1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *	linux/kernel/resource.c
4 *
5 * Copyright (C) 1999	Linus Torvalds
6 * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7 *
8 * Arbitrary resource management.
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/export.h>
14#include <linux/errno.h>
15#include <linux/ioport.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/proc_fs.h>
21#include <linux/pseudo_fs.h>
22#include <linux/sched.h>
23#include <linux/seq_file.h>
24#include <linux/device.h>
25#include <linux/pfn.h>
26#include <linux/mm.h>
27#include <linux/mount.h>
28#include <linux/resource_ext.h>
29#include <uapi/linux/magic.h>
30#include <linux/string.h>
31#include <linux/vmalloc.h>
32#include <asm/io.h>
33
34
35struct resource ioport_resource = {
36	.name	= "PCI IO",
37	.start	= 0,
38	.end	= IO_SPACE_LIMIT,
39	.flags	= IORESOURCE_IO,
40};
41EXPORT_SYMBOL(ioport_resource);
42
43struct resource iomem_resource = {
44	.name	= "PCI mem",
45	.start	= 0,
46	.end	= -1,
47	.flags	= IORESOURCE_MEM,
48};
49EXPORT_SYMBOL(iomem_resource);
50
51/* constraints to be met while allocating resources */
52struct resource_constraint {
53	resource_size_t min, max, align;
54	resource_size_t (*alignf)(void *, const struct resource *,
55			resource_size_t, resource_size_t);
56	void *alignf_data;
57};
58
59static DEFINE_RWLOCK(resource_lock);
60
61static struct resource *next_resource(struct resource *p, bool skip_children)
62{
63	if (!skip_children && p->child)
64		return p->child;
65	while (!p->sibling && p->parent)
66		p = p->parent;
67	return p->sibling;
68}
69
70#define for_each_resource(_root, _p, _skip_children) \
71	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
72
73#ifdef CONFIG_PROC_FS
74
75enum { MAX_IORES_LEVEL = 5 };
76
77static void *r_start(struct seq_file *m, loff_t *pos)
78	__acquires(resource_lock)
79{
80	struct resource *root = pde_data(file_inode(m->file));
81	struct resource *p;
82	loff_t l = *pos;
83
84	read_lock(&resource_lock);
85	for_each_resource(root, p, false) {
86		if (l-- == 0)
87			break;
88	}
89
90	return p;
91}
92
93static void *r_next(struct seq_file *m, void *v, loff_t *pos)
94{
95	struct resource *p = v;
96
97	(*pos)++;
98
99	return (void *)next_resource(p, false);
100}
101
102static void r_stop(struct seq_file *m, void *v)
103	__releases(resource_lock)
104{
105	read_unlock(&resource_lock);
106}
107
108static int r_show(struct seq_file *m, void *v)
109{
110	struct resource *root = pde_data(file_inode(m->file));
111	struct resource *r = v, *p;
112	unsigned long long start, end;
113	int width = root->end < 0x10000 ? 4 : 8;
114	int depth;
115
116	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
117		if (p->parent == root)
118			break;
119
120	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
121		start = r->start;
122		end = r->end;
123	} else {
124		start = end = 0;
125	}
126
127	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
128			depth * 2, "",
129			width, start,
130			width, end,
131			r->name ? r->name : "<BAD>");
132	return 0;
133}
134
135static const struct seq_operations resource_op = {
136	.start	= r_start,
137	.next	= r_next,
138	.stop	= r_stop,
139	.show	= r_show,
140};
141
142static int __init ioresources_init(void)
143{
144	proc_create_seq_data("ioports", 0, NULL, &resource_op,
145			&ioport_resource);
146	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
147	return 0;
148}
149__initcall(ioresources_init);
150
151#endif /* CONFIG_PROC_FS */
152
153static void free_resource(struct resource *res)
154{
155	/**
156	 * If the resource was allocated using memblock early during boot
157	 * we'll leak it here: we can only return full pages back to the
158	 * buddy and trying to be smart and reusing them eventually in
159	 * alloc_resource() overcomplicates resource handling.
