1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  kernel/sched/core.c
4 *
5 *  Core kernel scheduler code and related syscalls
6 *
7 *  Copyright (C) 1991-2002  Linus Torvalds
8 */
9#include <linux/highmem.h>
10#include <linux/hrtimer_api.h>
11#include <linux/ktime_api.h>
12#include <linux/sched/signal.h>
13#include <linux/syscalls_api.h>
14#include <linux/debug_locks.h>
15#include <linux/prefetch.h>
16#include <linux/capability.h>
17#include <linux/pgtable_api.h>
18#include <linux/wait_bit.h>
19#include <linux/jiffies.h>
20#include <linux/spinlock_api.h>
21#include <linux/cpumask_api.h>
22#include <linux/lockdep_api.h>
23#include <linux/hardirq.h>
24#include <linux/softirq.h>
25#include <linux/refcount_api.h>
26#include <linux/topology.h>
27#include <linux/sched/clock.h>
28#include <linux/sched/cond_resched.h>
29#include <linux/sched/cputime.h>
30#include <linux/sched/debug.h>
31#include <linux/sched/hotplug.h>
32#include <linux/sched/init.h>
33#include <linux/sched/isolation.h>
34#include <linux/sched/loadavg.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/nohz.h>
37#include <linux/sched/rseq_api.h>
38#include <linux/sched/rt.h>
39
40#include <linux/blkdev.h>
41#include <linux/context_tracking.h>
42#include <linux/cpuset.h>
43#include <linux/delayacct.h>
44#include <linux/init_task.h>
45#include <linux/interrupt.h>
46#include <linux/ioprio.h>
47#include <linux/kallsyms.h>
48#include <linux/kcov.h>
49#include <linux/kprobes.h>
50#include <linux/llist_api.h>
51#include <linux/mmu_context.h>
52#include <linux/mmzone.h>
53#include <linux/mutex_api.h>
54#include <linux/nmi.h>
55#include <linux/nospec.h>
56#include <linux/perf_event_api.h>
57#include <linux/profile.h>
58#include <linux/psi.h>
59#include <linux/rcuwait_api.h>
60#include <linux/rseq.h>
61#include <linux/sched/wake_q.h>
62#include <linux/scs.h>
63#include <linux/slab.h>
64#include <linux/syscalls.h>
65#include <linux/vtime.h>
66#include <linux/wait_api.h>
67#include <linux/workqueue_api.h>
68
69#ifdef CONFIG_PREEMPT_DYNAMIC
70# ifdef CONFIG_GENERIC_ENTRY
71#  include <linux/entry-common.h>
72# endif
73#endif
74
75#include <uapi/linux/sched/types.h>
76
77#include <asm/irq_regs.h>
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80
81#define CREATE_TRACE_POINTS
82#include <linux/sched/rseq_api.h>
83#include <trace/events/sched.h>
84#include <trace/events/ipi.h>
85#undef CREATE_TRACE_POINTS
86
87#include "sched.h"
88#include "stats.h"
89
90#include "autogroup.h"
91#include "pelt.h"
92#include "smp.h"
93#include "stats.h"
94
95#include "../workqueue_internal.h"
96#include "../../io_uring/io-wq.h"
97#include "../smpboot.h"
98
99EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101
102/*
103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
104 * associated with them) to allow external modules to probe them.
105 */
106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
118
119DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
120
121#ifdef CONFIG_SCHED_DEBUG
122/*
123 * Debugging: various feature bits
124 *
125 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126 * sysctl_sched_features, defined in sched.h, to allow constants propagation
127 * at compile time and compiler optimization based on features default.
128 */
129#define SCHED_FEAT(name, enabled)	\
130	(1UL << __SCHED_FEAT_##name) * enabled |
131const_debug unsigned int sysctl_sched_features =
132#include "features.h"
133	0;
134#undef SCHED_FEAT
135
136/*
137 * Print a warning if need_resched is set for the given duration (if
138 * LATENCY_WARN is enabled).
139 *
140 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141 * per boot.
142 */
143__read_mostly int sysctl_resched_latency_warn_ms = 100;
144__read_mostly int sysctl_resched_latency_warn_once = 1;
145#endif /* CONFIG_SCHED_DEBUG */
146
147/*
148 * Number of tasks to iterate in a single balance run.
149 * Limited because this is done with IRQs disabled.
150 */
151const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
152
153__read_mostly int scheduler_running;
154
155#ifdef CONFIG_SCHED_CORE
156
157DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
158
159/* kernel prio, less is more */
160static inline int __task_prio(const struct task_struct *p)
161{
162	if (p->sched_class == &stop_sched_class) /* trumps deadline */
163		return -2;
164
165	if (rt_prio(p->prio)) /* includes deadline */
166		return p->prio; /* [-1, 99] */
167
168	if (p->sched_class == &idle_sched_class)
169		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
170
171	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
172}
173
174/*
175 * l(a,b)
176 * le(a,b) := !l(b,a)
177 * g(a,b)  := l(b,a)
178 * ge(a,b) := !l(a,b)
179 */
180
181/* real prio, less is less */
182static inline bool prio_less(const struct task_struct *a,
183			     const struct task_struct *b, bool in_fi)
184{
185
186	int pa = __task_prio(a), pb = __task_prio(b);
187
188	if (-pa < -pb)
189		return true;
190
191	if (-pb < -pa)
192		return false;
193
194	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
195		return !dl_time_before(a->dl.deadline, b->dl.deadline);
196
197	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
198		return cfs_prio_less(a, b, in_fi);
199
200	return false;
201}
202
203static inline bool __sched_core_less(const struct task_struct *a,
204				     const struct task_struct *b)
205{
206	if (a->core_cookie < b->core_cookie)
207		return true;
208
209	if (a->core_cookie > b->core_cookie)
210		return false;
211
212	/* flip prio, so high prio is leftmost */
213	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
214		return true;
215
216	return false;
217}
218
219#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
220
221static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
222{
223	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
224}
225
226static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
227{
228	const struct task_struct *p = __node_2_sc(node);
229	unsigned long cookie = (unsigned long)key;
230
231	if (cookie < p->core_cookie)
232		return -1;
233
234	if (cookie > p->core_cookie)
235		return 1;
236
237	return 0;
238}
239
240void sched_core_enqueue(struct rq *rq, struct task_struct *p)
241{
242	rq->core->core_task_seq++;
243
244	if (!p->core_cookie)
245		return;
246
247	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
248}
249
250void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
251{
252	rq->core->core_task_seq++;
253
254	if (sched_core_enqueued(p)) {
255		rb_erase(&p->core_node, &rq->core_tree);
256		RB_CLEAR_NODE(&p->core_node);
257	}
258
259	/*
260	 * Migrating the last task off the cpu, with the cpu in forced idle
261	 * state. Reschedule to create an accounting edge for forced idle,
262	 * and re-examine whether the core is still in forced idle state.
263	 */
264	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
265	    rq->core->core_forceidle_count && rq->curr == rq->idle)
266		resched_curr(rq);
267}
268
269static int sched_task_is_throttled(struct task_struct *p, int cpu)
270{
271	if (p->sched_class->task_is_throttled)
272		return p->sched_class->task_is_throttled(p, cpu);
273
274	return 0;
275}
276
277static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
278{
279	struct rb_node *node = &p->core_node;
280	int cpu = task_cpu(p);
281
282	do {
283		node = rb_next(node);
284		if (!node)
285			return NULL;
286
287		p = __node_2_sc(node);
288		if (p->core_cookie != cookie)
289			return NULL;
290
291	} while (sched_task_is_throttled(p, cpu));
292
293	return p;
294}
295
296/*
297 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
298 * If no suitable task is found, NULL will be returned.
299 */
300static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
301{
302	struct task_struct *p;
303	struct rb_node *node;
304
305	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
306	if (!node)
307		return NULL;
308
309	p = __node_2_sc(node);
310	if (!sched_task_is_throttled(p, rq->cpu))
311		return p;
312
313	return sched_core_next(p, cookie);
314}
315
316/*
317 * Magic required such that:
318 *
319 *	raw_spin_rq_lock(rq);
320 *	...
321 *	raw_spin_rq_unlock(rq);
322 *
323 * ends up locking and unlocking the _same_ lock, and all CPUs
324 * always agree on what rq has what lock.
325 *
326 * XXX entirely possible to selectively enable cores, don't bother for now.
327 */
328
329static DEFINE_MUTEX(sched_core_mutex);
330static atomic_t sched_core_count;
331static struct cpumask sched_core_mask;
332
333static void sched_core_lock(int cpu, unsigned long *flags)
334{
335	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
336	int t, i = 0;
337
338	local_irq_save(*flags);
339	for_each_cpu(t, smt_mask)
340		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
341}
342
343static void sched_core_unlock(int cpu, unsigned long *flags)
344{
345	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
346	int t;
347
348	for_each_cpu(t, smt_mask)
349		raw_spin_unlock(&cpu_rq(t)->__lock);
350	local_irq_restore(*flags);
351}
352
353static void __sched_core_flip(bool enabled)
354{
355	unsigned long flags;
356	int cpu, t;
357
358	cpus_read_lock();
359
360	/*
361	 * Toggle the online cores, one by one.
362	 */
363	cpumask_copy(&sched_core_mask, cpu_online_mask);
364	for_each_cpu(cpu, &sched_core_mask) {
365		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
366
367		sched_core_lock(cpu, &flags);
368
369		for_each_cpu(t, smt_mask)
370			cpu_rq(t)->core_enabled = enabled;
371
372		cpu_rq(cpu)->core->core_forceidle_start = 0;
373
374		sched_core_unlock(cpu, &flags);
375
376		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
377	}
378
379	/*
380	 * Toggle the offline CPUs.
381	 */
382	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
383		cpu_rq(cpu)->core_enabled = enabled;
384
385	cpus_read_unlock();
386}
387
388static void sched_core_assert_empty(void)
389{
390	int cpu;
391
392	for_each_possible_cpu(cpu)
393		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
394}
395
396static void __sched_core_enable(void)
397{
398	static_branch_enable(&__sched_core_enabled);
399	/*
400	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
401	 * and future ones will observe !sched_core_disabled().
402	 */
403	synchronize_rcu();
404	__sched_core_flip(true);
405	sched_core_assert_empty();
406}
407
408static void __sched_core_disable(void)
409{
410	sched_core_assert_empty();
411	__sched_core_flip(false);
412	static_branch_disable(&__sched_core_enabled);
413}
414
415void sched_core_get(void)
416{
417	if (atomic_inc_not_zero(&sched_core_count))
418		return;
419
420	mutex_lock(&sched_core_mutex);
421	if (!atomic_read(&sched_core_count))
422		__sched_core_enable();
423
424	smp_mb__before_atomic();
425	atomic_inc(&sched_core_count);
426	mutex_unlock(&sched_core_mutex);
427}
428
429static void __sched_core_put(struct work_struct *work)
430{
431	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
432		__sched_core_disable();
433		mutex_unlock(&sched_core_mutex);
434	}
435}
436
437void sched_core_put(void)
438{
439	static DECLARE_WORK(_work, __sched_core_put);
440
441	/*
442	 * "There can be only one"
443	 *
444	 * Either this is the last one, or we don't actually need to do any
445	 * 'work'. If it is the last *again*, we rely on
446	 * WORK_STRUCT_PENDING_BIT.
447	 */
448	if (!atomic_add_unless(&sched_core_count, -1, 1))
449		schedule_work(&_work);
450}
451
452#else /* !CONFIG_SCHED_CORE */
453
454static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
455static inline void
456sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
457
458#endif /* CONFIG_SCHED_CORE */
459
460/*
461 * Serialization rules:
462 *
463 * Lock order:
464 *
465 *   p->pi_lock
466 *     rq->lock
467 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
468 *
469 *  rq1->lock
470 *    rq2->lock  where: rq1 < rq2
471 *
472 * Regular state:
473 *
474 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
475 * local CPU's rq->lock, it optionally removes the task from the runqueue and
476 * always looks at the local rq data structures to find the most eligible task
477 * to run next.
478 *
479 * Task enqueue is also under rq->lock, possibly taken from another CPU.
480 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
481 * the local CPU to avoid bouncing the runqueue state around [ see
482 * ttwu_queue_wakelist() ]
483 *
484 * Task wakeup, specifically wakeups that involve migration, are horribly
485 * complicated to avoid having to take two rq->locks.
486 *
487 * Special state:
488 *
489 * System-calls and anything external will use task_rq_lock() which acquires
490 * both p->pi_lock and rq->lock. As a consequence the state they change is
491 * stable while holding either lock:
492 *
493 *  - sched_setaffinity()/
494 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
495 *  - set_user_nice():		p->se.load, p->*prio
496 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
497 *				p->se.load, p->rt_priority,
498 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
499 *  - sched_setnuma():		p->numa_preferred_nid
500 *  - sched_move_task():	p->sched_task_group
501 *  - uclamp_update_active()	p->uclamp*
502 *
503 * p->state <- TASK_*:
504 *
505 *   is changed locklessly using set_current_state(), __set_current_state() or
506 *   set_special_state(), see their respective comments, or by
507 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
508 *   concurrent self.
509 *
510 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
511 *
512 *   is set by activate_task() and cleared by deactivate_task(), under
513 *   rq->lock. Non-zero indicates the task is runnable, the special
514 *   ON_RQ_MIGRATING state is used for migration without holding both
515 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
516 *
517 * p->on_cpu <- { 0, 1 }:
518 *
519 *   is set by prepare_task() and cleared by finish_task() such that it will be
520 *   set before p is scheduled-in and cleared after p is scheduled-out, both
521 *   under rq->lock. Non-zero indicates the task is running on its CPU.
522 *
523 *   [ The astute reader will observe that it is possible for two tasks on one
524 *     CPU to have ->on_cpu = 1 at the same time. ]
525 *
526 * task_cpu(p): is changed by set_task_cpu(), the rules are:
527 *
528 *  - Don't call set_task_cpu() on a blocked task:
529 *
530 *    We don't care what CPU we're not running on, this simplifies hotplug,
531 *    the CPU assignment of blocked tasks isn't required to be valid.
532 *
533 *  - for try_to_wake_up(), called under p->pi_lock:
534 *
535 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
536 *
537 *  - for migration called under rq->lock:
538 *    [ see task_on_rq_migrating() in task_rq_lock() ]
539 *
540 *    o move_queued_task()
541 *    o detach_task()
542 *
543 *  - for migration called under double_rq_lock():
544 *
545 *    o __migrate_swap_task()
546 *    o push_rt_task() / pull_rt_task()
547 *    o push_dl_task() / pull_dl_task()
548 *    o dl_task_offline_migration()
549 *
550 */
551
552void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
553{
554	raw_spinlock_t *lock;
555
556	/* Matches synchronize_rcu() in __sched_core_enable() */
557	preempt_disable();
558	if (sched_core_disabled()) {
559		raw_spin_lock_nested(&rq->__lock, subclass);
560		/* preempt_count *MUST* be > 1 */
561		preempt_enable_no_resched();
562		return;
563	}
564
565	for (;;) {
566		lock = __rq_lockp(rq);
567		raw_spin_lock_nested(lock, subclass);
568		if (likely(lock == __rq_lockp(rq))) {
569			/* preempt_count *MUST* be > 1 */
570			preempt_enable_no_resched();
571			return;
572		}
573		raw_spin_unlock(lock);
574	}
575}
576
577bool raw_spin_rq_trylock(struct rq *rq)
578{
579	raw_spinlock_t *lock;
580	bool ret;
581
582	/* Matches synchronize_rcu() in __sched_core_enable() */
583	preempt_disable();
584	if (sched_core_disabled()) {
585		ret = raw_spin_trylock(&rq->__lock);
586		preempt_enable();
587		return ret;
588	}
589
590	for (;;) {
591		lock = __rq_lockp(rq);
592		ret = raw_spin_trylock(lock);
593		if (!ret || (likely(lock == __rq_lockp(rq)))) {
594			preempt_enable();
595			return ret;
596		}
597		raw_spin_unlock(lock);
598	}
599}
600
601void raw_spin_rq_unlock(struct rq *rq)
602{
603	raw_spin_unlock(rq_lockp(rq));
604}
605
606#ifdef CONFIG_SMP
607/*
608 * double_rq_lock - safely lock two runqueues
609 */
610void double_rq_lock(struct rq *rq1, struct rq *rq2)
611{
612	lockdep_assert_irqs_disabled();
613
614	if (rq_order_less(rq2, rq1))
615		swap(rq1, rq2);
616
617	raw_spin_rq_lock(rq1);
618	if (__rq_lockp(rq1) != __rq_lockp(rq2))
619		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
620
621	double_rq_clock_clear_update(rq1, rq2);
622}
623#endif
624
625/*
626 * __task_rq_lock - lock the rq @p resides on.
627 */
628struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
629	__acquires(rq->lock)
630{
631	struct rq *rq;
632
633	lockdep_assert_held(&p->pi_lock);
634
635	for (;;) {
636		rq = task_rq(p);
637		raw_spin_rq_lock(rq);
638		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
639			rq_pin_lock(rq, rf);
640			return rq;
641		}
642		raw_spin_rq_unlock(rq);
643
644		while (unlikely(task_on_rq_migrating(p)))
645			cpu_relax();
646	}
647}
648
649/*
650 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
651 */
652struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
653	__acquires(p->pi_lock)
654	__acquires(rq->lock)
655{
656	struct rq *rq;
657
658	for (;;) {
659		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
660		rq = task_rq(p);
661		raw_spin_rq_lock(rq);
662		/*
663		 *	move_queued_task()		task_rq_lock()
664		 *
665		 *	ACQUIRE (rq->lock)
666		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
667		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
668		 *	[S] ->cpu = new_cpu		[L] task_rq()
669		 *					[L] ->on_rq
670		 *	RELEASE (rq->lock)
671		 *
672		 * If we observe the old CPU in task_rq_lock(), the acquire of
673		 * the old rq->lock will fully serialize against the stores.
674		 *
675		 * If we observe the new CPU in task_rq_lock(), the address
676		 * dependency headed by '[L] rq = task_rq()' and the acquire
677		 * will pair with the WMB to ensure we then also see migrating.
678		 */
679		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
680			rq_pin_lock(rq, rf);
681			return rq;
682		}
683		raw_spin_rq_unlock(rq);
684		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
685
686		while (unlikely(task_on_rq_migrating(p)))
687			cpu_relax();
688	}
689}
690
691/*
692 * RQ-clock updating methods:
693 */
694
695static void update_rq_clock_task(struct rq *rq, s64 delta)
696{
697/*
698 * In theory, the compile should just see 0 here, and optimize out the call
699 * to sched_rt_avg_update. But I don't trust it...
700 */
701	s64 __maybe_unused steal = 0, irq_delta = 0;
702
703#ifdef CONFIG_IRQ_TIME_ACCOUNTING
704	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
705
706	/*
707	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
708	 * this case when a previous update_rq_clock() happened inside a
709	 * {soft,}irq region.
710	 *
711	 * When this happens, we stop ->clock_task and only update the
712	 * prev_irq_time stamp to account for the part that fit, so that a next
713	 * update will consume the rest. This ensures ->clock_task is
714	 * monotonic.
715	 *
716	 * It does however cause some slight miss-attribution of {soft,}irq
717	 * time, a more accurate solution would be to update the irq_time using
718	 * the current rq->clock timestamp, except that would require using
719	 * atomic ops.
720	 */
721	if (irq_delta > delta)
722		irq_delta = delta;
723
724	rq->prev_irq_time += irq_delta;
725	delta -= irq_delta;
726	psi_account_irqtime(rq->curr, irq_delta);
727	delayacct_irq(rq->curr, irq_delta);
728#endif
729#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
730	if (static_key_false((&paravirt_steal_rq_enabled))) {
731		steal = paravirt_steal_clock(cpu_of(rq));
732		steal -= rq->prev_steal_time_rq;
733
734		if (unlikely(steal > delta))
735			steal = delta;
736
737		rq->prev_steal_time_rq += steal;
738		delta -= steal;
739	}
740#endif
741
742	rq->clock_task += delta;
743
744#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
745	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
746		update_irq_load_avg(rq, irq_delta + steal);
747#endif
748	update_rq_clock_pelt(rq, delta);
749}
750
751void update_rq_clock(struct rq *rq)
752{
753	s64 delta;
754
755	lockdep_assert_rq_held(rq);
756
757	if (rq->clock_update_flags & RQCF_ACT_SKIP)
758		return;
759
760#ifdef CONFIG_SCHED_DEBUG
761	if (sched_feat(WARN_DOUBLE_CLOCK))
762		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
763	rq->clock_update_flags |= RQCF_UPDATED;
764#endif
765
766	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
767	if (delta < 0)
768		return;
769	rq->clock += delta;
770	update_rq_clock_task(rq, delta);
771}
772
773#ifdef CONFIG_SCHED_HRTICK
774/*
775 * Use HR-timers to deliver accurate preemption points.
776 */
777
778static void hrtick_clear(struct rq *rq)
779{
780	if (hrtimer_active(&rq->hrtick_timer))
781		hrtimer_cancel(&rq->hrtick_timer);
782}
783
784/*
785 * High-resolution timer tick.
786 * Runs from hardirq context with interrupts disabled.
787 */
788static enum hrtimer_restart hrtick(struct hrtimer *timer)
789{
790	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
791	struct rq_flags rf;
792
793	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
794
795	rq_lock(rq, &rf);
796	update_rq_clock(rq);
797	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
798	rq_unlock(rq, &rf);
799
800	return HRTIMER_NORESTART;
801}
802
803#ifdef CONFIG_SMP
804
805static void __hrtick_restart(struct rq *rq)
806{
807	struct hrtimer *timer = &rq->hrtick_timer;
808	ktime_t time = rq->hrtick_time;
809
810	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
811}
812
813/*
814 * called from hardirq (IPI) context
815 */
816static void __hrtick_start(void *arg)
817{
818	struct rq *rq = arg;
819	struct rq_flags rf;
820
821	rq_lock(rq, &rf);
822	__hrtick_restart(rq);
823	rq_unlock(rq, &rf);
824}
825
826/*
827 * Called to set the hrtick timer state.
828 *
829 * called with rq->lock held and irqs disabled
830 */
831void hrtick_start(struct rq *rq, u64 delay)
832{
833	struct hrtimer *timer = &rq->hrtick_timer;
834	s64 delta;
835
836	/*
837	 * Don't schedule slices shorter than 10000ns, that just
838	 * doesn't make sense and can cause timer DoS.
839	 */
840	delta = max_t(s64, delay, 10000LL);
841	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
842
843	if (rq == this_rq())
844		__hrtick_restart(rq);
845	else
846		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
847}
848
849#else
850/*
851 * Called to set the hrtick timer state.
852 *
853 * called with rq->lock held and irqs disabled
854 */
855void hrtick_start(struct rq *rq, u64 delay)
856{
857	/*
858	 * Don't schedule slices shorter than 10000ns, that just
859	 * doesn't make sense. Rely on vruntime for fairness.
860	 */
861	delay = max_t(u64, delay, 10000LL);
862	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
863		      HRTIMER_MODE_REL_PINNED_HARD);
864}
865
866#endif /* CONFIG_SMP */
867
868static void hrtick_rq_init(struct rq *rq)
869{
870#ifdef CONFIG_SMP
871	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
872#endif
873	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
874	rq->hrtick_timer.function = hrtick;
875}
876#else	/* CONFIG_SCHED_HRTICK */
877static inline void hrtick_clear(struct rq *rq)
878{
879}
880
881static inline void hrtick_rq_init(struct rq *rq)
882{
883}
884#endif	/* CONFIG_SCHED_HRTICK */
885
886/*
887 * cmpxchg based fetch_or, macro so it works for different integer types
888 */
889#define fetch_or(ptr, mask)						\
890	({								\
891		typeof(ptr) _ptr = (ptr);				\
892		typeof(mask) _mask = (mask);				\
893		typeof(*_ptr) _val = *_ptr;				\
894									\
895		do {							\
896		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
897	_val;								\
898})
899
900#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
901/*
902 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
903 * this avoids any races wrt polling state changes and thereby avoids
904 * spurious IPIs.
905 */
906static inline bool set_nr_and_not_polling(struct task_struct *p)
907{
908	struct thread_info *ti = task_thread_info(p);
909	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
910}
911
912/*
913 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
914 *
915 * If this returns true, then the idle task promises to call
916 * sched_ttwu_pending() and reschedule soon.
917 */
918static bool set_nr_if_polling(struct task_struct *p)
919{
920	struct thread_info *ti = task_thread_info(p);
921	typeof(ti->flags) val = READ_ONCE(ti->flags);
922
923	do {
924		if (!(val & _TIF_POLLING_NRFLAG))
925			return false;
926		if (val & _TIF_NEED_RESCHED)
927			return true;
928	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
929
930	return true;
931}
932
933#else
934static inline bool set_nr_and_not_polling(struct task_struct *p)
935{
936	set_tsk_need_resched(p);
937	return true;
938}
939
940#ifdef CONFIG_SMP
941static inline bool set_nr_if_polling(struct task_struct *p)
942{
943	return false;
944}
945#endif
946#endif
947
948static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949{
950	struct wake_q_node *node = &task->wake_q;
951
952	/*
953	 * Atomically grab the task, if ->wake_q is !nil already it means
954	 * it's already queued (either by us or someone else) and will get the
955	 * wakeup due to that.
956	 *
957	 * In order to ensure that a pending wakeup will observe our pending
958	 * state, even in the failed case, an explicit smp_mb() must be used.
959	 */
960	smp_mb__before_atomic();
961	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962		return false;
963
964	/*
965	 * The head is context local, there can be no concurrency.
966	 */
967	*head->lastp = node;
968	head->lastp = &node->next;
969	return true;
970}
971
972/**
973 * wake_q_add() - queue a wakeup for 'later' waking.
974 * @head: the wake_q_head to add @task to
975 * @task: the task to queue for 'later' wakeup
976 *
977 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979 * instantly.
980 *
981 * This function must be used as-if it were wake_up_process(); IOW the task
982 * must be ready to be woken at this location.
983 */
984void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985{
986	if (__wake_q_add(head, task))
987		get_task_struct(task);
988}
989
990/**
991 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992 * @head: the wake_q_head to add @task to
993 * @task: the task to queue for 'later' wakeup
994 *
995 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997 * instantly.
998 *
999 * This function must be used as-if it were wake_up_process(); IOW the task
1000 * must be ready to be woken at this location.
1001 *
1002 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003 * that already hold reference to @task can call the 'safe' version and trust
1004 * wake_q to do the right thing depending whether or not the @task is already
1005 * queued for wakeup.
1006 */
1007void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008{
1009	if (!__wake_q_add(head, task))
1010		put_task_struct(task);
1011}
1012
1013void wake_up_q(struct wake_q_head *head)
1014{
1015	struct wake_q_node *node = head->first;
1016
1017	while (node != WAKE_Q_TAIL) {
1018		struct task_struct *task;
1019
1020		task = container_of(node, struct task_struct, wake_q);
1021		/* Task can safely be re-inserted now: */
1022		node = node->next;
1023		task->wake_q.next = NULL;
1024
1025		/*
1026		 * wake_up_process() executes a full barrier, which pairs with
1027		 * the queueing in wake_q_add() so as not to miss wakeups.
1028		 */
1029		wake_up_process(task);
1030		put_task_struct(task);
1031	}
1032}
1033
1034/*
1035 * resched_curr - mark rq's current task 'to be rescheduled now'.
1036 *
1037 * On UP this means the setting of the need_resched flag, on SMP it
1038 * might also involve a cross-CPU call to trigger the scheduler on
1039 * the target CPU.
1040 */
1041void resched_curr(struct rq *rq)
1042{
1043	struct task_struct *curr = rq->curr;
1044	int cpu;
1045
1046	lockdep_assert_rq_held(rq);
1047
1048	if (test_tsk_need_resched(curr))
1049		return;
1050
1051	cpu = cpu_of(rq);
1052
1053	if (cpu == smp_processor_id()) {
1054		set_tsk_need_resched(curr);
1055		set_preempt_need_resched();
1056		return;
1057	}
1058
1059	if (set_nr_and_not_polling(curr))
1060		smp_send_reschedule(cpu);
1061	else
1062		trace_sched_wake_idle_without_ipi(cpu);
1063}
1064
1065void resched_cpu(int cpu)
1066{
1067	struct rq *rq = cpu_rq(cpu);
1068	unsigned long flags;
1069
1070	raw_spin_rq_lock_irqsave(rq, flags);
1071	if (cpu_online(cpu) || cpu == smp_processor_id())
1072		resched_curr(rq);
1073	raw_spin_rq_unlock_irqrestore(rq, flags);
1074}
1075
1076#ifdef CONFIG_SMP
1077#ifdef CONFIG_NO_HZ_COMMON
1078/*
1079 * In the semi idle case, use the nearest busy CPU for migrating timers
1080 * from an idle CPU.  This is good for power-savings.
1081 *
1082 * We don't do similar optimization for completely idle system, as
1083 * selecting an idle CPU will add more delays to the timers than intended
1084 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085 */
1086int get_nohz_timer_target(void)
1087{
1088	int i, cpu = smp_processor_id(), default_cpu = -1;
1089	struct sched_domain *sd;
1090	const struct cpumask *hk_mask;
1091
1092	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093		if (!idle_cpu(cpu))
1094			return cpu;
1095		default_cpu = cpu;
1096	}
1097
1098	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099
1100	guard(rcu)();
1101
1102	for_each_domain(cpu, sd) {
1103		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104			if (cpu == i)
1105				continue;
1106
1107			if (!idle_cpu(i))
1108				return i;
1109		}
1110	}
1111
1112	if (default_cpu == -1)
1113		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114
1115	return default_cpu;
1116}
1117
1118/*
1119 * When add_timer_on() enqueues a timer into the timer wheel of an
1120 * idle CPU then this timer might expire before the next timer event
1121 * which is scheduled to wake up that CPU. In case of a completely
1122 * idle system the next event might even be infinite time into the
1123 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124 * leaves the inner idle loop so the newly added timer is taken into
1125 * account when the CPU goes back to idle and evaluates the timer
1126 * wheel for the next timer event.
1127 */
1128static void wake_up_idle_cpu(int cpu)
1129{
1130	struct rq *rq = cpu_rq(cpu);
1131
1132	if (cpu == smp_processor_id())
1133		return;
1134
1135	/*
1136	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1137	 * part of the idle loop. This forces an exit from the idle loop
1138	 * and a round trip to schedule(). Now this could be optimized
1139	 * because a simple new idle loop iteration is enough to
1140	 * re-evaluate the next tick. Provided some re-ordering of tick
1141	 * nohz functions that would need to follow TIF_NR_POLLING
1142	 * clearing:
1143	 *
1144	 * - On most archs, a simple fetch_or on ti::flags with a
1145	 *   "0" value would be enough to know if an IPI needs to be sent.
1146	 *
1147	 * - x86 needs to perform a last need_resched() check between
1148	 *   monitor and mwait which doesn't take timers into account.
1149	 *   There a dedicated TIF_TIMER flag would be required to
1150	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1151	 *   before mwait().
1152	 *
1153	 * However, remote timer enqueue is not such a frequent event
1154	 * and testing of the above solutions didn't appear to report
1155	 * much benefits.
1156	 */
1157	if (set_nr_and_not_polling(rq->idle))
1158		smp_send_reschedule(cpu);
1159	else
1160		trace_sched_wake_idle_without_ipi(cpu);
1161}
1162
1163static bool wake_up_full_nohz_cpu(int cpu)
1164{
1165	/*
1166	 * We just need the target to call irq_exit() and re-evaluate
1167	 * the next tick. The nohz full kick at least implies that.
1168	 * If needed we can still optimize that later with an
1169	 * empty IRQ.
1170	 */
1171	if (cpu_is_offline(cpu))
1172		return true;  /* Don't try to wake offline CPUs. */
1173	if (tick_nohz_full_cpu(cpu)) {
1174		if (cpu != smp_processor_id() ||
1175		    tick_nohz_tick_stopped())
1176			tick_nohz_full_kick_cpu(cpu);
1177		return true;
1178	}
1179
1180	return false;
1181}
1182
1183/*
1184 * Wake up the specified CPU.  If the CPU is going offline, it is the
1185 * caller's responsibility to deal with the lost wakeup, for example,
1186 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1187 */
1188void wake_up_nohz_cpu(int cpu)
1189{
1190	if (!wake_up_full_nohz_cpu(cpu))
1191		wake_up_idle_cpu(cpu);
1192}
1193
1194static void nohz_csd_func(void *info)
1195{
1196	struct rq *rq = info;
1197	int cpu = cpu_of(rq);
1198	unsigned int flags;
1199
1200	/*
1201	 * Release the rq::nohz_csd.
1202	 */
1203	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1204	WARN_ON(!(flags & NOHZ_KICK_MASK));
1205
1206	rq->idle_balance = idle_cpu(cpu);
1207	if (rq->idle_balance && !need_resched()) {
1208		rq->nohz_idle_balance = flags;
1209		raise_softirq_irqoff(SCHED_SOFTIRQ);
1210	}
1211}
1212
1213#endif /* CONFIG_NO_HZ_COMMON */
1214
1215#ifdef CONFIG_NO_HZ_FULL
1216static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1217{
1218	if (rq->nr_running != 1)
1219		return false;
1220
1221	if (p->sched_class != &fair_sched_class)
1222		return false;
1223
1224	if (!task_on_rq_queued(p))
1225		return false;
1226
1227	return true;
1228}
1229
1230bool sched_can_stop_tick(struct rq *rq)
1231{
1232	int fifo_nr_running;
1233
1234	/* Deadline tasks, even if single, need the tick */
1235	if (rq->dl.dl_nr_running)
1236		return false;
1237
1238	/*
1239	 * If there are more than one RR tasks, we need the tick to affect the
1240	 * actual RR behaviour.
1241	 */
1242	if (rq->rt.rr_nr_running) {
1243		if (rq->rt.rr_nr_running == 1)
1244			return true;
1245		else
1246			return false;
1247	}
1248
1249	/*
1250	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1251	 * forced preemption between FIFO tasks.
1252	 */
1253	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1254	if (fifo_nr_running)
1255		return true;
1256
1257	/*
1258	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1259	 * if there's more than one we need the tick for involuntary
1260	 * preemption.
1261	 */
1262	if (rq->nr_running > 1)
1263		return false;
1264
1265	/*
1266	 * If there is one task and it has CFS runtime bandwidth constraints
1267	 * and it's on the cpu now we don't want to stop the tick.
1268	 * This check prevents clearing the bit if a newly enqueued task here is
1269	 * dequeued by migrating while the constrained task continues to run.
1270	 * E.g. going from 2->1 without going through pick_next_task().
1271	 */
1272	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1273		if (cfs_task_bw_constrained(rq->curr))
1274			return false;
1275	}
1276
1277	return true;
1278}
1279#endif /* CONFIG_NO_HZ_FULL */
1280#endif /* CONFIG_SMP */
1281
1282#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1283			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1284/*
1285 * Iterate task_group tree rooted at *from, calling @down when first entering a
1286 * node and @up when leaving it for the final time.
1287 *
1288 * Caller must hold rcu_lock or sufficient equivalent.
1289 */
1290int walk_tg_tree_from(struct task_group *from,
1291			     tg_visitor down, tg_visitor up, void *data)
1292{
1293	struct task_group *parent, *child;
1294	int ret;
1295
1296	parent = from;
1297
1298down:
1299	ret = (*down)(parent, data);
1300	if (ret)
1301		goto out;
1302	list_for_each_entry_rcu(child, &parent->children, siblings) {
1303		parent = child;
1304		goto down;
1305
1306up:
1307		continue;
1308	}
1309	ret = (*up)(parent, data);
1310	if (ret || parent == from)
1311		goto out;
1312
1313	child = parent;
1314	parent = parent->parent;
1315	if (parent)
1316		goto up;
1317out:
1318	return ret;
1319}
1320
1321int tg_nop(struct task_group *tg, void *data)
1322{
1323	return 0;
1324}
1325#endif
1326
1327static void set_load_weight(struct task_struct *p, bool update_load)
1328{
1329	int prio = p->static_prio - MAX_RT_PRIO;
1330	struct load_weight *load = &p->se.load;
1331
1332	/*
1333	 * SCHED_IDLE tasks get minimal weight:
1334	 */
1335	if (task_has_idle_policy(p)) {
1336		load->weight = scale_load(WEIGHT_IDLEPRIO);
1337		load->inv_weight = WMULT_IDLEPRIO;
1338		return;
1339	}
1340
1341	/*
1342	 * SCHED_OTHER tasks have to update their load when changing their
1343	 * weight
1344	 */
1345	if (update_load && p->sched_class == &fair_sched_class) {
1346		reweight_task(p, prio);
1347	} else {
1348		load->weight = scale_load(sched_prio_to_weight[prio]);
1349		load->inv_weight = sched_prio_to_wmult[prio];
1350	}
1351}
1352
1353#ifdef CONFIG_UCLAMP_TASK
1354/*
1355 * Serializes updates of utilization clamp values
1356 *
1357 * The (slow-path) user-space triggers utilization clamp value updates which
1358 * can require updates on (fast-path) scheduler's data structures used to
1359 * support enqueue/dequeue operations.
1360 * While the per-CPU rq lock protects fast-path update operations, user-space
1361 * requests are serialized using a mutex to reduce the risk of conflicting
1362 * updates or API abuses.
1363 */
1364static DEFINE_MUTEX(uclamp_mutex);
1365
1366/* Max allowed minimum utilization */
1367static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1368
1369/* Max allowed maximum utilization */
1370static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1371
1372/*
1373 * By default RT tasks run at the maximum performance point/capacity of the
1374 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1375 * SCHED_CAPACITY_SCALE.
1376 *
1377 * This knob allows admins to change the default behavior when uclamp is being
1378 * used. In battery powered devices, particularly, running at the maximum
1379 * capacity and frequency will increase energy consumption and shorten the
1380 * battery life.
1381 *
1382 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1383 *
1384 * This knob will not override the system default sched_util_clamp_min defined
1385 * above.
1386 */
1387static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1388
1389/* All clamps are required to be less or equal than these values */
1390static struct uclamp_se uclamp_default[UCLAMP_CNT];
1391
1392/*
1393 * This static key is used to reduce the uclamp overhead in the fast path. It
1394 * primarily disables the call to uclamp_rq_{inc, dec}() in
1395 * enqueue/dequeue_task().
1396 *
1397 * This allows users to continue to enable uclamp in their kernel config with
1398 * minimum uclamp overhead in the fast path.
1399 *
1400 * As soon as userspace modifies any of the uclamp knobs, the static key is
1401 * enabled, since we have an actual users that make use of uclamp
1402 * functionality.
1403 *
1404 * The knobs that would enable this static key are:
1405 *
1406 *   * A task modifying its uclamp value with sched_setattr().
1407 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1408 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1409 */
1410DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1411
1412/* Integer rounded range for each bucket */
1413#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1414
1415#define for_each_clamp_id(clamp_id) \
1416	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1417
1418static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1419{
1420	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1421}
1422
1423static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1424{
1425	if (clamp_id == UCLAMP_MIN)
1426		return 0;
1427	return SCHED_CAPACITY_SCALE;
1428}
1429
1430static inline void uclamp_se_set(struct uclamp_se *uc_se,
1431				 unsigned int value, bool user_defined)
1432{
1433	uc_se->value = value;
1434	uc_se->bucket_id = uclamp_bucket_id(value);
1435	uc_se->user_defined = user_defined;
1436}
1437
1438static inline unsigned int
1439uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1440		  unsigned int clamp_value)
1441{
1442	/*
1443	 * Avoid blocked utilization pushing up the frequency when we go
1444	 * idle (which drops the max-clamp) by retaining the last known
1445	 * max-clamp.
1446	 */
1447	if (clamp_id == UCLAMP_MAX) {
1448		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1449		return clamp_value;
1450	}
1451
1452	return uclamp_none(UCLAMP_MIN);
1453}
1454
1455static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1456				     unsigned int clamp_value)
1457{
1458	/* Reset max-clamp retention only on idle exit */
1459	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1460		return;
1461
1462	uclamp_rq_set(rq, clamp_id, clamp_value);
1463}
1464
1465static inline
1466unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1467				   unsigned int clamp_value)
1468{
1469	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1470	int bucket_id = UCLAMP_BUCKETS - 1;
1471
1472	/*
1473	 * Since both min and max clamps are max aggregated, find the
1474	 * top most bucket with tasks in.
1475	 */
1476	for ( ; bucket_id >= 0; bucket_id--) {
1477		if (!bucket[bucket_id].tasks)
1478			continue;
1479		return bucket[bucket_id].value;
1480	}
1481
1482	/* No tasks -- default clamp values */
1483	return uclamp_idle_value(rq, clamp_id, clamp_value);
1484}
1485
1486static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1487{
1488	unsigned int default_util_min;
1489	struct uclamp_se *uc_se;
1490
1491	lockdep_assert_held(&p->pi_lock);
1492
1493	uc_se = &p->uclamp_req[UCLAMP_MIN];
1494
1495	/* Only sync if user didn't override the default */
1496	if (uc_se->user_defined)
1497		return;
1498
1499	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1500	uclamp_se_set(uc_se, default_util_min, false);
1501}
1502
1503static void uclamp_update_util_min_rt_default(struct task_struct *p)
1504{
1505	if (!rt_task(p))
1506		return;
1507
1508	/* Protect updates to p->uclamp_* */
1509	guard(task_rq_lock)(p);
1510	__uclamp_update_util_min_rt_default(p);
1511}
1512
1513static inline struct uclamp_se
1514uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1515{
1516	/* Copy by value as we could modify it */
1517	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1518#ifdef CONFIG_UCLAMP_TASK_GROUP
1519	unsigned int tg_min, tg_max, value;
1520
1521	/*
1522	 * Tasks in autogroups or root task group will be
1523	 * restricted by system defaults.
1524	 */
1525	if (task_group_is_autogroup(task_group(p)))
1526		return uc_req;
1527	if (task_group(p) == &root_task_group)
1528		return uc_req;
1529
1530	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1531	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1532	value = uc_req.value;
1533	value = clamp(value, tg_min, tg_max);
1534	uclamp_se_set(&uc_req, value, false);
1535#endif
1536
1537	return uc_req;
1538}
1539
1540/*
1541 * The effective clamp bucket index of a task depends on, by increasing
1542 * priority:
1543 * - the task specific clamp value, when explicitly requested from userspace
1544 * - the task group effective clamp value, for tasks not either in the root
1545 *   group or in an autogroup
1546 * - the system default clamp value, defined by the sysadmin
1547 */
1548static inline struct uclamp_se
1549uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1550{
1551	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1552	struct uclamp_se uc_max = uclamp_default[clamp_id];
1553
1554	/* System default restrictions always apply */
1555	if (unlikely(uc_req.value > uc_max.value))
1556		return uc_max;
1557
1558	return uc_req;
1559}
1560
1561unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1562{
1563	struct uclamp_se uc_eff;
1564
1565	/* Task currently refcounted: use back-annotated (effective) value */
1566	if (p->uclamp[clamp_id].active)
1567		return (unsigned long)p->uclamp[clamp_id].value;
1568
1569	uc_eff = uclamp_eff_get(p, clamp_id);
1570
1571	return (unsigned long)uc_eff.value;
1572}
1573
1574/*
1575 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1576 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1577 * updates the rq's clamp value if required.
1578 *
1579 * Tasks can have a task-specific value requested from user-space, track
1580 * within each bucket the maximum value for tasks refcounted in it.
1581 * This "local max aggregation" allows to track the exact "requested" value
1582 * for each bucket when all its RUNNABLE tasks require the same clamp.
1583 */
1584static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1585				    enum uclamp_id clamp_id)
1586{
1587	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1588	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1589	struct uclamp_bucket *bucket;
1590
1591	lockdep_assert_rq_held(rq);
1592
1593	/* Update task effective clamp */
1594	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1595
1596	bucket = &uc_rq->bucket[uc_se->bucket_id];
1597	bucket->tasks++;
1598	uc_se->active = true;
1599
1600	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1601
1602	/*
1603	 * Local max aggregation: rq buckets always track the max
1604	 * "requested" clamp value of its RUNNABLE tasks.