160	 */
161	if (res && PageSlab(virt_to_head_page(res)))
162		kfree(res);
163}
164
165static struct resource *alloc_resource(gfp_t flags)
166{
167	return kzalloc(sizeof(struct resource), flags);
168}
169
170/* Return the conflict entry if you can't request it */
171static struct resource * __request_resource(struct resource *root, struct resource *new)
172{
173	resource_size_t start = new->start;
174	resource_size_t end = new->end;
175	struct resource *tmp, **p;
176
177	if (end < start)
178		return root;
179	if (start < root->start)
180		return root;
181	if (end > root->end)
182		return root;
183	p = &root->child;
184	for (;;) {
185		tmp = *p;
186		if (!tmp || tmp->start > end) {
187			new->sibling = tmp;
188			*p = new;
189			new->parent = root;
190			return NULL;
191		}
192		p = &tmp->sibling;
193		if (tmp->end < start)
194			continue;
195		return tmp;
196	}
197}
198
199static int __release_resource(struct resource *old, bool release_child)
200{
201	struct resource *tmp, **p, *chd;
202
203	p = &old->parent->child;
204	for (;;) {
205		tmp = *p;
206		if (!tmp)
207			break;
208		if (tmp == old) {
209			if (release_child || !(tmp->child)) {
210				*p = tmp->sibling;
211			} else {
212				for (chd = tmp->child;; chd = chd->sibling) {
213					chd->parent = tmp->parent;
214					if (!(chd->sibling))
215						break;
216				}
217				*p = tmp->child;
218				chd->sibling = tmp->sibling;
219			}
220			old->parent = NULL;
221			return 0;
222		}
223		p = &tmp->sibling;
224	}
225	return -EINVAL;
226}
227
228static void __release_child_resources(struct resource *r)
229{
230	struct resource *tmp, *p;
231	resource_size_t size;
232
233	p = r->child;
234	r->child = NULL;
235	while (p) {
236		tmp = p;
237		p = p->sibling;
238
239		tmp->parent = NULL;
240		tmp->sibling = NULL;
241		__release_child_resources(tmp);
242
243		printk(KERN_DEBUG "release child resource %pR\n", tmp);
244		/* need to restore size, and keep flags */
245		size = resource_size(tmp);
246		tmp->start = 0;
247		tmp->end = size - 1;
248	}
249}
250
251void release_child_resources(struct resource *r)
252{
253	write_lock(&resource_lock);
254	__release_child_resources(r);
255	write_unlock(&resource_lock);
256}
257
258/**
259 * request_resource_conflict - request and reserve an I/O or memory resource
260 * @root: root resource descriptor
261 * @new: resource descriptor desired by caller
262 *
263 * Returns 0 for success, conflict resource on error.
264 */
265struct resource *request_resource_conflict(struct resource *root, struct resource *new)
266{
267	struct resource *conflict;
268
269	write_lock(&resource_lock);
270	conflict = __request_resource(root, new);
271	write_unlock(&resource_lock);
272	return conflict;
273}
274
275/**
276 * request_resource - request and reserve an I/O or memory resource
277 * @root: root resource descriptor
278 * @new: resource descriptor desired by caller
279 *
280 * Returns 0 for success, negative error code on error.
281 */
282int request_resource(struct resource *root, struct resource *new)
283{
284	struct resource *conflict;
285
286	conflict = request_resource_conflict(root, new);
287	return conflict ? -EBUSY : 0;
288}
289
290EXPORT_SYMBOL(request_resource);
291
292/**
293 * release_resource - release a previously reserved resource
294 * @old: resource pointer
295 */
296int release_resource(struct resource *old)
297{
298	int retval;
299
300	write_lock(&resource_lock);
301	retval = __release_resource(old, true);
302	write_unlock(&resource_lock);
303	return retval;
304}
305
306EXPORT_SYMBOL(release_resource);
307
308/**
309 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
310 *			 [@start..@end].
311 *
312 * If a resource is found, returns 0 and @*res is overwritten with the part
313 * of the resource that's within [@start..@end]; if none is found, returns
314 * -ENODEV.  Returns -EINVAL for invalid parameters.
315 *
316 * @start:	start address of the resource searched for
317 * @end:	end address of same resource
318 * @flags:	flags which the resource must have
319 * @desc:	descriptor the resource must have
320 * @res:	return ptr, if resource found
321 *
322 * The caller must specify @start, @end, @flags, and @desc
323 * (which may be IORES_DESC_NONE).
324 */
325static int find_next_iomem_res(resource_size_t start, resource_size_t end,
326			       unsigned long flags, unsigned long desc,
327			       struct resource *res)
328{
329	struct resource *p;
330
331	if (!res)
332		return -EINVAL;
333
334	if (start >= end)
335		return -EINVAL;
336
337	read_lock(&resource_lock);
338
339	for_each_resource(&iomem_resource, p, false) {
340		/* If we passed the resource we are looking for, stop */
341		if (p->start > end) {
342			p = NULL;
343			break;
344		}
345
346		/* Skip until we find a range that matches what we look for */
347		if (p->end < start)
348			continue;
349
350		if ((p->flags & flags) != flags)
351			continue;
352		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
353			continue;
354
355		/* Found a match, break */
356		break;
357	}
358
359	if (p) {
360		/* copy data */
361		*res = (struct resource) {
362			.start = max(start, p->start),
363			.end = min(end, p->end),
364			.flags = p->flags,
365			.desc = p->desc,
366			.parent = p->parent,
367		};
368	}
369
370	read_unlock(&resource_lock);
371	return p ? 0 : -ENODEV;
372}
373
374static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
375				 unsigned long flags, unsigned long desc,
376				 void *arg,
377				 int (*func)(struct resource *, void *))
378{
379	struct resource res;
380	int ret = -EINVAL;
381
382	while (start < end &&
383	       !find_next_iomem_res(start, end, flags, desc, &res)) {
384		ret = (*func)(&res, arg);
385		if (ret)
386			break;
387
388		start = res.end + 1;
389	}
390
391	return ret;
392}
393
394/**
395 * walk_iomem_res_desc - Walks through iomem resources and calls func()
396 *			 with matching resource ranges.
397 * *
398 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
399 * @flags: I/O resource flags
400 * @start: start addr
401 * @end: end addr
402 * @arg: function argument for the callback @func
403 * @func: callback function that is called for each qualifying resource area
404 *
405 * All the memory ranges which overlap start,end and also match flags and
406 * desc are valid candidates.
407 *
408 * NOTE: For a new descriptor search, define a new IORES_DESC in
409 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
410 */
411int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
412		u64 end, void *arg, int (*func)(struct resource *, void *))
413{
414	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
415}
416EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
417
418/*
419 * This function calls the @func callback against all memory ranges of type
420 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
421 * Now, this function is only for System RAM, it deals with full ranges and
422 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
423 * ranges.
424 */
425int walk_system_ram_res(u64 start, u64 end, void *arg,
426			int (*func)(struct resource *, void *))
427{
428	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
429
430	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
431				     func);
432}
433
434/*
435 * This function, being a variant of walk_system_ram_res(), calls the @func
436 * callback against all memory ranges of type System RAM which are marked as
437 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
438 * higher to lower.
439 */
440int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
441				int (*func)(struct resource *, void *))
442{
443	struct resource res, *rams;
444	int rams_size = 16, i;
445	unsigned long flags;
446	int ret = -1;
447
448	/* create a list */
449	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
450	if (!rams)
451		return ret;
452
453	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
454	i = 0;
455	while ((start < end) &&
456		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
457		if (i >= rams_size) {
458			/* re-alloc */
459			struct resource *rams_new;
460
461			rams_new = kvrealloc(rams, rams_size * sizeof(struct resource),
462					     (rams_size + 16) * sizeof(struct resource),
463					     GFP_KERNEL);
464			if (!rams_new)
465				goto out;
466
467			rams = rams_new;
468			rams_size += 16;
469		}
470
471		rams[i].start = res.start;
472		rams[i++].end = res.end;
473
474		start = res.end + 1;
475	}
476
477	/* go reverse */
478	for (i--; i >= 0; i--) {
479		ret = (*func)(&rams[i], arg);
480		if (ret)
481			break;
482	}
483
484out:
485	kvfree(rams);
486	return ret;
487}
488
489/*
490 * This function calls the @func callback against all memory ranges, which
491 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
492 */
493int walk_mem_res(u64 start, u64 end, void *arg,
494		 int (*func)(struct resource *, void *))
495{
496	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
497
498	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
499				     func);
500}
501
502/*
503 * This function calls the @func callback against all memory ranges of type
504 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
505 * It is to be used only for System RAM.
506 */
507int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
508			  void *arg, int (*func)(unsigned long, unsigned long, void *))
509{
510	resource_size_t start, end;
511	unsigned long flags;
512	struct resource res;
513	unsigned long pfn, end_pfn;
514	int ret = -EINVAL;
515
516	start = (u64) start_pfn << PAGE_SHIFT;
517	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
518	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
519	while (start < end &&
520	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
521		pfn = PFN_UP(res.start);
522		end_pfn = PFN_DOWN(res.end + 1);
523		if (end_pfn > pfn)
524			ret = (*func)(pfn, end_pfn - pfn, arg);
525		if (ret)
526			break;
527		start = res.end + 1;
528	}
529	return ret;
530}
531
532static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
533{
534	return 1;
535}
536
537/*
538 * This generic page_is_ram() returns true if specified address is
539 * registered as System RAM in iomem_resource list.