1605	 */
1606	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1607		bucket->value = uc_se->value;
1608
1609	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1610		uclamp_rq_set(rq, clamp_id, uc_se->value);
1611}
1612
1613/*
1614 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1615 * is released. If this is the last task reference counting the rq's max
1616 * active clamp value, then the rq's clamp value is updated.
1617 *
1618 * Both refcounted tasks and rq's cached clamp values are expected to be
1619 * always valid. If it's detected they are not, as defensive programming,
1620 * enforce the expected state and warn.
1621 */
1622static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1623				    enum uclamp_id clamp_id)
1624{
1625	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1626	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1627	struct uclamp_bucket *bucket;
1628	unsigned int bkt_clamp;
1629	unsigned int rq_clamp;
1630
1631	lockdep_assert_rq_held(rq);
1632
1633	/*
1634	 * If sched_uclamp_used was enabled after task @p was enqueued,
1635	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1636	 *
1637	 * In this case the uc_se->active flag should be false since no uclamp
1638	 * accounting was performed at enqueue time and we can just return
1639	 * here.
1640	 *
1641	 * Need to be careful of the following enqueue/dequeue ordering
1642	 * problem too
1643	 *
1644	 *	enqueue(taskA)
1645	 *	// sched_uclamp_used gets enabled
1646	 *	enqueue(taskB)
1647	 *	dequeue(taskA)
1648	 *	// Must not decrement bucket->tasks here
1649	 *	dequeue(taskB)
1650	 *
1651	 * where we could end up with stale data in uc_se and
1652	 * bucket[uc_se->bucket_id].
1653	 *
1654	 * The following check here eliminates the possibility of such race.
1655	 */
1656	if (unlikely(!uc_se->active))
1657		return;
1658
1659	bucket = &uc_rq->bucket[uc_se->bucket_id];
1660
1661	SCHED_WARN_ON(!bucket->tasks);
1662	if (likely(bucket->tasks))
1663		bucket->tasks--;
1664
1665	uc_se->active = false;
1666
1667	/*
1668	 * Keep "local max aggregation" simple and accept to (possibly)
1669	 * overboost some RUNNABLE tasks in the same bucket.
1670	 * The rq clamp bucket value is reset to its base value whenever
1671	 * there are no more RUNNABLE tasks refcounting it.
1672	 */
1673	if (likely(bucket->tasks))
1674		return;
1675
1676	rq_clamp = uclamp_rq_get(rq, clamp_id);
1677	/*
1678	 * Defensive programming: this should never happen. If it happens,
1679	 * e.g. due to future modification, warn and fixup the expected value.
1680	 */
1681	SCHED_WARN_ON(bucket->value > rq_clamp);
1682	if (bucket->value >= rq_clamp) {
1683		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1684		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1685	}
1686}
1687
1688static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1689{
1690	enum uclamp_id clamp_id;
1691
1692	/*
1693	 * Avoid any overhead until uclamp is actually used by the userspace.
1694	 *
1695	 * The condition is constructed such that a NOP is generated when
1696	 * sched_uclamp_used is disabled.
1697	 */
1698	if (!static_branch_unlikely(&sched_uclamp_used))
1699		return;
1700
1701	if (unlikely(!p->sched_class->uclamp_enabled))
1702		return;
1703
1704	for_each_clamp_id(clamp_id)
1705		uclamp_rq_inc_id(rq, p, clamp_id);
1706
1707	/* Reset clamp idle holding when there is one RUNNABLE task */
1708	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1709		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1710}
1711
1712static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1713{
1714	enum uclamp_id clamp_id;
1715
1716	/*
1717	 * Avoid any overhead until uclamp is actually used by the userspace.
1718	 *
1719	 * The condition is constructed such that a NOP is generated when
1720	 * sched_uclamp_used is disabled.
1721	 */
1722	if (!static_branch_unlikely(&sched_uclamp_used))
1723		return;
1724
1725	if (unlikely(!p->sched_class->uclamp_enabled))
1726		return;
1727
1728	for_each_clamp_id(clamp_id)
1729		uclamp_rq_dec_id(rq, p, clamp_id);
1730}
1731
1732static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1733				      enum uclamp_id clamp_id)
1734{
1735	if (!p->uclamp[clamp_id].active)
1736		return;
1737
1738	uclamp_rq_dec_id(rq, p, clamp_id);
1739	uclamp_rq_inc_id(rq, p, clamp_id);
1740
1741	/*
1742	 * Make sure to clear the idle flag if we've transiently reached 0
1743	 * active tasks on rq.
1744	 */
1745	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1746		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1747}
1748
1749static inline void
1750uclamp_update_active(struct task_struct *p)
1751{
1752	enum uclamp_id clamp_id;
1753	struct rq_flags rf;
1754	struct rq *rq;
1755
1756	/*
1757	 * Lock the task and the rq where the task is (or was) queued.
1758	 *
1759	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1760	 * price to pay to safely serialize util_{min,max} updates with
1761	 * enqueues, dequeues and migration operations.
1762	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1763	 */
1764	rq = task_rq_lock(p, &rf);
1765
1766	/*
1767	 * Setting the clamp bucket is serialized by task_rq_lock().
1768	 * If the task is not yet RUNNABLE and its task_struct is not
1769	 * affecting a valid clamp bucket, the next time it's enqueued,
1770	 * it will already see the updated clamp bucket value.
1771	 */
1772	for_each_clamp_id(clamp_id)
1773		uclamp_rq_reinc_id(rq, p, clamp_id);
1774
1775	task_rq_unlock(rq, p, &rf);
1776}
1777
1778#ifdef CONFIG_UCLAMP_TASK_GROUP
1779static inline void
1780uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1781{
1782	struct css_task_iter it;
1783	struct task_struct *p;
1784
1785	css_task_iter_start(css, 0, &it);
1786	while ((p = css_task_iter_next(&it)))
1787		uclamp_update_active(p);
1788	css_task_iter_end(&it);
1789}
1790
1791static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1792#endif
1793
1794#ifdef CONFIG_SYSCTL
1795#ifdef CONFIG_UCLAMP_TASK_GROUP
1796static void uclamp_update_root_tg(void)
1797{
1798	struct task_group *tg = &root_task_group;
1799
1800	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1801		      sysctl_sched_uclamp_util_min, false);
1802	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1803		      sysctl_sched_uclamp_util_max, false);
1804
1805	guard(rcu)();
1806	cpu_util_update_eff(&root_task_group.css);
1807}
1808#else
1809static void uclamp_update_root_tg(void) { }
1810#endif
1811
1812static void uclamp_sync_util_min_rt_default(void)
1813{
1814	struct task_struct *g, *p;
1815
1816	/*
1817	 * copy_process()			sysctl_uclamp
1818	 *					  uclamp_min_rt = X;
1819	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1820	 *   // link thread			  smp_mb__after_spinlock()
1821	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1822	 *   sched_post_fork()			  for_each_process_thread()
1823	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1824	 *
1825	 * Ensures that either sched_post_fork() will observe the new
1826	 * uclamp_min_rt or for_each_process_thread() will observe the new
1827	 * task.
1828	 */
1829	read_lock(&tasklist_lock);
1830	smp_mb__after_spinlock();
1831	read_unlock(&tasklist_lock);
1832
1833	guard(rcu)();
1834	for_each_process_thread(g, p)
1835		uclamp_update_util_min_rt_default(p);
1836}
1837
1838static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1839				void *buffer, size_t *lenp, loff_t *ppos)
1840{
1841	bool update_root_tg = false;
1842	int old_min, old_max, old_min_rt;
1843	int result;
1844
1845	guard(mutex)(&uclamp_mutex);
1846
1847	old_min = sysctl_sched_uclamp_util_min;
1848	old_max = sysctl_sched_uclamp_util_max;
1849	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1850
1851	result = proc_dointvec(table, write, buffer, lenp, ppos);
1852	if (result)
1853		goto undo;
1854	if (!write)
1855		return 0;
1856
1857	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1858	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1859	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1860
1861		result = -EINVAL;
1862		goto undo;
1863	}
1864
1865	if (old_min != sysctl_sched_uclamp_util_min) {
1866		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1867			      sysctl_sched_uclamp_util_min, false);
1868		update_root_tg = true;
1869	}
1870	if (old_max != sysctl_sched_uclamp_util_max) {
1871		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1872			      sysctl_sched_uclamp_util_max, false);
1873		update_root_tg = true;
1874	}
1875
1876	if (update_root_tg) {
1877		static_branch_enable(&sched_uclamp_used);
1878		uclamp_update_root_tg();
1879	}
1880
1881	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1882		static_branch_enable(&sched_uclamp_used);
1883		uclamp_sync_util_min_rt_default();
1884	}
1885
1886	/*
1887	 * We update all RUNNABLE tasks only when task groups are in use.
1888	 * Otherwise, keep it simple and do just a lazy update at each next
1889	 * task enqueue time.
1890	 */
1891	return 0;
1892
1893undo:
1894	sysctl_sched_uclamp_util_min = old_min;
1895	sysctl_sched_uclamp_util_max = old_max;
1896	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1897	return result;
1898}
1899#endif
1900
1901static int uclamp_validate(struct task_struct *p,
1902			   const struct sched_attr *attr)
1903{
1904	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1905	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1906
1907	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1908		util_min = attr->sched_util_min;
1909
1910		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1911			return -EINVAL;
1912	}
1913
1914	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1915		util_max = attr->sched_util_max;
1916
1917		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1918			return -EINVAL;
1919	}
1920
1921	if (util_min != -1 && util_max != -1 && util_min > util_max)
1922		return -EINVAL;
1923
1924	/*
1925	 * We have valid uclamp attributes; make sure uclamp is enabled.
1926	 *
1927	 * We need to do that here, because enabling static branches is a
1928	 * blocking operation which obviously cannot be done while holding
1929	 * scheduler locks.
1930	 */
1931	static_branch_enable(&sched_uclamp_used);
1932
1933	return 0;
1934}
1935
1936static bool uclamp_reset(const struct sched_attr *attr,
1937			 enum uclamp_id clamp_id,
1938			 struct uclamp_se *uc_se)
1939{
1940	/* Reset on sched class change for a non user-defined clamp value. */
1941	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1942	    !uc_se->user_defined)
1943		return true;
1944
1945	/* Reset on sched_util_{min,max} == -1. */
1946	if (clamp_id == UCLAMP_MIN &&
1947	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1948	    attr->sched_util_min == -1) {
1949		return true;
1950	}
1951
1952	if (clamp_id == UCLAMP_MAX &&
1953	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1954	    attr->sched_util_max == -1) {
1955		return true;
1956	}
1957
1958	return false;
1959}
1960
1961static void __setscheduler_uclamp(struct task_struct *p,
1962				  const struct sched_attr *attr)
1963{
1964	enum uclamp_id clamp_id;
1965
1966	for_each_clamp_id(clamp_id) {
1967		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1968		unsigned int value;
1969
1970		if (!uclamp_reset(attr, clamp_id, uc_se))
1971			continue;
1972
1973		/*
1974		 * RT by default have a 100% boost value that could be modified
1975		 * at runtime.
1976		 */
1977		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1978			value = sysctl_sched_uclamp_util_min_rt_default;
1979		else
1980			value = uclamp_none(clamp_id);
1981
1982		uclamp_se_set(uc_se, value, false);
1983
1984	}
1985
1986	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1987		return;
1988
1989	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1990	    attr->sched_util_min != -1) {
1991		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1992			      attr->sched_util_min, true);
1993	}
1994
1995	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1996	    attr->sched_util_max != -1) {
1997		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1998			      attr->sched_util_max, true);
1999	}
2000}
2001
2002static void uclamp_fork(struct task_struct *p)
2003{
2004	enum uclamp_id clamp_id;
2005
2006	/*
2007	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2008	 * as the task is still at its early fork stages.
2009	 */
2010	for_each_clamp_id(clamp_id)
2011		p->uclamp[clamp_id].active = false;
2012
2013	if (likely(!p->sched_reset_on_fork))
2014		return;
2015
2016	for_each_clamp_id(clamp_id) {
2017		uclamp_se_set(&p->uclamp_req[clamp_id],
2018			      uclamp_none(clamp_id), false);
2019	}
2020}
2021
2022static void uclamp_post_fork(struct task_struct *p)
2023{
2024	uclamp_update_util_min_rt_default(p);
2025}
2026
2027static void __init init_uclamp_rq(struct rq *rq)
2028{
2029	enum uclamp_id clamp_id;
2030	struct uclamp_rq *uc_rq = rq->uclamp;
2031
2032	for_each_clamp_id(clamp_id) {
2033		uc_rq[clamp_id] = (struct uclamp_rq) {
2034			.value = uclamp_none(clamp_id)
2035		};
2036	}
2037
2038	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2039}
2040
2041static void __init init_uclamp(void)
2042{
2043	struct uclamp_se uc_max = {};
2044	enum uclamp_id clamp_id;
2045	int cpu;
2046
2047	for_each_possible_cpu(cpu)
2048		init_uclamp_rq(cpu_rq(cpu));
2049
2050	for_each_clamp_id(clamp_id) {
2051		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2052			      uclamp_none(clamp_id), false);
2053	}
2054
2055	/* System defaults allow max clamp values for both indexes */
2056	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2057	for_each_clamp_id(clamp_id) {
2058		uclamp_default[clamp_id] = uc_max;
2059#ifdef CONFIG_UCLAMP_TASK_GROUP
2060		root_task_group.uclamp_req[clamp_id] = uc_max;
2061		root_task_group.uclamp[clamp_id] = uc_max;
2062#endif
2063	}
2064}
2065
2066#else /* !CONFIG_UCLAMP_TASK */
2067static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2068static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2069static inline int uclamp_validate(struct task_struct *p,
2070				  const struct sched_attr *attr)
2071{
2072	return -EOPNOTSUPP;
2073}
2074static void __setscheduler_uclamp(struct task_struct *p,
2075				  const struct sched_attr *attr) { }
2076static inline void uclamp_fork(struct task_struct *p) { }
2077static inline void uclamp_post_fork(struct task_struct *p) { }
2078static inline void init_uclamp(void) { }
2079#endif /* CONFIG_UCLAMP_TASK */
2080
2081bool sched_task_on_rq(struct task_struct *p)
2082{
2083	return task_on_rq_queued(p);
2084}
2085
2086unsigned long get_wchan(struct task_struct *p)
2087{
2088	unsigned long ip = 0;
2089	unsigned int state;
2090
2091	if (!p || p == current)
2092		return 0;
2093
2094	/* Only get wchan if task is blocked and we can keep it that way. */
2095	raw_spin_lock_irq(&p->pi_lock);
2096	state = READ_ONCE(p->__state);
2097	smp_rmb(); /* see try_to_wake_up() */
2098	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2099		ip = __get_wchan(p);
2100	raw_spin_unlock_irq(&p->pi_lock);
2101
2102	return ip;
2103}
2104
2105static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2106{
2107	if (!(flags & ENQUEUE_NOCLOCK))
2108		update_rq_clock(rq);
2109
2110	if (!(flags & ENQUEUE_RESTORE)) {
2111		sched_info_enqueue(rq, p);
2112		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2113	}
2114
2115	uclamp_rq_inc(rq, p);
2116	p->sched_class->enqueue_task(rq, p, flags);
2117
2118	if (sched_core_enabled(rq))
2119		sched_core_enqueue(rq, p);
2120}
2121
2122static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2123{
2124	if (sched_core_enabled(rq))
2125		sched_core_dequeue(rq, p, flags);
2126
2127	if (!(flags & DEQUEUE_NOCLOCK))
2128		update_rq_clock(rq);
2129
2130	if (!(flags & DEQUEUE_SAVE)) {
2131		sched_info_dequeue(rq, p);
2132		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2133	}
2134
2135	uclamp_rq_dec(rq, p);
2136	p->sched_class->dequeue_task(rq, p, flags);
2137}
2138
2139void activate_task(struct rq *rq, struct task_struct *p, int flags)
2140{
2141	if (task_on_rq_migrating(p))
2142		flags |= ENQUEUE_MIGRATED;
2143	if (flags & ENQUEUE_MIGRATED)
2144		sched_mm_cid_migrate_to(rq, p);
2145
2146	enqueue_task(rq, p, flags);
2147
2148	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2149	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2150}
2151
2152void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2153{
2154	WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
2155	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2156
2157	dequeue_task(rq, p, flags);
2158}
2159
2160static inline int __normal_prio(int policy, int rt_prio, int nice)
2161{
2162	int prio;
2163
2164	if (dl_policy(policy))
2165		prio = MAX_DL_PRIO - 1;
2166	else if (rt_policy(policy))
2167		prio = MAX_RT_PRIO - 1 - rt_prio;
2168	else
2169		prio = NICE_TO_PRIO(nice);
2170
2171	return prio;
2172}
2173
2174/*
2175 * Calculate the expected normal priority: i.e. priority
2176 * without taking RT-inheritance into account. Might be
2177 * boosted by interactivity modifiers. Changes upon fork,
2178 * setprio syscalls, and whenever the interactivity
2179 * estimator recalculates.
2180 */
2181static inline int normal_prio(struct task_struct *p)
2182{
2183	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2184}
2185
2186/*
2187 * Calculate the current priority, i.e. the priority
2188 * taken into account by the scheduler. This value might
2189 * be boosted by RT tasks, or might be boosted by
2190 * interactivity modifiers. Will be RT if the task got
2191 * RT-boosted. If not then it returns p->normal_prio.
2192 */
2193static int effective_prio(struct task_struct *p)
2194{
2195	p->normal_prio = normal_prio(p);
2196	/*
2197	 * If we are RT tasks or we were boosted to RT priority,
2198	 * keep the priority unchanged. Otherwise, update priority
2199	 * to the normal priority:
2200	 */
2201	if (!rt_prio(p->prio))
2202		return p->normal_prio;
2203	return p->prio;
2204}
2205
2206/**
2207 * task_curr - is this task currently executing on a CPU?
2208 * @p: the task in question.
2209 *
2210 * Return: 1 if the task is currently executing. 0 otherwise.
2211 */
2212inline int task_curr(const struct task_struct *p)
2213{
2214	return cpu_curr(task_cpu(p)) == p;
2215}
2216
2217/*
2218 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2219 * use the balance_callback list if you want balancing.
2220 *
2221 * this means any call to check_class_changed() must be followed by a call to
2222 * balance_callback().
2223 */
2224static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2225				       const struct sched_class *prev_class,
2226				       int oldprio)
2227{
2228	if (prev_class != p->sched_class) {
2229		if (prev_class->switched_from)
2230			prev_class->switched_from(rq, p);
2231
2232		p->sched_class->switched_to(rq, p);
2233	} else if (oldprio != p->prio || dl_task(p))
2234		p->sched_class->prio_changed(rq, p, oldprio);
2235}
2236
2237void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2238{
2239	if (p->sched_class == rq->curr->sched_class)
2240		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2241	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2242		resched_curr(rq);
2243
2244	/*
2245	 * A queue event has occurred, and we're going to schedule.  In
2246	 * this case, we can save a useless back to back clock update.
2247	 */
2248	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2249		rq_clock_skip_update(rq);
2250}
2251
2252static __always_inline
2253int __task_state_match(struct task_struct *p, unsigned int state)
2254{
2255	if (READ_ONCE(p->__state) & state)
2256		return 1;
2257
2258	if (READ_ONCE(p->saved_state) & state)
2259		return -1;
2260
2261	return 0;
2262}
2263
2264static __always_inline
2265int task_state_match(struct task_struct *p, unsigned int state)
2266{
2267	/*
2268	 * Serialize against current_save_and_set_rtlock_wait_state(),
2269	 * current_restore_rtlock_saved_state(), and __refrigerator().
2270	 */
2271	guard(raw_spinlock_irq)(&p->pi_lock);
2272	return __task_state_match(p, state);
2273}
2274
2275/*
2276 * wait_task_inactive - wait for a thread to unschedule.
2277 *
2278 * Wait for the thread to block in any of the states set in @match_state.
2279 * If it changes, i.e. @p might have woken up, then return zero.  When we
2280 * succeed in waiting for @p to be off its CPU, we return a positive number
2281 * (its total switch count).  If a second call a short while later returns the
2282 * same number, the caller can be sure that @p has remained unscheduled the
2283 * whole time.
2284 *
2285 * The caller must ensure that the task *will* unschedule sometime soon,
2286 * else this function might spin for a *long* time. This function can't
2287 * be called with interrupts off, or it may introduce deadlock with
2288 * smp_call_function() if an IPI is sent by the same process we are
2289 * waiting to become inactive.
2290 */
2291unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2292{
2293	int running, queued, match;
2294	struct rq_flags rf;
2295	unsigned long ncsw;
2296	struct rq *rq;
2297
2298	for (;;) {
2299		/*
2300		 * We do the initial early heuristics without holding
2301		 * any task-queue locks at all. We'll only try to get
2302		 * the runqueue lock when things look like they will
2303		 * work out!
2304		 */
2305		rq = task_rq(p);
2306
2307		/*
2308		 * If the task is actively running on another CPU
2309		 * still, just relax and busy-wait without holding
2310		 * any locks.
2311		 *
2312		 * NOTE! Since we don't hold any locks, it's not
2313		 * even sure that "rq" stays as the right runqueue!
2314		 * But we don't care, since "task_on_cpu()" will
2315		 * return false if the runqueue has changed and p
2316		 * is actually now running somewhere else!
2317		 */
2318		while (task_on_cpu(rq, p)) {
2319			if (!task_state_match(p, match_state))
2320				return 0;
2321			cpu_relax();
2322		}
2323
2324		/*
2325		 * Ok, time to look more closely! We need the rq
2326		 * lock now, to be *sure*. If we're wrong, we'll
2327		 * just go back and repeat.
2328		 */
2329		rq = task_rq_lock(p, &rf);
2330		trace_sched_wait_task(p);
2331		running = task_on_cpu(rq, p);
2332		queued = task_on_rq_queued(p);
2333		ncsw = 0;
2334		if ((match = __task_state_match(p, match_state))) {
2335			/*
2336			 * When matching on p->saved_state, consider this task
2337			 * still queued so it will wait.
2338			 */
2339			if (match < 0)
2340				queued = 1;
2341			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2342		}
2343		task_rq_unlock(rq, p, &rf);
2344
2345		/*
2346		 * If it changed from the expected state, bail out now.
2347		 */
2348		if (unlikely(!ncsw))
2349			break;
2350
2351		/*
2352		 * Was it really running after all now that we
2353		 * checked with the proper locks actually held?
2354		 *
2355		 * Oops. Go back and try again..
2356		 */
2357		if (unlikely(running)) {
2358			cpu_relax();
2359			continue;
2360		}
2361
2362		/*
2363		 * It's not enough that it's not actively running,
2364		 * it must be off the runqueue _entirely_, and not
2365		 * preempted!
2366		 *
2367		 * So if it was still runnable (but just not actively
2368		 * running right now), it's preempted, and we should
2369		 * yield - it could be a while.
2370		 */
2371		if (unlikely(queued)) {
2372			ktime_t to = NSEC_PER_SEC / HZ;
2373
2374			set_current_state(TASK_UNINTERRUPTIBLE);
2375			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2376			continue;
2377		}
2378
2379		/*
2380		 * Ahh, all good. It wasn't running, and it wasn't
2381		 * runnable, which means that it will never become
2382		 * running in the future either. We're all done!
2383		 */
2384		break;
2385	}
2386
2387	return ncsw;
2388}
2389
2390#ifdef CONFIG_SMP
2391
2392static void
2393__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2394
2395static int __set_cpus_allowed_ptr(struct task_struct *p,
2396				  struct affinity_context *ctx);
2397
2398static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2399{
2400	struct affinity_context ac = {
2401		.new_mask  = cpumask_of(rq->cpu),
2402		.flags     = SCA_MIGRATE_DISABLE,
2403	};
2404
2405	if (likely(!p->migration_disabled))
2406		return;
2407
2408	if (p->cpus_ptr != &p->cpus_mask)
2409		return;
2410
2411	/*
2412	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2413	 */
2414	__do_set_cpus_allowed(p, &ac);
2415}
2416
2417void migrate_disable(void)
2418{
2419	struct task_struct *p = current;
2420
2421	if (p->migration_disabled) {
2422		p->migration_disabled++;
2423		return;
2424	}
2425
2426	guard(preempt)();
2427	this_rq()->nr_pinned++;
2428	p->migration_disabled = 1;
2429}
2430EXPORT_SYMBOL_GPL(migrate_disable);
2431
2432void migrate_enable(void)
2433{
2434	struct task_struct *p = current;
2435	struct affinity_context ac = {
2436		.new_mask  = &p->cpus_mask,
2437		.flags     = SCA_MIGRATE_ENABLE,
2438	};
2439
2440	if (p->migration_disabled > 1) {
2441		p->migration_disabled--;
2442		return;
2443	}
2444
2445	if (WARN_ON_ONCE(!p->migration_disabled))
2446		return;
2447
2448	/*
2449	 * Ensure stop_task runs either before or after this, and that
2450	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2451	 */
2452	guard(preempt)();
2453	if (p->cpus_ptr != &p->cpus_mask)
2454		__set_cpus_allowed_ptr(p, &ac);
2455	/*
2456	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2457	 * regular cpus_mask, otherwise things that race (eg.
2458	 * select_fallback_rq) get confused.
2459	 */
2460	barrier();
2461	p->migration_disabled = 0;
2462	this_rq()->nr_pinned--;
2463}
2464EXPORT_SYMBOL_GPL(migrate_enable);
2465
2466static inline bool rq_has_pinned_tasks(struct rq *rq)
2467{
2468	return rq->nr_pinned;
2469}
2470
2471/*
2472 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2473 * __set_cpus_allowed_ptr() and select_fallback_rq().
2474 */
2475static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2476{
2477	/* When not in the task's cpumask, no point in looking further. */
2478	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2479		return false;
2480
2481	/* migrate_disabled() must be allowed to finish. */
2482	if (is_migration_disabled(p))
2483		return cpu_online(cpu);
2484
2485	/* Non kernel threads are not allowed during either online or offline. */
2486	if (!(p->flags & PF_KTHREAD))
2487		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2488
2489	/* KTHREAD_IS_PER_CPU is always allowed. */
2490	if (kthread_is_per_cpu(p))
2491		return cpu_online(cpu);
2492
2493	/* Regular kernel threads don't get to stay during offline. */
2494	if (cpu_dying(cpu))
2495		return false;
2496
2497	/* But are allowed during online. */
2498	return cpu_online(cpu);
2499}
2500
2501/*
2502 * This is how migration works:
2503 *
2504 * 1) we invoke migration_cpu_stop() on the target CPU using
2505 *    stop_one_cpu().
2506 * 2) stopper starts to run (implicitly forcing the migrated thread
2507 *    off the CPU)
2508 * 3) it checks whether the migrated task is still in the wrong runqueue.
2509 * 4) if it's in the wrong runqueue then the migration thread removes
2510 *    it and puts it into the right queue.
2511 * 5) stopper completes and stop_one_cpu() returns and the migration
2512 *    is done.
2513 */
2514
2515/*
2516 * move_queued_task - move a queued task to new rq.
2517 *
2518 * Returns (locked) new rq. Old rq's lock is released.
2519 */
2520static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2521				   struct task_struct *p, int new_cpu)
2522{
2523	lockdep_assert_rq_held(rq);
2524
2525	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2526	set_task_cpu(p, new_cpu);
2527	rq_unlock(rq, rf);
2528
2529	rq = cpu_rq(new_cpu);
2530
2531	rq_lock(rq, rf);
2532	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2533	activate_task(rq, p, 0);
2534	wakeup_preempt(rq, p, 0);
2535
2536	return rq;
2537}
2538
2539struct migration_arg {
2540	struct task_struct		*task;
2541	int				dest_cpu;
2542	struct set_affinity_pending	*pending;
2543};
2544
2545/*
2546 * @refs: number of wait_for_completion()
2547 * @stop_pending: is @stop_work in use
2548 */
2549struct set_affinity_pending {
2550	refcount_t		refs;
2551	unsigned int		stop_pending;
2552	struct completion	done;
2553	struct cpu_stop_work	stop_work;
2554	struct migration_arg	arg;
2555};
2556
2557/*
2558 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2559 * this because either it can't run here any more (set_cpus_allowed()
2560 * away from this CPU, or CPU going down), or because we're
2561 * attempting to rebalance this task on exec (sched_exec).
2562 *
2563 * So we race with normal scheduler movements, but that's OK, as long
2564 * as the task is no longer on this CPU.
2565 */
2566static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2567				 struct task_struct *p, int dest_cpu)
2568{
2569	/* Affinity changed (again). */
2570	if (!is_cpu_allowed(p, dest_cpu))
2571		return rq;
2572
2573	rq = move_queued_task(rq, rf, p, dest_cpu);
2574
2575	return rq;
2576}
2577
2578/*
2579 * migration_cpu_stop - this will be executed by a highprio stopper thread
2580 * and performs thread migration by bumping thread off CPU then
2581 * 'pushing' onto another runqueue.
2582 */
2583static int migration_cpu_stop(void *data)
2584{
2585	struct migration_arg *arg = data;
2586	struct set_affinity_pending *pending = arg->pending;
2587	struct task_struct *p = arg->task;
2588	struct rq *rq = this_rq();
2589	bool complete = false;
2590	struct rq_flags rf;
2591
2592	/*
2593	 * The original target CPU might have gone down and we might
2594	 * be on another CPU but it doesn't matter.
2595	 */
2596	local_irq_save(rf.flags);
2597	/*
2598	 * We need to explicitly wake pending tasks before running
2599	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2600	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2601	 */
2602	flush_smp_call_function_queue();
2603
2604	raw_spin_lock(&p->pi_lock);
2605	rq_lock(rq, &rf);
2606
2607	/*
2608	 * If we were passed a pending, then ->stop_pending was set, thus
2609	 * p->migration_pending must have remained stable.
2610	 */
2611	WARN_ON_ONCE(pending && pending != p->migration_pending);
2612
2613	/*
2614	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2615	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2616	 * we're holding p->pi_lock.
2617	 */
2618	if (task_rq(p) == rq) {
2619		if (is_migration_disabled(p))
2620			goto out;
2621
2622		if (pending) {
2623			p->migration_pending = NULL;
2624			complete = true;
2625
2626			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2627				goto out;
2628		}
2629
2630		if (task_on_rq_queued(p)) {
2631			update_rq_clock(rq);
2632			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2633		} else {
2634			p->wake_cpu = arg->dest_cpu;
2635		}
2636
2637		/*
2638		 * XXX __migrate_task() can fail, at which point we might end
2639		 * up running on a dodgy CPU, AFAICT this can only happen
2640		 * during CPU hotplug, at which point we'll get pushed out
2641		 * anyway, so it's probably not a big deal.
2642		 */
2643
2644	} else if (pending) {
2645		/*
2646		 * This happens when we get migrated between migrate_enable()'s
2647		 * preempt_enable() and scheduling the stopper task. At that
2648		 * point we're a regular task again and not current anymore.
2649		 *
2650		 * A !PREEMPT kernel has a giant hole here, which makes it far
2651		 * more likely.
2652		 */
2653
2654		/*
2655		 * The task moved before the stopper got to run. We're holding
2656		 * ->pi_lock, so the allowed mask is stable - if it got
2657		 * somewhere allowed, we're done.
2658		 */
2659		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2660			p->migration_pending = NULL;
2661			complete = true;
2662			goto out;
2663		}
2664
2665		/*
2666		 * When migrate_enable() hits a rq mis-match we can't reliably
2667		 * determine is_migration_disabled() and so have to chase after
2668		 * it.
2669		 */
2670		WARN_ON_ONCE(!pending->stop_pending);
2671		preempt_disable();
2672		task_rq_unlock(rq, p, &rf);
2673		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2674				    &pending->arg, &pending->stop_work);
2675		preempt_enable();
2676		return 0;
2677	}
2678out:
2679	if (pending)
2680		pending->stop_pending = false;
2681	task_rq_unlock(rq, p, &rf);
2682
2683	if (complete)
2684		complete_all(&pending->done);
2685
2686	return 0;
2687}
2688
2689int push_cpu_stop(void *arg)
2690{
2691	struct rq *lowest_rq = NULL, *rq = this_rq();
2692	struct task_struct *p = arg;
2693
2694	raw_spin_lock_irq(&p->pi_lock);
2695	raw_spin_rq_lock(rq);
2696
2697	if (task_rq(p) != rq)
2698		goto out_unlock;
2699
2700	if (is_migration_disabled(p)) {
2701		p->migration_flags |= MDF_PUSH;
2702		goto out_unlock;
2703	}
2704
2705	p->migration_flags &= ~MDF_PUSH;
2706
2707	if (p->sched_class->find_lock_rq)
2708		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2709
2710	if (!lowest_rq)
2711		goto out_unlock;
2712
2713	// XXX validate p is still the highest prio task
2714	if (task_rq(p) == rq) {
2715		deactivate_task(rq, p, 0);
2716		set_task_cpu(p, lowest_rq->cpu);
2717		activate_task(lowest_rq, p, 0);
2718		resched_curr(lowest_rq);
2719	}
2720
2721	double_unlock_balance(rq, lowest_rq);
2722
2723out_unlock:
2724	rq->push_busy = false;
2725	raw_spin_rq_unlock(rq);
2726	raw_spin_unlock_irq(&p->pi_lock);
2727
2728	put_task_struct(p);
2729	return 0;
2730}
2731
2732/*
2733 * sched_class::set_cpus_allowed must do the below, but is not required to
2734 * actually call this function.
2735 */
2736void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2737{
2738	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2739		p->cpus_ptr = ctx->new_mask;
2740		return;
2741	}
2742
2743	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2744	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2745
2746	/*
2747	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2748	 */
2749	if (ctx->flags & SCA_USER)
2750		swap(p->user_cpus_ptr, ctx->user_mask);
2751}
2752
2753static void
2754__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2755{
2756	struct rq *rq = task_rq(p);
2757	bool queued, running;
2758
2759	/*
2760	 * This here violates the locking rules for affinity, since we're only
2761	 * supposed to change these variables while holding both rq->lock and
2762	 * p->pi_lock.
2763	 *
2764	 * HOWEVER, it magically works, because ttwu() is the only code that
2765	 * accesses these variables under p->pi_lock and only does so after
2766	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2767	 * before finish_task().
2768	 *
2769	 * XXX do further audits, this smells like something putrid.
2770	 */
2771	if (ctx->flags & SCA_MIGRATE_DISABLE)
2772		SCHED_WARN_ON(!p->on_cpu);
2773	else
2774		lockdep_assert_held(&p->pi_lock);
2775
2776	queued = task_on_rq_queued(p);
2777	running = task_current(rq, p);
2778
2779	if (queued) {
2780		/*
2781		 * Because __kthread_bind() calls this on blocked tasks without
2782		 * holding rq->lock.
2783		 */
2784		lockdep_assert_rq_held(rq);
2785		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2786	}
2787	if (running)
2788		put_prev_task(rq, p);
2789
2790	p->sched_class->set_cpus_allowed(p, ctx);
2791
2792	if (queued)
2793		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2794	if (running)
2795		set_next_task(rq, p);
2796}
2797
2798/*
2799 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2800 * affinity (if any) should be destroyed too.
2801 */
2802void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2803{
2804	struct affinity_context ac = {
2805		.new_mask  = new_mask,
2806		.user_mask = NULL,
2807		.flags     = SCA_USER,	/* clear the user requested mask */
2808	};
2809	union cpumask_rcuhead {
2810		cpumask_t cpumask;
2811		struct rcu_head rcu;
2812	};
2813
2814	__do_set_cpus_allowed(p, &ac);
2815
2816	/*
2817	 * Because this is called with p->pi_lock held, it is not possible
2818	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2819	 * kfree_rcu().
2820	 */
2821	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2822}
2823
2824static cpumask_t *alloc_user_cpus_ptr(int node)
2825{
2826	/*
2827	 * See do_set_cpus_allowed() above for the rcu_head usage.
2828	 */
2829	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2830
2831	return kmalloc_node(size, GFP_KERNEL, node);
2832}
2833
2834int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2835		      int node)
2836{
2837	cpumask_t *user_mask;
2838	unsigned long flags;
2839
2840	/*
2841	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2842	 * may differ by now due to racing.
2843	 */
2844	dst->user_cpus_ptr = NULL;
2845
2846	/*
2847	 * This check is racy and losing the race is a valid situation.
2848	 * It is not worth the extra overhead of taking the pi_lock on
2849	 * every fork/clone.
2850	 */
2851	if (data_race(!src->user_cpus_ptr))
2852		return 0;
2853
2854	user_mask = alloc_user_cpus_ptr(node);
2855	if (!user_mask)
2856		return -ENOMEM;
2857
2858	/*
2859	 * Use pi_lock to protect content of user_cpus_ptr
2860	 *
2861	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2862	 * do_set_cpus_allowed().
2863	 */
2864	raw_spin_lock_irqsave(&src->pi_lock, flags);
2865	if (src->user_cpus_ptr) {
2866		swap(dst->user_cpus_ptr, user_mask);
2867		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2868	}
2869	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2870
2871	if (unlikely(user_mask))
2872		kfree(user_mask);
2873
2874	return 0;
2875}
2876
2877static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2878{
2879	struct cpumask *user_mask = NULL;
2880
2881	swap(p->user_cpus_ptr, user_mask);
2882
2883	return user_mask;
2884}
2885
2886void release_user_cpus_ptr(struct task_struct *p)
2887{
2888	kfree(clear_user_cpus_ptr(p));
2889}
2890
2891/*
2892 * This function is wildly self concurrent; here be dragons.
2893 *
2894 *
2895 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2896 * designated task is enqueued on an allowed CPU. If that task is currently
2897 * running, we have to kick it out using the CPU stopper.
2898 *
2899 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2900 * Consider:
2901 *
2902 *     Initial conditions: P0->cpus_mask = [0, 1]
2903 *
2904 *     P0@CPU0                  P1
2905 *
2906 *     migrate_disable();
2907 *     <preempted>
2908 *                              set_cpus_allowed_ptr(P0, [1]);
2909 *
2910 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2911 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2912 * This means we need the following scheme:
2913 *
2914 *     P0@CPU0                  P1
2915 *
2916 *     migrate_disable();
2917 *     <preempted>
2918 *                              set_cpus_allowed_ptr(P0, [1]);
2919 *                                <blocks>
2920 *     <resumes>
2921 *     migrate_enable();
2922 *       __set_cpus_allowed_ptr();
2923 *       <wakes local stopper>
2924 *                         `--> <woken on migration completion>
2925 *
2926 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2927 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2928 * task p are serialized by p->pi_lock, which we can leverage: the one that
2929 * should come into effect at the end of the Migrate-Disable region is the last
2930 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2931 * but we still need to properly signal those waiting tasks at the appropriate
2932 * moment.
2933 *
2934 * This is implemented using struct set_affinity_pending. The first
2935 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2936 * setup an instance of that struct and install it on the targeted task_struct.
2937 * Any and all further callers will reuse that instance. Those then wait for
2938 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2939 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2940 *
2941 *
2942 * (1) In the cases covered above. There is one more where the completion is
2943 * signaled within affine_move_task() itself: when a subsequent affinity request
2944 * occurs after the stopper bailed out due to the targeted task still being
2945 * Migrate-Disable. Consider:
2946 *
2947 *     Initial conditions: P0->cpus_mask = [0, 1]
2948 *
2949 *     CPU0		  P1				P2
2950 *     <P0>
2951 *       migrate_disable();
2952 *       <preempted>
2953 *                        set_cpus_allowed_ptr(P0, [1]);
2954 *                          <blocks>
2955 *     <migration/0>
2956 *       migration_cpu_stop()
2957 *         is_migration_disabled()
2958 *           <bails>
2959 *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2960 *                                                         <signal completion>
2961 *                          <awakes>
2962 *
2963 * Note that the above is safe vs a concurrent migrate_enable(), as any
2964 * pending affinity completion is preceded by an uninstallation of
2965 * p->migration_pending done with p->pi_lock held.
2966 */
2967static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2968			    int dest_cpu, unsigned int flags)
2969	__releases(rq->lock)
2970	__releases(p->pi_lock)
2971{
2972	struct set_affinity_pending my_pending = { }, *pending = NULL;
2973	bool stop_pending, complete = false;
2974
2975	/* Can the task run on the task's current CPU? If so, we're done */
2976	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2977		struct task_struct *push_task = NULL;
2978
2979		if ((flags & SCA_MIGRATE_ENABLE) &&
2980		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2981			rq->push_busy = true;
2982			push_task = get_task_struct(p);
2983		}
2984
2985		/*
2986		 * If there are pending waiters, but no pending stop_work,
2987		 * then complete now.
2988		 */
2989		pending = p->migration_pending;
2990		if (pending && !pending->stop_pending) {
2991			p->migration_pending = NULL;
2992			complete = true;
2993		}
2994
2995		preempt_disable();
2996		task_rq_unlock(rq, p, rf);
2997		if (push_task) {
2998			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2999					    p, &rq->push_work);
3000		}
3001		preempt_enable();
3002
3003		if (complete)
3004			complete_all(&pending->done);
3005
3006		return 0;
3007	}
3008
3009	if (!(flags & SCA_MIGRATE_ENABLE)) {
3010		/* serialized by p->pi_lock */
3011		if (!p->migration_pending) {
3012			/* Install the request */
3013			refcount_set(&my_pending.refs, 1);
3014			init_completion(&my_pending.done);
3015			my_pending.arg = (struct migration_arg) {
3016				.task = p,
3017				.dest_cpu = dest_cpu,
3018				.pending = &my_pending,
3019			};
3020
3021			p->migration_pending = &my_pending;
3022		} else {
3023			pending = p->migration_pending;
3024			refcount_inc(&pending->refs);
3025			/*
3026			 * Affinity has changed, but we've already installed a
3027			 * pending. migration_cpu_stop() *must* see this, else
3028			 * we risk a completion of the pending despite having a
3029			 * task on a disallowed CPU.
3030			 *
3031			 * Serialized by p->pi_lock, so this is safe.
3032			 */
3033			pending->arg.dest_cpu = dest_cpu;
3034		}
3035	}
3036	pending = p->migration_pending;
3037	/*
3038	 * - !MIGRATE_ENABLE:
3039	 *   we'll have installed a pending if there wasn't one already.
3040	 *
3041	 * - MIGRATE_ENABLE:
3042	 *   we're here because the current CPU isn't matching anymore,
3043	 *   the only way that can happen is because of a concurrent
3044	 *   set_cpus_allowed_ptr() call, which should then still be
3045	 *   pending completion.
3046	 *
3047	 * Either way, we really should have a @pending here.
3048	 */
3049	if (WARN_ON_ONCE(!pending)) {
3050		task_rq_unlock(rq, p, rf);
3051		return -EINVAL;
3052	}
3053
3054	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3055		/*
3056		 * MIGRATE_ENABLE gets here because 'p == current', but for
3057		 * anything else we cannot do is_migration_disabled(), punt
3058		 * and have the stopper function handle it all race-free.