540 */
541int __weak page_is_ram(unsigned long pfn)
542{
543	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
544}
545EXPORT_SYMBOL_GPL(page_is_ram);
546
547static int __region_intersects(struct resource *parent, resource_size_t start,
548			       size_t size, unsigned long flags,
549			       unsigned long desc)
550{
551	struct resource res;
552	int type = 0; int other = 0;
553	struct resource *p;
554
555	res.start = start;
556	res.end = start + size - 1;
557
558	for (p = parent->child; p ; p = p->sibling) {
559		bool is_type = (((p->flags & flags) == flags) &&
560				((desc == IORES_DESC_NONE) ||
561				 (desc == p->desc)));
562
563		if (resource_overlaps(p, &res))
564			is_type ? type++ : other++;
565	}
566
567	if (type == 0)
568		return REGION_DISJOINT;
569
570	if (other == 0)
571		return REGION_INTERSECTS;
572
573	return REGION_MIXED;
574}
575
576/**
577 * region_intersects() - determine intersection of region with known resources
578 * @start: region start address
579 * @size: size of region
580 * @flags: flags of resource (in iomem_resource)
581 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
582 *
583 * Check if the specified region partially overlaps or fully eclipses a
584 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
585 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
586 * return REGION_MIXED if the region overlaps @flags/@desc and another
587 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
588 * and no other defined resource. Note that REGION_INTERSECTS is also
589 * returned in the case when the specified region overlaps RAM and undefined
590 * memory holes.
591 *
592 * region_intersect() is used by memory remapping functions to ensure
593 * the user is not remapping RAM and is a vast speed up over walking
594 * through the resource table page by page.
595 */
596int region_intersects(resource_size_t start, size_t size, unsigned long flags,
597		      unsigned long desc)
598{
599	int ret;
600
601	read_lock(&resource_lock);
602	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
603	read_unlock(&resource_lock);
604
605	return ret;
606}
607EXPORT_SYMBOL_GPL(region_intersects);
608
609void __weak arch_remove_reservations(struct resource *avail)
610{
611}
612
613static resource_size_t simple_align_resource(void *data,
614					     const struct resource *avail,
615					     resource_size_t size,
616					     resource_size_t align)
617{
618	return avail->start;
619}
620
621static void resource_clip(struct resource *res, resource_size_t min,
622			  resource_size_t max)
623{
624	if (res->start < min)
625		res->start = min;
626	if (res->end > max)
627		res->end = max;
628}
629
630/*
631 * Find empty slot in the resource tree with the given range and
632 * alignment constraints
633 */
634static int __find_resource(struct resource *root, struct resource *old,
635			 struct resource *new,
636			 resource_size_t  size,
637			 struct resource_constraint *constraint)
638{
639	struct resource *this = root->child;
640	struct resource tmp = *new, avail, alloc;
641
642	tmp.start = root->start;
643	/*
644	 * Skip past an allocated resource that starts at 0, since the assignment
645	 * of this->start - 1 to tmp->end below would cause an underflow.
646	 */
647	if (this && this->start == root->start) {
648		tmp.start = (this == old) ? old->start : this->end + 1;
649		this = this->sibling;
650	}
651	for(;;) {
652		if (this)
653			tmp.end = (this == old) ?  this->end : this->start - 1;
654		else
655			tmp.end = root->end;
656
657		if (tmp.end < tmp.start)
658			goto next;
659
660		resource_clip(&tmp, constraint->min, constraint->max);
661		arch_remove_reservations(&tmp);
662
663		/* Check for overflow after ALIGN() */
664		avail.start = ALIGN(tmp.start, constraint->align);
665		avail.end = tmp.end;
666		avail.flags = new->flags & ~IORESOURCE_UNSET;
667		if (avail.start >= tmp.start) {
668			alloc.flags = avail.flags;
669			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
670					size, constraint->align);
671			alloc.end = alloc.start + size - 1;
672			if (alloc.start <= alloc.end &&
673			    resource_contains(&avail, &alloc)) {
674				new->start = alloc.start;
675				new->end = alloc.end;
676				return 0;
677			}
678		}
679
680next:		if (!this || this->end == root->end)
681			break;
682
683		if (this != old)
684			tmp.start = this->end + 1;
685		this = this->sibling;
686	}
687	return -EBUSY;
688}
689
690/*
691 * Find empty slot in the resource tree given range and alignment.
692 */
693static int find_resource(struct resource *root, struct resource *new,
694			resource_size_t size,
695			struct resource_constraint  *constraint)
696{
697	return  __find_resource(root, NULL, new, size, constraint);
698}
699
700/**
701 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
702 *	The resource will be relocated if the new size cannot be reallocated in the
703 *	current location.
704 *
705 * @root: root resource descriptor
706 * @old:  resource descriptor desired by caller
707 * @newsize: new size of the resource descriptor
708 * @constraint: the size and alignment constraints to be met.
709 */
710static int reallocate_resource(struct resource *root, struct resource *old,
711			       resource_size_t newsize,
712			       struct resource_constraint *constraint)
713{
714	int err=0;
715	struct resource new = *old;
716	struct resource *conflict;
717
718	write_lock(&resource_lock);
719
720	if ((err = __find_resource(root, old, &new, newsize, constraint)))
721		goto out;
722
723	if (resource_contains(&new, old)) {
724		old->start = new.start;
725		old->end = new.end;
726		goto out;
727	}
728
729	if (old->child) {
730		err = -EBUSY;
731		goto out;
732	}
733
734	if (resource_contains(old, &new)) {
735		old->start = new.start;
736		old->end = new.end;
737	} else {
738		__release_resource(old, true);
739		*old = new;
740		conflict = __request_resource(root, old);
741		BUG_ON(conflict);
742	}
743out:
744	write_unlock(&resource_lock);
745	return err;
746}
747
748
749/**
750 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
751 * 	The resource will be reallocated with a new size if it was already allocated
752 * @root: root resource descriptor
753 * @new: resource descriptor desired by caller
754 * @size: requested resource region size
755 * @min: minimum boundary to allocate
756 * @max: maximum boundary to allocate
757 * @align: alignment requested, in bytes
758 * @alignf: alignment function, optional, called if not NULL
759 * @alignf_data: arbitrary data to pass to the @alignf function
760 */
761int allocate_resource(struct resource *root, struct resource *new,
762		      resource_size_t size, resource_size_t min,
763		      resource_size_t max, resource_size_t align,
764		      resource_size_t (*alignf)(void *,
765						const struct resource *,
766						resource_size_t,
767						resource_size_t),
768		      void *alignf_data)
769{
770	int err;
771	struct resource_constraint constraint;
772
773	if (!alignf)
774		alignf = simple_align_resource;
775
776	constraint.min = min;
777	constraint.max = max;
778	constraint.align = align;
779	constraint.alignf = alignf;
780	constraint.alignf_data = alignf_data;
781
782	if ( new->parent ) {
783		/* resource is already allocated, try reallocating with
784		   the new constraints */
785		return reallocate_resource(root, new, size, &constraint);
786	}
787
788	write_lock(&resource_lock);
789	err = find_resource(root, new, size, &constraint);
790	if (err >= 0 && __request_resource(root, new))
791		err = -EBUSY;
792	write_unlock(&resource_lock);
793	return err;
794}
795
796EXPORT_SYMBOL(allocate_resource);
797
798/**
799 * lookup_resource - find an existing resource by a resource start address
800 * @root: root resource descriptor
801 * @start: resource start address
802 *
803 * Returns a pointer to the resource if found, NULL otherwise
804 */
805struct resource *lookup_resource(struct resource *root, resource_size_t start)
806{
807	struct resource *res;
808
809	read_lock(&resource_lock);
810	for (res = root->child; res; res = res->sibling) {
811		if (res->start == start)
812			break;
813	}
814	read_unlock(&resource_lock);
815
816	return res;
817}
818
819/*
820 * Insert a resource into the resource tree. If successful, return NULL,
821 * otherwise return the conflicting resource (compare to __request_resource())
822 */
823static struct resource * __insert_resource(struct resource *parent, struct resource *new)
824{
825	struct resource *first, *next;
826
827	for (;; parent = first) {
828		first = __request_resource(parent, new);
829		if (!first)
830			return first;
831
832		if (first == parent)
833			return first;
834		if (WARN_ON(first == new))	/* duplicated insertion */
835			return first;
836
837		if ((first->start > new->start) || (first->end < new->end))
838			break;
839		if ((first->start == new->start) && (first->end == new->end))
840			break;
841	}
842
843	for (next = first; ; next = next->sibling) {
844		/* Partial overlap? Bad, and unfixable */
845		if (next->start < new->start || next->end > new->end)
846			return next;
847		if (!next->sibling)
848			break;
849		if (next->sibling->start > new->end)
850			break;
851	}
852
853	new->parent = parent;
854	new->sibling = next->sibling;
855	new->child = first;
856
857	next->sibling = NULL;
858	for (next = first; next; next = next->sibling)
859		next->parent = new;
860
861	if (parent->child == first) {
862		parent->child = new;
863	} else {
864		next = parent->child;
865		while (next->sibling != first)
866			next = next->sibling;
867		next->sibling = new;
868	}
869	return NULL;
870}
871
872/**
873 * insert_resource_conflict - Inserts resource in the resource tree
874 * @parent: parent of the new resource
875 * @new: new resource to insert
876 *
877 * Returns 0 on success, conflict resource if the resource can't be inserted.