3059		 */
3060		stop_pending = pending->stop_pending;
3061		if (!stop_pending)
3062			pending->stop_pending = true;
3063
3064		if (flags & SCA_MIGRATE_ENABLE)
3065			p->migration_flags &= ~MDF_PUSH;
3066
3067		preempt_disable();
3068		task_rq_unlock(rq, p, rf);
3069		if (!stop_pending) {
3070			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3071					    &pending->arg, &pending->stop_work);
3072		}
3073		preempt_enable();
3074
3075		if (flags & SCA_MIGRATE_ENABLE)
3076			return 0;
3077	} else {
3078
3079		if (!is_migration_disabled(p)) {
3080			if (task_on_rq_queued(p))
3081				rq = move_queued_task(rq, rf, p, dest_cpu);
3082
3083			if (!pending->stop_pending) {
3084				p->migration_pending = NULL;
3085				complete = true;
3086			}
3087		}
3088		task_rq_unlock(rq, p, rf);
3089
3090		if (complete)
3091			complete_all(&pending->done);
3092	}
3093
3094	wait_for_completion(&pending->done);
3095
3096	if (refcount_dec_and_test(&pending->refs))
3097		wake_up_var(&pending->refs); /* No UaF, just an address */
3098
3099	/*
3100	 * Block the original owner of &pending until all subsequent callers
3101	 * have seen the completion and decremented the refcount
3102	 */
3103	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3104
3105	/* ARGH */
3106	WARN_ON_ONCE(my_pending.stop_pending);
3107
3108	return 0;
3109}
3110
3111/*
3112 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3113 */
3114static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3115					 struct affinity_context *ctx,
3116					 struct rq *rq,
3117					 struct rq_flags *rf)
3118	__releases(rq->lock)
3119	__releases(p->pi_lock)
3120{
3121	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3122	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3123	bool kthread = p->flags & PF_KTHREAD;
3124	unsigned int dest_cpu;
3125	int ret = 0;
3126
3127	update_rq_clock(rq);
3128
3129	if (kthread || is_migration_disabled(p)) {
3130		/*
3131		 * Kernel threads are allowed on online && !active CPUs,
3132		 * however, during cpu-hot-unplug, even these might get pushed
3133		 * away if not KTHREAD_IS_PER_CPU.
3134		 *
3135		 * Specifically, migration_disabled() tasks must not fail the
3136		 * cpumask_any_and_distribute() pick below, esp. so on
3137		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3138		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3139		 */
3140		cpu_valid_mask = cpu_online_mask;
3141	}
3142
3143	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3144		ret = -EINVAL;
3145		goto out;
3146	}
3147
3148	/*
3149	 * Must re-check here, to close a race against __kthread_bind(),
3150	 * sched_setaffinity() is not guaranteed to observe the flag.
3151	 */
3152	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3153		ret = -EINVAL;
3154		goto out;
3155	}
3156
3157	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3158		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3159			if (ctx->flags & SCA_USER)
3160				swap(p->user_cpus_ptr, ctx->user_mask);
3161			goto out;
3162		}
3163
3164		if (WARN_ON_ONCE(p == current &&
3165				 is_migration_disabled(p) &&
3166				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3167			ret = -EBUSY;
3168			goto out;
3169		}
3170	}
3171
3172	/*
3173	 * Picking a ~random cpu helps in cases where we are changing affinity
3174	 * for groups of tasks (ie. cpuset), so that load balancing is not
3175	 * immediately required to distribute the tasks within their new mask.
3176	 */
3177	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3178	if (dest_cpu >= nr_cpu_ids) {
3179		ret = -EINVAL;
3180		goto out;
3181	}
3182
3183	__do_set_cpus_allowed(p, ctx);
3184
3185	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3186
3187out:
3188	task_rq_unlock(rq, p, rf);
3189
3190	return ret;
3191}
3192
3193/*
3194 * Change a given task's CPU affinity. Migrate the thread to a
3195 * proper CPU and schedule it away if the CPU it's executing on
3196 * is removed from the allowed bitmask.
3197 *
3198 * NOTE: the caller must have a valid reference to the task, the
3199 * task must not exit() & deallocate itself prematurely. The
3200 * call is not atomic; no spinlocks may be held.
3201 */
3202static int __set_cpus_allowed_ptr(struct task_struct *p,
3203				  struct affinity_context *ctx)
3204{
3205	struct rq_flags rf;
3206	struct rq *rq;
3207
3208	rq = task_rq_lock(p, &rf);
3209	/*
3210	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3211	 * flags are set.
3212	 */
3213	if (p->user_cpus_ptr &&
3214	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3215	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3216		ctx->new_mask = rq->scratch_mask;
3217
3218	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3219}
3220
3221int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3222{
3223	struct affinity_context ac = {
3224		.new_mask  = new_mask,
3225		.flags     = 0,
3226	};
3227
3228	return __set_cpus_allowed_ptr(p, &ac);
3229}
3230EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3231
3232/*
3233 * Change a given task's CPU affinity to the intersection of its current
3234 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3235 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3236 * affinity or use cpu_online_mask instead.
3237 *
3238 * If the resulting mask is empty, leave the affinity unchanged and return
3239 * -EINVAL.
3240 */
3241static int restrict_cpus_allowed_ptr(struct task_struct *p,
3242				     struct cpumask *new_mask,
3243				     const struct cpumask *subset_mask)
3244{
3245	struct affinity_context ac = {
3246		.new_mask  = new_mask,
3247		.flags     = 0,
3248	};
3249	struct rq_flags rf;
3250	struct rq *rq;
3251	int err;
3252
3253	rq = task_rq_lock(p, &rf);
3254
3255	/*
3256	 * Forcefully restricting the affinity of a deadline task is
3257	 * likely to cause problems, so fail and noisily override the
3258	 * mask entirely.
3259	 */
3260	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3261		err = -EPERM;
3262		goto err_unlock;
3263	}
3264
3265	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3266		err = -EINVAL;
3267		goto err_unlock;
3268	}
3269
3270	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3271
3272err_unlock:
3273	task_rq_unlock(rq, p, &rf);
3274	return err;
3275}
3276
3277/*
3278 * Restrict the CPU affinity of task @p so that it is a subset of
3279 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3280 * old affinity mask. If the resulting mask is empty, we warn and walk
3281 * up the cpuset hierarchy until we find a suitable mask.
3282 */
3283void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3284{
3285	cpumask_var_t new_mask;
3286	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3287
3288	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3289
3290	/*
3291	 * __migrate_task() can fail silently in the face of concurrent
3292	 * offlining of the chosen destination CPU, so take the hotplug
3293	 * lock to ensure that the migration succeeds.
3294	 */
3295	cpus_read_lock();
3296	if (!cpumask_available(new_mask))
3297		goto out_set_mask;
3298
3299	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3300		goto out_free_mask;
3301
3302	/*
3303	 * We failed to find a valid subset of the affinity mask for the
3304	 * task, so override it based on its cpuset hierarchy.
3305	 */
3306	cpuset_cpus_allowed(p, new_mask);
3307	override_mask = new_mask;
3308
3309out_set_mask:
3310	if (printk_ratelimit()) {
3311		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3312				task_pid_nr(p), p->comm,
3313				cpumask_pr_args(override_mask));
3314	}
3315
3316	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3317out_free_mask:
3318	cpus_read_unlock();
3319	free_cpumask_var(new_mask);
3320}
3321
3322static int
3323__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3324
3325/*
3326 * Restore the affinity of a task @p which was previously restricted by a
3327 * call to force_compatible_cpus_allowed_ptr().
3328 *
3329 * It is the caller's responsibility to serialise this with any calls to
3330 * force_compatible_cpus_allowed_ptr(@p).
3331 */
3332void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3333{
3334	struct affinity_context ac = {
3335		.new_mask  = task_user_cpus(p),
3336		.flags     = 0,
3337	};
3338	int ret;
3339
3340	/*
3341	 * Try to restore the old affinity mask with __sched_setaffinity().
3342	 * Cpuset masking will be done there too.
3343	 */
3344	ret = __sched_setaffinity(p, &ac);
3345	WARN_ON_ONCE(ret);
3346}
3347
3348void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3349{
3350#ifdef CONFIG_SCHED_DEBUG
3351	unsigned int state = READ_ONCE(p->__state);
3352
3353	/*
3354	 * We should never call set_task_cpu() on a blocked task,
3355	 * ttwu() will sort out the placement.
3356	 */
3357	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3358
3359	/*
3360	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3361	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3362	 * time relying on p->on_rq.
3363	 */
3364	WARN_ON_ONCE(state == TASK_RUNNING &&
3365		     p->sched_class == &fair_sched_class &&
3366		     (p->on_rq && !task_on_rq_migrating(p)));
3367
3368#ifdef CONFIG_LOCKDEP
3369	/*
3370	 * The caller should hold either p->pi_lock or rq->lock, when changing
3371	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3372	 *
3373	 * sched_move_task() holds both and thus holding either pins the cgroup,
3374	 * see task_group().
3375	 *
3376	 * Furthermore, all task_rq users should acquire both locks, see
3377	 * task_rq_lock().
3378	 */
3379	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3380				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3381#endif
3382	/*
3383	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3384	 */
3385	WARN_ON_ONCE(!cpu_online(new_cpu));
3386
3387	WARN_ON_ONCE(is_migration_disabled(p));
3388#endif
3389
3390	trace_sched_migrate_task(p, new_cpu);
3391
3392	if (task_cpu(p) != new_cpu) {
3393		if (p->sched_class->migrate_task_rq)
3394			p->sched_class->migrate_task_rq(p, new_cpu);
3395		p->se.nr_migrations++;
3396		rseq_migrate(p);
3397		sched_mm_cid_migrate_from(p);
3398		perf_event_task_migrate(p);
3399	}
3400
3401	__set_task_cpu(p, new_cpu);
3402}
3403
3404#ifdef CONFIG_NUMA_BALANCING
3405static void __migrate_swap_task(struct task_struct *p, int cpu)
3406{
3407	if (task_on_rq_queued(p)) {
3408		struct rq *src_rq, *dst_rq;
3409		struct rq_flags srf, drf;
3410
3411		src_rq = task_rq(p);
3412		dst_rq = cpu_rq(cpu);
3413
3414		rq_pin_lock(src_rq, &srf);
3415		rq_pin_lock(dst_rq, &drf);
3416
3417		deactivate_task(src_rq, p, 0);
3418		set_task_cpu(p, cpu);
3419		activate_task(dst_rq, p, 0);
3420		wakeup_preempt(dst_rq, p, 0);
3421
3422		rq_unpin_lock(dst_rq, &drf);
3423		rq_unpin_lock(src_rq, &srf);
3424
3425	} else {
3426		/*
3427		 * Task isn't running anymore; make it appear like we migrated
3428		 * it before it went to sleep. This means on wakeup we make the
3429		 * previous CPU our target instead of where it really is.
3430		 */
3431		p->wake_cpu = cpu;
3432	}
3433}
3434
3435struct migration_swap_arg {
3436	struct task_struct *src_task, *dst_task;
3437	int src_cpu, dst_cpu;
3438};
3439
3440static int migrate_swap_stop(void *data)
3441{
3442	struct migration_swap_arg *arg = data;
3443	struct rq *src_rq, *dst_rq;
3444
3445	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3446		return -EAGAIN;
3447
3448	src_rq = cpu_rq(arg->src_cpu);
3449	dst_rq = cpu_rq(arg->dst_cpu);
3450
3451	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3452	guard(double_rq_lock)(src_rq, dst_rq);
3453
3454	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3455		return -EAGAIN;
3456
3457	if (task_cpu(arg->src_task) != arg->src_cpu)
3458		return -EAGAIN;
3459
3460	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3461		return -EAGAIN;
3462
3463	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3464		return -EAGAIN;
3465
3466	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3467	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3468
3469	return 0;
3470}
3471
3472/*
3473 * Cross migrate two tasks
3474 */
3475int migrate_swap(struct task_struct *cur, struct task_struct *p,
3476		int target_cpu, int curr_cpu)
3477{
3478	struct migration_swap_arg arg;
3479	int ret = -EINVAL;
3480
3481	arg = (struct migration_swap_arg){
3482		.src_task = cur,
3483		.src_cpu = curr_cpu,
3484		.dst_task = p,
3485		.dst_cpu = target_cpu,
3486	};
3487
3488	if (arg.src_cpu == arg.dst_cpu)
3489		goto out;
3490
3491	/*
3492	 * These three tests are all lockless; this is OK since all of them
3493	 * will be re-checked with proper locks held further down the line.
3494	 */
3495	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3496		goto out;
3497
3498	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3499		goto out;
3500
3501	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3502		goto out;
3503
3504	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3505	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3506
3507out:
3508	return ret;
3509}
3510#endif /* CONFIG_NUMA_BALANCING */
3511
3512/***
3513 * kick_process - kick a running thread to enter/exit the kernel
3514 * @p: the to-be-kicked thread
3515 *
3516 * Cause a process which is running on another CPU to enter
3517 * kernel-mode, without any delay. (to get signals handled.)
3518 *
3519 * NOTE: this function doesn't have to take the runqueue lock,
3520 * because all it wants to ensure is that the remote task enters
3521 * the kernel. If the IPI races and the task has been migrated
3522 * to another CPU then no harm is done and the purpose has been
3523 * achieved as well.
3524 */
3525void kick_process(struct task_struct *p)
3526{
3527	guard(preempt)();
3528	int cpu = task_cpu(p);
3529
3530	if ((cpu != smp_processor_id()) && task_curr(p))
3531		smp_send_reschedule(cpu);
3532}
3533EXPORT_SYMBOL_GPL(kick_process);
3534
3535/*
3536 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3537 *
3538 * A few notes on cpu_active vs cpu_online:
3539 *
3540 *  - cpu_active must be a subset of cpu_online
3541 *
3542 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3543 *    see __set_cpus_allowed_ptr(). At this point the newly online
3544 *    CPU isn't yet part of the sched domains, and balancing will not
3545 *    see it.
3546 *
3547 *  - on CPU-down we clear cpu_active() to mask the sched domains and
3548 *    avoid the load balancer to place new tasks on the to be removed
3549 *    CPU. Existing tasks will remain running there and will be taken
3550 *    off.
3551 *
3552 * This means that fallback selection must not select !active CPUs.
3553 * And can assume that any active CPU must be online. Conversely
3554 * select_task_rq() below may allow selection of !active CPUs in order
3555 * to satisfy the above rules.
3556 */
3557static int select_fallback_rq(int cpu, struct task_struct *p)
3558{
3559	int nid = cpu_to_node(cpu);
3560	const struct cpumask *nodemask = NULL;
3561	enum { cpuset, possible, fail } state = cpuset;
3562	int dest_cpu;
3563
3564	/*
3565	 * If the node that the CPU is on has been offlined, cpu_to_node()
3566	 * will return -1. There is no CPU on the node, and we should
3567	 * select the CPU on the other node.
3568	 */
3569	if (nid != -1) {
3570		nodemask = cpumask_of_node(nid);
3571
3572		/* Look for allowed, online CPU in same node. */
3573		for_each_cpu(dest_cpu, nodemask) {
3574			if (is_cpu_allowed(p, dest_cpu))
3575				return dest_cpu;
3576		}
3577	}
3578
3579	for (;;) {
3580		/* Any allowed, online CPU? */
3581		for_each_cpu(dest_cpu, p->cpus_ptr) {
3582			if (!is_cpu_allowed(p, dest_cpu))
3583				continue;
3584
3585			goto out;
3586		}
3587
3588		/* No more Mr. Nice Guy. */
3589		switch (state) {
3590		case cpuset:
3591			if (cpuset_cpus_allowed_fallback(p)) {
3592				state = possible;
3593				break;
3594			}
3595			fallthrough;
3596		case possible:
3597			/*
3598			 * XXX When called from select_task_rq() we only
3599			 * hold p->pi_lock and again violate locking order.
3600			 *
3601			 * More yuck to audit.
3602			 */
3603			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3604			state = fail;
3605			break;
3606		case fail:
3607			BUG();
3608			break;
3609		}
3610	}
3611
3612out:
3613	if (state != cpuset) {
3614		/*
3615		 * Don't tell them about moving exiting tasks or
3616		 * kernel threads (both mm NULL), since they never
3617		 * leave kernel.
3618		 */
3619		if (p->mm && printk_ratelimit()) {
3620			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3621					task_pid_nr(p), p->comm, cpu);
3622		}
3623	}
3624
3625	return dest_cpu;
3626}
3627
3628/*
3629 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3630 */
3631static inline
3632int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3633{
3634	lockdep_assert_held(&p->pi_lock);
3635
3636	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3637		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3638	else
3639		cpu = cpumask_any(p->cpus_ptr);
3640
3641	/*
3642	 * In order not to call set_task_cpu() on a blocking task we need
3643	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3644	 * CPU.
3645	 *
3646	 * Since this is common to all placement strategies, this lives here.
3647	 *
3648	 * [ this allows ->select_task() to simply return task_cpu(p) and
3649	 *   not worry about this generic constraint ]
3650	 */
3651	if (unlikely(!is_cpu_allowed(p, cpu)))
3652		cpu = select_fallback_rq(task_cpu(p), p);
3653
3654	return cpu;
3655}
3656
3657void sched_set_stop_task(int cpu, struct task_struct *stop)
3658{
3659	static struct lock_class_key stop_pi_lock;
3660	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3661	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3662
3663	if (stop) {
3664		/*
3665		 * Make it appear like a SCHED_FIFO task, its something
3666		 * userspace knows about and won't get confused about.
3667		 *
3668		 * Also, it will make PI more or less work without too
3669		 * much confusion -- but then, stop work should not
3670		 * rely on PI working anyway.
3671		 */
3672		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3673
3674		stop->sched_class = &stop_sched_class;
3675
3676		/*
3677		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3678		 * adjust the effective priority of a task. As a result,
3679		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3680		 * which can then trigger wakeups of the stop thread to push
3681		 * around the current task.
3682		 *
3683		 * The stop task itself will never be part of the PI-chain, it
3684		 * never blocks, therefore that ->pi_lock recursion is safe.
3685		 * Tell lockdep about this by placing the stop->pi_lock in its
3686		 * own class.
3687		 */
3688		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3689	}
3690
3691	cpu_rq(cpu)->stop = stop;
3692
3693	if (old_stop) {
3694		/*
3695		 * Reset it back to a normal scheduling class so that
3696		 * it can die in pieces.
3697		 */
3698		old_stop->sched_class = &rt_sched_class;
3699	}
3700}
3701
3702#else /* CONFIG_SMP */
3703
3704static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3705					 struct affinity_context *ctx)
3706{
3707	return set_cpus_allowed_ptr(p, ctx->new_mask);
3708}
3709
3710static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3711
3712static inline bool rq_has_pinned_tasks(struct rq *rq)
3713{
3714	return false;
3715}
3716
3717static inline cpumask_t *alloc_user_cpus_ptr(int node)
3718{
3719	return NULL;
3720}
3721
3722#endif /* !CONFIG_SMP */
3723
3724static void
3725ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3726{
3727	struct rq *rq;
3728
3729	if (!schedstat_enabled())
3730		return;
3731
3732	rq = this_rq();
3733
3734#ifdef CONFIG_SMP
3735	if (cpu == rq->cpu) {
3736		__schedstat_inc(rq->ttwu_local);
3737		__schedstat_inc(p->stats.nr_wakeups_local);
3738	} else {
3739		struct sched_domain *sd;
3740
3741		__schedstat_inc(p->stats.nr_wakeups_remote);
3742
3743		guard(rcu)();
3744		for_each_domain(rq->cpu, sd) {
3745			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3746				__schedstat_inc(sd->ttwu_wake_remote);
3747				break;
3748			}
3749		}
3750	}
3751
3752	if (wake_flags & WF_MIGRATED)
3753		__schedstat_inc(p->stats.nr_wakeups_migrate);
3754#endif /* CONFIG_SMP */
3755
3756	__schedstat_inc(rq->ttwu_count);
3757	__schedstat_inc(p->stats.nr_wakeups);
3758
3759	if (wake_flags & WF_SYNC)
3760		__schedstat_inc(p->stats.nr_wakeups_sync);
3761}
3762
3763/*
3764 * Mark the task runnable.
3765 */
3766static inline void ttwu_do_wakeup(struct task_struct *p)
3767{
3768	WRITE_ONCE(p->__state, TASK_RUNNING);
3769	trace_sched_wakeup(p);
3770}
3771
3772static void
3773ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3774		 struct rq_flags *rf)
3775{
3776	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3777
3778	lockdep_assert_rq_held(rq);
3779
3780	if (p->sched_contributes_to_load)
3781		rq->nr_uninterruptible--;
3782
3783#ifdef CONFIG_SMP
3784	if (wake_flags & WF_MIGRATED)
3785		en_flags |= ENQUEUE_MIGRATED;
3786	else
3787#endif
3788	if (p->in_iowait) {
3789		delayacct_blkio_end(p);
3790		atomic_dec(&task_rq(p)->nr_iowait);
3791	}
3792
3793	activate_task(rq, p, en_flags);
3794	wakeup_preempt(rq, p, wake_flags);
3795
3796	ttwu_do_wakeup(p);
3797
3798#ifdef CONFIG_SMP
3799	if (p->sched_class->task_woken) {
3800		/*
3801		 * Our task @p is fully woken up and running; so it's safe to
3802		 * drop the rq->lock, hereafter rq is only used for statistics.
3803		 */
3804		rq_unpin_lock(rq, rf);
3805		p->sched_class->task_woken(rq, p);
3806		rq_repin_lock(rq, rf);
3807	}
3808
3809	if (rq->idle_stamp) {
3810		u64 delta = rq_clock(rq) - rq->idle_stamp;
3811		u64 max = 2*rq->max_idle_balance_cost;
3812
3813		update_avg(&rq->avg_idle, delta);
3814
3815		if (rq->avg_idle > max)
3816			rq->avg_idle = max;
3817
3818		rq->idle_stamp = 0;
3819	}
3820#endif
3821
3822	p->dl_server = NULL;
3823}
3824
3825/*
3826 * Consider @p being inside a wait loop:
3827 *
3828 *   for (;;) {
3829 *      set_current_state(TASK_UNINTERRUPTIBLE);
3830 *
3831 *      if (CONDITION)
3832 *         break;
3833 *
3834 *      schedule();
3835 *   }
3836 *   __set_current_state(TASK_RUNNING);
3837 *
3838 * between set_current_state() and schedule(). In this case @p is still
3839 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3840 * an atomic manner.
3841 *
3842 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3843 * then schedule() must still happen and p->state can be changed to
3844 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3845 * need to do a full wakeup with enqueue.
3846 *
3847 * Returns: %true when the wakeup is done,
3848 *          %false otherwise.
3849 */
3850static int ttwu_runnable(struct task_struct *p, int wake_flags)
3851{
3852	struct rq_flags rf;
3853	struct rq *rq;
3854	int ret = 0;
3855
3856	rq = __task_rq_lock(p, &rf);
3857	if (task_on_rq_queued(p)) {
3858		if (!task_on_cpu(rq, p)) {
3859			/*
3860			 * When on_rq && !on_cpu the task is preempted, see if
3861			 * it should preempt the task that is current now.
3862			 */
3863			update_rq_clock(rq);
3864			wakeup_preempt(rq, p, wake_flags);
3865		}
3866		ttwu_do_wakeup(p);
3867		ret = 1;
3868	}
3869	__task_rq_unlock(rq, &rf);
3870
3871	return ret;
3872}
3873
3874#ifdef CONFIG_SMP
3875void sched_ttwu_pending(void *arg)
3876{
3877	struct llist_node *llist = arg;
3878	struct rq *rq = this_rq();
3879	struct task_struct *p, *t;
3880	struct rq_flags rf;
3881
3882	if (!llist)
3883		return;
3884
3885	rq_lock_irqsave(rq, &rf);
3886	update_rq_clock(rq);
3887
3888	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3889		if (WARN_ON_ONCE(p->on_cpu))
3890			smp_cond_load_acquire(&p->on_cpu, !VAL);
3891
3892		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3893			set_task_cpu(p, cpu_of(rq));
3894
3895		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3896	}
3897
3898	/*
3899	 * Must be after enqueueing at least once task such that
3900	 * idle_cpu() does not observe a false-negative -- if it does,
3901	 * it is possible for select_idle_siblings() to stack a number
3902	 * of tasks on this CPU during that window.
3903	 *
3904	 * It is ok to clear ttwu_pending when another task pending.
3905	 * We will receive IPI after local irq enabled and then enqueue it.
3906	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3907	 */
3908	WRITE_ONCE(rq->ttwu_pending, 0);
3909	rq_unlock_irqrestore(rq, &rf);
3910}
3911
3912/*
3913 * Prepare the scene for sending an IPI for a remote smp_call
3914 *
3915 * Returns true if the caller can proceed with sending the IPI.
3916 * Returns false otherwise.
3917 */
3918bool call_function_single_prep_ipi(int cpu)
3919{
3920	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3921		trace_sched_wake_idle_without_ipi(cpu);
3922		return false;
3923	}
3924
3925	return true;
3926}
3927
3928/*
3929 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3930 * necessary. The wakee CPU on receipt of the IPI will queue the task
3931 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3932 * of the wakeup instead of the waker.
3933 */
3934static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3935{
3936	struct rq *rq = cpu_rq(cpu);
3937
3938	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3939
3940	WRITE_ONCE(rq->ttwu_pending, 1);
3941	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3942}
3943
3944void wake_up_if_idle(int cpu)
3945{
3946	struct rq *rq = cpu_rq(cpu);
3947
3948	guard(rcu)();
3949	if (is_idle_task(rcu_dereference(rq->curr))) {
3950		guard(rq_lock_irqsave)(rq);
3951		if (is_idle_task(rq->curr))
3952			resched_curr(rq);
3953	}
3954}
3955
3956bool cpus_equal_capacity(int this_cpu, int that_cpu)
3957{
3958	if (!sched_asym_cpucap_active())
3959		return true;
3960
3961	if (this_cpu == that_cpu)
3962		return true;
3963
3964	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3965}
3966
3967bool cpus_share_cache(int this_cpu, int that_cpu)
3968{
3969	if (this_cpu == that_cpu)
3970		return true;
3971
3972	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3973}
3974
3975/*
3976 * Whether CPUs are share cache resources, which means LLC on non-cluster
3977 * machines and LLC tag or L2 on machines with clusters.
3978 */
3979bool cpus_share_resources(int this_cpu, int that_cpu)
3980{
3981	if (this_cpu == that_cpu)
3982		return true;
3983
3984	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3985}
3986
3987static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3988{
3989	/*
3990	 * Do not complicate things with the async wake_list while the CPU is
3991	 * in hotplug state.
3992	 */
3993	if (!cpu_active(cpu))
3994		return false;
3995
3996	/* Ensure the task will still be allowed to run on the CPU. */
3997	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3998		return false;
3999
4000	/*
4001	 * If the CPU does not share cache, then queue the task on the
4002	 * remote rqs wakelist to avoid accessing remote data.
4003	 */
4004	if (!cpus_share_cache(smp_processor_id(), cpu))
4005		return true;
4006
4007	if (cpu == smp_processor_id())
4008		return false;
4009
4010	/*
4011	 * If the wakee cpu is idle, or the task is descheduling and the
4012	 * only running task on the CPU, then use the wakelist to offload
4013	 * the task activation to the idle (or soon-to-be-idle) CPU as
4014	 * the current CPU is likely busy. nr_running is checked to
4015	 * avoid unnecessary task stacking.
4016	 *
4017	 * Note that we can only get here with (wakee) p->on_rq=0,
4018	 * p->on_cpu can be whatever, we've done the dequeue, so
4019	 * the wakee has been accounted out of ->nr_running.
4020	 */
4021	if (!cpu_rq(cpu)->nr_running)
4022		return true;
4023
4024	return false;
4025}
4026
4027static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4028{
4029	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4030		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4031		__ttwu_queue_wakelist(p, cpu, wake_flags);
4032		return true;
4033	}
4034
4035	return false;
4036}
4037
4038#else /* !CONFIG_SMP */
4039
4040static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4041{
4042	return false;
4043}
4044
4045#endif /* CONFIG_SMP */
4046
4047static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4048{
4049	struct rq *rq = cpu_rq(cpu);
4050	struct rq_flags rf;
4051
4052	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4053		return;
4054
4055	rq_lock(rq, &rf);
4056	update_rq_clock(rq);
4057	ttwu_do_activate(rq, p, wake_flags, &rf);
4058	rq_unlock(rq, &rf);
4059}
4060
4061/*
4062 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4063 *
4064 * The caller holds p::pi_lock if p != current or has preemption
4065 * disabled when p == current.
4066 *
4067 * The rules of saved_state:
4068 *
4069 *   The related locking code always holds p::pi_lock when updating
4070 *   p::saved_state, which means the code is fully serialized in both cases.
4071 *
4072 *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4073 *   No other bits set. This allows to distinguish all wakeup scenarios.
4074 *
4075 *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4076 *   allows us to prevent early wakeup of tasks before they can be run on
4077 *   asymmetric ISA architectures (eg ARMv9).
4078 */
4079static __always_inline
4080bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4081{
4082	int match;
4083
4084	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4085		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4086			     state != TASK_RTLOCK_WAIT);
4087	}
4088
4089	*success = !!(match = __task_state_match(p, state));
4090
4091	/*
4092	 * Saved state preserves the task state across blocking on
4093	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4094	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4095	 * because it waits for a lock wakeup or __thaw_task(). Also
4096	 * indicate success because from the regular waker's point of
4097	 * view this has succeeded.
4098	 *
4099	 * After acquiring the lock the task will restore p::__state
4100	 * from p::saved_state which ensures that the regular
4101	 * wakeup is not lost. The restore will also set
4102	 * p::saved_state to TASK_RUNNING so any further tests will
4103	 * not result in false positives vs. @success
4104	 */
4105	if (match < 0)
4106		p->saved_state = TASK_RUNNING;
4107
4108	return match > 0;
4109}
4110
4111/*
4112 * Notes on Program-Order guarantees on SMP systems.
4113 *
4114 *  MIGRATION
4115 *
4116 * The basic program-order guarantee on SMP systems is that when a task [t]
4117 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4118 * execution on its new CPU [c1].
4119 *
4120 * For migration (of runnable tasks) this is provided by the following means:
4121 *
4122 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4123 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4124 *     rq(c1)->lock (if not at the same time, then in that order).
4125 *  C) LOCK of the rq(c1)->lock scheduling in task
4126 *
4127 * Release/acquire chaining guarantees that B happens after A and C after B.
4128 * Note: the CPU doing B need not be c0 or c1
4129 *
4130 * Example:
4131 *
4132 *   CPU0            CPU1            CPU2
4133 *
4134 *   LOCK rq(0)->lock
4135 *   sched-out X
4136 *   sched-in Y
4137 *   UNLOCK rq(0)->lock
4138 *
4139 *                                   LOCK rq(0)->lock // orders against CPU0
4140 *                                   dequeue X
4141 *                                   UNLOCK rq(0)->lock
4142 *
4143 *                                   LOCK rq(1)->lock
4144 *                                   enqueue X
4145 *                                   UNLOCK rq(1)->lock
4146 *
4147 *                   LOCK rq(1)->lock // orders against CPU2
4148 *                   sched-out Z
4149 *                   sched-in X
4150 *                   UNLOCK rq(1)->lock
4151 *
4152 *
4153 *  BLOCKING -- aka. SLEEP + WAKEUP
4154 *
4155 * For blocking we (obviously) need to provide the same guarantee as for
4156 * migration. However the means are completely different as there is no lock
4157 * chain to provide order. Instead we do:
4158 *
4159 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4160 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4161 *
4162 * Example:
4163 *
4164 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4165 *
4166 *   LOCK rq(0)->lock LOCK X->pi_lock
4167 *   dequeue X
4168 *   sched-out X
4169 *   smp_store_release(X->on_cpu, 0);
4170 *
4171 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4172 *                    X->state = WAKING
4173 *                    set_task_cpu(X,2)
4174 *
4175 *                    LOCK rq(2)->lock
4176 *                    enqueue X
4177 *                    X->state = RUNNING
4178 *                    UNLOCK rq(2)->lock
4179 *
4180 *                                          LOCK rq(2)->lock // orders against CPU1
4181 *                                          sched-out Z
4182 *                                          sched-in X
4183 *                                          UNLOCK rq(2)->lock
4184 *
4185 *                    UNLOCK X->pi_lock
4186 *   UNLOCK rq(0)->lock
4187 *
4188 *
4189 * However, for wakeups there is a second guarantee we must provide, namely we
4190 * must ensure that CONDITION=1 done by the caller can not be reordered with
4191 * accesses to the task state; see try_to_wake_up() and set_current_state().
4192 */
4193
4194/**
4195 * try_to_wake_up - wake up a thread
4196 * @p: the thread to be awakened
4197 * @state: the mask of task states that can be woken
4198 * @wake_flags: wake modifier flags (WF_*)
4199 *
4200 * Conceptually does:
4201 *
4202 *   If (@state & @p->state) @p->state = TASK_RUNNING.
4203 *
4204 * If the task was not queued/runnable, also place it back on a runqueue.
4205 *
4206 * This function is atomic against schedule() which would dequeue the task.
4207 *
4208 * It issues a full memory barrier before accessing @p->state, see the comment
4209 * with set_current_state().
4210 *
4211 * Uses p->pi_lock to serialize against concurrent wake-ups.
4212 *
4213 * Relies on p->pi_lock stabilizing:
4214 *  - p->sched_class
4215 *  - p->cpus_ptr
4216 *  - p->sched_task_group
4217 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4218 *
4219 * Tries really hard to only take one task_rq(p)->lock for performance.
4220 * Takes rq->lock in:
4221 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4222 *  - ttwu_queue()       -- new rq, for enqueue of the task;
4223 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4224 *
4225 * As a consequence we race really badly with just about everything. See the
4226 * many memory barriers and their comments for details.
4227 *
4228 * Return: %true if @p->state changes (an actual wakeup was done),
4229 *	   %false otherwise.
4230 */
4231int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4232{
4233	guard(preempt)();
4234	int cpu, success = 0;
4235
4236	if (p == current) {
4237		/*
4238		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4239		 * == smp_processor_id()'. Together this means we can special
4240		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4241		 * without taking any locks.
4242		 *
4243		 * In particular:
4244		 *  - we rely on Program-Order guarantees for all the ordering,
4245		 *  - we're serialized against set_special_state() by virtue of
4246		 *    it disabling IRQs (this allows not taking ->pi_lock).
4247		 */
4248		if (!ttwu_state_match(p, state, &success))
4249			goto out;
4250
4251		trace_sched_waking(p);
4252		ttwu_do_wakeup(p);
4253		goto out;
4254	}
4255
4256	/*
4257	 * If we are going to wake up a thread waiting for CONDITION we
4258	 * need to ensure that CONDITION=1 done by the caller can not be
4259	 * reordered with p->state check below. This pairs with smp_store_mb()
4260	 * in set_current_state() that the waiting thread does.
4261	 */
4262	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4263		smp_mb__after_spinlock();
4264		if (!ttwu_state_match(p, state, &success))
4265			break;
4266
4267		trace_sched_waking(p);
4268
4269		/*
4270		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4271		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4272		 * in smp_cond_load_acquire() below.
4273		 *
4274		 * sched_ttwu_pending()			try_to_wake_up()
4275		 *   STORE p->on_rq = 1			  LOAD p->state
4276		 *   UNLOCK rq->lock
4277		 *
4278		 * __schedule() (switch to task 'p')
4279		 *   LOCK rq->lock			  smp_rmb();
4280		 *   smp_mb__after_spinlock();
4281		 *   UNLOCK rq->lock
4282		 *
4283		 * [task p]
4284		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4285		 *
4286		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4287		 * __schedule().  See the comment for smp_mb__after_spinlock().
4288		 *
4289		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4290		 */
4291		smp_rmb();
4292		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4293			break;
4294
4295#ifdef CONFIG_SMP
4296		/*
4297		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4298		 * possible to, falsely, observe p->on_cpu == 0.
4299		 *
4300		 * One must be running (->on_cpu == 1) in order to remove oneself
4301		 * from the runqueue.
4302		 *
4303		 * __schedule() (switch to task 'p')	try_to_wake_up()
4304		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4305		 *   UNLOCK rq->lock
4306		 *
4307		 * __schedule() (put 'p' to sleep)
4308		 *   LOCK rq->lock			  smp_rmb();
4309		 *   smp_mb__after_spinlock();
4310		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4311		 *
4312		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4313		 * __schedule().  See the comment for smp_mb__after_spinlock().
4314		 *
4315		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4316		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4317		 * care about it's own p->state. See the comment in __schedule().
4318		 */
4319		smp_acquire__after_ctrl_dep();
4320
4321		/*
4322		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4323		 * == 0), which means we need to do an enqueue, change p->state to
4324		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4325		 * enqueue, such as ttwu_queue_wakelist().
4326		 */
4327		WRITE_ONCE(p->__state, TASK_WAKING);
4328
4329		/*
4330		 * If the owning (remote) CPU is still in the middle of schedule() with
4331		 * this task as prev, considering queueing p on the remote CPUs wake_list
4332		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4333		 * let the waker make forward progress. This is safe because IRQs are
4334		 * disabled and the IPI will deliver after on_cpu is cleared.
4335		 *
4336		 * Ensure we load task_cpu(p) after p->on_cpu:
4337		 *
4338		 * set_task_cpu(p, cpu);
4339		 *   STORE p->cpu = @cpu
4340		 * __schedule() (switch to task 'p')
4341		 *   LOCK rq->lock
4342		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4343		 *   STORE p->on_cpu = 1		LOAD p->cpu
4344		 *
4345		 * to ensure we observe the correct CPU on which the task is currently
4346		 * scheduling.
4347		 */
4348		if (smp_load_acquire(&p->on_cpu) &&
4349		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4350			break;
4351
4352		/*
4353		 * If the owning (remote) CPU is still in the middle of schedule() with
4354		 * this task as prev, wait until it's done referencing the task.
4355		 *
4356		 * Pairs with the smp_store_release() in finish_task().
4357		 *
4358		 * This ensures that tasks getting woken will be fully ordered against
4359		 * their previous state and preserve Program Order.
4360		 */
4361		smp_cond_load_acquire(&p->on_cpu, !VAL);
4362
4363		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4364		if (task_cpu(p) != cpu) {
4365			if (p->in_iowait) {
4366				delayacct_blkio_end(p);
4367				atomic_dec(&task_rq(p)->nr_iowait);
4368			}
4369
4370			wake_flags |= WF_MIGRATED;
4371			psi_ttwu_dequeue(p);
4372			set_task_cpu(p, cpu);
4373		}
4374#else
4375		cpu = task_cpu(p);
4376#endif /* CONFIG_SMP */
4377
4378		ttwu_queue(p, cpu, wake_flags);
4379	}
4380out:
4381	if (success)
4382		ttwu_stat(p, task_cpu(p), wake_flags);
4383
4384	return success;
4385}
4386
4387static bool __task_needs_rq_lock(struct task_struct *p)
4388{
4389	unsigned int state = READ_ONCE(p->__state);
4390
4391	/*
4392	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4393	 * the task is blocked. Make sure to check @state since ttwu() can drop
4394	 * locks at the end, see ttwu_queue_wakelist().
4395	 */
4396	if (state == TASK_RUNNING || state == TASK_WAKING)
4397		return true;
4398
4399	/*
4400	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4401	 * possible to, falsely, observe p->on_rq == 0.
4402	 *
4403	 * See try_to_wake_up() for a longer comment.
4404	 */
4405	smp_rmb();
4406	if (p->on_rq)
4407		return true;
4408
4409#ifdef CONFIG_SMP
4410	/*
4411	 * Ensure the task has finished __schedule() and will not be referenced
4412	 * anymore. Again, see try_to_wake_up() for a longer comment.
4413	 */
4414	smp_rmb();
4415	smp_cond_load_acquire(&p->on_cpu, !VAL);
4416#endif
4417
4418	return false;
4419}
4420
4421/**
4422 * task_call_func - Invoke a function on task in fixed state
4423 * @p: Process for which the function is to be invoked, can be @current.
4424 * @func: Function to invoke.
4425 * @arg: Argument to function.
4426 *
4427 * Fix the task in it's current state by avoiding wakeups and or rq operations
4428 * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4429 * to work out what the state is, if required.  Given that @func can be invoked
4430 * with a runqueue lock held, it had better be quite lightweight.
4431 *
4432 * Returns:
4433 *   Whatever @func returns
4434 */
4435int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4436{
4437	struct rq *rq = NULL;
4438	struct rq_flags rf;
4439	int ret;
4440
4441	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4442
4443	if (__task_needs_rq_lock(p))
4444		rq = __task_rq_lock(p, &rf);
4445
4446	/*
4447	 * At this point the task is pinned; either:
4448	 *  - blocked and we're holding off wakeups	 (pi->lock)
4449	 *  - woken, and we're holding off enqueue	 (rq->lock)
4450	 *  - queued, and we're holding off schedule	 (rq->lock)
4451	 *  - running, and we're holding off de-schedule (rq->lock)
4452	 *
4453	 * The called function (@func) can use: task_curr(), p->on_rq and
4454	 * p->__state to differentiate between these states.
4455	 */
4456	ret = func(p, arg);
4457
4458	if (rq)
4459		rq_unlock(rq, &rf);
4460
4461	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4462	return ret;
4463}
4464
4465/**
4466 * cpu_curr_snapshot - Return a snapshot of the currently running task
4467 * @cpu: The CPU on which to snapshot the task.
4468 *
4469 * Returns the task_struct pointer of the task "currently" running on
4470 * the specified CPU.  If the same task is running on that CPU throughout,
4471 * the return value will be a pointer to that task's task_struct structure.
4472 * If the CPU did any context switches even vaguely concurrently with the
4473 * execution of this function, the return value will be a pointer to the
4474 * task_struct structure of a randomly chosen task that was running on
4475 * that CPU somewhere around the time that this function was executing.
4476 *
4477 * If the specified CPU was offline, the return value is whatever it
4478 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4479 * task, but there is no guarantee.  Callers wishing a useful return
4480 * value must take some action to ensure that the specified CPU remains
4481 * online throughout.
4482 *
4483 * This function executes full memory barriers before and after fetching
4484 * the pointer, which permits the caller to confine this function's fetch
4485 * with respect to the caller's accesses to other shared variables.
4486 */
4487struct task_struct *cpu_curr_snapshot(int cpu)
4488{
4489	struct task_struct *t;
4490
4491	smp_mb(); /* Pairing determined by caller's synchronization design. */
4492	t = rcu_dereference(cpu_curr(cpu));
4493	smp_mb(); /* Pairing determined by caller's synchronization design. */
4494	return t;
4495}
4496
4497/**
4498 * wake_up_process - Wake up a specific process
4499 * @p: The process to be woken up.
4500 *
4501 * Attempt to wake up the nominated process and move it to the set of runnable
4502 * processes.
4503 *
4504 * Return: 1 if the process was woken up, 0 if it was already running.
4505 *
4506 * This function executes a full memory barrier before accessing the task state.
4507 */
4508int wake_up_process(struct task_struct *p)
4509{
4510	return try_to_wake_up(p, TASK_NORMAL, 0);
4511}
4512EXPORT_SYMBOL(wake_up_process);
4513
4514int wake_up_state(struct task_struct *p, unsigned int state)
4515{
4516	return try_to_wake_up(p, state, 0);
4517}
4518
4519/*
4520 * Perform scheduler related setup for a newly forked process p.
4521 * p is forked by current.
4522 *
4523 * __sched_fork() is basic setup used by init_idle() too:
4524 */
4525static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4526{
4527	p->on_rq			= 0;
4528
4529	p->se.on_rq			= 0;
4530	p->se.exec_start		= 0;
4531	p->se.sum_exec_runtime		= 0;
4532	p->se.prev_sum_exec_runtime	= 0;
4533	p->se.nr_migrations		= 0;
4534	p->se.vruntime			= 0;
4535	p->se.vlag			= 0;
4536	p->se.slice			= sysctl_sched_base_slice;
4537	INIT_LIST_HEAD(&p->se.group_node);
4538
4539#ifdef CONFIG_FAIR_GROUP_SCHED
4540	p->se.cfs_rq			= NULL;
4541#endif
4542
4543#ifdef CONFIG_SCHEDSTATS
4544	/* Even if schedstat is disabled, there should not be garbage */
4545	memset(&p->stats, 0, sizeof(p->stats));
4546#endif
4547
4548	init_dl_entity(&p->dl);
4549
4550	INIT_LIST_HEAD(&p->rt.run_list);
4551	p->rt.timeout		= 0;
4552	p->rt.time_slice	= sched_rr_timeslice;
4553	p->rt.on_rq		= 0;
4554	p->rt.on_list		= 0;
4555
4556#ifdef CONFIG_PREEMPT_NOTIFIERS
4557	INIT_HLIST_HEAD(&p->preempt_notifiers);
4558#endif
4559
4560#ifdef CONFIG_COMPACTION
4561	p->capture_control = NULL;
4562#endif
4563	init_numa_balancing(clone_flags, p);
4564#ifdef CONFIG_SMP
4565	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4566	p->migration_pending = NULL;
4567#endif
4568	init_sched_mm_cid(p);
4569}
4570
4571DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4572
4573#ifdef CONFIG_NUMA_BALANCING
4574
4575int sysctl_numa_balancing_mode;
4576
4577static void __set_numabalancing_state(bool enabled)
4578{
4579	if (enabled)
4580		static_branch_enable(&sched_numa_balancing);
4581	else
4582		static_branch_disable(&sched_numa_balancing);
4583}
4584
4585void set_numabalancing_state(bool enabled)
4586{
4587	if (enabled)
4588		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4589	else
4590		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4591	__set_numabalancing_state(enabled);
4592}
4593
4594#ifdef CONFIG_PROC_SYSCTL
4595static void reset_memory_tiering(void)
4596{
4597	struct pglist_data *pgdat;
4598
4599	for_each_online_pgdat(pgdat) {
4600		pgdat->nbp_threshold = 0;
4601		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4602		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4603	}
4604}
4605
4606static int sysctl_numa_balancing(struct ctl_table *table, int write,
4607			  void *buffer, size_t *lenp, loff_t *ppos)
4608{
4609	struct ctl_table t;
4610	int err;
4611	int state = sysctl_numa_balancing_mode;
4612
4613	if (write && !capable(CAP_SYS_ADMIN))
4614		return -EPERM;
4615
4616	t = *table;
4617	t.data = &state;
4618	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4619	if (err < 0)
4620		return err;
4621	if (write) {
4622		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4623		    (state & NUMA_BALANCING_MEMORY_TIERING))
4624			reset_memory_tiering();
4625		sysctl_numa_balancing_mode = state;
4626		__set_numabalancing_state(state);
4627	}
4628	return err;
4629}
4630#endif
4631#endif
4632
4633#ifdef CONFIG_SCHEDSTATS
4634
4635DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4636
4637static void set_schedstats(bool enabled)
4638{
4639	if (enabled)
4640		static_branch_enable(&sched_schedstats);
4641	else
4642		static_branch_disable(&sched_schedstats);
4643}
4644
4645void force_schedstat_enabled(void)
4646{
4647	if (!schedstat_enabled()) {
4648		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4649		static_branch_enable(&sched_schedstats);
4650	}
4651}
4652
4653static int __init setup_schedstats(char *str)
4654{
4655	int ret = 0;
4656	if (!str)
4657		goto out;
4658
4659	if (!strcmp(str, "enable")) {
4660		set_schedstats(true);
4661		ret = 1;
4662	} else if (!strcmp(str, "disable")) {
4663		set_schedstats(false);
4664		ret = 1;
4665	}
4666out:
4667	if (!ret)
4668		pr_warn("Unable to parse schedstats=\n");
4669
4670	return ret;
4671}
4672__setup("schedstats=", setup_schedstats);
4673
4674#ifdef CONFIG_PROC_SYSCTL
4675static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4676		size_t *lenp, loff_t *ppos)
4677{
4678	struct ctl_table t;
4679	int err;
4680	int state = static_branch_likely(&sched_schedstats);
4681
4682	if (write && !capable(CAP_SYS_ADMIN))
4683		return -EPERM;
4684
4685	t = *table;
4686	t.data = &state;
4687	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4688	if (err < 0)
4689		return err;
4690	if (write)
4691		set_schedstats(state);
4692	return err;
4693}
4694#endif /* CONFIG_PROC_SYSCTL */
4695#endif /* CONFIG_SCHEDSTATS */
4696
4697#ifdef CONFIG_SYSCTL
4698static struct ctl_table sched_core_sysctls[] = {
4699#ifdef CONFIG_SCHEDSTATS
4700	{
4701		.procname       = "sched_schedstats",
4702		.data           = NULL,
4703		.maxlen         = sizeof(unsigned int),
4704		.mode           = 0644,
4705		.proc_handler   = sysctl_schedstats,
4706		.extra1         = SYSCTL_ZERO,
4707		.extra2         = SYSCTL_ONE,
4708	},
4709#endif /* CONFIG_SCHEDSTATS */
4710#ifdef CONFIG_UCLAMP_TASK
4711	{
4712		.procname       = "sched_util_clamp_min",
4713		.data           = &sysctl_sched_uclamp_util_min,
4714		.maxlen         = sizeof(unsigned int),
4715		.mode           = 0644,
4716		.proc_handler   = sysctl_sched_uclamp_handler,
4717	},
4718	{
4719		.procname       = "sched_util_clamp_max",
4720		.data           = &sysctl_sched_uclamp_util_max,
4721		.maxlen         = sizeof(unsigned int),
4722		.mode           = 0644,
4723		.proc_handler   = sysctl_sched_uclamp_handler,
4724	},
4725	{
4726		.procname       = "sched_util_clamp_min_rt_default",
4727		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4728		.maxlen         = sizeof(unsigned int),
4729		.mode           = 0644,
4730		.proc_handler   = sysctl_sched_uclamp_handler,
4731	},
4732#endif /* CONFIG_UCLAMP_TASK */
4733#ifdef CONFIG_NUMA_BALANCING
4734	{
4735		.procname	= "numa_balancing",
4736		.data		= NULL, /* filled in by handler */
4737		.maxlen		= sizeof(unsigned int),
4738		.mode		= 0644,
4739		.proc_handler	= sysctl_numa_balancing,
4740		.extra1		= SYSCTL_ZERO,
4741		.extra2		= SYSCTL_FOUR,
4742	},
4743#endif /* CONFIG_NUMA_BALANCING */
4744	{}
4745};
4746static int __init sched_core_sysctl_init(void)
4747{
4748	register_sysctl_init("kernel", sched_core_sysctls);
4749	return 0;
4750}
4751late_initcall(sched_core_sysctl_init);
4752#endif /* CONFIG_SYSCTL */
4753
4754/*
4755 * fork()/clone()-time setup:
4756 */
4757int sched_fork(unsigned long clone_flags, struct task_struct *p)
4758{
4759	__sched_fork(clone_flags, p);
4760	/*
4761	 * We mark the process as NEW here. This guarantees that
4762	 * nobody will actually run it, and a signal or other external
4763	 * event cannot wake it up and insert it on the runqueue either.
4764	 */
4765	p->__state = TASK_NEW;
4766
4767	/*
4768	 * Make sure we do not leak PI boosting priority to the child.
4769	 */
4770	p->prio = current->normal_prio;
4771
4772	uclamp_fork(p);
4773
4774	/*
4775	 * Revert to default priority/policy on fork if requested.
4776	 */
4777	if (unlikely(p->sched_reset_on_fork)) {
4778		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4779			p->policy = SCHED_NORMAL;
4780			p->static_prio = NICE_TO_PRIO(0);
4781			p->rt_priority = 0;
4782		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4783			p->static_prio = NICE_TO_PRIO(0);
4784
4785		p->prio = p->normal_prio = p->static_prio;
4786		set_load_weight(p, false);
4787
4788		/*
4789		 * We don't need the reset flag anymore after the fork. It has
4790		 * fulfilled its duty:
4791		 */
4792		p->sched_reset_on_fork = 0;
4793	}
4794
4795	if (dl_prio(p->prio))
4796		return -EAGAIN;
4797	else if (rt_prio(p->prio))
4798		p->sched_class = &rt_sched_class;
4799	else
4800		p->sched_class = &fair_sched_class;
4801
4802	init_entity_runnable_average(&p->se);
4803
4804
4805#ifdef CONFIG_SCHED_INFO
4806	if (likely(sched_info_on()))
4807		memset(&p->sched_info, 0, sizeof(p->sched_info));
4808#endif
4809#if defined(CONFIG_SMP)
4810	p->on_cpu = 0;
4811#endif
4812	init_task_preempt_count(p);
4813#ifdef CONFIG_SMP
4814	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4815	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4816#endif
4817	return 0;
4818}
4819
4820void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4821{
4822	unsigned long flags;
4823
4824	/*
4825	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4826	 * required yet, but lockdep gets upset if rules are violated.
4827	 */
4828	raw_spin_lock_irqsave(&p->pi_lock, flags);
4829#ifdef CONFIG_CGROUP_SCHED
4830	if (1) {
4831		struct task_group *tg;
4832		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4833				  struct task_group, css);
4834		tg = autogroup_task_group(p, tg);
4835		p->sched_task_group = tg;
4836	}
4837#endif
4838	rseq_migrate(p);
4839	/*
4840	 * We're setting the CPU for the first time, we don't migrate,
4841	 * so use __set_task_cpu().
4842	 */
4843	__set_task_cpu(p, smp_processor_id());
4844	if (p->sched_class->task_fork)
4845		p->sched_class->task_fork(p);
4846	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4847}
4848
4849void sched_post_fork(struct task_struct *p)
4850{
4851	uclamp_post_fork(p);
4852}
4853
4854unsigned long to_ratio(u64 period, u64 runtime)
4855{
4856	if (runtime == RUNTIME_INF)
4857		return BW_UNIT;
4858
4859	/*
4860	 * Doing this here saves a lot of checks in all
4861	 * the calling paths, and returning zero seems
4862	 * safe for them anyway.
4863	 */
4864	if (period == 0)
4865		return 0;
4866
4867	return div64_u64(runtime << BW_SHIFT, period);
4868}
4869
4870/*
4871 * wake_up_new_task - wake up a newly created task for the first time.
4872 *
4873 * This function will do some initial scheduler statistics housekeeping
4874 * that must be done for every newly created context, then puts the task
4875 * on the runqueue and wakes it.
4876 */
4877void wake_up_new_task(struct task_struct *p)
4878{
4879	struct rq_flags rf;
4880	struct rq *rq;
4881
4882	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4883	WRITE_ONCE(p->__state, TASK_RUNNING);
4884#ifdef CONFIG_SMP
4885	/*
4886	 * Fork balancing, do it here and not earlier because:
4887	 *  - cpus_ptr can change in the fork path
4888	 *  - any previously selected CPU might disappear through hotplug
4889	 *
4890	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4891	 * as we're not fully set-up yet.
4892	 */
4893	p->recent_used_cpu = task_cpu(p);
4894	rseq_migrate(p);
4895	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4896#endif
4897	rq = __task_rq_lock(p, &rf);
4898	update_rq_clock(rq);
4899	post_init_entity_util_avg(p);
4900
4901	activate_task(rq, p, ENQUEUE_NOCLOCK);
4902	trace_sched_wakeup_new(p);
4903	wakeup_preempt(rq, p, WF_FORK);
4904#ifdef CONFIG_SMP
4905	if (p->sched_class->task_woken) {
4906		/*
4907		 * Nothing relies on rq->lock after this, so it's fine to
4908		 * drop it.
4909		 */
4910		rq_unpin_lock(rq, &rf);
4911		p->sched_class->task_woken(rq, p);
4912		rq_repin_lock(rq, &rf);
4913	}
4914#endif
4915	task_rq_unlock(rq, p, &rf);
4916}
4917
4918#ifdef CONFIG_PREEMPT_NOTIFIERS
4919
4920static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4921
4922void preempt_notifier_inc(void)
4923{
4924	static_branch_inc(&preempt_notifier_key);
4925}
4926EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4927
4928void preempt_notifier_dec(void)
4929{
4930	static_branch_dec(&preempt_notifier_key);
4931}
4932EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4933
4934/**
4935 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4936 * @notifier: notifier struct to register
4937 */
4938void preempt_notifier_register(struct preempt_notifier *notifier)
4939{
4940	if (!static_branch_unlikely(&preempt_notifier_key))
4941		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4942
4943	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4944}
4945EXPORT_SYMBOL_GPL(preempt_notifier_register);
4946
4947/**
4948 * preempt_notifier_unregister - no longer interested in preemption notifications
4949 * @notifier: notifier struct to unregister
4950 *
4951 * This is *not* safe to call from within a preemption notifier.
4952 */
4953void preempt_notifier_unregister(struct preempt_notifier *notifier)
4954{
4955	hlist_del(&notifier->link);
4956}
4957EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4958
4959static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4960{
4961	struct preempt_notifier *notifier;
4962
4963	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4964		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4965}
4966
4967static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4968{
4969	if (static_branch_unlikely(&preempt_notifier_key))
4970		__fire_sched_in_preempt_notifiers(curr);
4971}
4972
4973static void
4974__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4975				   struct task_struct *next)
4976{
4977	struct preempt_notifier *notifier;
4978
4979	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4980		notifier->ops->sched_out(notifier, next);
4981}
4982
4983static __always_inline void
4984fire_sched_out_preempt_notifiers(struct task_struct *curr,
4985				 struct task_struct *next)
4986{
4987	if (static_branch_unlikely(&preempt_notifier_key))
4988		__fire_sched_out_preempt_notifiers(curr, next);
4989}
4990
4991#else /* !CONFIG_PREEMPT_NOTIFIERS */
4992
4993static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4994{
4995}
4996
4997static inline void
4998fire_sched_out_preempt_notifiers(struct task_struct *curr,
4999				 struct task_struct *next)
5000{
5001}
5002
5003#endif /* CONFIG_PREEMPT_NOTIFIERS */
5004
5005static inline void prepare_task(struct task_struct *next)
5006{
5007#ifdef CONFIG_SMP
5008	/*
5009	 * Claim the task as running, we do this before switching to it
5010	 * such that any running task will have this set.
5011	 *
5012	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5013	 * its ordering comment.
5014	 */
5015	WRITE_ONCE(next->on_cpu, 1);
5016#endif
5017}
5018
5019static inline void finish_task(struct task_struct *prev)
5020{
5021#ifdef CONFIG_SMP
5022	/*
5023	 * This must be the very last reference to @prev from this CPU. After
5024	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5025	 * must ensure this doesn't happen until the switch is completely
5026	 * finished.
5027	 *
5028	 * In particular, the load of prev->state in finish_task_switch() must
5029	 * happen before this.
5030	 *
5031	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5032	 */
5033	smp_store_release(&prev->on_cpu, 0);
5034#endif
5035}
5036
5037#ifdef CONFIG_SMP
5038
5039static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5040{
5041	void (*func)(struct rq *rq);
5042	struct balance_callback *next;
5043
5044	lockdep_assert_rq_held(rq);
5045
5046	while (head) {
5047		func = (void (*)(struct rq *))head->func;
5048		next = head->next;
5049		head->next = NULL;
5050		head = next;
5051
5052		func(rq);
5053	}
5054}
5055
5056static void balance_push(struct rq *rq);
5057
5058/*
5059 * balance_push_callback is a right abuse of the callback interface and plays
5060 * by significantly different rules.
5061 *
5062 * Where the normal balance_callback's purpose is to be ran in the same context
5063 * that queued it (only later, when it's safe to drop rq->lock again),
5064 * balance_push_callback is specifically targeted at __schedule().
5065 *
5066 * This abuse is tolerated because it places all the unlikely/odd cases behind
5067 * a single test, namely: rq->balance_callback == NULL.
5068 */
5069struct balance_callback balance_push_callback = {
5070	.next = NULL,
5071	.func = balance_push,
5072};
5073
5074static inline struct balance_callback *
5075__splice_balance_callbacks(struct rq *rq, bool split)
5076{
5077	struct balance_callback *head = rq->balance_callback;
5078
5079	if (likely(!head))
5080		return NULL;
5081
5082	lockdep_assert_rq_held(rq);
5083	/*
5084	 * Must not take balance_push_callback off the list when
5085	 * splice_balance_callbacks() and balance_callbacks() are not
5086	 * in the same rq->lock section.
5087	 *
5088	 * In that case it would be possible for __schedule() to interleave
5089	 * and observe the list empty.
5090	 */
5091	if (split && head == &balance_push_callback)
5092		head = NULL;
5093	else
5094		rq->balance_callback = NULL;
5095
5096	return head;
5097}
5098
5099static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5100{
5101	return __splice_balance_callbacks(rq, true);
5102}
5103
5104static void __balance_callbacks(struct rq *rq)
5105{
5106	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5107}
5108
5109static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5110{
5111	unsigned long flags;
5112
5113	if (unlikely(head)) {
5114		raw_spin_rq_lock_irqsave(rq, flags);
5115		do_balance_callbacks(rq, head);
5116		raw_spin_rq_unlock_irqrestore(rq, flags);
5117	}
5118}
5119
5120#else
5121
5122static inline void __balance_callbacks(struct rq *rq)
5123{
5124}
5125
5126static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5127{
5128	return NULL;
5129}
5130
5131static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5132{
5133}
5134
5135#endif
5136
5137static inline void
5138prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5139{
5140	/*
5141	 * Since the runqueue lock will be released by the next
5142	 * task (which is an invalid locking op but in the case
5143	 * of the scheduler it's an obvious special-case), so we
5144	 * do an early lockdep release here:
5145	 */
5146	rq_unpin_lock(rq, rf);
5147	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5148#ifdef CONFIG_DEBUG_SPINLOCK
5149	/* this is a valid case when another task releases the spinlock */
5150	rq_lockp(rq)->owner = next;
5151#endif
5152}
5153
5154static inline void finish_lock_switch(struct rq *rq)
5155{
5156	/*
5157	 * If we are tracking spinlock dependencies then we have to
5158	 * fix up the runqueue lock - which gets 'carried over' from
5159	 * prev into current:
5160	 */
5161	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5162	__balance_callbacks(rq);
5163	raw_spin_rq_unlock_irq(rq);
5164}
5165
5166/*
5167 * NOP if the arch has not defined these:
5168 */
5169
5170#ifndef prepare_arch_switch
5171# define prepare_arch_switch(next)	do { } while (0)
5172#endif
5173
5174#ifndef finish_arch_post_lock_switch
5175# define finish_arch_post_lock_switch()	do { } while (0)
5176#endif
5177
5178static inline void kmap_local_sched_out(void)
5179{
5180#ifdef CONFIG_KMAP_LOCAL
5181	if (unlikely(current->kmap_ctrl.idx))
5182		__kmap_local_sched_out();
5183#endif
5184}
5185
5186static inline void kmap_local_sched_in(void)
5187{
5188#ifdef CONFIG_KMAP_LOCAL
5189	if (unlikely(current->kmap_ctrl.idx))
5190		__kmap_local_sched_in();
5191#endif
5192}
5193
5194/**
5195 * prepare_task_switch - prepare to switch tasks
5196 * @rq: the runqueue preparing to switch
5197 * @prev: the current task that is being switched out
5198 * @next: the task we are going to switch to.
5199 *
5200 * This is called with the rq lock held and interrupts off. It must
5201 * be paired with a subsequent finish_task_switch after the context
5202 * switch.
5203 *
5204 * prepare_task_switch sets up locking and calls architecture specific
5205 * hooks.
5206 */
5207static inline void
5208prepare_task_switch(struct rq *rq, struct task_struct *prev,
5209		    struct task_struct *next)
5210{
5211	kcov_prepare_switch(prev);
5212	sched_info_switch(rq, prev, next);
5213	perf_event_task_sched_out(prev, next);
5214	rseq_preempt(prev);
5215	fire_sched_out_preempt_notifiers(prev, next);
5216	kmap_local_sched_out();
5217	prepare_task(next);
5218	prepare_arch_switch(next);
5219}
5220
5221/**
5222 * finish_task_switch - clean up after a task-switch
5223 * @prev: the thread we just switched away from.
5224 *
5225 * finish_task_switch must be called after the context switch, paired
5226 * with a prepare_task_switch call before the context switch.
5227 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5228 * and do any other architecture-specific cleanup actions.
5229 *
5230 * Note that we may have delayed dropping an mm in context_switch(). If
5231 * so, we finish that here outside of the runqueue lock. (Doing it
5232 * with the lock held can cause deadlocks; see schedule() for
5233 * details.)
5234 *
5235 * The context switch have flipped the stack from under us and restored the
5236 * local variables which were saved when this task called schedule() in the
5237 * past. prev == current is still correct but we need to recalculate this_rq
5238 * because prev may have moved to another CPU.
5239 */
5240static struct rq *finish_task_switch(struct task_struct *prev)
5241	__releases(rq->lock)
5242{
5243	struct rq *rq = this_rq();
5244	struct mm_struct *mm = rq->prev_mm;
5245	unsigned int prev_state;
5246
5247	/*
5248	 * The previous task will have left us with a preempt_count of 2
5249	 * because it left us after:
5250	 *
5251	 *	schedule()
5252	 *	  preempt_disable();			// 1
5253	 *	  __schedule()
5254	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5255	 *
5256	 * Also, see FORK_PREEMPT_COUNT.
5257	 */
5258	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5259		      "corrupted preempt_count: %s/%d/0x%x\n",
5260		      current->comm, current->pid, preempt_count()))
5261		preempt_count_set(FORK_PREEMPT_COUNT);
5262
5263	rq->prev_mm = NULL;
5264
5265	/*
5266	 * A task struct has one reference for the use as "current".
5267	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5268	 * schedule one last time. The schedule call will never return, and
5269	 * the scheduled task must drop that reference.
5270	 *
5271	 * We must observe prev->state before clearing prev->on_cpu (in
5272	 * finish_task), otherwise a concurrent wakeup can get prev
5273	 * running on another CPU and we could rave with its RUNNING -> DEAD
5274	 * transition, resulting in a double drop.
5275	 */
5276	prev_state = READ_ONCE(prev->__state);
5277	vtime_task_switch(prev);
5278	perf_event_task_sched_in(prev, current);
5279	finish_task(prev);
5280	tick_nohz_task_switch();
5281	finish_lock_switch(rq);
5282	finish_arch_post_lock_switch();
5283	kcov_finish_switch(current);
5284	/*
5285	 * kmap_local_sched_out() is invoked with rq::lock held and
5286	 * interrupts disabled. There is no requirement for that, but the
5287	 * sched out code does not have an interrupt enabled section.
5288	 * Restoring the maps on sched in does not require interrupts being
5289	 * disabled either.
5290	 */
5291	kmap_local_sched_in();
5292
5293	fire_sched_in_preempt_notifiers(current);
5294	/*
5295	 * When switching through a kernel thread, the loop in
5296	 * membarrier_{private,global}_expedited() may have observed that
5297	 * kernel thread and not issued an IPI. It is therefore possible to
5298	 * schedule between user->kernel->user threads without passing though
5299	 * switch_mm(). Membarrier requires a barrier after storing to
5300	 * rq->curr, before returning to userspace, so provide them here:
5301	 *
5302	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5303	 *   provided by mmdrop_lazy_tlb(),
5304	 * - a sync_core for SYNC_CORE.
5305	 */
5306	if (mm) {
5307		membarrier_mm_sync_core_before_usermode(mm);
5308		mmdrop_lazy_tlb_sched(mm);
5309	}
5310
5311	if (unlikely(prev_state == TASK_DEAD)) {
5312		if (prev->sched_class->task_dead)
5313			prev->sched_class->task_dead(prev);
5314
5315		/* Task is done with its stack. */
5316		put_task_stack(prev);
5317
5318		put_task_struct_rcu_user(prev);
5319	}
5320
5321	return rq;
5322}
5323
5324/**
5325 * schedule_tail - first thing a freshly forked thread must call.
5326 * @prev: the thread we just switched away from.
5327 */
5328asmlinkage __visible void schedule_tail(struct task_struct *prev)
5329	__releases(rq->lock)
5330{
5331	/*
5332	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5333	 * finish_task_switch() for details.
5334	 *
5335	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5336	 * and the preempt_enable() will end up enabling preemption (on
5337	 * PREEMPT_COUNT kernels).
5338	 */
5339
5340	finish_task_switch(prev);
5341	preempt_enable();
5342
5343	if (current->set_child_tid)
5344		put_user(task_pid_vnr(current), current->set_child_tid);
5345
5346	calculate_sigpending();
5347}
5348
5349/*
5350 * context_switch - switch to the new MM and the new thread's register state.
5351 */
5352static __always_inline struct rq *
5353context_switch(struct rq *rq, struct task_struct *prev,
5354	       struct task_struct *next, struct rq_flags *rf)
5355{
5356	prepare_task_switch(rq, prev, next);
5357
5358	/*
5359	 * For paravirt, this is coupled with an exit in switch_to to
5360	 * combine the page table reload and the switch backend into
5361	 * one hypercall.
5362	 */
5363	arch_start_context_switch(prev);
5364
5365	/*
5366	 * kernel -> kernel   lazy + transfer active
5367	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5368	 *
5369	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5370	 *   user ->   user   switch
5371	 *
5372	 * switch_mm_cid() needs to be updated if the barriers provided
5373	 * by context_switch() are modified.
5374	 */
5375	if (!next->mm) {                                // to kernel
5376		enter_lazy_tlb(prev->active_mm, next);
5377
5378		next->active_mm = prev->active_mm;
5379		if (prev->mm)                           // from user
5380			mmgrab_lazy_tlb(prev->active_mm);
5381		else
5382			prev->active_mm = NULL;
5383	} else {                                        // to user
5384		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5385		/*
5386		 * sys_membarrier() requires an smp_mb() between setting
5387		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5388		 *
5389		 * The below provides this either through switch_mm(), or in
5390		 * case 'prev->active_mm == next->mm' through
5391		 * finish_task_switch()'s mmdrop().
5392		 */
5393		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5394		lru_gen_use_mm(next->mm);
5395
5396		if (!prev->mm) {                        // from kernel
5397			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5398			rq->prev_mm = prev->active_mm;
5399			prev->active_mm = NULL;
5400		}
5401	}
5402
5403	/* switch_mm_cid() requires the memory barriers above. */
5404	switch_mm_cid(rq, prev, next);
5405
5406	prepare_lock_switch(rq, next, rf);
5407
5408	/* Here we just switch the register state and the stack. */
5409	switch_to(prev, next, prev);
5410	barrier();
5411
5412	return finish_task_switch(prev);
5413}
5414
5415/*
5416 * nr_running and nr_context_switches:
5417 *
5418 * externally visible scheduler statistics: current number of runnable
5419 * threads, total number of context switches performed since bootup.
5420 */
5421unsigned int nr_running(void)
5422{
5423	unsigned int i, sum = 0;
5424
5425	for_each_online_cpu(i)
5426		sum += cpu_rq(i)->nr_running;
5427
5428	return sum;
5429}
5430
5431/*
5432 * Check if only the current task is running on the CPU.
5433 *
5434 * Caution: this function does not check that the caller has disabled
5435 * preemption, thus the result might have a time-of-check-to-time-of-use
5436 * race.  The caller is responsible to use it correctly, for example:
5437 *
5438 * - from a non-preemptible section (of course)
5439 *
5440 * - from a thread that is bound to a single CPU
5441 *
5442 * - in a loop with very short iterations (e.g. a polling loop)
5443 */
5444bool single_task_running(void)
5445{
5446	return raw_rq()->nr_running == 1;
5447}
5448EXPORT_SYMBOL(single_task_running);
5449
5450unsigned long long nr_context_switches_cpu(int cpu)
5451{
5452	return cpu_rq(cpu)->nr_switches;
5453}
5454
5455unsigned long long nr_context_switches(void)
5456{
5457	int i;
5458	unsigned long long sum = 0;
5459
5460	for_each_possible_cpu(i)
5461		sum += cpu_rq(i)->nr_switches;
5462
5463	return sum;
5464}
5465
5466/*
5467 * Consumers of these two interfaces, like for example the cpuidle menu
5468 * governor, are using nonsensical data. Preferring shallow idle state selection
5469 * for a CPU that has IO-wait which might not even end up running the task when
5470 * it does become runnable.
5471 */
5472
5473unsigned int nr_iowait_cpu(int cpu)
5474{
5475	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5476}
5477
5478/*
5479 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5480 *
5481 * The idea behind IO-wait account is to account the idle time that we could
5482 * have spend running if it were not for IO. That is, if we were to improve the
5483 * storage performance, we'd have a proportional reduction in IO-wait time.
5484 *
5485 * This all works nicely on UP, where, when a task blocks on IO, we account
5486 * idle time as IO-wait, because if the storage were faster, it could've been
5487 * running and we'd not be idle.
5488 *
5489 * This has been extended to SMP, by doing the same for each CPU. This however
5490 * is broken.
5491 *
5492 * Imagine for instance the case where two tasks block on one CPU, only the one
5493 * CPU will have IO-wait accounted, while the other has regular idle. Even
5494 * though, if the storage were faster, both could've ran at the same time,
5495 * utilising both CPUs.
5496 *
5497 * This means, that when looking globally, the current IO-wait accounting on
5498 * SMP is a lower bound, by reason of under accounting.
5499 *
5500 * Worse, since the numbers are provided per CPU, they are sometimes
5501 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5502 * associated with any one particular CPU, it can wake to another CPU than it
5503 * blocked on. This means the per CPU IO-wait number is meaningless.
5504 *
5505 * Task CPU affinities can make all that even more 'interesting'.
5506 */
5507
5508unsigned int nr_iowait(void)
5509{
5510	unsigned int i, sum = 0;
5511
5512	for_each_possible_cpu(i)
5513		sum += nr_iowait_cpu(i);
5514
5515	return sum;
5516}
5517
5518#ifdef CONFIG_SMP
5519
5520/*
5521 * sched_exec - execve() is a valuable balancing opportunity, because at
5522 * this point the task has the smallest effective memory and cache footprint.
5523 */
5524void sched_exec(void)
5525{
5526	struct task_struct *p = current;
5527	struct migration_arg arg;
5528	int dest_cpu;
5529
5530	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5531		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5532		if (dest_cpu == smp_processor_id())
5533			return;
5534
5535		if (unlikely(!cpu_active(dest_cpu)))
5536			return;
5537
5538		arg = (struct migration_arg){ p, dest_cpu };
5539	}
5540	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5541}
5542
5543#endif
5544
5545DEFINE_PER_CPU(struct kernel_stat, kstat);
5546DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5547
5548EXPORT_PER_CPU_SYMBOL(kstat);
5549EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5550
5551/*
5552 * The function fair_sched_class.update_curr accesses the struct curr
5553 * and its field curr->exec_start; when called from task_sched_runtime(),
5554 * we observe a high rate of cache misses in practice.
5555 * Prefetching this data results in improved performance.
5556 */
5557static inline void prefetch_curr_exec_start(struct task_struct *p)
5558{
5559#ifdef CONFIG_FAIR_GROUP_SCHED
5560	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5561#else
5562	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5563#endif
5564	prefetch(curr);
5565	prefetch(&curr->exec_start);
5566}
5567
5568/*
5569 * Return accounted runtime for the task.
5570 * In case the task is currently running, return the runtime plus current's
5571 * pending runtime that have not been accounted yet.
5572 */
5573unsigned long long task_sched_runtime(struct task_struct *p)
5574{
5575	struct rq_flags rf;
5576	struct rq *rq;
5577	u64 ns;
5578
5579#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5580	/*
5581	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5582	 * So we have a optimization chance when the task's delta_exec is 0.
5583	 * Reading ->on_cpu is racy, but this is ok.
5584	 *
5585	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5586	 * If we race with it entering CPU, unaccounted time is 0. This is
5587	 * indistinguishable from the read occurring a few cycles earlier.
5588	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5589	 * been accounted, so we're correct here as well.
5590	 */
5591	if (!p->on_cpu || !task_on_rq_queued(p))
5592		return p->se.sum_exec_runtime;
5593#endif
5594
5595	rq = task_rq_lock(p, &rf);
5596	/*
5597	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5598	 * project cycles that may never be accounted to this
5599	 * thread, breaking clock_gettime().
5600	 */
5601	if (task_current(rq, p) && task_on_rq_queued(p)) {
5602		prefetch_curr_exec_start(p);
5603		update_rq_clock(rq);
5604		p->sched_class->update_curr(rq);
5605	}
5606	ns = p->se.sum_exec_runtime;
5607	task_rq_unlock(rq, p, &rf);
5608
5609	return ns;
5610}
5611
5612#ifdef CONFIG_SCHED_DEBUG
5613static u64 cpu_resched_latency(struct rq *rq)
5614{
5615	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5616	u64 resched_latency, now = rq_clock(rq);
5617	static bool warned_once;
5618
5619	if (sysctl_resched_latency_warn_once && warned_once)
5620		return 0;
5621
5622	if (!need_resched() || !latency_warn_ms)
5623		return 0;
5624
5625	if (system_state == SYSTEM_BOOTING)
5626		return 0;
5627
5628	if (!rq->last_seen_need_resched_ns) {
5629		rq->last_seen_need_resched_ns = now;
5630		rq->ticks_without_resched = 0;
5631		return 0;
5632	}
5633
5634	rq->ticks_without_resched++;
5635	resched_latency = now - rq->last_seen_need_resched_ns;
5636	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5637		return 0;
5638
5639	warned_once = true;
5640
5641	return resched_latency;
5642}
5643
5644static int __init setup_resched_latency_warn_ms(char *str)
5645{
5646	long val;
5647
5648	if ((kstrtol(str, 0, &val))) {
5649		pr_warn("Unable to set resched_latency_warn_ms\n");
5650		return 1;
5651	}
5652
5653	sysctl_resched_latency_warn_ms = val;
5654	return 1;
5655}
5656__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5657#else
5658static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5659#endif /* CONFIG_SCHED_DEBUG */
5660
5661/*
5662 * This function gets called by the timer code, with HZ frequency.
5663 * We call it with interrupts disabled.
5664 */
5665void scheduler_tick(void)
5666{
5667	int cpu = smp_processor_id();
5668	struct rq *rq = cpu_rq(cpu);
5669	struct task_struct *curr = rq->curr;
5670	struct rq_flags rf;
5671	unsigned long thermal_pressure;
5672	u64 resched_latency;
5673
5674	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5675		arch_scale_freq_tick();
5676
5677	sched_clock_tick();
5678
5679	rq_lock(rq, &rf);
5680
5681	update_rq_clock(rq);
5682	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5683	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5684	curr->sched_class->task_tick(rq, curr, 0);
5685	if (sched_feat(LATENCY_WARN))
5686		resched_latency = cpu_resched_latency(rq);
5687	calc_global_load_tick(rq);
5688	sched_core_tick(rq);
5689	task_tick_mm_cid(rq, curr);
5690
5691	rq_unlock(rq, &rf);
5692
5693	if (sched_feat(LATENCY_WARN) && resched_latency)
5694		resched_latency_warn(cpu, resched_latency);
5695
5696	perf_event_task_tick();
5697
5698	if (curr->flags & PF_WQ_WORKER)
5699		wq_worker_tick(curr);
5700
5701#ifdef CONFIG_SMP
5702	rq->idle_balance = idle_cpu(cpu);
5703	trigger_load_balance(rq);
5704#endif
5705}
5706
5707#ifdef CONFIG_NO_HZ_FULL
5708
5709struct tick_work {
5710	int			cpu;
5711	atomic_t		state;
5712	struct delayed_work	work;
5713};
5714/* Values for ->state, see diagram below. */
5715#define TICK_SCHED_REMOTE_OFFLINE	0
5716#define TICK_SCHED_REMOTE_OFFLINING	1
5717#define TICK_SCHED_REMOTE_RUNNING	2
5718
5719/*
5720 * State diagram for ->state:
5721 *
5722 *
5723 *          TICK_SCHED_REMOTE_OFFLINE
5724 *                    |   ^
5725 *                    |   |
5726 *                    |   | sched_tick_remote()
5727 *                    |   |
5728 *                    |   |
5729 *                    +--TICK_SCHED_REMOTE_OFFLINING
5730 *                    |   ^
5731 *                    |   |
5732 * sched_tick_start() |   | sched_tick_stop()
5733 *                    |   |
5734 *                    V   |
5735 *          TICK_SCHED_REMOTE_RUNNING
5736 *
5737 *
5738 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5739 * and sched_tick_start() are happy to leave the state in RUNNING.
5740 */
5741
5742static struct tick_work __percpu *tick_work_cpu;
5743
5744static void sched_tick_remote(struct work_struct *work)
5745{
5746	struct delayed_work *dwork = to_delayed_work(work);
5747	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5748	int cpu = twork->cpu;
5749	struct rq *rq = cpu_rq(cpu);
5750	int os;
5751
5752	/*
5753	 * Handle the tick only if it appears the remote CPU is running in full
5754	 * dynticks mode. The check is racy by nature, but missing a tick or
5755	 * having one too much is no big deal because the scheduler tick updates
5756	 * statistics and checks timeslices in a time-independent way, regardless
5757	 * of when exactly it is running.
5758	 */
5759	if (tick_nohz_tick_stopped_cpu(cpu)) {
5760		guard(rq_lock_irq)(rq);
5761		struct task_struct *curr = rq->curr;
5762
5763		if (cpu_online(cpu)) {
5764			update_rq_clock(rq);
5765
5766			if (!is_idle_task(curr)) {
5767				/*
5768				 * Make sure the next tick runs within a
5769				 * reasonable amount of time.
5770				 */
5771				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5772				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5773			}
5774			curr->sched_class->task_tick(rq, curr, 0);
5775
5776			calc_load_nohz_remote(rq);
5777		}
5778	}
5779
5780	/*
5781	 * Run the remote tick once per second (1Hz). This arbitrary
5782	 * frequency is large enough to avoid overload but short enough
5783	 * to keep scheduler internal stats reasonably up to date.  But
5784	 * first update state to reflect hotplug activity if required.
5785	 */
5786	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5787	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5788	if (os == TICK_SCHED_REMOTE_RUNNING)
5789		queue_delayed_work(system_unbound_wq, dwork, HZ);
5790}
5791
5792static void sched_tick_start(int cpu)
5793{
5794	int os;
5795	struct tick_work *twork;
5796
5797	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5798		return;
5799
5800	WARN_ON_ONCE(!tick_work_cpu);
5801
5802	twork = per_cpu_ptr(tick_work_cpu, cpu);
5803	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5804	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5805	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5806		twork->cpu = cpu;
5807		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5808		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5809	}
5810}
5811
5812#ifdef CONFIG_HOTPLUG_CPU
5813static void sched_tick_stop(int cpu)
5814{
5815	struct tick_work *twork;
5816	int os;
5817
5818	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5819		return;
5820
5821	WARN_ON_ONCE(!tick_work_cpu);
5822
5823	twork = per_cpu_ptr(tick_work_cpu, cpu);
5824	/* There cannot be competing actions, but don't rely on stop-machine. */
5825	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5826	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5827	/* Don't cancel, as this would mess up the state machine. */
5828}
5829#endif /* CONFIG_HOTPLUG_CPU */
5830
5831int __init sched_tick_offload_init(void)
5832{
5833	tick_work_cpu = alloc_percpu(struct tick_work);
5834	BUG_ON(!tick_work_cpu);
5835	return 0;
5836}
5837
5838#else /* !CONFIG_NO_HZ_FULL */
5839static inline void sched_tick_start(int cpu) { }
5840static inline void sched_tick_stop(int cpu) { }
5841#endif
5842
5843#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5844				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5845/*
5846 * If the value passed in is equal to the current preempt count
5847 * then we just disabled preemption. Start timing the latency.
5848 */
5849static inline void preempt_latency_start(int val)
5850{
5851	if (preempt_count() == val) {
5852		unsigned long ip = get_lock_parent_ip();
5853#ifdef CONFIG_DEBUG_PREEMPT
5854		current->preempt_disable_ip = ip;
5855#endif
5856		trace_preempt_off(CALLER_ADDR0, ip);
5857	}
5858}
5859
5860void preempt_count_add(int val)
5861{
5862#ifdef CONFIG_DEBUG_PREEMPT
5863	/*
5864	 * Underflow?
5865	 */
5866	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5867		return;
5868#endif
5869	__preempt_count_add(val);
5870#ifdef CONFIG_DEBUG_PREEMPT
5871	/*
5872	 * Spinlock count overflowing soon?
5873	 */
5874	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5875				PREEMPT_MASK - 10);
5876#endif
5877	preempt_latency_start(val);
5878}
5879EXPORT_SYMBOL(preempt_count_add);
5880NOKPROBE_SYMBOL(preempt_count_add);
5881
5882/*
5883 * If the value passed in equals to the current preempt count
5884 * then we just enabled preemption. Stop timing the latency.
5885 */
5886static inline void preempt_latency_stop(int val)
5887{
5888	if (preempt_count() == val)
5889		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5890}
5891
5892void preempt_count_sub(int val)
5893{
5894#ifdef CONFIG_DEBUG_PREEMPT
5895	/*
5896	 * Underflow?
5897	 */
5898	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5899		return;
5900	/*
5901	 * Is the spinlock portion underflowing?
5902	 */
5903	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5904			!(preempt_count() & PREEMPT_MASK)))
5905		return;
5906#endif
5907
5908	preempt_latency_stop(val);
5909	__preempt_count_sub(val);
5910}
5911EXPORT_SYMBOL(preempt_count_sub);
5912NOKPROBE_SYMBOL(preempt_count_sub);
5913
5914#else
5915static inline void preempt_latency_start(int val) { }
5916static inline void preempt_latency_stop(int val) { }
5917#endif
5918
5919static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5920{
5921#ifdef CONFIG_DEBUG_PREEMPT
5922	return p->preempt_disable_ip;
5923#else
5924	return 0;
5925#endif
5926}
5927
5928/*
5929 * Print scheduling while atomic bug:
5930 */
5931static noinline void __schedule_bug(struct task_struct *prev)
5932{
5933	/* Save this before calling printk(), since that will clobber it */
5934	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5935
5936	if (oops_in_progress)
5937		return;
5938
5939	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5940		prev->comm, prev->pid, preempt_count());
5941
5942	debug_show_held_locks(prev);
5943	print_modules();
5944	if (irqs_disabled())
5945		print_irqtrace_events(prev);
5946	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5947		pr_err("Preemption disabled at:");
5948		print_ip_sym(KERN_ERR, preempt_disable_ip);
5949	}
5950	check_panic_on_warn("scheduling while atomic");
5951
5952	dump_stack();
5953	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5954}
5955
5956/*
5957 * Various schedule()-time debugging checks and statistics:
5958 */
5959static inline void schedule_debug(struct task_struct *prev, bool preempt)
5960{
5961#ifdef CONFIG_SCHED_STACK_END_CHECK
5962	if (task_stack_end_corrupted(prev))
5963		panic("corrupted stack end detected inside scheduler\n");
5964
5965	if (task_scs_end_corrupted(prev))
5966		panic("corrupted shadow stack detected inside scheduler\n");
5967#endif
5968
5969#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5970	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5971		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5972			prev->comm, prev->pid, prev->non_block_count);
5973		dump_stack();
5974		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5975	}
5976#endif
5977
5978	if (unlikely(in_atomic_preempt_off())) {
5979		__schedule_bug(prev);
5980		preempt_count_set(PREEMPT_DISABLED);
5981	}
5982	rcu_sleep_check();
5983	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5984
5985	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5986
5987	schedstat_inc(this_rq()->sched_count);
5988}
5989
5990static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5991				  struct rq_flags *rf)
5992{
5993#ifdef CONFIG_SMP
5994	const struct sched_class *class;
5995	/*
5996	 * We must do the balancing pass before put_prev_task(), such
5997	 * that when we release the rq->lock the task is in the same
5998	 * state as before we took rq->lock.
5999	 *
6000	 * We can terminate the balance pass as soon as we know there is
6001	 * a runnable task of @class priority or higher.
6002	 */
6003	for_class_range(class, prev->sched_class, &idle_sched_class) {
6004		if (class->balance(rq, prev, rf))
6005			break;
6006	}
6007#endif
6008
6009	put_prev_task(rq, prev);
6010}
6011
6012/*
6013 * Pick up the highest-prio task:
6014 */
6015static inline struct task_struct *
6016__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6017{
6018	const struct sched_class *class;
6019	struct task_struct *p;
6020
6021	/*
6022	 * Optimization: we know that if all tasks are in the fair class we can
6023	 * call that function directly, but only if the @prev task wasn't of a
6024	 * higher scheduling class, because otherwise those lose the
6025	 * opportunity to pull in more work from other CPUs.