878 *
879 * This function is equivalent to request_resource_conflict when no conflict
880 * happens. If a conflict happens, and the conflicting resources
881 * entirely fit within the range of the new resource, then the new
882 * resource is inserted and the conflicting resources become children of
883 * the new resource.
884 *
885 * This function is intended for producers of resources, such as FW modules
886 * and bus drivers.
887 */
888struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
889{
890	struct resource *conflict;
891
892	write_lock(&resource_lock);
893	conflict = __insert_resource(parent, new);
894	write_unlock(&resource_lock);
895	return conflict;
896}
897
898/**
899 * insert_resource - Inserts a resource in the resource tree
900 * @parent: parent of the new resource
901 * @new: new resource to insert
902 *
903 * Returns 0 on success, -EBUSY if the resource can't be inserted.
904 *
905 * This function is intended for producers of resources, such as FW modules
906 * and bus drivers.
907 */
908int insert_resource(struct resource *parent, struct resource *new)
909{
910	struct resource *conflict;
911
912	conflict = insert_resource_conflict(parent, new);
913	return conflict ? -EBUSY : 0;
914}
915EXPORT_SYMBOL_GPL(insert_resource);
916
917/**
918 * insert_resource_expand_to_fit - Insert a resource into the resource tree
919 * @root: root resource descriptor
920 * @new: new resource to insert
921 *
922 * Insert a resource into the resource tree, possibly expanding it in order
923 * to make it encompass any conflicting resources.
924 */
925void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
926{
927	if (new->parent)
928		return;
929
930	write_lock(&resource_lock);
931	for (;;) {
932		struct resource *conflict;
933
934		conflict = __insert_resource(root, new);
935		if (!conflict)
936			break;
937		if (conflict == root)
938			break;
939
940		/* Ok, expand resource to cover the conflict, then try again .. */
941		if (conflict->start < new->start)
942			new->start = conflict->start;
943		if (conflict->end > new->end)
944			new->end = conflict->end;
945
946		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
947	}
948	write_unlock(&resource_lock);
949}
950/*
951 * Not for general consumption, only early boot memory map parsing, PCI
952 * resource discovery, and late discovery of CXL resources are expected
953 * to use this interface. The former are built-in and only the latter,
954 * CXL, is a module.
955 */
956EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
957
958/**
959 * remove_resource - Remove a resource in the resource tree
960 * @old: resource to remove
961 *
962 * Returns 0 on success, -EINVAL if the resource is not valid.
963 *
964 * This function removes a resource previously inserted by insert_resource()
965 * or insert_resource_conflict(), and moves the children (if any) up to
966 * where they were before.  insert_resource() and insert_resource_conflict()
967 * insert a new resource, and move any conflicting resources down to the
968 * children of the new resource.
969 *
970 * insert_resource(), insert_resource_conflict() and remove_resource() are
971 * intended for producers of resources, such as FW modules and bus drivers.
972 */
973int remove_resource(struct resource *old)
974{
975	int retval;
976
977	write_lock(&resource_lock);
978	retval = __release_resource(old, false);
979	write_unlock(&resource_lock);
980	return retval;
981}
982EXPORT_SYMBOL_GPL(remove_resource);
983
984static int __adjust_resource(struct resource *res, resource_size_t start,
985				resource_size_t size)
986{
987	struct resource *tmp, *parent = res->parent;
988	resource_size_t end = start + size - 1;
989	int result = -EBUSY;
990
991	if (!parent)
992		goto skip;
993
994	if ((start < parent->start) || (end > parent->end))
995		goto out;
996
997	if (res->sibling && (res->sibling->start <= end))
998		goto out;
999
1000	tmp = parent->child;
1001	if (tmp != res) {
1002		while (tmp->sibling != res)
1003			tmp = tmp->sibling;
1004		if (start <= tmp->end)
1005			goto out;
1006	}
1007
1008skip:
1009	for (tmp = res->child; tmp; tmp = tmp->sibling)
1010		if ((tmp->start < start) || (tmp->end > end))
1011			goto out;
1012
1013	res->start = start;
1014	res->end = end;
1015	result = 0;
1016
1017 out:
1018	return result;
1019}
1020
1021/**
1022 * adjust_resource - modify a resource's start and size
1023 * @res: resource to modify
1024 * @start: new start value
1025 * @size: new size
1026 *
1027 * Given an existing resource, change its start and size to match the
1028 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1029 * Existing children of the resource are assumed to be immutable.
1030 */
1031int adjust_resource(struct resource *res, resource_size_t start,
1032		    resource_size_t size)
1033{
1034	int result;
1035
1036	write_lock(&resource_lock);
1037	result = __adjust_resource(res, start, size);
1038	write_unlock(&resource_lock);
1039	return result;
1040}
1041EXPORT_SYMBOL(adjust_resource);
1042
1043static void __init
1044__reserve_region_with_split(struct resource *root, resource_size_t start,
1045			    resource_size_t end, const char *name)
1046{
1047	struct resource *parent = root;
1048	struct resource *conflict;
1049	struct resource *res = alloc_resource(GFP_ATOMIC);
1050	struct resource *next_res = NULL;
1051	int type = resource_type(root);
1052
1053	if (!res)
1054		return;
1055
1056	res->name = name;
1057	res->start = start;
1058	res->end = end;
1059	res->flags = type | IORESOURCE_BUSY;
1060	res->desc = IORES_DESC_NONE;
1061
1062	while (1) {
1063
1064		conflict = __request_resource(parent, res);
1065		if (!conflict) {
1066			if (!next_res)
1067				break;
1068			res = next_res;
1069			next_res = NULL;
1070			continue;
1071		}
1072
1073		/* conflict covered whole area */
1074		if (conflict->start <= res->start &&
1075				conflict->end >= res->end) {
1076			free_resource(res);
1077			WARN_ON(next_res);
1078			break;
1079		}
1080
1081		/* failed, split and try again */
1082		if (conflict->start > res->start) {
1083			end = res->end;
1084			res->end = conflict->start - 1;
1085			if (conflict->end < end) {
1086				next_res = alloc_resource(GFP_ATOMIC);
1087				if (!next_res) {
1088					free_resource(res);
1089					break;
1090				}
1091				next_res->name = name;
1092				next_res->start = conflict->end + 1;
1093				next_res->end = end;
1094				next_res->flags = type | IORESOURCE_BUSY;
1095				next_res->desc = IORES_DESC_NONE;
1096			}
1097		} else {
1098			res->start = conflict->end + 1;
1099		}
1100	}
1101
1102}
1103
1104void __init
1105reserve_region_with_split(struct resource *root, resource_size_t start,
1106			  resource_size_t end, const char *name)
1107{
1108	int abort = 0;
1109
1110	write_lock(&resource_lock);
1111	if (root->start > start || root->end < end) {
1112		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1113		       (unsigned long long)start, (unsigned long long)end,
1114		       root);
1115		if (start > root->end || end < root->start)
1116			abort = 1;
1117		else {
1118			if (end > root->end)
1119				end = root->end;
1120			if (start < root->start)
1121				start = root->start;
1122			pr_err("fixing request to [0x%llx-0x%llx]\n",
1123			       (unsigned long long)start,
1124			       (unsigned long long)end);
1125		}
1126		dump_stack();
1127	}
1128	if (!abort)
1129		__reserve_region_with_split(root, start, end, name);
1130	write_unlock(&resource_lock);
1131}
1132
1133/**
1134 * resource_alignment - calculate resource's alignment
1135 * @res: resource pointer
1136 *
1137 * Returns alignment on success, 0 (invalid alignment) on failure.