6026	 */
6027	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6028		   rq->nr_running == rq->cfs.h_nr_running)) {
6029
6030		p = pick_next_task_fair(rq, prev, rf);
6031		if (unlikely(p == RETRY_TASK))
6032			goto restart;
6033
6034		/* Assume the next prioritized class is idle_sched_class */
6035		if (!p) {
6036			put_prev_task(rq, prev);
6037			p = pick_next_task_idle(rq);
6038		}
6039
6040		/*
6041		 * This is the fast path; it cannot be a DL server pick;
6042		 * therefore even if @p == @prev, ->dl_server must be NULL.
6043		 */
6044		if (p->dl_server)
6045			p->dl_server = NULL;
6046
6047		return p;
6048	}
6049
6050restart:
6051	put_prev_task_balance(rq, prev, rf);
6052
6053	/*
6054	 * We've updated @prev and no longer need the server link, clear it.
6055	 * Must be done before ->pick_next_task() because that can (re)set
6056	 * ->dl_server.
6057	 */
6058	if (prev->dl_server)
6059		prev->dl_server = NULL;
6060
6061	for_each_class(class) {
6062		p = class->pick_next_task(rq);
6063		if (p)
6064			return p;
6065	}
6066
6067	BUG(); /* The idle class should always have a runnable task. */
6068}
6069
6070#ifdef CONFIG_SCHED_CORE
6071static inline bool is_task_rq_idle(struct task_struct *t)
6072{
6073	return (task_rq(t)->idle == t);
6074}
6075
6076static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6077{
6078	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6079}
6080
6081static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6082{
6083	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6084		return true;
6085
6086	return a->core_cookie == b->core_cookie;
6087}
6088
6089static inline struct task_struct *pick_task(struct rq *rq)
6090{
6091	const struct sched_class *class;
6092	struct task_struct *p;
6093
6094	for_each_class(class) {
6095		p = class->pick_task(rq);
6096		if (p)
6097			return p;
6098	}
6099
6100	BUG(); /* The idle class should always have a runnable task. */
6101}
6102
6103extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6104
6105static void queue_core_balance(struct rq *rq);
6106
6107static struct task_struct *
6108pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6109{
6110	struct task_struct *next, *p, *max = NULL;
6111	const struct cpumask *smt_mask;
6112	bool fi_before = false;
6113	bool core_clock_updated = (rq == rq->core);
6114	unsigned long cookie;
6115	int i, cpu, occ = 0;
6116	struct rq *rq_i;
6117	bool need_sync;
6118
6119	if (!sched_core_enabled(rq))
6120		return __pick_next_task(rq, prev, rf);
6121
6122	cpu = cpu_of(rq);
6123
6124	/* Stopper task is switching into idle, no need core-wide selection. */
6125	if (cpu_is_offline(cpu)) {
6126		/*
6127		 * Reset core_pick so that we don't enter the fastpath when
6128		 * coming online. core_pick would already be migrated to
6129		 * another cpu during offline.
6130		 */
6131		rq->core_pick = NULL;
6132		return __pick_next_task(rq, prev, rf);
6133	}
6134
6135	/*
6136	 * If there were no {en,de}queues since we picked (IOW, the task
6137	 * pointers are all still valid), and we haven't scheduled the last
6138	 * pick yet, do so now.
6139	 *
6140	 * rq->core_pick can be NULL if no selection was made for a CPU because
6141	 * it was either offline or went offline during a sibling's core-wide
6142	 * selection. In this case, do a core-wide selection.
6143	 */
6144	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6145	    rq->core->core_pick_seq != rq->core_sched_seq &&
6146	    rq->core_pick) {
6147		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6148
6149		next = rq->core_pick;
6150		if (next != prev) {
6151			put_prev_task(rq, prev);
6152			set_next_task(rq, next);
6153		}
6154
6155		rq->core_pick = NULL;
6156		goto out;
6157	}
6158
6159	put_prev_task_balance(rq, prev, rf);
6160
6161	smt_mask = cpu_smt_mask(cpu);
6162	need_sync = !!rq->core->core_cookie;
6163
6164	/* reset state */
6165	rq->core->core_cookie = 0UL;
6166	if (rq->core->core_forceidle_count) {
6167		if (!core_clock_updated) {
6168			update_rq_clock(rq->core);
6169			core_clock_updated = true;
6170		}
6171		sched_core_account_forceidle(rq);
6172		/* reset after accounting force idle */
6173		rq->core->core_forceidle_start = 0;
6174		rq->core->core_forceidle_count = 0;
6175		rq->core->core_forceidle_occupation = 0;
6176		need_sync = true;
6177		fi_before = true;
6178	}
6179
6180	/*
6181	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6182	 *
6183	 * @task_seq guards the task state ({en,de}queues)
6184	 * @pick_seq is the @task_seq we did a selection on
6185	 * @sched_seq is the @pick_seq we scheduled
6186	 *
6187	 * However, preemptions can cause multiple picks on the same task set.
6188	 * 'Fix' this by also increasing @task_seq for every pick.
6189	 */
6190	rq->core->core_task_seq++;
6191
6192	/*
6193	 * Optimize for common case where this CPU has no cookies
6194	 * and there are no cookied tasks running on siblings.
6195	 */
6196	if (!need_sync) {
6197		next = pick_task(rq);
6198		if (!next->core_cookie) {
6199			rq->core_pick = NULL;
6200			/*
6201			 * For robustness, update the min_vruntime_fi for
6202			 * unconstrained picks as well.
6203			 */
6204			WARN_ON_ONCE(fi_before);
6205			task_vruntime_update(rq, next, false);
6206			goto out_set_next;
6207		}
6208	}
6209
6210	/*
6211	 * For each thread: do the regular task pick and find the max prio task
6212	 * amongst them.
6213	 *
6214	 * Tie-break prio towards the current CPU
6215	 */
6216	for_each_cpu_wrap(i, smt_mask, cpu) {
6217		rq_i = cpu_rq(i);
6218
6219		/*
6220		 * Current cpu always has its clock updated on entrance to
6221		 * pick_next_task(). If the current cpu is not the core,
6222		 * the core may also have been updated above.
6223		 */
6224		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6225			update_rq_clock(rq_i);
6226
6227		p = rq_i->core_pick = pick_task(rq_i);
6228		if (!max || prio_less(max, p, fi_before))
6229			max = p;
6230	}
6231
6232	cookie = rq->core->core_cookie = max->core_cookie;
6233
6234	/*
6235	 * For each thread: try and find a runnable task that matches @max or
6236	 * force idle.
6237	 */
6238	for_each_cpu(i, smt_mask) {
6239		rq_i = cpu_rq(i);
6240		p = rq_i->core_pick;
6241
6242		if (!cookie_equals(p, cookie)) {
6243			p = NULL;
6244			if (cookie)
6245				p = sched_core_find(rq_i, cookie);
6246			if (!p)
6247				p = idle_sched_class.pick_task(rq_i);
6248		}
6249
6250		rq_i->core_pick = p;
6251
6252		if (p == rq_i->idle) {
6253			if (rq_i->nr_running) {
6254				rq->core->core_forceidle_count++;
6255				if (!fi_before)
6256					rq->core->core_forceidle_seq++;
6257			}
6258		} else {
6259			occ++;
6260		}
6261	}
6262
6263	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6264		rq->core->core_forceidle_start = rq_clock(rq->core);
6265		rq->core->core_forceidle_occupation = occ;
6266	}
6267
6268	rq->core->core_pick_seq = rq->core->core_task_seq;
6269	next = rq->core_pick;
6270	rq->core_sched_seq = rq->core->core_pick_seq;
6271
6272	/* Something should have been selected for current CPU */
6273	WARN_ON_ONCE(!next);
6274
6275	/*
6276	 * Reschedule siblings
6277	 *
6278	 * NOTE: L1TF -- at this point we're no longer running the old task and
6279	 * sending an IPI (below) ensures the sibling will no longer be running
6280	 * their task. This ensures there is no inter-sibling overlap between
6281	 * non-matching user state.
6282	 */
6283	for_each_cpu(i, smt_mask) {
6284		rq_i = cpu_rq(i);
6285
6286		/*
6287		 * An online sibling might have gone offline before a task
6288		 * could be picked for it, or it might be offline but later
6289		 * happen to come online, but its too late and nothing was
6290		 * picked for it.  That's Ok - it will pick tasks for itself,
6291		 * so ignore it.
6292		 */
6293		if (!rq_i->core_pick)
6294			continue;
6295
6296		/*
6297		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6298		 * fi_before     fi      update?
6299		 *  0            0       1
6300		 *  0            1       1
6301		 *  1            0       1
6302		 *  1            1       0
6303		 */
6304		if (!(fi_before && rq->core->core_forceidle_count))
6305			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6306
6307		rq_i->core_pick->core_occupation = occ;
6308
6309		if (i == cpu) {
6310			rq_i->core_pick = NULL;
6311			continue;
6312		}
6313
6314		/* Did we break L1TF mitigation requirements? */
6315		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6316
6317		if (rq_i->curr == rq_i->core_pick) {
6318			rq_i->core_pick = NULL;
6319			continue;
6320		}
6321
6322		resched_curr(rq_i);
6323	}
6324
6325out_set_next:
6326	set_next_task(rq, next);
6327out:
6328	if (rq->core->core_forceidle_count && next == rq->idle)
6329		queue_core_balance(rq);
6330
6331	return next;
6332}
6333
6334static bool try_steal_cookie(int this, int that)
6335{
6336	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6337	struct task_struct *p;
6338	unsigned long cookie;
6339	bool success = false;
6340
6341	guard(irq)();
6342	guard(double_rq_lock)(dst, src);
6343
6344	cookie = dst->core->core_cookie;
6345	if (!cookie)
6346		return false;
6347
6348	if (dst->curr != dst->idle)
6349		return false;
6350
6351	p = sched_core_find(src, cookie);
6352	if (!p)
6353		return false;
6354
6355	do {
6356		if (p == src->core_pick || p == src->curr)
6357			goto next;
6358
6359		if (!is_cpu_allowed(p, this))
6360			goto next;
6361
6362		if (p->core_occupation > dst->idle->core_occupation)
6363			goto next;
6364		/*
6365		 * sched_core_find() and sched_core_next() will ensure
6366		 * that task @p is not throttled now, we also need to
6367		 * check whether the runqueue of the destination CPU is
6368		 * being throttled.
6369		 */
6370		if (sched_task_is_throttled(p, this))
6371			goto next;
6372
6373		deactivate_task(src, p, 0);
6374		set_task_cpu(p, this);
6375		activate_task(dst, p, 0);
6376
6377		resched_curr(dst);
6378
6379		success = true;
6380		break;
6381
6382next:
6383		p = sched_core_next(p, cookie);
6384	} while (p);
6385
6386	return success;
6387}
6388
6389static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6390{
6391	int i;
6392
6393	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6394		if (i == cpu)
6395			continue;
6396
6397		if (need_resched())
6398			break;
6399
6400		if (try_steal_cookie(cpu, i))
6401			return true;
6402	}
6403
6404	return false;
6405}
6406
6407static void sched_core_balance(struct rq *rq)
6408{
6409	struct sched_domain *sd;
6410	int cpu = cpu_of(rq);
6411
6412	guard(preempt)();
6413	guard(rcu)();
6414
6415	raw_spin_rq_unlock_irq(rq);
6416	for_each_domain(cpu, sd) {
6417		if (need_resched())
6418			break;
6419
6420		if (steal_cookie_task(cpu, sd))
6421			break;
6422	}
6423	raw_spin_rq_lock_irq(rq);
6424}
6425
6426static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6427
6428static void queue_core_balance(struct rq *rq)
6429{
6430	if (!sched_core_enabled(rq))
6431		return;
6432
6433	if (!rq->core->core_cookie)
6434		return;
6435
6436	if (!rq->nr_running) /* not forced idle */
6437		return;
6438
6439	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6440}
6441
6442DEFINE_LOCK_GUARD_1(core_lock, int,
6443		    sched_core_lock(*_T->lock, &_T->flags),
6444		    sched_core_unlock(*_T->lock, &_T->flags),
6445		    unsigned long flags)
6446
6447static void sched_core_cpu_starting(unsigned int cpu)
6448{
6449	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6450	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6451	int t;
6452
6453	guard(core_lock)(&cpu);
6454
6455	WARN_ON_ONCE(rq->core != rq);
6456
6457	/* if we're the first, we'll be our own leader */
6458	if (cpumask_weight(smt_mask) == 1)
6459		return;
6460
6461	/* find the leader */
6462	for_each_cpu(t, smt_mask) {
6463		if (t == cpu)
6464			continue;
6465		rq = cpu_rq(t);
6466		if (rq->core == rq) {
6467			core_rq = rq;
6468			break;
6469		}
6470	}
6471
6472	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6473		return;
6474
6475	/* install and validate core_rq */
6476	for_each_cpu(t, smt_mask) {
6477		rq = cpu_rq(t);
6478
6479		if (t == cpu)
6480			rq->core = core_rq;
6481
6482		WARN_ON_ONCE(rq->core != core_rq);
6483	}
6484}
6485
6486static void sched_core_cpu_deactivate(unsigned int cpu)
6487{
6488	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6489	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6490	int t;
6491
6492	guard(core_lock)(&cpu);
6493
6494	/* if we're the last man standing, nothing to do */
6495	if (cpumask_weight(smt_mask) == 1) {
6496		WARN_ON_ONCE(rq->core != rq);
6497		return;
6498	}
6499
6500	/* if we're not the leader, nothing to do */
6501	if (rq->core != rq)
6502		return;
6503
6504	/* find a new leader */
6505	for_each_cpu(t, smt_mask) {
6506		if (t == cpu)
6507			continue;
6508		core_rq = cpu_rq(t);
6509		break;
6510	}
6511
6512	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6513		return;
6514
6515	/* copy the shared state to the new leader */
6516	core_rq->core_task_seq             = rq->core_task_seq;
6517	core_rq->core_pick_seq             = rq->core_pick_seq;
6518	core_rq->core_cookie               = rq->core_cookie;
6519	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6520	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6521	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6522
6523	/*
6524	 * Accounting edge for forced idle is handled in pick_next_task().
6525	 * Don't need another one here, since the hotplug thread shouldn't
6526	 * have a cookie.
6527	 */
6528	core_rq->core_forceidle_start = 0;
6529
6530	/* install new leader */
6531	for_each_cpu(t, smt_mask) {
6532		rq = cpu_rq(t);
6533		rq->core = core_rq;
6534	}
6535}
6536
6537static inline void sched_core_cpu_dying(unsigned int cpu)
6538{
6539	struct rq *rq = cpu_rq(cpu);
6540
6541	if (rq->core != rq)
6542		rq->core = rq;
6543}
6544
6545#else /* !CONFIG_SCHED_CORE */
6546
6547static inline void sched_core_cpu_starting(unsigned int cpu) {}
6548static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6549static inline void sched_core_cpu_dying(unsigned int cpu) {}
6550
6551static struct task_struct *
6552pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6553{
6554	return __pick_next_task(rq, prev, rf);
6555}
6556
6557#endif /* CONFIG_SCHED_CORE */
6558
6559/*
6560 * Constants for the sched_mode argument of __schedule().
6561 *
6562 * The mode argument allows RT enabled kernels to differentiate a
6563 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6564 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6565 * optimize the AND operation out and just check for zero.
6566 */
6567#define SM_NONE			0x0
6568#define SM_PREEMPT		0x1
6569#define SM_RTLOCK_WAIT		0x2
6570
6571#ifndef CONFIG_PREEMPT_RT
6572# define SM_MASK_PREEMPT	(~0U)
6573#else
6574# define SM_MASK_PREEMPT	SM_PREEMPT
6575#endif
6576
6577/*
6578 * __schedule() is the main scheduler function.
6579 *
6580 * The main means of driving the scheduler and thus entering this function are:
6581 *
6582 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6583 *
6584 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6585 *      paths. For example, see arch/x86/entry_64.S.
6586 *
6587 *      To drive preemption between tasks, the scheduler sets the flag in timer
6588 *      interrupt handler scheduler_tick().
6589 *
6590 *   3. Wakeups don't really cause entry into schedule(). They add a
6591 *      task to the run-queue and that's it.
6592 *
6593 *      Now, if the new task added to the run-queue preempts the current
6594 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6595 *      called on the nearest possible occasion:
6596 *
6597 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6598 *
6599 *         - in syscall or exception context, at the next outmost
6600 *           preempt_enable(). (this might be as soon as the wake_up()'s
6601 *           spin_unlock()!)
6602 *
6603 *         - in IRQ context, return from interrupt-handler to
6604 *           preemptible context
6605 *
6606 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6607 *         then at the next:
6608 *
6609 *          - cond_resched() call
6610 *          - explicit schedule() call
6611 *          - return from syscall or exception to user-space
6612 *          - return from interrupt-handler to user-space
6613 *
6614 * WARNING: must be called with preemption disabled!
6615 */
6616static void __sched notrace __schedule(unsigned int sched_mode)
6617{
6618	struct task_struct *prev, *next;
6619	unsigned long *switch_count;
6620	unsigned long prev_state;
6621	struct rq_flags rf;
6622	struct rq *rq;
6623	int cpu;
6624
6625	cpu = smp_processor_id();
6626	rq = cpu_rq(cpu);
6627	prev = rq->curr;
6628
6629	schedule_debug(prev, !!sched_mode);
6630
6631	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6632		hrtick_clear(rq);
6633
6634	local_irq_disable();
6635	rcu_note_context_switch(!!sched_mode);
6636
6637	/*
6638	 * Make sure that signal_pending_state()->signal_pending() below
6639	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6640	 * done by the caller to avoid the race with signal_wake_up():
6641	 *
6642	 * __set_current_state(@state)		signal_wake_up()
6643	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6644	 *					  wake_up_state(p, state)
6645	 *   LOCK rq->lock			    LOCK p->pi_state
6646	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6647	 *     if (signal_pending_state())	    if (p->state & @state)
6648	 *
6649	 * Also, the membarrier system call requires a full memory barrier
6650	 * after coming from user-space, before storing to rq->curr; this
6651	 * barrier matches a full barrier in the proximity of the membarrier
6652	 * system call exit.
6653	 */
6654	rq_lock(rq, &rf);
6655	smp_mb__after_spinlock();
6656
6657	/* Promote REQ to ACT */
6658	rq->clock_update_flags <<= 1;
6659	update_rq_clock(rq);
6660	rq->clock_update_flags = RQCF_UPDATED;
6661
6662	switch_count = &prev->nivcsw;
6663
6664	/*
6665	 * We must load prev->state once (task_struct::state is volatile), such
6666	 * that we form a control dependency vs deactivate_task() below.
6667	 */
6668	prev_state = READ_ONCE(prev->__state);
6669	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6670		if (signal_pending_state(prev_state, prev)) {
6671			WRITE_ONCE(prev->__state, TASK_RUNNING);
6672		} else {
6673			prev->sched_contributes_to_load =
6674				(prev_state & TASK_UNINTERRUPTIBLE) &&
6675				!(prev_state & TASK_NOLOAD) &&
6676				!(prev_state & TASK_FROZEN);
6677
6678			if (prev->sched_contributes_to_load)
6679				rq->nr_uninterruptible++;
6680
6681			/*
6682			 * __schedule()			ttwu()
6683			 *   prev_state = prev->state;    if (p->on_rq && ...)
6684			 *   if (prev_state)		    goto out;
6685			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6686			 *				  p->state = TASK_WAKING
6687			 *
6688			 * Where __schedule() and ttwu() have matching control dependencies.
6689			 *
6690			 * After this, schedule() must not care about p->state any more.
6691			 */
6692			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6693
6694			if (prev->in_iowait) {
6695				atomic_inc(&rq->nr_iowait);
6696				delayacct_blkio_start();
6697			}
6698		}
6699		switch_count = &prev->nvcsw;
6700	}
6701
6702	next = pick_next_task(rq, prev, &rf);
6703	clear_tsk_need_resched(prev);
6704	clear_preempt_need_resched();
6705#ifdef CONFIG_SCHED_DEBUG
6706	rq->last_seen_need_resched_ns = 0;
6707#endif
6708
6709	if (likely(prev != next)) {
6710		rq->nr_switches++;
6711		/*
6712		 * RCU users of rcu_dereference(rq->curr) may not see
6713		 * changes to task_struct made by pick_next_task().
6714		 */
6715		RCU_INIT_POINTER(rq->curr, next);
6716		/*
6717		 * The membarrier system call requires each architecture
6718		 * to have a full memory barrier after updating
6719		 * rq->curr, before returning to user-space.
6720		 *
6721		 * Here are the schemes providing that barrier on the
6722		 * various architectures:
6723		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6724		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6725		 *   on PowerPC and on RISC-V.
6726		 * - finish_lock_switch() for weakly-ordered
6727		 *   architectures where spin_unlock is a full barrier,
6728		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6729		 *   is a RELEASE barrier),
6730		 *
6731		 * The barrier matches a full barrier in the proximity of
6732		 * the membarrier system call entry.
6733		 *
6734		 * On RISC-V, this barrier pairing is also needed for the
6735		 * SYNC_CORE command when switching between processes, cf.
6736		 * the inline comments in membarrier_arch_switch_mm().
6737		 */
6738		++*switch_count;
6739
6740		migrate_disable_switch(rq, prev);
6741		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6742
6743		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6744
6745		/* Also unlocks the rq: */
6746		rq = context_switch(rq, prev, next, &rf);
6747	} else {
6748		rq_unpin_lock(rq, &rf);
6749		__balance_callbacks(rq);
6750		raw_spin_rq_unlock_irq(rq);
6751	}
6752}
6753
6754void __noreturn do_task_dead(void)
6755{
6756	/* Causes final put_task_struct in finish_task_switch(): */
6757	set_special_state(TASK_DEAD);
6758
6759	/* Tell freezer to ignore us: */
6760	current->flags |= PF_NOFREEZE;
6761
6762	__schedule(SM_NONE);
6763	BUG();
6764
6765	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6766	for (;;)
6767		cpu_relax();
6768}
6769
6770static inline void sched_submit_work(struct task_struct *tsk)
6771{
6772	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6773	unsigned int task_flags;
6774
6775	/*
6776	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6777	 * will use a blocking primitive -- which would lead to recursion.
6778	 */
6779	lock_map_acquire_try(&sched_map);
6780
6781	task_flags = tsk->flags;
6782	/*
6783	 * If a worker goes to sleep, notify and ask workqueue whether it
6784	 * wants to wake up a task to maintain concurrency.
6785	 */
6786	if (task_flags & PF_WQ_WORKER)
6787		wq_worker_sleeping(tsk);
6788	else if (task_flags & PF_IO_WORKER)
6789		io_wq_worker_sleeping(tsk);
6790
6791	/*
6792	 * spinlock and rwlock must not flush block requests.  This will
6793	 * deadlock if the callback attempts to acquire a lock which is
6794	 * already acquired.
6795	 */
6796	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6797
6798	/*
6799	 * If we are going to sleep and we have plugged IO queued,
6800	 * make sure to submit it to avoid deadlocks.
6801	 */
6802	blk_flush_plug(tsk->plug, true);
6803
6804	lock_map_release(&sched_map);
6805}
6806
6807static void sched_update_worker(struct task_struct *tsk)
6808{
6809	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6810		if (tsk->flags & PF_BLOCK_TS)
6811			blk_plug_invalidate_ts(tsk);
6812		if (tsk->flags & PF_WQ_WORKER)
6813			wq_worker_running(tsk);
6814		else if (tsk->flags & PF_IO_WORKER)
6815			io_wq_worker_running(tsk);
6816	}
6817}
6818
6819static __always_inline void __schedule_loop(unsigned int sched_mode)
6820{
6821	do {
6822		preempt_disable();
6823		__schedule(sched_mode);
6824		sched_preempt_enable_no_resched();
6825	} while (need_resched());
6826}
6827
6828asmlinkage __visible void __sched schedule(void)
6829{
6830	struct task_struct *tsk = current;
6831
6832#ifdef CONFIG_RT_MUTEXES
6833	lockdep_assert(!tsk->sched_rt_mutex);
6834#endif
6835
6836	if (!task_is_running(tsk))
6837		sched_submit_work(tsk);
6838	__schedule_loop(SM_NONE);
6839	sched_update_worker(tsk);
6840}
6841EXPORT_SYMBOL(schedule);
6842
6843/*
6844 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6845 * state (have scheduled out non-voluntarily) by making sure that all
6846 * tasks have either left the run queue or have gone into user space.
6847 * As idle tasks do not do either, they must not ever be preempted
6848 * (schedule out non-voluntarily).
6849 *
6850 * schedule_idle() is similar to schedule_preempt_disable() except that it
6851 * never enables preemption because it does not call sched_submit_work().
6852 */
6853void __sched schedule_idle(void)
6854{
6855	/*
6856	 * As this skips calling sched_submit_work(), which the idle task does
6857	 * regardless because that function is a nop when the task is in a
6858	 * TASK_RUNNING state, make sure this isn't used someplace that the
6859	 * current task can be in any other state. Note, idle is always in the
6860	 * TASK_RUNNING state.
6861	 */
6862	WARN_ON_ONCE(current->__state);
6863	do {
6864		__schedule(SM_NONE);
6865	} while (need_resched());
6866}
6867
6868#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6869asmlinkage __visible void __sched schedule_user(void)
6870{
6871	/*
6872	 * If we come here after a random call to set_need_resched(),
6873	 * or we have been woken up remotely but the IPI has not yet arrived,
6874	 * we haven't yet exited the RCU idle mode. Do it here manually until
6875	 * we find a better solution.
6876	 *
6877	 * NB: There are buggy callers of this function.  Ideally we
6878	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6879	 * too frequently to make sense yet.
6880	 */
6881	enum ctx_state prev_state = exception_enter();
6882	schedule();
6883	exception_exit(prev_state);
6884}
6885#endif
6886
6887/**
6888 * schedule_preempt_disabled - called with preemption disabled
6889 *
6890 * Returns with preemption disabled. Note: preempt_count must be 1
6891 */
6892void __sched schedule_preempt_disabled(void)
6893{
6894	sched_preempt_enable_no_resched();
6895	schedule();
6896	preempt_disable();
6897}
6898
6899#ifdef CONFIG_PREEMPT_RT
6900void __sched notrace schedule_rtlock(void)
6901{
6902	__schedule_loop(SM_RTLOCK_WAIT);
6903}
6904NOKPROBE_SYMBOL(schedule_rtlock);
6905#endif
6906
6907static void __sched notrace preempt_schedule_common(void)
6908{
6909	do {
6910		/*
6911		 * Because the function tracer can trace preempt_count_sub()
6912		 * and it also uses preempt_enable/disable_notrace(), if
6913		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6914		 * by the function tracer will call this function again and
6915		 * cause infinite recursion.
6916		 *
6917		 * Preemption must be disabled here before the function
6918		 * tracer can trace. Break up preempt_disable() into two
6919		 * calls. One to disable preemption without fear of being
6920		 * traced. The other to still record the preemption latency,
6921		 * which can also be traced by the function tracer.
6922		 */
6923		preempt_disable_notrace();
6924		preempt_latency_start(1);
6925		__schedule(SM_PREEMPT);
6926		preempt_latency_stop(1);
6927		preempt_enable_no_resched_notrace();
6928
6929		/*
6930		 * Check again in case we missed a preemption opportunity
6931		 * between schedule and now.
6932		 */
6933	} while (need_resched());
6934}
6935
6936#ifdef CONFIG_PREEMPTION
6937/*
6938 * This is the entry point to schedule() from in-kernel preemption
6939 * off of preempt_enable.
6940 */
6941asmlinkage __visible void __sched notrace preempt_schedule(void)
6942{
6943	/*
6944	 * If there is a non-zero preempt_count or interrupts are disabled,
6945	 * we do not want to preempt the current task. Just return..
6946	 */
6947	if (likely(!preemptible()))
6948		return;
6949	preempt_schedule_common();
6950}
6951NOKPROBE_SYMBOL(preempt_schedule);
6952EXPORT_SYMBOL(preempt_schedule);
6953
6954#ifdef CONFIG_PREEMPT_DYNAMIC
6955#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6956#ifndef preempt_schedule_dynamic_enabled
6957#define preempt_schedule_dynamic_enabled	preempt_schedule
6958#define preempt_schedule_dynamic_disabled	NULL
6959#endif
6960DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6961EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6962#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6963static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6964void __sched notrace dynamic_preempt_schedule(void)
6965{
6966	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6967		return;
6968	preempt_schedule();
6969}
6970NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6971EXPORT_SYMBOL(dynamic_preempt_schedule);
6972#endif
6973#endif
6974
6975/**
6976 * preempt_schedule_notrace - preempt_schedule called by tracing
6977 *
6978 * The tracing infrastructure uses preempt_enable_notrace to prevent
6979 * recursion and tracing preempt enabling caused by the tracing
6980 * infrastructure itself. But as tracing can happen in areas coming
6981 * from userspace or just about to enter userspace, a preempt enable
6982 * can occur before user_exit() is called. This will cause the scheduler
6983 * to be called when the system is still in usermode.
6984 *
6985 * To prevent this, the preempt_enable_notrace will use this function
6986 * instead of preempt_schedule() to exit user context if needed before
6987 * calling the scheduler.
6988 */
6989asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6990{
6991	enum ctx_state prev_ctx;
6992
6993	if (likely(!preemptible()))
6994		return;
6995
6996	do {
6997		/*
6998		 * Because the function tracer can trace preempt_count_sub()
6999		 * and it also uses preempt_enable/disable_notrace(), if
7000		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7001		 * by the function tracer will call this function again and
7002		 * cause infinite recursion.
7003		 *
7004		 * Preemption must be disabled here before the function
7005		 * tracer can trace. Break up preempt_disable() into two
7006		 * calls. One to disable preemption without fear of being
7007		 * traced. The other to still record the preemption latency,
7008		 * which can also be traced by the function tracer.
7009		 */
7010		preempt_disable_notrace();
7011		preempt_latency_start(1);
7012		/*
7013		 * Needs preempt disabled in case user_exit() is traced
7014		 * and the tracer calls preempt_enable_notrace() causing
7015		 * an infinite recursion.
7016		 */
7017		prev_ctx = exception_enter();
7018		__schedule(SM_PREEMPT);
7019		exception_exit(prev_ctx);
7020
7021		preempt_latency_stop(1);
7022		preempt_enable_no_resched_notrace();
7023	} while (need_resched());
7024}
7025EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7026
7027#ifdef CONFIG_PREEMPT_DYNAMIC
7028#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7029#ifndef preempt_schedule_notrace_dynamic_enabled
7030#define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7031#define preempt_schedule_notrace_dynamic_disabled	NULL
7032#endif
7033DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7034EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7035#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7036static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7037void __sched notrace dynamic_preempt_schedule_notrace(void)
7038{
7039	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7040		return;
7041	preempt_schedule_notrace();
7042}
7043NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7044EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7045#endif
7046#endif
7047
7048#endif /* CONFIG_PREEMPTION */
7049
7050/*
7051 * This is the entry point to schedule() from kernel preemption
7052 * off of irq context.
7053 * Note, that this is called and return with irqs disabled. This will
7054 * protect us against recursive calling from irq.
7055 */
7056asmlinkage __visible void __sched preempt_schedule_irq(void)
7057{
7058	enum ctx_state prev_state;
7059
7060	/* Catch callers which need to be fixed */
7061	BUG_ON(preempt_count() || !irqs_disabled());
7062
7063	prev_state = exception_enter();
7064
7065	do {
7066		preempt_disable();
7067		local_irq_enable();
7068		__schedule(SM_PREEMPT);
7069		local_irq_disable();
7070		sched_preempt_enable_no_resched();
7071	} while (need_resched());
7072
7073	exception_exit(prev_state);
7074}
7075
7076int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7077			  void *key)
7078{
7079	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7080	return try_to_wake_up(curr->private, mode, wake_flags);
7081}
7082EXPORT_SYMBOL(default_wake_function);
7083
7084static void __setscheduler_prio(struct task_struct *p, int prio)
7085{
7086	if (dl_prio(prio))
7087		p->sched_class = &dl_sched_class;
7088	else if (rt_prio(prio))
7089		p->sched_class = &rt_sched_class;
7090	else
7091		p->sched_class = &fair_sched_class;
7092
7093	p->prio = prio;
7094}
7095
7096#ifdef CONFIG_RT_MUTEXES
7097
7098/*
7099 * Would be more useful with typeof()/auto_type but they don't mix with
7100 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7101 * name such that if someone were to implement this function we get to compare
7102 * notes.
7103 */
7104#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7105
7106void rt_mutex_pre_schedule(void)
7107{
7108	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7109	sched_submit_work(current);
7110}
7111
7112void rt_mutex_schedule(void)
7113{
7114	lockdep_assert(current->sched_rt_mutex);
7115	__schedule_loop(SM_NONE);
7116}
7117
7118void rt_mutex_post_schedule(void)
7119{
7120	sched_update_worker(current);
7121	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7122}
7123
7124static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7125{
7126	if (pi_task)
7127		prio = min(prio, pi_task->prio);
7128
7129	return prio;
7130}
7131
7132static inline int rt_effective_prio(struct task_struct *p, int prio)
7133{
7134	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7135
7136	return __rt_effective_prio(pi_task, prio);
7137}
7138
7139/*
7140 * rt_mutex_setprio - set the current priority of a task
7141 * @p: task to boost
7142 * @pi_task: donor task
7143 *
7144 * This function changes the 'effective' priority of a task. It does
7145 * not touch ->normal_prio like __setscheduler().
7146 *
7147 * Used by the rt_mutex code to implement priority inheritance
7148 * logic. Call site only calls if the priority of the task changed.
7149 */
7150void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7151{
7152	int prio, oldprio, queued, running, queue_flag =
7153		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7154	const struct sched_class *prev_class;
7155	struct rq_flags rf;
7156	struct rq *rq;
7157
7158	/* XXX used to be waiter->prio, not waiter->task->prio */
7159	prio = __rt_effective_prio(pi_task, p->normal_prio);
7160
7161	/*
7162	 * If nothing changed; bail early.
7163	 */
7164	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7165		return;
7166
7167	rq = __task_rq_lock(p, &rf);
7168	update_rq_clock(rq);
7169	/*
7170	 * Set under pi_lock && rq->lock, such that the value can be used under
7171	 * either lock.
7172	 *
7173	 * Note that there is loads of tricky to make this pointer cache work
7174	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7175	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7176	 * task is allowed to run again (and can exit). This ensures the pointer
7177	 * points to a blocked task -- which guarantees the task is present.
7178	 */
7179	p->pi_top_task = pi_task;
7180
7181	/*
7182	 * For FIFO/RR we only need to set prio, if that matches we're done.
7183	 */
7184	if (prio == p->prio && !dl_prio(prio))
7185		goto out_unlock;
7186
7187	/*
7188	 * Idle task boosting is a nono in general. There is one
7189	 * exception, when PREEMPT_RT and NOHZ is active:
7190	 *
7191	 * The idle task calls get_next_timer_interrupt() and holds
7192	 * the timer wheel base->lock on the CPU and another CPU wants
7193	 * to access the timer (probably to cancel it). We can safely
7194	 * ignore the boosting request, as the idle CPU runs this code
7195	 * with interrupts disabled and will complete the lock
7196	 * protected section without being interrupted. So there is no
7197	 * real need to boost.
7198	 */
7199	if (unlikely(p == rq->idle)) {
7200		WARN_ON(p != rq->curr);
7201		WARN_ON(p->pi_blocked_on);
7202		goto out_unlock;
7203	}
7204
7205	trace_sched_pi_setprio(p, pi_task);
7206	oldprio = p->prio;
7207
7208	if (oldprio == prio)
7209		queue_flag &= ~DEQUEUE_MOVE;
7210
7211	prev_class = p->sched_class;
7212	queued = task_on_rq_queued(p);
7213	running = task_current(rq, p);
7214	if (queued)
7215		dequeue_task(rq, p, queue_flag);
7216	if (running)
7217		put_prev_task(rq, p);
7218
7219	/*
7220	 * Boosting condition are:
7221	 * 1. -rt task is running and holds mutex A
7222	 *      --> -dl task blocks on mutex A
7223	 *
7224	 * 2. -dl task is running and holds mutex A
7225	 *      --> -dl task blocks on mutex A and could preempt the
7226	 *          running task
7227	 */
7228	if (dl_prio(prio)) {
7229		if (!dl_prio(p->normal_prio) ||
7230		    (pi_task && dl_prio(pi_task->prio) &&
7231		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7232			p->dl.pi_se = pi_task->dl.pi_se;
7233			queue_flag |= ENQUEUE_REPLENISH;
7234		} else {
7235			p->dl.pi_se = &p->dl;
7236		}
7237	} else if (rt_prio(prio)) {
7238		if (dl_prio(oldprio))
7239			p->dl.pi_se = &p->dl;
7240		if (oldprio < prio)
7241			queue_flag |= ENQUEUE_HEAD;
7242	} else {
7243		if (dl_prio(oldprio))
7244			p->dl.pi_se = &p->dl;
7245		if (rt_prio(oldprio))
7246			p->rt.timeout = 0;
7247	}
7248
7249	__setscheduler_prio(p, prio);
7250
7251	if (queued)
7252		enqueue_task(rq, p, queue_flag);
7253	if (running)
7254		set_next_task(rq, p);
7255
7256	check_class_changed(rq, p, prev_class, oldprio);
7257out_unlock:
7258	/* Avoid rq from going away on us: */
7259	preempt_disable();
7260
7261	rq_unpin_lock(rq, &rf);
7262	__balance_callbacks(rq);
7263	raw_spin_rq_unlock(rq);
7264
7265	preempt_enable();
7266}
7267#else
7268static inline int rt_effective_prio(struct task_struct *p, int prio)
7269{
7270	return prio;
7271}
7272#endif
7273
7274void set_user_nice(struct task_struct *p, long nice)
7275{
7276	bool queued, running;
7277	struct rq *rq;
7278	int old_prio;
7279
7280	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7281		return;
7282	/*
7283	 * We have to be careful, if called from sys_setpriority(),
7284	 * the task might be in the middle of scheduling on another CPU.
7285	 */
7286	CLASS(task_rq_lock, rq_guard)(p);
7287	rq = rq_guard.rq;
7288
7289	update_rq_clock(rq);
7290
7291	/*
7292	 * The RT priorities are set via sched_setscheduler(), but we still
7293	 * allow the 'normal' nice value to be set - but as expected
7294	 * it won't have any effect on scheduling until the task is
7295	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7296	 */
7297	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7298		p->static_prio = NICE_TO_PRIO(nice);
7299		return;
7300	}
7301
7302	queued = task_on_rq_queued(p);
7303	running = task_current(rq, p);
7304	if (queued)
7305		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7306	if (running)
7307		put_prev_task(rq, p);
7308
7309	p->static_prio = NICE_TO_PRIO(nice);
7310	set_load_weight(p, true);
7311	old_prio = p->prio;
7312	p->prio = effective_prio(p);
7313
7314	if (queued)
7315		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7316	if (running)
7317		set_next_task(rq, p);
7318
7319	/*
7320	 * If the task increased its priority or is running and
7321	 * lowered its priority, then reschedule its CPU:
7322	 */
7323	p->sched_class->prio_changed(rq, p, old_prio);
7324}
7325EXPORT_SYMBOL(set_user_nice);
7326
7327/*
7328 * is_nice_reduction - check if nice value is an actual reduction
7329 *
7330 * Similar to can_nice() but does not perform a capability check.
7331 *
7332 * @p: task
7333 * @nice: nice value
7334 */
7335static bool is_nice_reduction(const struct task_struct *p, const int nice)
7336{
7337	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7338	int nice_rlim = nice_to_rlimit(nice);
7339
7340	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7341}
7342
7343/*
7344 * can_nice - check if a task can reduce its nice value
7345 * @p: task
7346 * @nice: nice value
7347 */
7348int can_nice(const struct task_struct *p, const int nice)
7349{
7350	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7351}
7352
7353#ifdef __ARCH_WANT_SYS_NICE
7354
7355/*
7356 * sys_nice - change the priority of the current process.
7357 * @increment: priority increment
7358 *
7359 * sys_setpriority is a more generic, but much slower function that
7360 * does similar things.
7361 */
7362SYSCALL_DEFINE1(nice, int, increment)
7363{
7364	long nice, retval;
7365
7366	/*
7367	 * Setpriority might change our priority at the same moment.
7368	 * We don't have to worry. Conceptually one call occurs first
7369	 * and we have a single winner.
7370	 */
7371	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7372	nice = task_nice(current) + increment;
7373
7374	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7375	if (increment < 0 && !can_nice(current, nice))
7376		return -EPERM;
7377
7378	retval = security_task_setnice(current, nice);
7379	if (retval)
7380		return retval;
7381
7382	set_user_nice(current, nice);
7383	return 0;
7384}
7385
7386#endif
7387
7388/**
7389 * task_prio - return the priority value of a given task.
7390 * @p: the task in question.
7391 *
7392 * Return: The priority value as seen by users in /proc.
7393 *
7394 * sched policy         return value   kernel prio    user prio/nice
7395 *
7396 * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7397 * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7398 * deadline                     -101             -1           0
7399 */
7400int task_prio(const struct task_struct *p)
7401{
7402	return p->prio - MAX_RT_PRIO;
7403}
7404
7405/**
7406 * idle_cpu - is a given CPU idle currently?
7407 * @cpu: the processor in question.
7408 *
7409 * Return: 1 if the CPU is currently idle. 0 otherwise.
7410 */
7411int idle_cpu(int cpu)
7412{
7413	struct rq *rq = cpu_rq(cpu);
7414
7415	if (rq->curr != rq->idle)
7416		return 0;
7417
7418	if (rq->nr_running)
7419		return 0;
7420
7421#ifdef CONFIG_SMP
7422	if (rq->ttwu_pending)
7423		return 0;
7424#endif
7425
7426	return 1;
7427}
7428
7429/**
7430 * available_idle_cpu - is a given CPU idle for enqueuing work.
7431 * @cpu: the CPU in question.
7432 *
7433 * Return: 1 if the CPU is currently idle. 0 otherwise.
7434 */
7435int available_idle_cpu(int cpu)
7436{
7437	if (!idle_cpu(cpu))
7438		return 0;
7439
7440	if (vcpu_is_preempted(cpu))
7441		return 0;
7442
7443	return 1;
7444}
7445
7446/**
7447 * idle_task - return the idle task for a given CPU.
7448 * @cpu: the processor in question.
7449 *
7450 * Return: The idle task for the CPU @cpu.
7451 */
7452struct task_struct *idle_task(int cpu)
7453{
7454	return cpu_rq(cpu)->idle;
7455}
7456
7457#ifdef CONFIG_SCHED_CORE
7458int sched_core_idle_cpu(int cpu)
7459{
7460	struct rq *rq = cpu_rq(cpu);
7461
7462	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7463		return 1;
7464
7465	return idle_cpu(cpu);
7466}
7467
7468#endif
7469
7470#ifdef CONFIG_SMP
7471/*
7472 * This function computes an effective utilization for the given CPU, to be
7473 * used for frequency selection given the linear relation: f = u * f_max.
7474 *
7475 * The scheduler tracks the following metrics:
7476 *
7477 *   cpu_util_{cfs,rt,dl,irq}()
7478 *   cpu_bw_dl()
7479 *
7480 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7481 * synchronized windows and are thus directly comparable.
7482 *
7483 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7484 * which excludes things like IRQ and steal-time. These latter are then accrued
7485 * in the irq utilization.
7486 *
7487 * The DL bandwidth number otoh is not a measured metric but a value computed
7488 * based on the task model parameters and gives the minimal utilization
7489 * required to meet deadlines.
7490 */
7491unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7492				 unsigned long *min,
7493				 unsigned long *max)
7494{
7495	unsigned long util, irq, scale;
7496	struct rq *rq = cpu_rq(cpu);
7497
7498	scale = arch_scale_cpu_capacity(cpu);
7499
7500	/*
7501	 * Early check to see if IRQ/steal time saturates the CPU, can be
7502	 * because of inaccuracies in how we track these -- see
7503	 * update_irq_load_avg().
7504	 */
7505	irq = cpu_util_irq(rq);
7506	if (unlikely(irq >= scale)) {
7507		if (min)
7508			*min = scale;
7509		if (max)
7510			*max = scale;
7511		return scale;
7512	}
7513
7514	if (min) {
7515		/*
7516		 * The minimum utilization returns the highest level between:
7517		 * - the computed DL bandwidth needed with the IRQ pressure which
7518		 *   steals time to the deadline task.
7519		 * - The minimum performance requirement for CFS and/or RT.
7520		 */
7521		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
7522
7523		/*
7524		 * When an RT task is runnable and uclamp is not used, we must
7525		 * ensure that the task will run at maximum compute capacity.
7526		 */
7527		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
7528			*min = max(*min, scale);
7529	}
7530
7531	/*
7532	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7533	 * CFS tasks and we use the same metric to track the effective
7534	 * utilization (PELT windows are synchronized) we can directly add them
7535	 * to obtain the CPU's actual utilization.
7536	 */
7537	util = util_cfs + cpu_util_rt(rq);
7538	util += cpu_util_dl(rq);
7539
7540	/*
7541	 * The maximum hint is a soft bandwidth requirement, which can be lower
7542	 * than the actual utilization because of uclamp_max requirements.
7543	 */
7544	if (max)
7545		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
7546
7547	if (util >= scale)
7548		return scale;
7549
7550	/*
7551	 * There is still idle time; further improve the number by using the
7552	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7553	 * need to scale the task numbers:
7554	 *
7555	 *              max - irq
7556	 *   U' = irq + --------- * U
7557	 *                 max
7558	 */
7559	util = scale_irq_capacity(util, irq, scale);
7560	util += irq;
7561
7562	return min(scale, util);
7563}
7564
7565unsigned long sched_cpu_util(int cpu)
7566{
7567	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
7568}
7569#endif /* CONFIG_SMP */
7570
7571/**
7572 * find_process_by_pid - find a process with a matching PID value.
7573 * @pid: the pid in question.
7574 *
7575 * The task of @pid, if found. %NULL otherwise.
7576 */
7577static struct task_struct *find_process_by_pid(pid_t pid)
7578{
7579	return pid ? find_task_by_vpid(pid) : current;
7580}
7581
7582static struct task_struct *find_get_task(pid_t pid)
7583{
7584	struct task_struct *p;
7585	guard(rcu)();
7586
7587	p = find_process_by_pid(pid);
7588	if (likely(p))
7589		get_task_struct(p);
7590
7591	return p;
7592}
7593
7594DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
7595	     find_get_task(pid), pid_t pid)
7596
7597/*
7598 * sched_setparam() passes in -1 for its policy, to let the functions
7599 * it calls know not to change it.
7600 */
7601#define SETPARAM_POLICY	-1
7602
7603static void __setscheduler_params(struct task_struct *p,
7604		const struct sched_attr *attr)
7605{
7606	int policy = attr->sched_policy;
7607
7608	if (policy == SETPARAM_POLICY)
7609		policy = p->policy;
7610
7611	p->policy = policy;
7612
7613	if (dl_policy(policy))
7614		__setparam_dl(p, attr);
7615	else if (fair_policy(policy))
7616		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7617
7618	/*
7619	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7620	 * !rt_policy. Always setting this ensures that things like
7621	 * getparam()/getattr() don't report silly values for !rt tasks.
7622	 */
7623	p->rt_priority = attr->sched_priority;
7624	p->normal_prio = normal_prio(p);
7625	set_load_weight(p, true);
7626}
7627
7628/*
7629 * Check the target process has a UID that matches the current process's:
7630 */
7631static bool check_same_owner(struct task_struct *p)
7632{
7633	const struct cred *cred = current_cred(), *pcred;
7634	guard(rcu)();
7635
7636	pcred = __task_cred(p);
7637	return (uid_eq(cred->euid, pcred->euid) ||
7638		uid_eq(cred->euid, pcred->uid));
7639}
7640
7641/*
7642 * Allow unprivileged RT tasks to decrease priority.
7643 * Only issue a capable test if needed and only once to avoid an audit
7644 * event on permitted non-privileged operations:
7645 */
7646static int user_check_sched_setscheduler(struct task_struct *p,
7647					 const struct sched_attr *attr,
7648					 int policy, int reset_on_fork)
7649{
7650	if (fair_policy(policy)) {
7651		if (attr->sched_nice < task_nice(p) &&
7652		    !is_nice_reduction(p, attr->sched_nice))
7653			goto req_priv;
7654	}
7655
7656	if (rt_policy(policy)) {
7657		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7658
7659		/* Can't set/change the rt policy: */
7660		if (policy != p->policy && !rlim_rtprio)
7661			goto req_priv;
7662
7663		/* Can't increase priority: */
7664		if (attr->sched_priority > p->rt_priority &&
7665		    attr->sched_priority > rlim_rtprio)
7666			goto req_priv;
7667	}
7668
7669	/*
7670	 * Can't set/change SCHED_DEADLINE policy at all for now
7671	 * (safest behavior); in the future we would like to allow
7672	 * unprivileged DL tasks to increase their relative deadline
7673	 * or reduce their runtime (both ways reducing utilization)
7674	 */
7675	if (dl_policy(policy))
7676		goto req_priv;
7677
7678	/*
7679	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7680	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7681	 */
7682	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7683		if (!is_nice_reduction(p, task_nice(p)))
7684			goto req_priv;
7685	}
7686
7687	/* Can't change other user's priorities: */
7688	if (!check_same_owner(p))
7689		goto req_priv;
7690
7691	/* Normal users shall not reset the sched_reset_on_fork flag: */
7692	if (p->sched_reset_on_fork && !reset_on_fork)
7693		goto req_priv;
7694
7695	return 0;
7696
7697req_priv:
7698	if (!capable(CAP_SYS_NICE))
7699		return -EPERM;
7700
7701	return 0;
7702}
7703
7704static int __sched_setscheduler(struct task_struct *p,
7705				const struct sched_attr *attr,
7706				bool user, bool pi)
7707{
7708	int oldpolicy = -1, policy = attr->sched_policy;
7709	int retval, oldprio, newprio, queued, running;
7710	const struct sched_class *prev_class;
7711	struct balance_callback *head;
7712	struct rq_flags rf;
7713	int reset_on_fork;
7714	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7715	struct rq *rq;
7716	bool cpuset_locked = false;
7717
7718	/* The pi code expects interrupts enabled */
7719	BUG_ON(pi && in_interrupt());
7720recheck:
7721	/* Double check policy once rq lock held: */
7722	if (policy < 0) {
7723		reset_on_fork = p->sched_reset_on_fork;
7724		policy = oldpolicy = p->policy;
7725	} else {
7726		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7727
7728		if (!valid_policy(policy))
7729			return -EINVAL;
7730	}
7731
7732	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7733		return -EINVAL;
7734
7735	/*
7736	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7737	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7738	 * SCHED_BATCH and SCHED_IDLE is 0.
7739	 */
7740	if (attr->sched_priority > MAX_RT_PRIO-1)
7741		return -EINVAL;
7742	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7743	    (rt_policy(policy) != (attr->sched_priority != 0)))
7744		return -EINVAL;
7745
7746	if (user) {
7747		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7748		if (retval)
7749			return retval;
7750
7751		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7752			return -EINVAL;
7753
7754		retval = security_task_setscheduler(p);
7755		if (retval)
7756			return retval;
7757	}
7758
7759	/* Update task specific "requested" clamps */
7760	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7761		retval = uclamp_validate(p, attr);
7762		if (retval)
7763			return retval;
7764	}
7765
7766	/*
7767	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7768	 * information.
7769	 */
7770	if (dl_policy(policy) || dl_policy(p->policy)) {
7771		cpuset_locked = true;
7772		cpuset_lock();
7773	}
7774
7775	/*
7776	 * Make sure no PI-waiters arrive (or leave) while we are
7777	 * changing the priority of the task:
7778	 *
7779	 * To be able to change p->policy safely, the appropriate
7780	 * runqueue lock must be held.
7781	 */
7782	rq = task_rq_lock(p, &rf);
7783	update_rq_clock(rq);
7784
7785	/*
7786	 * Changing the policy of the stop threads its a very bad idea:
7787	 */
7788	if (p == rq->stop) {
7789		retval = -EINVAL;
7790		goto unlock;
7791	}
7792
7793	/*
7794	 * If not changing anything there's no need to proceed further,
7795	 * but store a possible modification of reset_on_fork.
7796	 */
7797	if (unlikely(policy == p->policy)) {
7798		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7799			goto change;
7800		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7801			goto change;
7802		if (dl_policy(policy) && dl_param_changed(p, attr))
7803			goto change;
7804		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7805			goto change;
7806
7807		p->sched_reset_on_fork = reset_on_fork;
7808		retval = 0;
7809		goto unlock;
7810	}
7811change:
7812
7813	if (user) {
7814#ifdef CONFIG_RT_GROUP_SCHED
7815		/*
7816		 * Do not allow realtime tasks into groups that have no runtime
7817		 * assigned.
7818		 */
7819		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7820				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7821				!task_group_is_autogroup(task_group(p))) {
7822			retval = -EPERM;
7823			goto unlock;
7824		}
7825#endif
7826#ifdef CONFIG_SMP
7827		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7828				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7829			cpumask_t *span = rq->rd->span;
7830
7831			/*
7832			 * Don't allow tasks with an affinity mask smaller than
7833			 * the entire root_domain to become SCHED_DEADLINE. We
7834			 * will also fail if there's no bandwidth available.
7835			 */
7836			if (!cpumask_subset(span, p->cpus_ptr) ||
7837			    rq->rd->dl_bw.bw == 0) {
7838				retval = -EPERM;
7839				goto unlock;
7840			}
7841		}
7842#endif
7843	}
7844
7845	/* Re-check policy now with rq lock held: */
7846	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7847		policy = oldpolicy = -1;
7848		task_rq_unlock(rq, p, &rf);
7849		if (cpuset_locked)
7850			cpuset_unlock();
7851		goto recheck;
7852	}
7853
7854	/*
7855	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7856	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7857	 * is available.
7858	 */
7859	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7860		retval = -EBUSY;
7861		goto unlock;
7862	}
7863
7864	p->sched_reset_on_fork = reset_on_fork;
7865	oldprio = p->prio;
7866
7867	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7868	if (pi) {
7869		/*
7870		 * Take priority boosted tasks into account. If the new
7871		 * effective priority is unchanged, we just store the new
7872		 * normal parameters and do not touch the scheduler class and
7873		 * the runqueue. This will be done when the task deboost
7874		 * itself.
7875		 */
7876		newprio = rt_effective_prio(p, newprio);
7877		if (newprio == oldprio)
7878			queue_flags &= ~DEQUEUE_MOVE;
7879	}
7880
7881	queued = task_on_rq_queued(p);
7882	running = task_current(rq, p);
7883	if (queued)
7884		dequeue_task(rq, p, queue_flags);
7885	if (running)
7886		put_prev_task(rq, p);
7887
7888	prev_class = p->sched_class;
7889
7890	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7891		__setscheduler_params(p, attr);
7892		__setscheduler_prio(p, newprio);
7893	}
7894	__setscheduler_uclamp(p, attr);
7895
7896	if (queued) {
7897		/*
7898		 * We enqueue to tail when the priority of a task is
7899		 * increased (user space view).
7900		 */
7901		if (oldprio < p->prio)
7902			queue_flags |= ENQUEUE_HEAD;
7903
7904		enqueue_task(rq, p, queue_flags);
7905	}
7906	if (running)
7907		set_next_task(rq, p);
7908
7909	check_class_changed(rq, p, prev_class, oldprio);
7910
7911	/* Avoid rq from going away on us: */
7912	preempt_disable();
7913	head = splice_balance_callbacks(rq);
7914	task_rq_unlock(rq, p, &rf);
7915
7916	if (pi) {
7917		if (cpuset_locked)
7918			cpuset_unlock();
7919		rt_mutex_adjust_pi(p);
7920	}
7921
7922	/* Run balance callbacks after we've adjusted the PI chain: */
7923	balance_callbacks(rq, head);
7924	preempt_enable();
7925
7926	return 0;
7927
7928unlock:
7929	task_rq_unlock(rq, p, &rf);
7930	if (cpuset_locked)
7931		cpuset_unlock();
7932	return retval;
7933}
7934
7935static int _sched_setscheduler(struct task_struct *p, int policy,
7936			       const struct sched_param *param, bool check)
7937{
7938	struct sched_attr attr = {
7939		.sched_policy   = policy,
7940		.sched_priority = param->sched_priority,
7941		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7942	};
7943
7944	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7945	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7946		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7947		policy &= ~SCHED_RESET_ON_FORK;
7948		attr.sched_policy = policy;
7949	}
7950
7951	return __sched_setscheduler(p, &attr, check, true);
7952}
7953/**
7954 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7955 * @p: the task in question.
7956 * @policy: new policy.
7957 * @param: structure containing the new RT priority.
7958 *
7959 * Use sched_set_fifo(), read its comment.
7960 *
7961 * Return: 0 on success. An error code otherwise.
7962 *
7963 * NOTE that the task may be already dead.
7964 */
7965int sched_setscheduler(struct task_struct *p, int policy,
7966		       const struct sched_param *param)
7967{
7968	return _sched_setscheduler(p, policy, param, true);
7969}
7970
7971int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7972{
7973	return __sched_setscheduler(p, attr, true, true);
7974}
7975
7976int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7977{
7978	return __sched_setscheduler(p, attr, false, true);
7979}
7980EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7981
7982/**
7983 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7984 * @p: the task in question.
7985 * @policy: new policy.
7986 * @param: structure containing the new RT priority.
7987 *
7988 * Just like sched_setscheduler, only don't bother checking if the
7989 * current context has permission.  For example, this is needed in
7990 * stop_machine(): we create temporary high priority worker threads,
7991 * but our caller might not have that capability.
7992 *
7993 * Return: 0 on success. An error code otherwise.
7994 */
7995int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7996			       const struct sched_param *param)
7997{
7998	return _sched_setscheduler(p, policy, param, false);
7999}
8000
8001/*
8002 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
8003 * incapable of resource management, which is the one thing an OS really should
8004 * be doing.
8005 *
8006 * This is of course the reason it is limited to privileged users only.
8007 *
8008 * Worse still; it is fundamentally impossible to compose static priority
8009 * workloads. You cannot take two correctly working static prio workloads
8010 * and smash them together and still expect them to work.
8011 *
8012 * For this reason 'all' FIFO tasks the kernel creates are basically at:
8013 *
8014 *   MAX_RT_PRIO / 2
8015 *
8016 * The administrator _MUST_ configure the system, the kernel simply doesn't
8017 * know enough information to make a sensible choice.
8018 */
8019void sched_set_fifo(struct task_struct *p)
8020{
8021	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8022	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8023}
8024EXPORT_SYMBOL_GPL(sched_set_fifo);
8025
8026/*
8027 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8028 */
8029void sched_set_fifo_low(struct task_struct *p)
8030{
8031	struct sched_param sp = { .sched_priority = 1 };
8032	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8033}
8034EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8035
8036void sched_set_normal(struct task_struct *p, int nice)
8037{
8038	struct sched_attr attr = {
8039		.sched_policy = SCHED_NORMAL,
8040		.sched_nice = nice,
8041	};
8042	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8043}
8044EXPORT_SYMBOL_GPL(sched_set_normal);
8045
8046static int
8047do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8048{
8049	struct sched_param lparam;
8050
8051	if (!param || pid < 0)
8052		return -EINVAL;
8053	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8054		return -EFAULT;
8055
8056	CLASS(find_get_task, p)(pid);
8057	if (!p)
8058		return -ESRCH;
8059
8060	return sched_setscheduler(p, policy, &lparam);
8061}
8062
8063/*
8064 * Mimics kernel/events/core.c perf_copy_attr().
8065 */
8066static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8067{
8068	u32 size;
8069	int ret;
8070
8071	/* Zero the full structure, so that a short copy will be nice: */
8072	memset(attr, 0, sizeof(*attr));
8073
8074	ret = get_user(size, &uattr->size);
8075	if (ret)
8076		return ret;
8077
8078	/* ABI compatibility quirk: */
8079	if (!size)
8080		size = SCHED_ATTR_SIZE_VER0;
8081	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8082		goto err_size;
8083
8084	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8085	if (ret) {
8086		if (ret == -E2BIG)
8087			goto err_size;
8088		return ret;
8089	}
8090
8091	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8092	    size < SCHED_ATTR_SIZE_VER1)
8093		return -EINVAL;
8094
8095	/*
8096	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8097	 * to be strict and return an error on out-of-bounds values?
8098	 */
8099	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8100
8101	return 0;
8102
8103err_size:
8104	put_user(sizeof(*attr), &uattr->size);
8105	return -E2BIG;
8106}
8107
8108static void get_params(struct task_struct *p, struct sched_attr *attr)
8109{
8110	if (task_has_dl_policy(p))
8111		__getparam_dl(p, attr);
8112	else if (task_has_rt_policy(p))
8113		attr->sched_priority = p->rt_priority;
8114	else
8115		attr->sched_nice = task_nice(p);
8116}
8117
8118/**
8119 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8120 * @pid: the pid in question.
8121 * @policy: new policy.
8122 * @param: structure containing the new RT priority.
8123 *
8124 * Return: 0 on success. An error code otherwise.
8125 */
8126SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8127{
8128	if (policy < 0)
8129		return -EINVAL;
8130
8131	return do_sched_setscheduler(pid, policy, param);
8132}
8133
8134/**
8135 * sys_sched_setparam - set/change the RT priority of a thread
8136 * @pid: the pid in question.
8137 * @param: structure containing the new RT priority.
8138 *
8139 * Return: 0 on success. An error code otherwise.
8140 */
8141SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8142{
8143	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8144}
8145
8146/**
8147 * sys_sched_setattr - same as above, but with extended sched_attr
8148 * @pid: the pid in question.
8149 * @uattr: structure containing the extended parameters.
8150 * @flags: for future extension.
8151 */
8152SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8153			       unsigned int, flags)
8154{
8155	struct sched_attr attr;
8156	int retval;
8157
8158	if (!uattr || pid < 0 || flags)
8159		return -EINVAL;
8160
8161	retval = sched_copy_attr(uattr, &attr);
8162	if (retval)
8163		return retval;
8164
8165	if ((int)attr.sched_policy < 0)
8166		return -EINVAL;
8167	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8168		attr.sched_policy = SETPARAM_POLICY;
8169
8170	CLASS(find_get_task, p)(pid);
8171	if (!p)
8172		return -ESRCH;
8173
8174	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8175		get_params(p, &attr);
8176
8177	return sched_setattr(p, &attr);
8178}
8179
8180/**
8181 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8182 * @pid: the pid in question.
8183 *
8184 * Return: On success, the policy of the thread. Otherwise, a negative error
8185 * code.
8186 */
8187SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8188{
8189	struct task_struct *p;
8190	int retval;
8191
8192	if (pid < 0)
8193		return -EINVAL;
8194
8195	guard(rcu)();
8196	p = find_process_by_pid(pid);
8197	if (!p)
8198		return -ESRCH;
8199
8200	retval = security_task_getscheduler(p);
8201	if (!retval) {
8202		retval = p->policy;
8203		if (p->sched_reset_on_fork)
8204			retval |= SCHED_RESET_ON_FORK;
8205	}
8206	return retval;
8207}
8208
8209/**
8210 * sys_sched_getparam - get the RT priority of a thread
8211 * @pid: the pid in question.
8212 * @param: structure containing the RT priority.
8213 *
8214 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8215 * code.
8216 */
8217SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8218{
8219	struct sched_param lp = { .sched_priority = 0 };
8220	struct task_struct *p;
8221	int retval;
8222
8223	if (!param || pid < 0)
8224		return -EINVAL;
8225
8226	scoped_guard (rcu) {
8227		p = find_process_by_pid(pid);
8228		if (!p)
8229			return -ESRCH;
8230
8231		retval = security_task_getscheduler(p);
8232		if (retval)
8233			return retval;
8234
8235		if (task_has_rt_policy(p))
8236			lp.sched_priority = p->rt_priority;
8237	}
8238
8239	/*
8240	 * This one might sleep, we cannot do it with a spinlock held ...
8241	 */
8242	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8243}
8244
8245/*
8246 * Copy the kernel size attribute structure (which might be larger
8247 * than what user-space knows about) to user-space.
8248 *
8249 * Note that all cases are valid: user-space buffer can be larger or
8250 * smaller than the kernel-space buffer. The usual case is that both
8251 * have the same size.
8252 */
8253static int
8254sched_attr_copy_to_user(struct sched_attr __user *uattr,
8255			struct sched_attr *kattr,
8256			unsigned int usize)
8257{
8258	unsigned int ksize = sizeof(*kattr);
8259
8260	if (!access_ok(uattr, usize))
8261		return -EFAULT;
8262
8263	/*
8264	 * sched_getattr() ABI forwards and backwards compatibility:
8265	 *
8266	 * If usize == ksize then we just copy everything to user-space and all is good.
8267	 *
8268	 * If usize < ksize then we only copy as much as user-space has space for,
8269	 * this keeps ABI compatibility as well. We skip the rest.
8270	 *
8271	 * If usize > ksize then user-space is using a newer version of the ABI,
8272	 * which part the kernel doesn't know about. Just ignore it - tooling can
8273	 * detect the kernel's knowledge of attributes from the attr->size value
8274	 * which is set to ksize in this case.
8275	 */
8276	kattr->size = min(usize, ksize);
8277
8278	if (copy_to_user(uattr, kattr, kattr->size))
8279		return -EFAULT;
8280
8281	return 0;
8282}
8283
8284/**
8285 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8286 * @pid: the pid in question.
8287 * @uattr: structure containing the extended parameters.
8288 * @usize: sizeof(attr) for fwd/bwd comp.
8289 * @flags: for future extension.
8290 */
8291SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8292		unsigned int, usize, unsigned int, flags)
8293{
8294	struct sched_attr kattr = { };
8295	struct task_struct *p;
8296	int retval;
8297
8298	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8299	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8300		return -EINVAL;
8301
8302	scoped_guard (rcu) {
8303		p = find_process_by_pid(pid);
8304		if (!p)
8305			return -ESRCH;
8306
8307		retval = security_task_getscheduler(p);
8308		if (retval)
8309			return retval;
8310
8311		kattr.sched_policy = p->policy;
8312		if (p->sched_reset_on_fork)
8313			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8314		get_params(p, &kattr);
8315		kattr.sched_flags &= SCHED_FLAG_ALL;
8316
8317#ifdef CONFIG_UCLAMP_TASK
8318		/*
8319		 * This could race with another potential updater, but this is fine
8320		 * because it'll correctly read the old or the new value. We don't need
8321		 * to guarantee who wins the race as long as it doesn't return garbage.
8322		 */
8323		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8324		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8325#endif
8326	}
8327
8328	return sched_attr_copy_to_user(uattr, &kattr, usize);
8329}
8330
8331#ifdef CONFIG_SMP
8332int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8333{
8334	/*
8335	 * If the task isn't a deadline task or admission control is
8336	 * disabled then we don't care about affinity changes.
8337	 */
8338	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8339		return 0;
8340
8341	/*
8342	 * Since bandwidth control happens on root_domain basis,
8343	 * if admission test is enabled, we only admit -deadline
8344	 * tasks allowed to run on all the CPUs in the task's
8345	 * root_domain.
8346	 */
8347	guard(rcu)();
8348	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8349		return -EBUSY;
8350
8351	return 0;
8352}
8353#endif
8354
8355static int
8356__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8357{
8358	int retval;
8359	cpumask_var_t cpus_allowed, new_mask;
8360
8361	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8362		return -ENOMEM;
8363
8364	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8365		retval = -ENOMEM;
8366		goto out_free_cpus_allowed;
8367	}
8368
8369	cpuset_cpus_allowed(p, cpus_allowed);
8370	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8371
8372	ctx->new_mask = new_mask;
8373	ctx->flags |= SCA_CHECK;
8374
8375	retval = dl_task_check_affinity(p, new_mask);
8376	if (retval)
8377		goto out_free_new_mask;
8378
8379	retval = __set_cpus_allowed_ptr(p, ctx);
8380	if (retval)
8381		goto out_free_new_mask;
8382
8383	cpuset_cpus_allowed(p, cpus_allowed);
8384	if (!cpumask_subset(new_mask, cpus_allowed)) {
8385		/*
8386		 * We must have raced with a concurrent cpuset update.
8387		 * Just reset the cpumask to the cpuset's cpus_allowed.
8388		 */
8389		cpumask_copy(new_mask, cpus_allowed);
8390
8391		/*
8392		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8393		 * will restore the previous user_cpus_ptr value.
8394		 *
8395		 * In the unlikely event a previous user_cpus_ptr exists,
8396		 * we need to further restrict the mask to what is allowed
8397		 * by that old user_cpus_ptr.
8398		 */
8399		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8400			bool empty = !cpumask_and(new_mask, new_mask,
8401						  ctx->user_mask);
8402
8403			if (WARN_ON_ONCE(empty))
8404				cpumask_copy(new_mask, cpus_allowed);
8405		}
8406		__set_cpus_allowed_ptr(p, ctx);
8407		retval = -EINVAL;
8408	}
8409
8410out_free_new_mask:
8411	free_cpumask_var(new_mask);
8412out_free_cpus_allowed:
8413	free_cpumask_var(cpus_allowed);
8414	return retval;
8415}
8416
8417long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8418{
8419	struct affinity_context ac;
8420	struct cpumask *user_mask;
8421	int retval;
8422
8423	CLASS(find_get_task, p)(pid);
8424	if (!p)
8425		return -ESRCH;
8426
8427	if (p->flags & PF_NO_SETAFFINITY)
8428		return -EINVAL;
8429
8430	if (!check_same_owner(p)) {
8431		guard(rcu)();
8432		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
8433			return -EPERM;
8434	}
8435
8436	retval = security_task_setscheduler(p);
8437	if (retval)
8438		return retval;
8439
8440	/*
8441	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8442	 * alloc_user_cpus_ptr() returns NULL.
8443	 */
8444	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8445	if (user_mask) {
8446		cpumask_copy(user_mask, in_mask);
8447	} else if (IS_ENABLED(CONFIG_SMP)) {
8448		return -ENOMEM;
8449	}
8450
8451	ac = (struct affinity_context){
8452		.new_mask  = in_mask,
8453		.user_mask = user_mask,
8454		.flags     = SCA_USER,
8455	};
8456
8457	retval = __sched_setaffinity(p, &ac);
8458	kfree(ac.user_mask);
8459
8460	return retval;
8461}
8462
8463static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8464			     struct cpumask *new_mask)
8465{
8466	if (len < cpumask_size())
8467		cpumask_clear(new_mask);
8468	else if (len > cpumask_size())
8469		len = cpumask_size();
8470
8471	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8472}
8473
8474/**
8475 * sys_sched_setaffinity - set the CPU affinity of a process
8476 * @pid: pid of the process
8477 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8478 * @user_mask_ptr: user-space pointer to the new CPU mask
8479 *
8480 * Return: 0 on success. An error code otherwise.
8481 */
8482SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8483		unsigned long __user *, user_mask_ptr)
8484{
8485	cpumask_var_t new_mask;
8486	int retval;
8487
8488	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8489		return -ENOMEM;
8490
8491	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8492	if (retval == 0)
8493		retval = sched_setaffinity(pid, new_mask);
8494	free_cpumask_var(new_mask);
8495	return retval;
8496}
8497
8498long sched_getaffinity(pid_t pid, struct cpumask *mask)
8499{
8500	struct task_struct *p;
8501	int retval;
8502
8503	guard(rcu)();
8504	p = find_process_by_pid(pid);
8505	if (!p)
8506		return -ESRCH;
8507
8508	retval = security_task_getscheduler(p);
8509	if (retval)
8510		return retval;
8511
8512	guard(raw_spinlock_irqsave)(&p->pi_lock);
8513	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8514
8515	return 0;
8516}
8517
8518/**
8519 * sys_sched_getaffinity - get the CPU affinity of a process
8520 * @pid: pid of the process
8521 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8522 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8523 *
8524 * Return: size of CPU mask copied to user_mask_ptr on success. An
8525 * error code otherwise.
8526 */
8527SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8528		unsigned long __user *, user_mask_ptr)
8529{
8530	int ret;
8531	cpumask_var_t mask;
8532
8533	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8534		return -EINVAL;
8535	if (len & (sizeof(unsigned long)-1))
8536		return -EINVAL;
8537
8538	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8539		return -ENOMEM;
8540
8541	ret = sched_getaffinity(pid, mask);
8542	if (ret == 0) {
8543		unsigned int retlen = min(len, cpumask_size());
8544
8545		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8546			ret = -EFAULT;
8547		else
8548			ret = retlen;
8549	}
8550	free_cpumask_var(mask);
8551
8552	return ret;
8553}
8554
8555static void do_sched_yield(void)
8556{
8557	struct rq_flags rf;
8558	struct rq *rq;
8559
8560	rq = this_rq_lock_irq(&rf);
8561
8562	schedstat_inc(rq->yld_count);
8563	current->sched_class->yield_task(rq);
8564
8565	preempt_disable();
8566	rq_unlock_irq(rq, &rf);
8567	sched_preempt_enable_no_resched();
8568
8569	schedule();
8570}
8571
8572/**
8573 * sys_sched_yield - yield the current processor to other threads.
8574 *
8575 * This function yields the current CPU to other tasks. If there are no
8576 * other threads running on this CPU then this function will return.
8577 *
8578 * Return: 0.
8579 */
8580SYSCALL_DEFINE0(sched_yield)
8581{
8582	do_sched_yield();
8583	return 0;
8584}
8585
8586#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8587int __sched __cond_resched(void)
8588{
8589	if (should_resched(0)) {
8590		preempt_schedule_common();
8591		return 1;
8592	}
8593	/*
8594	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8595	 * whether the current CPU is in an RCU read-side critical section,
8596	 * so the tick can report quiescent states even for CPUs looping
8597	 * in kernel context.  In contrast, in non-preemptible kernels,
8598	 * RCU readers leave no in-memory hints, which means that CPU-bound
8599	 * processes executing in kernel context might never report an
8600	 * RCU quiescent state.  Therefore, the following code causes
8601	 * cond_resched() to report a quiescent state, but only when RCU
8602	 * is in urgent need of one.
8603	 */
8604#ifndef CONFIG_PREEMPT_RCU
8605	rcu_all_qs();
8606#endif
8607	return 0;
8608}
8609EXPORT_SYMBOL(__cond_resched);
8610#endif
8611
8612#ifdef CONFIG_PREEMPT_DYNAMIC
8613#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8614#define cond_resched_dynamic_enabled	__cond_resched
8615#define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8616DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8617EXPORT_STATIC_CALL_TRAMP(cond_resched);
8618
8619#define might_resched_dynamic_enabled	__cond_resched
8620#define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8621DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8622EXPORT_STATIC_CALL_TRAMP(might_resched);
8623#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8624static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8625int __sched dynamic_cond_resched(void)
8626{
8627	klp_sched_try_switch();
8628	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8629		return 0;
8630	return __cond_resched();
8631}
8632EXPORT_SYMBOL(dynamic_cond_resched);
8633
8634static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8635int __sched dynamic_might_resched(void)
8636{
8637	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8638		return 0;
8639	return __cond_resched();
8640}
8641EXPORT_SYMBOL(dynamic_might_resched);
8642#endif
8643#endif
8644
8645/*
8646 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8647 * call schedule, and on return reacquire the lock.
8648 *
8649 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8650 * operations here to prevent schedule() from being called twice (once via
8651 * spin_unlock(), once by hand).
8652 */
8653int __cond_resched_lock(spinlock_t *lock)
8654{
8655	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8656	int ret = 0;
8657
8658	lockdep_assert_held(lock);
8659
8660	if (spin_needbreak(lock) || resched) {
8661		spin_unlock(lock);
8662		if (!_cond_resched())
8663			cpu_relax();
8664		ret = 1;
8665		spin_lock(lock);
8666	}
8667	return ret;
8668}
8669EXPORT_SYMBOL(__cond_resched_lock);
8670
8671int __cond_resched_rwlock_read(rwlock_t *lock)
8672{
8673	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8674	int ret = 0;
8675
8676	lockdep_assert_held_read(lock);
8677
8678	if (rwlock_needbreak(lock) || resched) {
8679		read_unlock(lock);
8680		if (!_cond_resched())
8681			cpu_relax();
8682		ret = 1;
8683		read_lock(lock);
8684	}
8685	return ret;
8686}
8687EXPORT_SYMBOL(__cond_resched_rwlock_read);
8688
8689int __cond_resched_rwlock_write(rwlock_t *lock)
8690{
8691	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8692	int ret = 0;
8693
8694	lockdep_assert_held_write(lock);
8695
8696	if (rwlock_needbreak(lock) || resched) {
8697		write_unlock(lock);
8698		if (!_cond_resched())
8699			cpu_relax();
8700		ret = 1;
8701		write_lock(lock);
8702	}
8703	return ret;
8704}
8705EXPORT_SYMBOL(__cond_resched_rwlock_write);
8706
8707#ifdef CONFIG_PREEMPT_DYNAMIC
8708
8709#ifdef CONFIG_GENERIC_ENTRY
8710#include <linux/entry-common.h>
8711#endif
8712
8713/*
8714 * SC:cond_resched
8715 * SC:might_resched
8716 * SC:preempt_schedule
8717 * SC:preempt_schedule_notrace
8718 * SC:irqentry_exit_cond_resched
8719 *
8720 *
8721 * NONE:
8722 *   cond_resched               <- __cond_resched
8723 *   might_resched              <- RET0
8724 *   preempt_schedule           <- NOP
8725 *   preempt_schedule_notrace   <- NOP
8726 *   irqentry_exit_cond_resched <- NOP
8727 *
8728 * VOLUNTARY:
8729 *   cond_resched               <- __cond_resched
8730 *   might_resched              <- __cond_resched
8731 *   preempt_schedule           <- NOP
8732 *   preempt_schedule_notrace   <- NOP
8733 *   irqentry_exit_cond_resched <- NOP
8734 *
8735 * FULL:
8736 *   cond_resched               <- RET0
8737 *   might_resched              <- RET0
8738 *   preempt_schedule           <- preempt_schedule
8739 *   preempt_schedule_notrace   <- preempt_schedule_notrace
8740 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8741 */
8742
8743enum {
8744	preempt_dynamic_undefined = -1,
8745	preempt_dynamic_none,
8746	preempt_dynamic_voluntary,
8747	preempt_dynamic_full,
8748};
8749
8750int preempt_dynamic_mode = preempt_dynamic_undefined;
8751
8752int sched_dynamic_mode(const char *str)
8753{
8754	if (!strcmp(str, "none"))
8755		return preempt_dynamic_none;
8756
8757	if (!strcmp(str, "voluntary"))
8758		return preempt_dynamic_voluntary;
8759
8760	if (!strcmp(str, "full"))
8761		return preempt_dynamic_full;
8762
8763	return -EINVAL;
8764}
8765
8766#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8767#define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8768#define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8769#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8770#define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8771#define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8772#else
8773#error "Unsupported PREEMPT_DYNAMIC mechanism"
8774#endif
8775
8776static DEFINE_MUTEX(sched_dynamic_mutex);
8777static bool klp_override;
8778
8779static void __sched_dynamic_update(int mode)
8780{
8781	/*
8782	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8783	 * the ZERO state, which is invalid.
8784	 */
8785	if (!klp_override)
8786		preempt_dynamic_enable(cond_resched);
8787	preempt_dynamic_enable(might_resched);
8788	preempt_dynamic_enable(preempt_schedule);
8789	preempt_dynamic_enable(preempt_schedule_notrace);
8790	preempt_dynamic_enable(irqentry_exit_cond_resched);
8791
8792	switch (mode) {
8793	case preempt_dynamic_none:
8794		if (!klp_override)
8795			preempt_dynamic_enable(cond_resched);
8796		preempt_dynamic_disable(might_resched);
8797		preempt_dynamic_disable(preempt_schedule);
8798		preempt_dynamic_disable(preempt_schedule_notrace);
8799		preempt_dynamic_disable(irqentry_exit_cond_resched);
8800		if (mode != preempt_dynamic_mode)
8801			pr_info("Dynamic Preempt: none\n");
8802		break;
8803
8804	case preempt_dynamic_voluntary:
8805		if (!klp_override)
8806			preempt_dynamic_enable(cond_resched);
8807		preempt_dynamic_enable(might_resched);
8808		preempt_dynamic_disable(preempt_schedule);
8809		preempt_dynamic_disable(preempt_schedule_notrace);
8810		preempt_dynamic_disable(irqentry_exit_cond_resched);
8811		if (mode != preempt_dynamic_mode)
8812			pr_info("Dynamic Preempt: voluntary\n");
8813		break;
8814
8815	case preempt_dynamic_full:
8816		if (!klp_override)
8817			preempt_dynamic_disable(cond_resched);
8818		preempt_dynamic_disable(might_resched);
8819		preempt_dynamic_enable(preempt_schedule);
8820		preempt_dynamic_enable(preempt_schedule_notrace);
8821		preempt_dynamic_enable(irqentry_exit_cond_resched);
8822		if (mode != preempt_dynamic_mode)
8823			pr_info("Dynamic Preempt: full\n");
8824		break;
8825	}
8826
8827	preempt_dynamic_mode = mode;
8828}
8829
8830void sched_dynamic_update(int mode)
8831{
8832	mutex_lock(&sched_dynamic_mutex);
8833	__sched_dynamic_update(mode);
8834	mutex_unlock(&sched_dynamic_mutex);
8835}
8836
8837#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8838
8839static int klp_cond_resched(void)
8840{
8841	__klp_sched_try_switch();
8842	return __cond_resched();
8843}
8844
8845void sched_dynamic_klp_enable(void)
8846{
8847	mutex_lock(&sched_dynamic_mutex);
8848
8849	klp_override = true;
8850	static_call_update(cond_resched, klp_cond_resched);
8851
8852	mutex_unlock(&sched_dynamic_mutex);
8853}
8854
8855void sched_dynamic_klp_disable(void)
8856{
8857	mutex_lock(&sched_dynamic_mutex);
8858
8859	klp_override = false;
8860	__sched_dynamic_update(preempt_dynamic_mode);
8861
8862	mutex_unlock(&sched_dynamic_mutex);
8863}
8864
8865#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8866
8867static int __init setup_preempt_mode(char *str)
8868{
8869	int mode = sched_dynamic_mode(str);
8870	if (mode < 0) {
8871		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8872		return 0;
8873	}
8874
8875	sched_dynamic_update(mode);
8876	return 1;
8877}
8878__setup("preempt=", setup_preempt_mode);
8879
8880static void __init preempt_dynamic_init(void)
8881{
8882	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8883		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8884			sched_dynamic_update(preempt_dynamic_none);
8885		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8886			sched_dynamic_update(preempt_dynamic_voluntary);
8887		} else {
8888			/* Default static call setting, nothing to do */
8889			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8890			preempt_dynamic_mode = preempt_dynamic_full;
8891			pr_info("Dynamic Preempt: full\n");
8892		}
8893	}
8894}
8895
8896#define PREEMPT_MODEL_ACCESSOR(mode) \
8897	bool preempt_model_##mode(void)						 \
8898	{									 \
8899		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8900		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8901	}									 \
8902	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8903
8904PREEMPT_MODEL_ACCESSOR(none);
8905PREEMPT_MODEL_ACCESSOR(voluntary);
8906PREEMPT_MODEL_ACCESSOR(full);
8907
8908#else /* !CONFIG_PREEMPT_DYNAMIC */
8909
8910static inline void preempt_dynamic_init(void) { }
8911
8912#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8913
8914/**
8915 * yield - yield the current processor to other threads.
8916 *
8917 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8918 *
8919 * The scheduler is at all times free to pick the calling task as the most
8920 * eligible task to run, if removing the yield() call from your code breaks
8921 * it, it's already broken.
8922 *
8923 * Typical broken usage is:
8924 *
8925 * while (!event)
8926 *	yield();
8927 *
8928 * where one assumes that yield() will let 'the other' process run that will
8929 * make event true. If the current task is a SCHED_FIFO task that will never
8930 * happen. Never use yield() as a progress guarantee!!
8931 *
8932 * If you want to use yield() to wait for something, use wait_event().
8933 * If you want to use yield() to be 'nice' for others, use cond_resched().
8934 * If you still want to use yield(), do not!
8935 */
8936void __sched yield(void)
8937{
8938	set_current_state(TASK_RUNNING);
8939	do_sched_yield();
8940}
8941EXPORT_SYMBOL(yield);
8942
8943/**
8944 * yield_to - yield the current processor to another thread in
8945 * your thread group, or accelerate that thread toward the
8946 * processor it's on.
8947 * @p: target task
8948 * @preempt: whether task preemption is allowed or not
8949 *
8950 * It's the caller's job to ensure that the target task struct
8951 * can't go away on us before we can do any checks.
8952 *
8953 * Return:
8954 *	true (>0) if we indeed boosted the target task.
8955 *	false (0) if we failed to boost the target.
8956 *	-ESRCH if there's no task to yield to.
8957 */
8958int __sched yield_to(struct task_struct *p, bool preempt)
8959{
8960	struct task_struct *curr = current;
8961	struct rq *rq, *p_rq;
8962	int yielded = 0;
8963
8964	scoped_guard (irqsave) {
8965		rq = this_rq();
8966
8967again:
8968		p_rq = task_rq(p);
8969		/*
8970		 * If we're the only runnable task on the rq and target rq also
8971		 * has only one task, there's absolutely no point in yielding.
8972		 */
8973		if (rq->nr_running == 1 && p_rq->nr_running == 1)
8974			return -ESRCH;
8975
8976		guard(double_rq_lock)(rq, p_rq);
8977		if (task_rq(p) != p_rq)
8978			goto again;
8979
8980		if (!curr->sched_class->yield_to_task)
8981			return 0;
8982
8983		if (curr->sched_class != p->sched_class)
8984			return 0;
8985
8986		if (task_on_cpu(p_rq, p) || !task_is_running(p))
8987			return 0;
8988
8989		yielded = curr->sched_class->yield_to_task(rq, p);
8990		if (yielded) {
8991			schedstat_inc(rq->yld_count);
8992			/*
8993			 * Make p's CPU reschedule; pick_next_entity
8994			 * takes care of fairness.
8995			 */
8996			if (preempt && rq != p_rq)
8997				resched_curr(p_rq);
8998		}
8999	}
9000
9001	if (yielded)
9002		schedule();
9003
9004	return yielded;
9005}
9006EXPORT_SYMBOL_GPL(yield_to);
9007
9008int io_schedule_prepare(void)
9009{
9010	int old_iowait = current->in_iowait;
9011
9012	current->in_iowait = 1;
9013	blk_flush_plug(current->plug, true);
9014	return old_iowait;
9015}
9016
9017void io_schedule_finish(int token)
9018{
9019	current->in_iowait = token;
9020}
9021
9022/*
9023 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9024 * that process accounting knows that this is a task in IO wait state.
9025 */
9026long __sched io_schedule_timeout(long timeout)
9027{
9028	int token;
9029	long ret;
9030
9031	token = io_schedule_prepare();
9032	ret = schedule_timeout(timeout);
9033	io_schedule_finish(token);
9034
9035	return ret;
9036}
9037EXPORT_SYMBOL(io_schedule_timeout);
9038
9039void __sched io_schedule(void)
9040{
9041	int token;
9042
9043	token = io_schedule_prepare();
9044	schedule();
9045	io_schedule_finish(token);
9046}
9047EXPORT_SYMBOL(io_schedule);
9048
9049/**
9050 * sys_sched_get_priority_max - return maximum RT priority.
9051 * @policy: scheduling class.
9052 *
9053 * Return: On success, this syscall returns the maximum
9054 * rt_priority that can be used by a given scheduling class.
9055 * On failure, a negative error code is returned.
9056 */
9057SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9058{
9059	int ret = -EINVAL;
9060
9061	switch (policy) {
9062	case SCHED_FIFO:
9063	case SCHED_RR:
9064		ret = MAX_RT_PRIO-1;
9065		break;
9066	case SCHED_DEADLINE:
9067	case SCHED_NORMAL:
9068	case SCHED_BATCH:
9069	case SCHED_IDLE:
9070		ret = 0;
9071		break;
9072	}
9073	return ret;
9074}
9075
9076/**
9077 * sys_sched_get_priority_min - return minimum RT priority.
9078 * @policy: scheduling class.
9079 *
9080 * Return: On success, this syscall returns the minimum
9081 * rt_priority that can be used by a given scheduling class.
9082 * On failure, a negative error code is returned.
9083 */
9084SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9085{
9086	int ret = -EINVAL;
9087
9088	switch (policy) {
9089	case SCHED_FIFO:
9090	case SCHED_RR:
9091		ret = 1;
9092		break;
9093	case SCHED_DEADLINE:
9094	case SCHED_NORMAL:
9095	case SCHED_BATCH:
9096	case SCHED_IDLE:
9097		ret = 0;
9098	}
9099	return ret;
9100}
9101
9102static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9103{
9104	unsigned int time_slice = 0;
9105	int retval;
9106
9107	if (pid < 0)
9108		return -EINVAL;
9109
9110	scoped_guard (rcu) {
9111		struct task_struct *p = find_process_by_pid(pid);
9112		if (!p)
9113			return -ESRCH;
9114
9115		retval = security_task_getscheduler(p);
9116		if (retval)
9117			return retval;
9118
9119		scoped_guard (task_rq_lock, p) {
9120			struct rq *rq = scope.rq;
9121			if (p->sched_class->get_rr_interval)
9122				time_slice = p->sched_class->get_rr_interval(rq, p);
9123		}
9124	}
9125
9126	jiffies_to_timespec64(time_slice, t);
9127	return 0;
9128}
9129
9130/**
9131 * sys_sched_rr_get_interval - return the default timeslice of a process.
9132 * @pid: pid of the process.
9133 * @interval: userspace pointer to the timeslice value.
9134 *
9135 * this syscall writes the default timeslice value of a given process
9136 * into the user-space timespec buffer. A value of '0' means infinity.
9137 *
9138 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9139 * an error code.
9140 */
9141SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9142		struct __kernel_timespec __user *, interval)
9143{
9144	struct timespec64 t;
9145	int retval = sched_rr_get_interval(pid, &t);
9146
9147	if (retval == 0)
9148		retval = put_timespec64(&t, interval);
9149
9150	return retval;
9151}
9152
9153#ifdef CONFIG_COMPAT_32BIT_TIME
9154SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9155		struct old_timespec32 __user *, interval)
9156{
9157	struct timespec64 t;
9158	int retval = sched_rr_get_interval(pid, &t);
9159
9160	if (retval == 0)
9161		retval = put_old_timespec32(&t, interval);
9162	return retval;
9163}
9164#endif
9165
9166void sched_show_task(struct task_struct *p)
9167{
9168	unsigned long free = 0;
9169	int ppid;
9170
9171	if (!try_get_task_stack(p))
9172		return;
9173
9174	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9175
9176	if (task_is_running(p))
9177		pr_cont("  running task    ");
9178#ifdef CONFIG_DEBUG_STACK_USAGE
9179	free = stack_not_used(p);
9180#endif
9181	ppid = 0;
9182	rcu_read_lock();
9183	if (pid_alive(p))
9184		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9185	rcu_read_unlock();
9186	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
9187		free, task_pid_nr(p), task_tgid_nr(p),
9188		ppid, read_task_thread_flags(p));
9189
9190	print_worker_info(KERN_INFO, p);
9191	print_stop_info(KERN_INFO, p);
9192	show_stack(p, NULL, KERN_INFO);
9193	put_task_stack(p);
9194}
9195EXPORT_SYMBOL_GPL(sched_show_task);
9196
9197static inline bool
9198state_filter_match(unsigned long state_filter, struct task_struct *p)
9199{
9200	unsigned int state = READ_ONCE(p->__state);
9201
9202	/* no filter, everything matches */
9203	if (!state_filter)
9204		return true;
9205
9206	/* filter, but doesn't match */
9207	if (!(state & state_filter))
9208		return false;
9209
9210	/*
9211	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9212	 * TASK_KILLABLE).
9213	 */
9214	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9215		return false;
9216
9217	return true;
9218}
9219
9220
9221void show_state_filter(unsigned int state_filter)
9222{
9223	struct task_struct *g, *p;
9224
9225	rcu_read_lock();
9226	for_each_process_thread(g, p) {
9227		/*
9228		 * reset the NMI-timeout, listing all files on a slow
9229		 * console might take a lot of time:
9230		 * Also, reset softlockup watchdogs on all CPUs, because
9231		 * another CPU might be blocked waiting for us to process
9232		 * an IPI.
9233		 */
9234		touch_nmi_watchdog();
9235		touch_all_softlockup_watchdogs();
9236		if (state_filter_match(state_filter, p))
9237			sched_show_task(p);
9238	}
9239
9240#ifdef CONFIG_SCHED_DEBUG
9241	if (!state_filter)
9242		sysrq_sched_debug_show();
9243#endif
9244	rcu_read_unlock();
9245	/*
9246	 * Only show locks if all tasks are dumped:
9247	 */
9248	if (!state_filter)
9249		debug_show_all_locks();
9250}
9251
9252/**
9253 * init_idle - set up an idle thread for a given CPU
9254 * @idle: task in question
9255 * @cpu: CPU the idle task belongs to
9256 *
9257 * NOTE: this function does not set the idle thread's NEED_RESCHED
9258 * flag, to make booting more robust.
9259 */
9260void __init init_idle(struct task_struct *idle, int cpu)
9261{
9262#ifdef CONFIG_SMP
9263	struct affinity_context ac = (struct affinity_context) {
9264		.new_mask  = cpumask_of(cpu),
9265		.flags     = 0,
9266	};
9267#endif
9268	struct rq *rq = cpu_rq(cpu);
9269	unsigned long flags;
9270
9271	__sched_fork(0, idle);
9272
9273	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9274	raw_spin_rq_lock(rq);
9275
9276	idle->__state = TASK_RUNNING;
9277	idle->se.exec_start = sched_clock();
9278	/*
9279	 * PF_KTHREAD should already be set at this point; regardless, make it
9280	 * look like a proper per-CPU kthread.
9281	 */
9282	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9283	kthread_set_per_cpu(idle, cpu);
9284
9285#ifdef CONFIG_SMP
9286	/*
9287	 * It's possible that init_idle() gets called multiple times on a task,
9288	 * in that case do_set_cpus_allowed() will not do the right thing.
9289	 *
9290	 * And since this is boot we can forgo the serialization.
9291	 */
9292	set_cpus_allowed_common(idle, &ac);
9293#endif
9294	/*
9295	 * We're having a chicken and egg problem, even though we are
9296	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9297	 * lockdep check in task_group() will fail.
9298	 *
9299	 * Similar case to sched_fork(). / Alternatively we could
9300	 * use task_rq_lock() here and obtain the other rq->lock.
9301	 *
9302	 * Silence PROVE_RCU
9303	 */
9304	rcu_read_lock();
9305	__set_task_cpu(idle, cpu);
9306	rcu_read_unlock();
9307
9308	rq->idle = idle;
9309	rcu_assign_pointer(rq->curr, idle);
9310	idle->on_rq = TASK_ON_RQ_QUEUED;
9311#ifdef CONFIG_SMP
9312	idle->on_cpu = 1;
9313#endif
9314	raw_spin_rq_unlock(rq);
9315	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9316
9317	/* Set the preempt count _outside_ the spinlocks! */
9318	init_idle_preempt_count(idle, cpu);
9319
9320	/*
9321	 * The idle tasks have their own, simple scheduling class:
9322	 */
9323	idle->sched_class = &idle_sched_class;
9324	ftrace_graph_init_idle_task(idle, cpu);
9325	vtime_init_idle(idle, cpu);
9326#ifdef CONFIG_SMP
9327	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9328#endif
9329}
9330
9331#ifdef CONFIG_SMP
9332
9333int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9334			      const struct cpumask *trial)
9335{
9336	int ret = 1;
9337
9338	if (cpumask_empty(cur))
9339		return ret;
9340
9341	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9342
9343	return ret;
9344}
9345
9346int task_can_attach(struct task_struct *p)
9347{
9348	int ret = 0;
9349
9350	/*
9351	 * Kthreads which disallow setaffinity shouldn't be moved
9352	 * to a new cpuset; we don't want to change their CPU
9353	 * affinity and isolating such threads by their set of
9354	 * allowed nodes is unnecessary.  Thus, cpusets are not
9355	 * applicable for such threads.  This prevents checking for
9356	 * success of set_cpus_allowed_ptr() on all attached tasks
9357	 * before cpus_mask may be changed.
9358	 */
9359	if (p->flags & PF_NO_SETAFFINITY)
9360		ret = -EINVAL;
9361
9362	return ret;
9363}
9364
9365bool sched_smp_initialized __read_mostly;
9366
9367#ifdef CONFIG_NUMA_BALANCING
9368/* Migrate current task p to target_cpu */
9369int migrate_task_to(struct task_struct *p, int target_cpu)
9370{
9371	struct migration_arg arg = { p, target_cpu };
9372	int curr_cpu = task_cpu(p);
9373
9374	if (curr_cpu == target_cpu)
9375		return 0;
9376
9377	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9378		return -EINVAL;
9379
9380	/* TODO: This is not properly updating schedstats */
9381
9382	trace_sched_move_numa(p, curr_cpu, target_cpu);
9383	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9384}
9385
9386/*
9387 * Requeue a task on a given node and accurately track the number of NUMA
9388 * tasks on the runqueues
9389 */
9390void sched_setnuma(struct task_struct *p, int nid)
9391{
9392	bool queued, running;
9393	struct rq_flags rf;
9394	struct rq *rq;
9395
9396	rq = task_rq_lock(p, &rf);
9397	queued = task_on_rq_queued(p);
9398	running = task_current(rq, p);
9399
9400	if (queued)
9401		dequeue_task(rq, p, DEQUEUE_SAVE);
9402	if (running)
9403		put_prev_task(rq, p);
9404
9405	p->numa_preferred_nid = nid;
9406
9407	if (queued)
9408		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9409	if (running)
9410		set_next_task(rq, p);
9411	task_rq_unlock(rq, p, &rf);
9412}
9413#endif /* CONFIG_NUMA_BALANCING */
9414
9415#ifdef CONFIG_HOTPLUG_CPU
9416/*
9417 * Ensure that the idle task is using init_mm right before its CPU goes
9418 * offline.
9419 */
9420void idle_task_exit(void)
9421{
9422	struct mm_struct *mm = current->active_mm;
9423
9424	BUG_ON(cpu_online(smp_processor_id()));
9425	BUG_ON(current != this_rq()->idle);
9426
9427	if (mm != &init_mm) {
9428		switch_mm(mm, &init_mm, current);
9429		finish_arch_post_lock_switch();
9430	}
9431
9432	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9433}
9434
9435static int __balance_push_cpu_stop(void *arg)
9436{
9437	struct task_struct *p = arg;
9438	struct rq *rq = this_rq();
9439	struct rq_flags rf;
9440	int cpu;
9441
9442	raw_spin_lock_irq(&p->pi_lock);
9443	rq_lock(rq, &rf);
9444
9445	update_rq_clock(rq);
9446
9447	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9448		cpu = select_fallback_rq(rq->cpu, p);
9449		rq = __migrate_task(rq, &rf, p, cpu);
9450	}
9451
9452	rq_unlock(rq, &rf);
9453	raw_spin_unlock_irq(&p->pi_lock);
9454
9455	put_task_struct(p);
9456
9457	return 0;
9458}
9459
9460static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9461
9462/*
9463 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9464 *
9465 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9466 * effective when the hotplug motion is down.
9467 */
9468static void balance_push(struct rq *rq)
9469{
9470	struct task_struct *push_task = rq->curr;
9471
9472	lockdep_assert_rq_held(rq);
9473
9474	/*
9475	 * Ensure the thing is persistent until balance_push_set(.on = false);
9476	 */
9477	rq->balance_callback = &balance_push_callback;
9478
9479	/*
9480	 * Only active while going offline and when invoked on the outgoing
9481	 * CPU.
9482	 */
9483	if (!cpu_dying(rq->cpu) || rq != this_rq())
9484		return;
9485
9486	/*
9487	 * Both the cpu-hotplug and stop task are in this case and are
9488	 * required to complete the hotplug process.
9489	 */
9490	if (kthread_is_per_cpu(push_task) ||
9491	    is_migration_disabled(push_task)) {
9492
9493		/*
9494		 * If this is the idle task on the outgoing CPU try to wake
9495		 * up the hotplug control thread which might wait for the
9496		 * last task to vanish. The rcuwait_active() check is
9497		 * accurate here because the waiter is pinned on this CPU
9498		 * and can't obviously be running in parallel.
9499		 *
9500		 * On RT kernels this also has to check whether there are
9501		 * pinned and scheduled out tasks on the runqueue. They
9502		 * need to leave the migrate disabled section first.
9503		 */
9504		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9505		    rcuwait_active(&rq->hotplug_wait)) {
9506			raw_spin_rq_unlock(rq);
9507			rcuwait_wake_up(&rq->hotplug_wait);
9508			raw_spin_rq_lock(rq);
9509		}
9510		return;
9511	}
9512
9513	get_task_struct(push_task);
9514	/*
9515	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9516	 * Both preemption and IRQs are still disabled.
9517	 */
9518	preempt_disable();
9519	raw_spin_rq_unlock(rq);
9520	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9521			    this_cpu_ptr(&push_work));
9522	preempt_enable();
9523	/*
9524	 * At this point need_resched() is true and we'll take the loop in
9525	 * schedule(). The next pick is obviously going to be the stop task
9526	 * which kthread_is_per_cpu() and will push this task away.
9527	 */
9528	raw_spin_rq_lock(rq);
9529}
9530
9531static void balance_push_set(int cpu, bool on)
9532{
9533	struct rq *rq = cpu_rq(cpu);
9534	struct rq_flags rf;
9535
9536	rq_lock_irqsave(rq, &rf);
9537	if (on) {
9538		WARN_ON_ONCE(rq->balance_callback);
9539		rq->balance_callback = &balance_push_callback;
9540	} else if (rq->balance_callback == &balance_push_callback) {
9541		rq->balance_callback = NULL;
9542	}
9543	rq_unlock_irqrestore(rq, &rf);
9544}
9545
9546/*
9547 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9548 * inactive. All tasks which are not per CPU kernel threads are either
9549 * pushed off this CPU now via balance_push() or placed on a different CPU
9550 * during wakeup. Wait until the CPU is quiescent.
9551 */
9552static void balance_hotplug_wait(void)
9553{
9554	struct rq *rq = this_rq();
9555
9556	rcuwait_wait_event(&rq->hotplug_wait,
9557			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9558			   TASK_UNINTERRUPTIBLE);
9559}
9560
9561#else
9562
9563static inline void balance_push(struct rq *rq)
9564{
9565}
9566
9567static inline void balance_push_set(int cpu, bool on)
9568{
9569}
9570
9571static inline void balance_hotplug_wait(void)
9572{
9573}
9574
9575#endif /* CONFIG_HOTPLUG_CPU */
9576
9577void set_rq_online(struct rq *rq)
9578{
9579	if (!rq->online) {
9580		const struct sched_class *class;
9581
9582		cpumask_set_cpu(rq->cpu, rq->rd->online);
9583		rq->online = 1;
9584
9585		for_each_class(class) {
9586			if (class->rq_online)
9587				class->rq_online(rq);
9588		}
9589	}
9590}
9591
9592void set_rq_offline(struct rq *rq)
9593{
9594	if (rq->online) {
9595		const struct sched_class *class;
9596
9597		update_rq_clock(rq);
9598		for_each_class(class) {
9599			if (class->rq_offline)
9600				class->rq_offline(rq);
9601		}
9602
9603		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9604		rq->online = 0;
9605	}
9606}
9607
9608/*
9609 * used to mark begin/end of suspend/resume:
9610 */
9611static int num_cpus_frozen;
9612
9613/*
9614 * Update cpusets according to cpu_active mask.  If cpusets are
9615 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9616 * around partition_sched_domains().
9617 *
9618 * If we come here as part of a suspend/resume, don't touch cpusets because we
9619 * want to restore it back to its original state upon resume anyway.
9620 */
9621static void cpuset_cpu_active(void)
9622{
9623	if (cpuhp_tasks_frozen) {
9624		/*
9625		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9626		 * resume sequence. As long as this is not the last online
9627		 * operation in the resume sequence, just build a single sched
9628		 * domain, ignoring cpusets.
9629		 */
9630		partition_sched_domains(1, NULL, NULL);
9631		if (--num_cpus_frozen)
9632			return;
9633		/*
9634		 * This is the last CPU online operation. So fall through and
9635		 * restore the original sched domains by considering the
9636		 * cpuset configurations.
9637		 */
9638		cpuset_force_rebuild();
9639	}
9640	cpuset_update_active_cpus();
9641}
9642
9643static int cpuset_cpu_inactive(unsigned int cpu)
9644{
9645	if (!cpuhp_tasks_frozen) {
9646		int ret = dl_bw_check_overflow(cpu);
9647
9648		if (ret)
9649			return ret;
9650		cpuset_update_active_cpus();
9651	} else {
9652		num_cpus_frozen++;
9653		partition_sched_domains(1, NULL, NULL);
9654	}
9655	return 0;
9656}
9657
9658int sched_cpu_activate(unsigned int cpu)
9659{
9660	struct rq *rq = cpu_rq(cpu);
9661	struct rq_flags rf;
9662
9663	/*
9664	 * Clear the balance_push callback and prepare to schedule
9665	 * regular tasks.
9666	 */
9667	balance_push_set(cpu, false);
9668
9669#ifdef CONFIG_SCHED_SMT
9670	/*
9671	 * When going up, increment the number of cores with SMT present.
9672	 */
9673	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9674		static_branch_inc_cpuslocked(&sched_smt_present);
9675#endif
9676	set_cpu_active(cpu, true);
9677
9678	if (sched_smp_initialized) {
9679		sched_update_numa(cpu, true);
9680		sched_domains_numa_masks_set(cpu);
9681		cpuset_cpu_active();
9682	}
9683
9684	/*
9685	 * Put the rq online, if not already. This happens:
9686	 *
9687	 * 1) In the early boot process, because we build the real domains
9688	 *    after all CPUs have been brought up.
9689	 *
9690	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9691	 *    domains.
9692	 */
9693	rq_lock_irqsave(rq, &rf);
9694	if (rq->rd) {
9695		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9696		set_rq_online(rq);
9697	}
9698	rq_unlock_irqrestore(rq, &rf);
9699
9700	return 0;
9701}
9702
9703int sched_cpu_deactivate(unsigned int cpu)
9704{
9705	struct rq *rq = cpu_rq(cpu);
9706	struct rq_flags rf;
9707	int ret;
9708
9709	/*
9710	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9711	 * load balancing when not active
9712	 */
9713	nohz_balance_exit_idle(rq);
9714
9715	set_cpu_active(cpu, false);
9716
9717	/*
9718	 * From this point forward, this CPU will refuse to run any task that
9719	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9720	 * push those tasks away until this gets cleared, see
9721	 * sched_cpu_dying().
9722	 */
9723	balance_push_set(cpu, true);
9724
9725	/*
9726	 * We've cleared cpu_active_mask / set balance_push, wait for all
9727	 * preempt-disabled and RCU users of this state to go away such that
9728	 * all new such users will observe it.
9729	 *
9730	 * Specifically, we rely on ttwu to no longer target this CPU, see
9731	 * ttwu_queue_cond() and is_cpu_allowed().
9732	 *
9733	 * Do sync before park smpboot threads to take care the rcu boost case.
9734	 */
9735	synchronize_rcu();
9736
9737	rq_lock_irqsave(rq, &rf);
9738	if (rq->rd) {
9739		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9740		set_rq_offline(rq);
9741	}
9742	rq_unlock_irqrestore(rq, &rf);
9743
9744#ifdef CONFIG_SCHED_SMT
9745	/*
9746	 * When going down, decrement the number of cores with SMT present.
9747	 */
9748	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9749		static_branch_dec_cpuslocked(&sched_smt_present);
9750
9751	sched_core_cpu_deactivate(cpu);
9752#endif
9753
9754	if (!sched_smp_initialized)
9755		return 0;
9756
9757	sched_update_numa(cpu, false);
9758	ret = cpuset_cpu_inactive(cpu);
9759	if (ret) {
9760		balance_push_set(cpu, false);
9761		set_cpu_active(cpu, true);
9762		sched_update_numa(cpu, true);
9763		return ret;
9764	}
9765	sched_domains_numa_masks_clear(cpu);
9766	return 0;
9767}
9768
9769static void sched_rq_cpu_starting(unsigned int cpu)
9770{
9771	struct rq *rq = cpu_rq(cpu);
9772
9773	rq->calc_load_update = calc_load_update;
9774	update_max_interval();
9775}
9776
9777int sched_cpu_starting(unsigned int cpu)
9778{
9779	sched_core_cpu_starting(cpu);
9780	sched_rq_cpu_starting(cpu);
9781	sched_tick_start(cpu);
9782	return 0;
9783}
9784
9785#ifdef CONFIG_HOTPLUG_CPU
9786
9787/*
9788 * Invoked immediately before the stopper thread is invoked to bring the
9789 * CPU down completely. At this point all per CPU kthreads except the
9790 * hotplug thread (current) and the stopper thread (inactive) have been
9791 * either parked or have been unbound from the outgoing CPU. Ensure that
9792 * any of those which might be on the way out are gone.
9793 *
9794 * If after this point a bound task is being woken on this CPU then the
9795 * responsible hotplug callback has failed to do it's job.
9796 * sched_cpu_dying() will catch it with the appropriate fireworks.
9797 */
9798int sched_cpu_wait_empty(unsigned int cpu)
9799{
9800	balance_hotplug_wait();
9801	return 0;
9802}
9803
9804/*
9805 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9806 * might have. Called from the CPU stopper task after ensuring that the
9807 * stopper is the last running task on the CPU, so nr_active count is
9808 * stable. We need to take the teardown thread which is calling this into
9809 * account, so we hand in adjust = 1 to the load calculation.
9810 *
9811 * Also see the comment "Global load-average calculations".
9812 */
9813static void calc_load_migrate(struct rq *rq)
9814{
9815	long delta = calc_load_fold_active(rq, 1);
9816
9817	if (delta)
9818		atomic_long_add(delta, &calc_load_tasks);
9819}
9820
9821static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9822{
9823	struct task_struct *g, *p;
9824	int cpu = cpu_of(rq);
9825
9826	lockdep_assert_rq_held(rq);
9827
9828	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9829	for_each_process_thread(g, p) {
9830		if (task_cpu(p) != cpu)
9831			continue;
9832
9833		if (!task_on_rq_queued(p))
9834			continue;
9835
9836		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9837	}
9838}
9839
9840int sched_cpu_dying(unsigned int cpu)
9841{
9842	struct rq *rq = cpu_rq(cpu);
9843	struct rq_flags rf;
9844
9845	/* Handle pending wakeups and then migrate everything off */
9846	sched_tick_stop(cpu);
9847
9848	rq_lock_irqsave(rq, &rf);
9849	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9850		WARN(true, "Dying CPU not properly vacated!");
9851		dump_rq_tasks(rq, KERN_WARNING);
9852	}
9853	rq_unlock_irqrestore(rq, &rf);
9854
9855	calc_load_migrate(rq);
9856	update_max_interval();
9857	hrtick_clear(rq);
9858	sched_core_cpu_dying(cpu);
9859	return 0;
9860}
9861#endif
9862
9863void __init sched_init_smp(void)
9864{
9865	sched_init_numa(NUMA_NO_NODE);
9866
9867	/*
9868	 * There's no userspace yet to cause hotplug operations; hence all the
9869	 * CPU masks are stable and all blatant races in the below code cannot
9870	 * happen.
9871	 */
9872	mutex_lock(&sched_domains_mutex);
9873	sched_init_domains(cpu_active_mask);
9874	mutex_unlock(&sched_domains_mutex);
9875
9876	/* Move init over to a non-isolated CPU */
9877	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9878		BUG();
9879	current->flags &= ~PF_NO_SETAFFINITY;
9880	sched_init_granularity();
9881
9882	init_sched_rt_class();
9883	init_sched_dl_class();
9884
9885	sched_smp_initialized = true;
9886}
9887
9888static int __init migration_init(void)
9889{
9890	sched_cpu_starting(smp_processor_id());
9891	return 0;
9892}
9893early_initcall(migration_init);
9894
9895#else
9896void __init sched_init_smp(void)
9897{
9898	sched_init_granularity();
9899}
9900#endif /* CONFIG_SMP */
9901
9902int in_sched_functions(unsigned long addr)
9903{
9904	return in_lock_functions(addr) ||
9905		(addr >= (unsigned long)__sched_text_start
9906		&& addr < (unsigned long)__sched_text_end);
9907}
9908
9909#ifdef CONFIG_CGROUP_SCHED
9910/*
9911 * Default task group.
9912 * Every task in system belongs to this group at bootup.
9913 */
9914struct task_group root_task_group;
9915LIST_HEAD(task_groups);
9916
9917/* Cacheline aligned slab cache for task_group */
9918static struct kmem_cache *task_group_cache __ro_after_init;
9919#endif
9920
9921void __init sched_init(void)
9922{
9923	unsigned long ptr = 0;
9924	int i;
9925
9926	/* Make sure the linker didn't screw up */
9927	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9928	       &fair_sched_class != &rt_sched_class + 1 ||
9929	       &rt_sched_class   != &dl_sched_class + 1);
9930#ifdef CONFIG_SMP
9931	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9932#endif
9933
9934	wait_bit_init();
9935
9936#ifdef CONFIG_FAIR_GROUP_SCHED
9937	ptr += 2 * nr_cpu_ids * sizeof(void **);
9938#endif
9939#ifdef CONFIG_RT_GROUP_SCHED
9940	ptr += 2 * nr_cpu_ids * sizeof(void **);
9941#endif
9942	if (ptr) {
9943		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9944
9945#ifdef CONFIG_FAIR_GROUP_SCHED
9946		root_task_group.se = (struct sched_entity **)ptr;
9947		ptr += nr_cpu_ids * sizeof(void **);
9948
9949		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9950		ptr += nr_cpu_ids * sizeof(void **);
9951
9952		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9953		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9954#endif /* CONFIG_FAIR_GROUP_SCHED */
9955#ifdef CONFIG_RT_GROUP_SCHED
9956		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9957		ptr += nr_cpu_ids * sizeof(void **);
9958
9959		root_task_group.rt_rq = (struct rt_rq **)ptr;
9960		ptr += nr_cpu_ids * sizeof(void **);
9961
9962#endif /* CONFIG_RT_GROUP_SCHED */
9963	}
9964
9965	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9966
9967#ifdef CONFIG_SMP
9968	init_defrootdomain();
9969#endif
9970
9971#ifdef CONFIG_RT_GROUP_SCHED
9972	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9973			global_rt_period(), global_rt_runtime());
9974#endif /* CONFIG_RT_GROUP_SCHED */
9975
9976#ifdef CONFIG_CGROUP_SCHED
9977	task_group_cache = KMEM_CACHE(task_group, 0);
9978
9979	list_add(&root_task_group.list, &task_groups);
9980	INIT_LIST_HEAD(&root_task_group.children);
9981	INIT_LIST_HEAD(&root_task_group.siblings);
9982	autogroup_init(&init_task);
9983#endif /* CONFIG_CGROUP_SCHED */
9984
9985	for_each_possible_cpu(i) {
9986		struct rq *rq;
9987
9988		rq = cpu_rq(i);
9989		raw_spin_lock_init(&rq->__lock);
9990		rq->nr_running = 0;
9991		rq->calc_load_active = 0;
9992		rq->calc_load_update = jiffies + LOAD_FREQ;
9993		init_cfs_rq(&rq->cfs);
9994		init_rt_rq(&rq->rt);
9995		init_dl_rq(&rq->dl);
9996#ifdef CONFIG_FAIR_GROUP_SCHED
9997		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9998		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9999		/*
10000		 * How much CPU bandwidth does root_task_group get?
10001		 *
10002		 * In case of task-groups formed thr' the cgroup filesystem, it
10003		 * gets 100% of the CPU resources in the system. This overall
10004		 * system CPU resource is divided among the tasks of
10005		 * root_task_group and its child task-groups in a fair manner,
10006		 * based on each entity's (task or task-group's) weight
10007		 * (se->load.weight).
10008		 *
10009		 * In other words, if root_task_group has 10 tasks of weight
10010		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10011		 * then A0's share of the CPU resource is:
10012		 *
10013		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10014		 *
10015		 * We achieve this by letting root_task_group's tasks sit
10016		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10017		 */
10018		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10019#endif /* CONFIG_FAIR_GROUP_SCHED */
10020
10021		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10022#ifdef CONFIG_RT_GROUP_SCHED
10023		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10024#endif
10025#ifdef CONFIG_SMP
10026		rq->sd = NULL;
10027		rq->rd = NULL;
10028		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
10029		rq->balance_callback = &balance_push_callback;
10030		rq->active_balance = 0;
10031		rq->next_balance = jiffies;
10032		rq->push_cpu = 0;
10033		rq->cpu = i;
10034		rq->online = 0;
10035		rq->idle_stamp = 0;
10036		rq->avg_idle = 2*sysctl_sched_migration_cost;
10037		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10038
10039		INIT_LIST_HEAD(&rq->cfs_tasks);
10040
10041		rq_attach_root(rq, &def_root_domain);
10042#ifdef CONFIG_NO_HZ_COMMON
10043		rq->last_blocked_load_update_tick = jiffies;
10044		atomic_set(&rq->nohz_flags, 0);
10045
10046		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10047#endif
10048#ifdef CONFIG_HOTPLUG_CPU
10049		rcuwait_init(&rq->hotplug_wait);
10050#endif
10051#endif /* CONFIG_SMP */
10052		hrtick_rq_init(rq);
10053		atomic_set(&rq->nr_iowait, 0);
10054
10055#ifdef CONFIG_SCHED_CORE
10056		rq->core = rq;
10057		rq->core_pick = NULL;
10058		rq->core_enabled = 0;
10059		rq->core_tree = RB_ROOT;
10060		rq->core_forceidle_count = 0;
10061		rq->core_forceidle_occupation = 0;
10062		rq->core_forceidle_start = 0;
10063
10064		rq->core_cookie = 0UL;
10065#endif
10066		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10067	}
10068
10069	set_load_weight(&init_task, false);
10070
10071	/*
10072	 * The boot idle thread does lazy MMU switching as well:
10073	 */
10074	mmgrab_lazy_tlb(&init_mm);
10075	enter_lazy_tlb(&init_mm, current);
10076
10077	/*
10078	 * The idle task doesn't need the kthread struct to function, but it
10079	 * is dressed up as a per-CPU kthread and thus needs to play the part
10080	 * if we want to avoid special-casing it in code that deals with per-CPU
10081	 * kthreads.
10082	 */
10083	WARN_ON(!set_kthread_struct(current));
10084
10085	/*
10086	 * Make us the idle thread. Technically, schedule() should not be
10087	 * called from this thread, however somewhere below it might be,
10088	 * but because we are the idle thread, we just pick up running again
10089	 * when this runqueue becomes "idle".
10090	 */
10091	init_idle(current, smp_processor_id());
10092
10093	calc_load_update = jiffies + LOAD_FREQ;
10094
10095#ifdef CONFIG_SMP
10096	idle_thread_set_boot_cpu();
10097	balance_push_set(smp_processor_id(), false);
10098#endif
10099	init_sched_fair_class();
10100
10101	psi_init();
10102
10103	init_uclamp();
10104
10105	preempt_dynamic_init();
10106
10107	scheduler_running = 1;
10108}
10109
10110#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10111
10112void __might_sleep(const char *file, int line)
10113{
10114	unsigned int state = get_current_state();
10115	/*
10116	 * Blocking primitives will set (and therefore destroy) current->state,
10117	 * since we will exit with TASK_RUNNING make sure we enter with it,
10118	 * otherwise we will destroy state.
10119	 */
10120	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10121			"do not call blocking ops when !TASK_RUNNING; "
10122			"state=%x set at [<%p>] %pS\n", state,
10123			(void *)current->task_state_change,
10124			(void *)current->task_state_change);
10125
10126	__might_resched(file, line, 0);
10127}
10128EXPORT_SYMBOL(__might_sleep);
10129
10130static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10131{
10132	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10133		return;
10134
10135	if (preempt_count() == preempt_offset)
10136		return;
10137
10138	pr_err("Preemption disabled at:");
10139	print_ip_sym(KERN_ERR, ip);
10140}
10141
10142static inline bool resched_offsets_ok(unsigned int offsets)
10143{
10144	unsigned int nested = preempt_count();
10145
10146	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10147
10148	return nested == offsets;
10149}
10150
10151void __might_resched(const char *file, int line, unsigned int offsets)
10152{
10153	/* Ratelimiting timestamp: */
10154	static unsigned long prev_jiffy;
10155
10156	unsigned long preempt_disable_ip;
10157
10158	/* WARN_ON_ONCE() by default, no rate limit required: */
10159	rcu_sleep_check();
10160
10161	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10162	     !is_idle_task(current) && !current->non_block_count) ||
10163	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10164	    oops_in_progress)
10165		return;
10166
10167	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10168		return;
10169	prev_jiffy = jiffies;
10170
10171	/* Save this before calling printk(), since that will clobber it: */
10172	preempt_disable_ip = get_preempt_disable_ip(current);
10173
10174	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10175	       file, line);
10176	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10177	       in_atomic(), irqs_disabled(), current->non_block_count,
10178	       current->pid, current->comm);
10179	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10180	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10181
10182	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10183		pr_err("RCU nest depth: %d, expected: %u\n",
10184		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10185	}
10186
10187	if (task_stack_end_corrupted(current))
10188		pr_emerg("Thread overran stack, or stack corrupted\n");
10189
10190	debug_show_held_locks(current);
10191	if (irqs_disabled())
10192		print_irqtrace_events(current);
10193
10194	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10195				 preempt_disable_ip);
10196
10197	dump_stack();
10198	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10199}
10200EXPORT_SYMBOL(__might_resched);
10201
10202void __cant_sleep(const char *file, int line, int preempt_offset)
10203{
10204	static unsigned long prev_jiffy;
10205
10206	if (irqs_disabled())
10207		return;
10208
10209	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10210		return;
10211
10212	if (preempt_count() > preempt_offset)
10213		return;
10214
10215	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10216		return;
10217	prev_jiffy = jiffies;
10218
10219	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10220	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10221			in_atomic(), irqs_disabled(),
10222			current->pid, current->comm);
10223
10224	debug_show_held_locks(current);
10225	dump_stack();
10226	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10227}
10228EXPORT_SYMBOL_GPL(__cant_sleep);
10229
10230#ifdef CONFIG_SMP
10231void __cant_migrate(const char *file, int line)
10232{
10233	static unsigned long prev_jiffy;
10234
10235	if (irqs_disabled())
10236		return;
10237
10238	if (is_migration_disabled(current))
10239		return;
10240
10241	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10242		return;
10243
10244	if (preempt_count() > 0)
10245		return;
10246
10247	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10248		return;
10249	prev_jiffy = jiffies;
10250
10251	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10252	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10253	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10254	       current->pid, current->comm);
10255
10256	debug_show_held_locks(current);
10257	dump_stack();
10258	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10259}
10260EXPORT_SYMBOL_GPL(__cant_migrate);
10261#endif
10262#endif
10263
10264#ifdef CONFIG_MAGIC_SYSRQ
10265void normalize_rt_tasks(void)
10266{
10267	struct task_struct *g, *p;
10268	struct sched_attr attr = {
10269		.sched_policy = SCHED_NORMAL,
10270	};
10271
10272	read_lock(&tasklist_lock);
10273	for_each_process_thread(g, p) {
10274		/*
10275		 * Only normalize user tasks:
10276		 */
10277		if (p->flags & PF_KTHREAD)
10278			continue;
10279
10280		p->se.exec_start = 0;
10281		schedstat_set(p->stats.wait_start,  0);
10282		schedstat_set(p->stats.sleep_start, 0);
10283		schedstat_set(p->stats.block_start, 0);
10284
10285		if (!dl_task(p) && !rt_task(p)) {
10286			/*
10287			 * Renice negative nice level userspace
10288			 * tasks back to 0:
10289			 */
10290			if (task_nice(p) < 0)
10291				set_user_nice(p, 0);
10292			continue;
10293		}
10294
10295		__sched_setscheduler(p, &attr, false, false);
10296	}
10297	read_unlock(&tasklist_lock);
10298}
10299
10300#endif /* CONFIG_MAGIC_SYSRQ */
10301
10302#if defined(CONFIG_KGDB_KDB)
10303/*
10304 * These functions are only useful for kdb.
10305 *
10306 * They can only be called when the whole system has been
10307 * stopped - every CPU needs to be quiescent, and no scheduling
10308 * activity can take place. Using them for anything else would
10309 * be a serious bug, and as a result, they aren't even visible
10310 * under any other configuration.
10311 */
10312
10313/**
10314 * curr_task - return the current task for a given CPU.
10315 * @cpu: the processor in question.
10316 *
10317 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10318 *
10319 * Return: The current task for @cpu.
10320 */
10321struct task_struct *curr_task(int cpu)
10322{
10323	return cpu_curr(cpu);
10324}
10325
10326#endif /* defined(CONFIG_KGDB_KDB) */
10327
10328#ifdef CONFIG_CGROUP_SCHED
10329/* task_group_lock serializes the addition/removal of task groups */
10330static DEFINE_SPINLOCK(task_group_lock);
10331
10332static inline void alloc_uclamp_sched_group(struct task_group *tg,
10333					    struct task_group *parent)
10334{
10335#ifdef CONFIG_UCLAMP_TASK_GROUP
10336	enum uclamp_id clamp_id;
10337
10338	for_each_clamp_id(clamp_id) {
10339		uclamp_se_set(&tg->uclamp_req[clamp_id],
10340			      uclamp_none(clamp_id), false);
10341		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10342	}
10343#endif
10344}
10345
10346static void sched_free_group(struct task_group *tg)
10347{
10348	free_fair_sched_group(tg);
10349	free_rt_sched_group(tg);
10350	autogroup_free(tg);
10351	kmem_cache_free(task_group_cache, tg);
10352}
10353
10354static void sched_free_group_rcu(struct rcu_head *rcu)
10355{
10356	sched_free_group(container_of(rcu, struct task_group, rcu));
10357}
10358
10359static void sched_unregister_group(struct task_group *tg)
10360{
10361	unregister_fair_sched_group(tg);
10362	unregister_rt_sched_group(tg);
10363	/*
10364	 * We have to wait for yet another RCU grace period to expire, as
10365	 * print_cfs_stats() might run concurrently.
10366	 */
10367	call_rcu(&tg->rcu, sched_free_group_rcu);
10368}
10369
10370/* allocate runqueue etc for a new task group */
10371struct task_group *sched_create_group(struct task_group *parent)
10372{
10373	struct task_group *tg;
10374
10375	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10376	if (!tg)
10377		return ERR_PTR(-ENOMEM);
10378
10379	if (!alloc_fair_sched_group(tg, parent))
10380		goto err;
10381
10382	if (!alloc_rt_sched_group(tg, parent))
10383		goto err;
10384
10385	alloc_uclamp_sched_group(tg, parent);
10386
10387	return tg;
10388
10389err:
10390	sched_free_group(tg);
10391	return ERR_PTR(-ENOMEM);
10392}
10393
10394void sched_online_group(struct task_group *tg, struct task_group *parent)
10395{
10396	unsigned long flags;
10397
10398	spin_lock_irqsave(&task_group_lock, flags);
10399	list_add_rcu(&tg->list, &task_groups);
10400
10401	/* Root should already exist: */
10402	WARN_ON(!parent);
10403
10404	tg->parent = parent;
10405	INIT_LIST_HEAD(&tg->children);
10406	list_add_rcu(&tg->siblings, &parent->children);
10407	spin_unlock_irqrestore(&task_group_lock, flags);
10408
10409	online_fair_sched_group(tg);
10410}
10411
10412/* rcu callback to free various structures associated with a task group */
10413static void sched_unregister_group_rcu(struct rcu_head *rhp)
10414{
10415	/* Now it should be safe to free those cfs_rqs: */
10416	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10417}
10418
10419void sched_destroy_group(struct task_group *tg)
10420{
10421	/* Wait for possible concurrent references to cfs_rqs complete: */
10422	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10423}
10424
10425void sched_release_group(struct task_group *tg)
10426{
10427	unsigned long flags;
10428
10429	/*
10430	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10431	 * sched_cfs_period_timer()).
10432	 *
10433	 * For this to be effective, we have to wait for all pending users of
10434	 * this task group to leave their RCU critical section to ensure no new
10435	 * user will see our dying task group any more. Specifically ensure
10436	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10437	 *
10438	 * We therefore defer calling unregister_fair_sched_group() to
10439	 * sched_unregister_group() which is guarantied to get called only after the
10440	 * current RCU grace period has expired.
10441	 */
10442	spin_lock_irqsave(&task_group_lock, flags);
10443	list_del_rcu(&tg->list);
10444	list_del_rcu(&tg->siblings);
10445	spin_unlock_irqrestore(&task_group_lock, flags);
10446}
10447
10448static struct task_group *sched_get_task_group(struct task_struct *tsk)
10449{
10450	struct task_group *tg;
10451
10452	/*
10453	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10454	 * which is pointless here. Thus, we pass "true" to task_css_check()
10455	 * to prevent lockdep warnings.
10456	 */
10457	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10458			  struct task_group, css);
10459	tg = autogroup_task_group(tsk, tg);
10460
10461	return tg;
10462}
10463
10464static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10465{
10466	tsk->sched_task_group = group;
10467
10468#ifdef CONFIG_FAIR_GROUP_SCHED
10469	if (tsk->sched_class->task_change_group)
10470		tsk->sched_class->task_change_group(tsk);
10471	else
10472#endif
10473		set_task_rq(tsk, task_cpu(tsk));
10474}
10475
10476/*
10477 * Change task's runqueue when it moves between groups.
10478 *
10479 * The caller of this function should have put the task in its new group by
10480 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10481 * its new group.
10482 */
10483void sched_move_task(struct task_struct *tsk)
10484{
10485	int queued, running, queue_flags =
10486		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10487	struct task_group *group;
10488	struct rq *rq;
10489
10490	CLASS(task_rq_lock, rq_guard)(tsk);
10491	rq = rq_guard.rq;
10492
10493	/*
10494	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10495	 * group changes.
10496	 */
10497	group = sched_get_task_group(tsk);
10498	if (group == tsk->sched_task_group)
10499		return;
10500
10501	update_rq_clock(rq);
10502
10503	running = task_current(rq, tsk);
10504	queued = task_on_rq_queued(tsk);
10505
10506	if (queued)
10507		dequeue_task(rq, tsk, queue_flags);
10508	if (running)
10509		put_prev_task(rq, tsk);
10510
10511	sched_change_group(tsk, group);
10512
10513	if (queued)
10514		enqueue_task(rq, tsk, queue_flags);
10515	if (running) {
10516		set_next_task(rq, tsk);
10517		/*
10518		 * After changing group, the running task may have joined a
10519		 * throttled one but it's still the running task. Trigger a
10520		 * resched to make sure that task can still run.
10521		 */
10522		resched_curr(rq);
10523	}
10524}
10525
10526static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10527{
10528	return css ? container_of(css, struct task_group, css) : NULL;
10529}
10530
10531static struct cgroup_subsys_state *
10532cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10533{
10534	struct task_group *parent = css_tg(parent_css);
10535	struct task_group *tg;
10536
10537	if (!parent) {
10538		/* This is early initialization for the top cgroup */
10539		return &root_task_group.css;
10540	}
10541
10542	tg = sched_create_group(parent);
10543	if (IS_ERR(tg))
10544		return ERR_PTR(-ENOMEM);
10545
10546	return &tg->css;
10547}
10548
10549/* Expose task group only after completing cgroup initialization */
10550static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10551{
10552	struct task_group *tg = css_tg(css);
10553	struct task_group *parent = css_tg(css->parent);
10554
10555	if (parent)
10556		sched_online_group(tg, parent);
10557
10558#ifdef CONFIG_UCLAMP_TASK_GROUP
10559	/* Propagate the effective uclamp value for the new group */
10560	guard(mutex)(&uclamp_mutex);
10561	guard(rcu)();
10562	cpu_util_update_eff(css);
10563#endif
10564
10565	return 0;
10566}
10567
10568static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10569{
10570	struct task_group *tg = css_tg(css);
10571
10572	sched_release_group(tg);
10573}
10574
10575static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10576{
10577	struct task_group *tg = css_tg(css);
10578
10579	/*
10580	 * Relies on the RCU grace period between css_released() and this.
10581	 */
10582	sched_unregister_group(tg);
10583}
10584
10585#ifdef CONFIG_RT_GROUP_SCHED
10586static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10587{
10588	struct task_struct *task;
10589	struct cgroup_subsys_state *css;
10590
10591	cgroup_taskset_for_each(task, css, tset) {
10592		if (!sched_rt_can_attach(css_tg(css), task))
10593			return -EINVAL;
10594	}
10595	return 0;
10596}
10597#endif
10598
10599static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10600{
10601	struct task_struct *task;
10602	struct cgroup_subsys_state *css;
10603
10604	cgroup_taskset_for_each(task, css, tset)
10605		sched_move_task(task);
10606}
10607
10608#ifdef CONFIG_UCLAMP_TASK_GROUP
10609static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10610{
10611	struct cgroup_subsys_state *top_css = css;
10612	struct uclamp_se *uc_parent = NULL;
10613	struct uclamp_se *uc_se = NULL;
10614	unsigned int eff[UCLAMP_CNT];
10615	enum uclamp_id clamp_id;
10616	unsigned int clamps;
10617
10618	lockdep_assert_held(&uclamp_mutex);
10619	SCHED_WARN_ON(!rcu_read_lock_held());
10620
10621	css_for_each_descendant_pre(css, top_css) {
10622		uc_parent = css_tg(css)->parent
10623			? css_tg(css)->parent->uclamp : NULL;
10624
10625		for_each_clamp_id(clamp_id) {
10626			/* Assume effective clamps matches requested clamps */
10627			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10628			/* Cap effective clamps with parent's effective clamps */
10629			if (uc_parent &&
10630			    eff[clamp_id] > uc_parent[clamp_id].value) {
10631				eff[clamp_id] = uc_parent[clamp_id].value;
10632			}
10633		}
10634		/* Ensure protection is always capped by limit */
10635		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10636
10637		/* Propagate most restrictive effective clamps */
10638		clamps = 0x0;
10639		uc_se = css_tg(css)->uclamp;
10640		for_each_clamp_id(clamp_id) {
10641			if (eff[clamp_id] == uc_se[clamp_id].value)
10642				continue;
10643			uc_se[clamp_id].value = eff[clamp_id];
10644			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10645			clamps |= (0x1 << clamp_id);
10646		}
10647		if (!clamps) {
10648			css = css_rightmost_descendant(css);
10649			continue;
10650		}
10651
10652		/* Immediately update descendants RUNNABLE tasks */
10653		uclamp_update_active_tasks(css);
10654	}
10655}
10656
10657/*
10658 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10659 * C expression. Since there is no way to convert a macro argument (N) into a
10660 * character constant, use two levels of macros.
10661 */
10662#define _POW10(exp) ((unsigned int)1e##exp)
10663#define POW10(exp) _POW10(exp)
10664
10665struct uclamp_request {
10666#define UCLAMP_PERCENT_SHIFT	2
10667#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10668	s64 percent;
10669	u64 util;
10670	int ret;
10671};
10672
10673static inline struct uclamp_request
10674capacity_from_percent(char *buf)
10675{
10676	struct uclamp_request req = {
10677		.percent = UCLAMP_PERCENT_SCALE,
10678		.util = SCHED_CAPACITY_SCALE,
10679		.ret = 0,
10680	};
10681
10682	buf = strim(buf);
10683	if (strcmp(buf, "max")) {
10684		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10685					     &req.percent);
10686		if (req.ret)
10687			return req;
10688		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10689			req.ret = -ERANGE;
10690			return req;
10691		}
10692
10693		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10694		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10695	}
10696
10697	return req;
10698}
10699
10700static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10701				size_t nbytes, loff_t off,
10702				enum uclamp_id clamp_id)
10703{
10704	struct uclamp_request req;
10705	struct task_group *tg;
10706
10707	req = capacity_from_percent(buf);
10708	if (req.ret)
10709		return req.ret;
10710
10711	static_branch_enable(&sched_uclamp_used);
10712
10713	guard(mutex)(&uclamp_mutex);
10714	guard(rcu)();
10715
10716	tg = css_tg(of_css(of));
10717	if (tg->uclamp_req[clamp_id].value != req.util)
10718		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10719
10720	/*
10721	 * Because of not recoverable conversion rounding we keep track of the
10722	 * exact requested value
10723	 */
10724	tg->uclamp_pct[clamp_id] = req.percent;
10725
10726	/* Update effective clamps to track the most restrictive value */
10727	cpu_util_update_eff(of_css(of));
10728
10729	return nbytes;
10730}
10731
10732static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10733				    char *buf, size_t nbytes,
10734				    loff_t off)
10735{
10736	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10737}
10738
10739static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10740				    char *buf, size_t nbytes,
10741				    loff_t off)
10742{
10743	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10744}
10745
10746static inline void cpu_uclamp_print(struct seq_file *sf,
10747				    enum uclamp_id clamp_id)
10748{
10749	struct task_group *tg;
10750	u64 util_clamp;
10751	u64 percent;
10752	u32 rem;
10753
10754	scoped_guard (rcu) {
10755		tg = css_tg(seq_css(sf));
10756		util_clamp = tg->uclamp_req[clamp_id].value;
10757	}
10758
10759	if (util_clamp == SCHED_CAPACITY_SCALE) {
10760		seq_puts(sf, "max\n");
10761		return;
10762	}
10763
10764	percent = tg->uclamp_pct[clamp_id];
10765	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10766	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10767}
10768
10769static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10770{
10771	cpu_uclamp_print(sf, UCLAMP_MIN);
10772	return 0;
10773}
10774
10775static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10776{
10777	cpu_uclamp_print(sf, UCLAMP_MAX);
10778	return 0;
10779}
10780#endif /* CONFIG_UCLAMP_TASK_GROUP */
10781
10782#ifdef CONFIG_FAIR_GROUP_SCHED
10783static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10784				struct cftype *cftype, u64 shareval)
10785{
10786	if (shareval > scale_load_down(ULONG_MAX))
10787		shareval = MAX_SHARES;
10788	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10789}
10790
10791static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10792			       struct cftype *cft)
10793{
10794	struct task_group *tg = css_tg(css);
10795
10796	return (u64) scale_load_down(tg->shares);
10797}
10798
10799#ifdef CONFIG_CFS_BANDWIDTH
10800static DEFINE_MUTEX(cfs_constraints_mutex);
10801
10802const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10803static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10804/* More than 203 days if BW_SHIFT equals 20. */
10805static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10806
10807static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10808
10809static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10810				u64 burst)
10811{
10812	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10813	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10814
10815	if (tg == &root_task_group)
10816		return -EINVAL;
10817
10818	/*
10819	 * Ensure we have at some amount of bandwidth every period.  This is
10820	 * to prevent reaching a state of large arrears when throttled via
10821	 * entity_tick() resulting in prolonged exit starvation.
10822	 */
10823	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10824		return -EINVAL;
10825
10826	/*
10827	 * Likewise, bound things on the other side by preventing insane quota
10828	 * periods.  This also allows us to normalize in computing quota
10829	 * feasibility.
10830	 */
10831	if (period > max_cfs_quota_period)
10832		return -EINVAL;
10833
10834	/*
10835	 * Bound quota to defend quota against overflow during bandwidth shift.
10836	 */
10837	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10838		return -EINVAL;
10839
10840	if (quota != RUNTIME_INF && (burst > quota ||
10841				     burst + quota > max_cfs_runtime))
10842		return -EINVAL;
10843
10844	/*
10845	 * Prevent race between setting of cfs_rq->runtime_enabled and
10846	 * unthrottle_offline_cfs_rqs().
10847	 */
10848	guard(cpus_read_lock)();
10849	guard(mutex)(&cfs_constraints_mutex);
10850
10851	ret = __cfs_schedulable(tg, period, quota);
10852	if (ret)
10853		return ret;
10854
10855	runtime_enabled = quota != RUNTIME_INF;
10856	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10857	/*
10858	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10859	 * before making related changes, and on->off must occur afterwards
10860	 */
10861	if (runtime_enabled && !runtime_was_enabled)
10862		cfs_bandwidth_usage_inc();
10863
10864	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10865		cfs_b->period = ns_to_ktime(period);
10866		cfs_b->quota = quota;
10867		cfs_b->burst = burst;
10868
10869		__refill_cfs_bandwidth_runtime(cfs_b);
10870
10871		/*
10872		 * Restart the period timer (if active) to handle new
10873		 * period expiry:
10874		 */
10875		if (runtime_enabled)
10876			start_cfs_bandwidth(cfs_b);
10877	}
10878
10879	for_each_online_cpu(i) {
10880		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10881		struct rq *rq = cfs_rq->rq;
10882
10883		guard(rq_lock_irq)(rq);
10884		cfs_rq->runtime_enabled = runtime_enabled;
10885		cfs_rq->runtime_remaining = 0;
10886
10887		if (cfs_rq->throttled)
10888			unthrottle_cfs_rq(cfs_rq);
10889	}
10890
10891	if (runtime_was_enabled && !runtime_enabled)
10892		cfs_bandwidth_usage_dec();
10893
10894	return 0;
10895}
10896
10897static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10898{
10899	u64 quota, period, burst;
10900
10901	period = ktime_to_ns(tg->cfs_bandwidth.period);
10902	burst = tg->cfs_bandwidth.burst;
10903	if (cfs_quota_us < 0)
10904		quota = RUNTIME_INF;
10905	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10906		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10907	else
10908		return -EINVAL;
10909
10910	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10911}
10912
10913static long tg_get_cfs_quota(struct task_group *tg)
10914{
10915	u64 quota_us;
10916
10917	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10918		return -1;
10919
10920	quota_us = tg->cfs_bandwidth.quota;
10921	do_div(quota_us, NSEC_PER_USEC);
10922
10923	return quota_us;
10924}
10925
10926static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10927{
10928	u64 quota, period, burst;
10929
10930	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10931		return -EINVAL;
10932
10933	period = (u64)cfs_period_us * NSEC_PER_USEC;
10934	quota = tg->cfs_bandwidth.quota;
10935	burst = tg->cfs_bandwidth.burst;
10936
10937	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10938}
10939
10940static long tg_get_cfs_period(struct task_group *tg)
10941{
10942	u64 cfs_period_us;
10943
10944	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10945	do_div(cfs_period_us, NSEC_PER_USEC);
10946
10947	return cfs_period_us;
10948}
10949
10950static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10951{
10952	u64 quota, period, burst;
10953
10954	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10955		return -EINVAL;
10956
10957	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10958	period = ktime_to_ns(tg->cfs_bandwidth.period);
10959	quota = tg->cfs_bandwidth.quota;
10960
10961	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10962}
10963
10964static long tg_get_cfs_burst(struct task_group *tg)
10965{
10966	u64 burst_us;
10967
10968	burst_us = tg->cfs_bandwidth.burst;
10969	do_div(burst_us, NSEC_PER_USEC);
10970
10971	return burst_us;
10972}
10973
10974static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10975				  struct cftype *cft)
10976{
10977	return tg_get_cfs_quota(css_tg(css));
10978}
10979
10980static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10981				   struct cftype *cftype, s64 cfs_quota_us)
10982{
10983	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10984}
10985
10986static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10987				   struct cftype *cft)
10988{
10989	return tg_get_cfs_period(css_tg(css));
10990}
10991
10992static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10993				    struct cftype *cftype, u64 cfs_period_us)
10994{
10995	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10996}
10997
10998static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10999				  struct cftype *cft)
11000{
11001	return tg_get_cfs_burst(css_tg(css));
11002}
11003
11004static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11005				   struct cftype *cftype, u64 cfs_burst_us)
11006{
11007	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11008}
11009
11010struct cfs_schedulable_data {
11011	struct task_group *tg;
11012	u64 period, quota;
11013};
11014
11015/*
11016 * normalize group quota/period to be quota/max_period
11017 * note: units are usecs
11018 */
11019static u64 normalize_cfs_quota(struct task_group *tg,
11020			       struct cfs_schedulable_data *d)
11021{
11022	u64 quota, period;
11023
11024	if (tg == d->tg) {
11025		period = d->period;
11026		quota = d->quota;
11027	} else {
11028		period = tg_get_cfs_period(tg);
11029		quota = tg_get_cfs_quota(tg);
11030	}
11031
11032	/* note: these should typically be equivalent */
11033	if (quota == RUNTIME_INF || quota == -1)
11034		return RUNTIME_INF;
11035
11036	return to_ratio(period, quota);
11037}
11038
11039static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11040{
11041	struct cfs_schedulable_data *d = data;
11042	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11043	s64 quota = 0, parent_quota = -1;
11044
11045	if (!tg->parent) {
11046		quota = RUNTIME_INF;
11047	} else {
11048		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11049
11050		quota = normalize_cfs_quota(tg, d);
11051		parent_quota = parent_b->hierarchical_quota;
11052
11053		/*
11054		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11055		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11056		 * inherit when no limit is set. In both cases this is used
11057		 * by the scheduler to determine if a given CFS task has a
11058		 * bandwidth constraint at some higher level.
11059		 */
11060		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11061			if (quota == RUNTIME_INF)
11062				quota = parent_quota;
11063			else if (parent_quota != RUNTIME_INF)
11064				quota = min(quota, parent_quota);
11065		} else {
11066			if (quota == RUNTIME_INF)
11067				quota = parent_quota;
11068			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11069				return -EINVAL;
11070		}
11071	}
11072	cfs_b->hierarchical_quota = quota;
11073
11074	return 0;
11075}
11076
11077static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11078{
11079	struct cfs_schedulable_data data = {
11080		.tg = tg,
11081		.period = period,
11082		.quota = quota,
11083	};
11084
11085	if (quota != RUNTIME_INF) {
11086		do_div(data.period, NSEC_PER_USEC);
11087		do_div(data.quota, NSEC_PER_USEC);
11088	}
11089
11090	guard(rcu)();
11091	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11092}
11093
11094static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11095{
11096	struct task_group *tg = css_tg(seq_css(sf));
11097	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11098
11099	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11100	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11101	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11102
11103	if (schedstat_enabled() && tg != &root_task_group) {
11104		struct sched_statistics *stats;
11105		u64 ws = 0;
11106		int i;
11107
11108		for_each_possible_cpu(i) {
11109			stats = __schedstats_from_se(tg->se[i]);
11110			ws += schedstat_val(stats->wait_sum);
11111		}
11112
11113		seq_printf(sf, "wait_sum %llu\n", ws);
11114	}
11115
11116	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11117	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11118
11119	return 0;
11120}
11121
11122static u64 throttled_time_self(struct task_group *tg)
11123{
11124	int i;
11125	u64 total = 0;
11126
11127	for_each_possible_cpu(i) {
11128		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11129	}
11130
11131	return total;
11132}
11133
11134static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11135{
11136	struct task_group *tg = css_tg(seq_css(sf));
11137
11138	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11139
11140	return 0;
11141}
11142#endif /* CONFIG_CFS_BANDWIDTH */
11143#endif /* CONFIG_FAIR_GROUP_SCHED */
11144
11145#ifdef CONFIG_RT_GROUP_SCHED
11146static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11147				struct cftype *cft, s64 val)
11148{
11149	return sched_group_set_rt_runtime(css_tg(css), val);
11150}
11151
11152static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11153			       struct cftype *cft)
11154{
11155	return sched_group_rt_runtime(css_tg(css));
11156}
11157
11158static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11159				    struct cftype *cftype, u64 rt_period_us)
11160{
11161	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11162}
11163
11164static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11165				   struct cftype *cft)
11166{
11167	return sched_group_rt_period(css_tg(css));
11168}
11169#endif /* CONFIG_RT_GROUP_SCHED */
11170
11171#ifdef CONFIG_FAIR_GROUP_SCHED
11172static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11173			       struct cftype *cft)
11174{
11175	return css_tg(css)->idle;
11176}
11177
11178static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11179				struct cftype *cft, s64 idle)
11180{
11181	return sched_group_set_idle(css_tg(css), idle);
11182}
11183#endif
11184
11185static struct cftype cpu_legacy_files[] = {
11186#ifdef CONFIG_FAIR_GROUP_SCHED
11187	{
11188		.name = "shares",
11189		.read_u64 = cpu_shares_read_u64,
11190		.write_u64 = cpu_shares_write_u64,
11191	},
11192	{
11193		.name = "idle",
11194		.read_s64 = cpu_idle_read_s64,
11195		.write_s64 = cpu_idle_write_s64,
11196	},
11197#endif
11198#ifdef CONFIG_CFS_BANDWIDTH
11199	{
11200		.name = "cfs_quota_us",
11201		.read_s64 = cpu_cfs_quota_read_s64,
11202		.write_s64 = cpu_cfs_quota_write_s64,
11203	},
11204	{
11205		.name = "cfs_period_us",
11206		.read_u64 = cpu_cfs_period_read_u64,
11207		.write_u64 = cpu_cfs_period_write_u64,
11208	},
11209	{
11210		.name = "cfs_burst_us",
11211		.read_u64 = cpu_cfs_burst_read_u64,
11212		.write_u64 = cpu_cfs_burst_write_u64,
11213	},
11214	{
11215		.name = "stat",
11216		.seq_show = cpu_cfs_stat_show,
11217	},
11218	{
11219		.name = "stat.local",
11220		.seq_show = cpu_cfs_local_stat_show,
11221	},
11222#endif
11223#ifdef CONFIG_RT_GROUP_SCHED
11224	{
11225		.name = "rt_runtime_us",
11226		.read_s64 = cpu_rt_runtime_read,
11227		.write_s64 = cpu_rt_runtime_write,
11228	},
11229	{
11230		.name = "rt_period_us",
11231		.read_u64 = cpu_rt_period_read_uint,
11232		.write_u64 = cpu_rt_period_write_uint,
11233	},
11234#endif
11235#ifdef CONFIG_UCLAMP_TASK_GROUP
11236	{
11237		.name = "uclamp.min",
11238		.flags = CFTYPE_NOT_ON_ROOT,
11239		.seq_show = cpu_uclamp_min_show,
11240		.write = cpu_uclamp_min_write,
11241	},
11242	{
11243		.name = "uclamp.max",
11244		.flags = CFTYPE_NOT_ON_ROOT,
11245		.seq_show = cpu_uclamp_max_show,
11246		.write = cpu_uclamp_max_write,
11247	},
11248#endif
11249	{ }	/* Terminate */
11250};
11251
11252static int cpu_extra_stat_show(struct seq_file *sf,
11253			       struct cgroup_subsys_state *css)
11254{
11255#ifdef CONFIG_CFS_BANDWIDTH
11256	{
11257		struct task_group *tg = css_tg(css);
11258		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11259		u64 throttled_usec, burst_usec;
11260
11261		throttled_usec = cfs_b->throttled_time;
11262		do_div(throttled_usec, NSEC_PER_USEC);
11263		burst_usec = cfs_b->burst_time;
11264		do_div(burst_usec, NSEC_PER_USEC);
11265
11266		seq_printf(sf, "nr_periods %d\n"
11267			   "nr_throttled %d\n"
11268			   "throttled_usec %llu\n"
11269			   "nr_bursts %d\n"
11270			   "burst_usec %llu\n",
11271			   cfs_b->nr_periods, cfs_b->nr_throttled,
11272			   throttled_usec, cfs_b->nr_burst, burst_usec);
11273	}
11274#endif
11275	return 0;
11276}
11277
11278static int cpu_local_stat_show(struct seq_file *sf,
11279			       struct cgroup_subsys_state *css)
11280{
11281#ifdef CONFIG_CFS_BANDWIDTH
11282	{
11283		struct task_group *tg = css_tg(css);
11284		u64 throttled_self_usec;
11285
11286		throttled_self_usec = throttled_time_self(tg);
11287		do_div(throttled_self_usec, NSEC_PER_USEC);
11288
11289		seq_printf(sf, "throttled_usec %llu\n",
11290			   throttled_self_usec);
11291	}
11292#endif
11293	return 0;
11294}
11295
11296#ifdef CONFIG_FAIR_GROUP_SCHED
11297static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11298			       struct cftype *cft)
11299{
11300	struct task_group *tg = css_tg(css);
11301	u64 weight = scale_load_down(tg->shares);
11302
11303	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11304}
11305
11306static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11307				struct cftype *cft, u64 weight)
11308{
11309	/*
11310	 * cgroup weight knobs should use the common MIN, DFL and MAX
11311	 * values which are 1, 100 and 10000 respectively.  While it loses
11312	 * a bit of range on both ends, it maps pretty well onto the shares
11313	 * value used by scheduler and the round-trip conversions preserve
11314	 * the original value over the entire range.
11315	 */
11316	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11317		return -ERANGE;
11318
11319	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11320
11321	return sched_group_set_shares(css_tg(css), scale_load(weight));
11322}
11323
11324static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11325				    struct cftype *cft)
11326{
11327	unsigned long weight = scale_load_down(css_tg(css)->shares);
11328	int last_delta = INT_MAX;
11329	int prio, delta;
11330
11331	/* find the closest nice value to the current weight */
11332	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11333		delta = abs(sched_prio_to_weight[prio] - weight);
11334		if (delta >= last_delta)
11335			break;
11336		last_delta = delta;
11337	}
11338
11339	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11340}
11341
11342static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11343				     struct cftype *cft, s64 nice)
11344{
11345	unsigned long weight;
11346	int idx;
11347
11348	if (nice < MIN_NICE || nice > MAX_NICE)
11349		return -ERANGE;
11350
11351	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11352	idx = array_index_nospec(idx, 40);
11353	weight = sched_prio_to_weight[idx];
11354
11355	return sched_group_set_shares(css_tg(css), scale_load(weight));
11356}
11357#endif
11358
11359static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11360						  long period, long quota)
11361{
11362	if (quota < 0)
11363		seq_puts(sf, "max");
11364	else
11365		seq_printf(sf, "%ld", quota);
11366
11367	seq_printf(sf, " %ld\n", period);
11368}
11369
11370/* caller should put the current value in *@periodp before calling */
11371static int __maybe_unused cpu_period_quota_parse(char *buf,
11372						 u64 *periodp, u64 *quotap)
11373{
11374	char tok[21];	/* U64_MAX */
11375
11376	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11377		return -EINVAL;
11378
11379	*periodp *= NSEC_PER_USEC;
11380
11381	if (sscanf(tok, "%llu", quotap))
11382		*quotap *= NSEC_PER_USEC;
11383	else if (!strcmp(tok, "max"))
11384		*quotap = RUNTIME_INF;
11385	else
11386		return -EINVAL;
11387
11388	return 0;
11389}
11390
11391#ifdef CONFIG_CFS_BANDWIDTH
11392static int cpu_max_show(struct seq_file *sf, void *v)
11393{
11394	struct task_group *tg = css_tg(seq_css(sf));
11395
11396	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11397	return 0;
11398}
11399
11400static ssize_t cpu_max_write(struct kernfs_open_file *of,
11401			     char *buf, size_t nbytes, loff_t off)
11402{
11403	struct task_group *tg = css_tg(of_css(of));
11404	u64 period = tg_get_cfs_period(tg);
11405	u64 burst = tg_get_cfs_burst(tg);
11406	u64 quota;
11407	int ret;
11408
11409	ret = cpu_period_quota_parse(buf, &period, &quota);
11410	if (!ret)
11411		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11412	return ret ?: nbytes;
11413}
11414#endif
11415
11416static struct cftype cpu_files[] = {
11417#ifdef CONFIG_FAIR_GROUP_SCHED
11418	{
11419		.name = "weight",
11420		.flags = CFTYPE_NOT_ON_ROOT,
11421		.read_u64 = cpu_weight_read_u64,
11422		.write_u64 = cpu_weight_write_u64,
11423	},
11424	{
11425		.name = "weight.nice",
11426		.flags = CFTYPE_NOT_ON_ROOT,
11427		.read_s64 = cpu_weight_nice_read_s64,
11428		.write_s64 = cpu_weight_nice_write_s64,
11429	},
11430	{
11431		.name = "idle",
11432		.flags = CFTYPE_NOT_ON_ROOT,
11433		.read_s64 = cpu_idle_read_s64,
11434		.write_s64 = cpu_idle_write_s64,
11435	},
11436#endif
11437#ifdef CONFIG_CFS_BANDWIDTH
11438	{
11439		.name = "max",
11440		.flags = CFTYPE_NOT_ON_ROOT,
11441		.seq_show = cpu_max_show,
11442		.write = cpu_max_write,
11443	},
11444	{
11445		.name = "max.burst",
11446		.flags = CFTYPE_NOT_ON_ROOT,
11447		.read_u64 = cpu_cfs_burst_read_u64,
11448		.write_u64 = cpu_cfs_burst_write_u64,
11449	},
11450#endif
11451#ifdef CONFIG_UCLAMP_TASK_GROUP
11452	{
11453		.name = "uclamp.min",
11454		.flags = CFTYPE_NOT_ON_ROOT,
11455		.seq_show = cpu_uclamp_min_show,
11456		.write = cpu_uclamp_min_write,
11457	},
11458	{
11459		.name = "uclamp.max",
11460		.flags = CFTYPE_NOT_ON_ROOT,
11461		.seq_show = cpu_uclamp_max_show,
11462		.write = cpu_uclamp_max_write,
11463	},
11464#endif
11465	{ }	/* terminate */
11466};
11467
11468struct cgroup_subsys cpu_cgrp_subsys = {
11469	.css_alloc	= cpu_cgroup_css_alloc,
11470	.css_online	= cpu_cgroup_css_online,
11471	.css_released	= cpu_cgroup_css_released,
11472	.css_free	= cpu_cgroup_css_free,
11473	.css_extra_stat_show = cpu_extra_stat_show,
11474	.css_local_stat_show = cpu_local_stat_show,
11475#ifdef CONFIG_RT_GROUP_SCHED
11476	.can_attach	= cpu_cgroup_can_attach,
11477#endif
11478	.attach		= cpu_cgroup_attach,
11479	.legacy_cftypes	= cpu_legacy_files,
11480	.dfl_cftypes	= cpu_files,
11481	.early_init	= true,
11482	.threaded	= true,
11483};
11484
11485#endif	/* CONFIG_CGROUP_SCHED */
11486
11487void dump_cpu_task(int cpu)
11488{
11489	if (cpu == smp_processor_id() && in_hardirq()) {
11490		struct pt_regs *regs;
11491
11492		regs = get_irq_regs();
11493		if (regs) {
11494			show_regs(regs);
11495			return;
11496		}
11497	}
11498
11499	if (trigger_single_cpu_backtrace(cpu))
11500		return;
11501
11502	pr_info("Task dump for CPU %d:\n", cpu);
11503	sched_show_task(cpu_curr(cpu));
11504}
11505
11506/*
11507 * Nice levels are multiplicative, with a gentle 10% change for every
11508 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11509 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11510 * that remained on nice 0.
11511 *
11512 * The "10% effect" is relative and cumulative: from _any_ nice level,
11513 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11514 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11515 * If a task goes up by ~10% and another task goes down by ~10% then
11516 * the relative distance between them is ~25%.)
11517 */
11518const int sched_prio_to_weight[40] = {
11519 /* -20 */     88761,     71755,     56483,     46273,     36291,
11520 /* -15 */     29154,     23254,     18705,     14949,     11916,
11521 /* -10 */      9548,      7620,      6100,      4904,      3906,
11522 /*  -5 */      3121,      2501,      1991,      1586,      1277,
11523 /*   0 */      1024,       820,       655,       526,       423,
11524 /*   5 */       335,       272,       215,       172,       137,
11525 /*  10 */       110,        87,        70,        56,        45,
11526 /*  15 */        36,        29,        23,        18,        15,
11527};
11528
11529/*
11530 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11531 *
11532 * In cases where the weight does not change often, we can use the
11533 * precalculated inverse to speed up arithmetics by turning divisions
11534 * into multiplications:
11535 */
11536const u32 sched_prio_to_wmult[40] = {
11537 /* -20 */     48388,     59856,     76040,     92818,    118348,
11538 /* -15 */    147320,    184698,    229616,    287308,    360437,
11539 /* -10 */    449829,    563644,    704093,    875809,   1099582,
11540 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11541 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11542 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11543 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11544 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11545};
11546
11547void call_trace_sched_update_nr_running(struct rq *rq, int count)
11548{
11549        trace_sched_update_nr_running_tp(rq, count);
11550}
11551
11552#ifdef CONFIG_SCHED_MM_CID
11553
11554/*
11555 * @cid_lock: Guarantee forward-progress of cid allocation.
11556 *
11557 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11558 * is only used when contention is detected by the lock-free allocation so
11559 * forward progress can be guaranteed.
11560 */
11561DEFINE_RAW_SPINLOCK(cid_lock);
11562
11563/*
11564 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11565 *
11566 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11567 * detected, it is set to 1 to ensure that all newly coming allocations are
11568 * serialized by @cid_lock until the allocation which detected contention
11569 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11570 * of a cid allocation.
11571 */
11572int use_cid_lock;
11573
11574/*
11575 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11576 * concurrently with respect to the execution of the source runqueue context
11577 * switch.
11578 *
11579 * There is one basic properties we want to guarantee here:
11580 *
11581 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11582 * used by a task. That would lead to concurrent allocation of the cid and
11583 * userspace corruption.
11584 *
11585 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11586 * that a pair of loads observe at least one of a pair of stores, which can be
11587 * shown as:
11588 *
11589 *      X = Y = 0
11590 *
11591 *      w[X]=1          w[Y]=1
11592 *      MB              MB
11593 *      r[Y]=y          r[X]=x
11594 *
11595 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11596 * values 0 and 1, this algorithm cares about specific state transitions of the
11597 * runqueue current task (as updated by the scheduler context switch), and the
11598 * per-mm/cpu cid value.
11599 *
11600 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11601 * task->mm != mm for the rest of the discussion. There are two scheduler state
11602 * transitions on context switch we care about:
11603 *
11604 * (TSA) Store to rq->curr with transition from (N) to (Y)
11605 *
11606 * (TSB) Store to rq->curr with transition from (Y) to (N)
11607 *
11608 * On the remote-clear side, there is one transition we care about:
11609 *
11610 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11611 *
11612 * There is also a transition to UNSET state which can be performed from all
11613 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11614 * guarantees that only a single thread will succeed:
11615 *
11616 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11617 *
11618 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11619 * when a thread is actively using the cid (property (1)).
11620 *
11621 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11622 *
11623 * Scenario A) (TSA)+(TMA) (from next task perspective)
11624 *
11625 * CPU0                                      CPU1
11626 *
11627 * Context switch CS-1                       Remote-clear
11628 *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11629 *                                             (implied barrier after cmpxchg)
11630 *   - switch_mm_cid()
11631 *     - memory barrier (see switch_mm_cid()
11632 *       comment explaining how this barrier
11633 *       is combined with other scheduler
11634 *       barriers)
11635 *     - mm_cid_get (next)
11636 *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11637 *
11638 * This Dekker ensures that either task (Y) is observed by the
11639 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11640 * observed.
11641 *
11642 * If task (Y) store is observed by rcu_dereference(), it means that there is
11643 * still an active task on the cpu. Remote-clear will therefore not transition
11644 * to UNSET, which fulfills property (1).
11645 *
11646 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11647 * it will move its state to UNSET, which clears the percpu cid perhaps
11648 * uselessly (which is not an issue for correctness). Because task (Y) is not
11649 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11650 * state to UNSET is done with a cmpxchg expecting that the old state has the
11651 * LAZY flag set, only one thread will successfully UNSET.
11652 *
11653 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11654 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11655 * CPU1 will observe task (Y) and do nothing more, which is fine.
11656 *
11657 * What we are effectively preventing with this Dekker is a scenario where
11658 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11659 * because this would UNSET a cid which is actively used.
11660 */
11661
11662void sched_mm_cid_migrate_from(struct task_struct *t)
11663{
11664	t->migrate_from_cpu = task_cpu(t);
11665}
11666
11667static
11668int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11669					  struct task_struct *t,
11670					  struct mm_cid *src_pcpu_cid)
11671{
11672	struct mm_struct *mm = t->mm;
11673	struct task_struct *src_task;
11674	int src_cid, last_mm_cid;
11675
11676	if (!mm)
11677		return -1;
11678
11679	last_mm_cid = t->last_mm_cid;
11680	/*
11681	 * If the migrated task has no last cid, or if the current
11682	 * task on src rq uses the cid, it means the source cid does not need
11683	 * to be moved to the destination cpu.
11684	 */
11685	if (last_mm_cid == -1)
11686		return -1;
11687	src_cid = READ_ONCE(src_pcpu_cid->cid);
11688	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11689		return -1;
11690
11691	/*
11692	 * If we observe an active task using the mm on this rq, it means we
11693	 * are not the last task to be migrated from this cpu for this mm, so
11694	 * there is no need to move src_cid to the destination cpu.
11695	 */
11696	guard(rcu)();
11697	src_task = rcu_dereference(src_rq->curr);
11698	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11699		t->last_mm_cid = -1;
11700		return -1;
11701	}
11702
11703	return src_cid;
11704}
11705
11706static
11707int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11708					      struct task_struct *t,
11709					      struct mm_cid *src_pcpu_cid,
11710					      int src_cid)
11711{
11712	struct task_struct *src_task;
11713	struct mm_struct *mm = t->mm;
11714	int lazy_cid;
11715
11716	if (src_cid == -1)
11717		return -1;
11718
11719	/*
11720	 * Attempt to clear the source cpu cid to move it to the destination
11721	 * cpu.
11722	 */
11723	lazy_cid = mm_cid_set_lazy_put(src_cid);
11724	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11725		return -1;
11726
11727	/*
11728	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11729	 * rq->curr->mm matches the scheduler barrier in context_switch()
11730	 * between store to rq->curr and load of prev and next task's
11731	 * per-mm/cpu cid.
11732	 *
11733	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11734	 * rq->curr->mm_cid_active matches the barrier in
11735	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11736	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11737	 * load of per-mm/cpu cid.
11738	 */
11739
11740	/*
11741	 * If we observe an active task using the mm on this rq after setting
11742	 * the lazy-put flag, this task will be responsible for transitioning
11743	 * from lazy-put flag set to MM_CID_UNSET.
11744	 */
11745	scoped_guard (rcu) {
11746		src_task = rcu_dereference(src_rq->curr);
11747		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11748			/*
11749			 * We observed an active task for this mm, there is therefore
11750			 * no point in moving this cid to the destination cpu.
11751			 */
11752			t->last_mm_cid = -1;
11753			return -1;
11754		}
11755	}
11756
11757	/*
11758	 * The src_cid is unused, so it can be unset.
11759	 */
11760	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11761		return -1;
11762	return src_cid;
11763}
11764
11765/*
11766 * Migration to dst cpu. Called with dst_rq lock held.
11767 * Interrupts are disabled, which keeps the window of cid ownership without the
11768 * source rq lock held small.
11769 */
11770void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11771{
11772	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11773	struct mm_struct *mm = t->mm;
11774	int src_cid, dst_cid, src_cpu;
11775	struct rq *src_rq;
11776
11777	lockdep_assert_rq_held(dst_rq);
11778
11779	if (!mm)
11780		return;
11781	src_cpu = t->migrate_from_cpu;
11782	if (src_cpu == -1) {
11783		t->last_mm_cid = -1;
11784		return;
11785	}
11786	/*
11787	 * Move the src cid if the dst cid is unset. This keeps id
11788	 * allocation closest to 0 in cases where few threads migrate around
11789	 * many cpus.
11790	 *
11791	 * If destination cid is already set, we may have to just clear
11792	 * the src cid to ensure compactness in frequent migrations
11793	 * scenarios.
11794	 *
11795	 * It is not useful to clear the src cid when the number of threads is
11796	 * greater or equal to the number of allowed cpus, because user-space
11797	 * can expect that the number of allowed cids can reach the number of
11798	 * allowed cpus.
11799	 */
11800	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11801	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11802	if (!mm_cid_is_unset(dst_cid) &&
11803	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11804		return;
11805	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11806	src_rq = cpu_rq(src_cpu);
11807	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11808	if (src_cid == -1)
11809		return;
11810	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11811							    src_cid);
11812	if (src_cid == -1)
11813		return;
11814	if (!mm_cid_is_unset(dst_cid)) {
11815		__mm_cid_put(mm, src_cid);
11816		return;
11817	}
11818	/* Move src_cid to dst cpu. */
11819	mm_cid_snapshot_time(dst_rq, mm);
11820	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11821}
11822
11823static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11824				      int cpu)
11825{
11826	struct rq *rq = cpu_rq(cpu);
11827	struct task_struct *t;
11828	int cid, lazy_cid;
11829
11830	cid = READ_ONCE(pcpu_cid->cid);
11831	if (!mm_cid_is_valid(cid))
11832		return;
11833
11834	/*
11835	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11836	 * there happens to be other tasks left on the source cpu using this
11837	 * mm, the next task using this mm will reallocate its cid on context
11838	 * switch.
11839	 */
11840	lazy_cid = mm_cid_set_lazy_put(cid);
11841	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11842		return;
11843
11844	/*
11845	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11846	 * rq->curr->mm matches the scheduler barrier in context_switch()
11847	 * between store to rq->curr and load of prev and next task's
11848	 * per-mm/cpu cid.
11849	 *
11850	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11851	 * rq->curr->mm_cid_active matches the barrier in
11852	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11853	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11854	 * load of per-mm/cpu cid.
11855	 */
11856
11857	/*
11858	 * If we observe an active task using the mm on this rq after setting
11859	 * the lazy-put flag, that task will be responsible for transitioning
11860	 * from lazy-put flag set to MM_CID_UNSET.
11861	 */
11862	scoped_guard (rcu) {
11863		t = rcu_dereference(rq->curr);
11864		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11865			return;
11866	}
11867
11868	/*
11869	 * The cid is unused, so it can be unset.
11870	 * Disable interrupts to keep the window of cid ownership without rq
11871	 * lock small.
11872	 */
11873	scoped_guard (irqsave) {
11874		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11875			__mm_cid_put(mm, cid);
11876	}
11877}
11878
11879static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11880{
11881	struct rq *rq = cpu_rq(cpu);
11882	struct mm_cid *pcpu_cid;
11883	struct task_struct *curr;
11884	u64 rq_clock;
11885
11886	/*
11887	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11888	 * while is irrelevant.
11889	 */
11890	rq_clock = READ_ONCE(rq->clock);
11891	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11892
11893	/*
11894	 * In order to take care of infrequently scheduled tasks, bump the time
11895	 * snapshot associated with this cid if an active task using the mm is
11896	 * observed on this rq.
11897	 */
11898	scoped_guard (rcu) {
11899		curr = rcu_dereference(rq->curr);
11900		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11901			WRITE_ONCE(pcpu_cid->time, rq_clock);
11902			return;
11903		}
11904	}
11905
11906	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11907		return;
11908	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11909}
11910
11911static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11912					     int weight)
11913{
11914	struct mm_cid *pcpu_cid;
11915	int cid;
11916
11917	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11918	cid = READ_ONCE(pcpu_cid->cid);
11919	if (!mm_cid_is_valid(cid) || cid < weight)
11920		return;
11921	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11922}
11923
11924static void task_mm_cid_work(struct callback_head *work)
11925{
11926	unsigned long now = jiffies, old_scan, next_scan;
11927	struct task_struct *t = current;
11928	struct cpumask *cidmask;
11929	struct mm_struct *mm;
11930	int weight, cpu;
11931
11932	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11933
11934	work->next = work;	/* Prevent double-add */
11935	if (t->flags & PF_EXITING)
11936		return;
11937	mm = t->mm;
11938	if (!mm)
11939		return;
11940	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11941	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11942	if (!old_scan) {
11943		unsigned long res;
11944
11945		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11946		if (res != old_scan)
11947			old_scan = res;
11948		else
11949			old_scan = next_scan;
11950	}
11951	if (time_before(now, old_scan))
11952		return;
11953	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11954		return;
11955	cidmask = mm_cidmask(mm);
11956	/* Clear cids that were not recently used. */
11957	for_each_possible_cpu(cpu)
11958		sched_mm_cid_remote_clear_old(mm, cpu);
11959	weight = cpumask_weight(cidmask);
11960	/*
11961	 * Clear cids that are greater or equal to the cidmask weight to
11962	 * recompact it.
11963	 */
11964	for_each_possible_cpu(cpu)
11965		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11966}
11967
11968void init_sched_mm_cid(struct task_struct *t)
11969{
11970	struct mm_struct *mm = t->mm;
11971	int mm_users = 0;
11972
11973	if (mm) {
11974		mm_users = atomic_read(&mm->mm_users);
11975		if (mm_users == 1)
11976			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11977	}
11978	t->cid_work.next = &t->cid_work;	/* Protect against double add */
11979	init_task_work(&t->cid_work, task_mm_cid_work);
11980}
11981
11982void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11983{
11984	struct callback_head *work = &curr->cid_work;
11985	unsigned long now = jiffies;
11986
11987	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11988	    work->next != work)
11989		return;
11990	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11991		return;
11992	task_work_add(curr, work, TWA_RESUME);
11993}
11994
11995void sched_mm_cid_exit_signals(struct task_struct *t)
11996{
11997	struct mm_struct *mm = t->mm;
11998	struct rq *rq;
11999
12000	if (!mm)
12001		return;
12002
12003	preempt_disable();
12004	rq = this_rq();
12005	guard(rq_lock_irqsave)(rq);
12006	preempt_enable_no_resched();	/* holding spinlock */
12007	WRITE_ONCE(t->mm_cid_active, 0);
12008	/*
12009	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12010	 * Matches barrier in sched_mm_cid_remote_clear_old().
12011	 */
12012	smp_mb();
12013	mm_cid_put(mm);
12014	t->last_mm_cid = t->mm_cid = -1;
12015}
12016
12017void sched_mm_cid_before_execve(struct task_struct *t)
12018{
12019	struct mm_struct *mm = t->mm;
12020	struct rq *rq;
12021
12022	if (!mm)
12023		return;
12024
12025	preempt_disable();
12026	rq = this_rq();
12027	guard(rq_lock_irqsave)(rq);
12028	preempt_enable_no_resched();	/* holding spinlock */
12029	WRITE_ONCE(t->mm_cid_active, 0);
12030	/*
12031	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12032	 * Matches barrier in sched_mm_cid_remote_clear_old().
12033	 */
12034	smp_mb();
12035	mm_cid_put(mm);
12036	t->last_mm_cid = t->mm_cid = -1;
12037}
12038
12039void sched_mm_cid_after_execve(struct task_struct *t)
12040{
12041	struct mm_struct *mm = t->mm;
12042	struct rq *rq;
12043
12044	if (!mm)
12045		return;
12046
12047	preempt_disable();
12048	rq = this_rq();
12049	scoped_guard (rq_lock_irqsave, rq) {
12050		preempt_enable_no_resched();	/* holding spinlock */
12051		WRITE_ONCE(t->mm_cid_active, 1);
12052		/*
12053		 * Store t->mm_cid_active before loading per-mm/cpu cid.
12054		 * Matches barrier in sched_mm_cid_remote_clear_old().
12055		 */
12056		smp_mb();
12057		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12058	}
12059	rseq_set_notify_resume(t);
12060}
12061
12062void sched_mm_cid_fork(struct task_struct *t)
12063{
12064	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12065	t->mm_cid_active = 1;
12066}
12067#endif
12068