1138 */
1139resource_size_t resource_alignment(struct resource *res)
1140{
1141	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1142	case IORESOURCE_SIZEALIGN:
1143		return resource_size(res);
1144	case IORESOURCE_STARTALIGN:
1145		return res->start;
1146	default:
1147		return 0;
1148	}
1149}
1150
1151/*
1152 * This is compatibility stuff for IO resources.
1153 *
1154 * Note how this, unlike the above, knows about
1155 * the IO flag meanings (busy etc).
1156 *
1157 * request_region creates a new busy region.
1158 *
1159 * release_region releases a matching busy region.
1160 */
1161
1162static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1163
1164static struct inode *iomem_inode;
1165
1166#ifdef CONFIG_IO_STRICT_DEVMEM
1167static void revoke_iomem(struct resource *res)
1168{
1169	/* pairs with smp_store_release() in iomem_init_inode() */
1170	struct inode *inode = smp_load_acquire(&iomem_inode);
1171
1172	/*
1173	 * Check that the initialization has completed. Losing the race
1174	 * is ok because it means drivers are claiming resources before
1175	 * the fs_initcall level of init and prevent iomem_get_mapping users
1176	 * from establishing mappings.
1177	 */
1178	if (!inode)
1179		return;
1180
1181	/*
1182	 * The expectation is that the driver has successfully marked
1183	 * the resource busy by this point, so devmem_is_allowed()
1184	 * should start returning false, however for performance this
1185	 * does not iterate the entire resource range.
1186	 */
1187	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1188	    devmem_is_allowed(PHYS_PFN(res->end))) {
1189		/*
1190		 * *cringe* iomem=relaxed says "go ahead, what's the
1191		 * worst that can happen?"
1192		 */
1193		return;
1194	}
1195
1196	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1197}
1198#else
1199static void revoke_iomem(struct resource *res) {}
1200#endif
1201
1202struct address_space *iomem_get_mapping(void)
1203{
1204	/*
1205	 * This function is only called from file open paths, hence guaranteed
1206	 * that fs_initcalls have completed and no need to check for NULL. But
1207	 * since revoke_iomem can be called before the initcall we still need
1208	 * the barrier to appease checkers.
1209	 */
1210	return smp_load_acquire(&iomem_inode)->i_mapping;
1211}
1212
1213static int __request_region_locked(struct resource *res, struct resource *parent,
1214				   resource_size_t start, resource_size_t n,
1215				   const char *name, int flags)
1216{
1217	DECLARE_WAITQUEUE(wait, current);
1218
1219	res->name = name;
1220	res->start = start;
1221	res->end = start + n - 1;
1222
1223	for (;;) {
1224		struct resource *conflict;
1225
1226		res->flags = resource_type(parent) | resource_ext_type(parent);
1227		res->flags |= IORESOURCE_BUSY | flags;
1228		res->desc = parent->desc;
1229
1230		conflict = __request_resource(parent, res);
1231		if (!conflict)
1232			break;
1233		/*
1234		 * mm/hmm.c reserves physical addresses which then
1235		 * become unavailable to other users.  Conflicts are
1236		 * not expected.  Warn to aid debugging if encountered.
1237		 */
1238		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1239			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1240				conflict->name, conflict, res);
1241		}
1242		if (conflict != parent) {
1243			if (!(conflict->flags & IORESOURCE_BUSY)) {
1244				parent = conflict;
1245				continue;
1246			}
1247		}
1248		if (conflict->flags & flags & IORESOURCE_MUXED) {
1249			add_wait_queue(&muxed_resource_wait, &wait);
1250			write_unlock(&resource_lock);
1251			set_current_state(TASK_UNINTERRUPTIBLE);
1252			schedule();
1253			remove_wait_queue(&muxed_resource_wait, &wait);
1254			write_lock(&resource_lock);
1255			continue;
1256		}
1257		/* Uhhuh, that didn't work out.. */
1258		return -EBUSY;
1259	}
1260
1261	return 0;
1262}
1263
1264/**
1265 * __request_region - create a new busy resource region
1266 * @parent: parent resource descriptor
1267 * @start: resource start address
1268 * @n: resource region size
1269 * @name: reserving caller's ID string
1270 * @flags: IO resource flags
1271 */
1272struct resource *__request_region(struct resource *parent,
1273				  resource_size_t start, resource_size_t n,
1274				  const char *name, int flags)
1275{
1276	struct resource *res = alloc_resource(GFP_KERNEL);
1277	int ret;
1278
1279	if (!res)
1280		return NULL;
1281
1282	write_lock(&resource_lock);
1283	ret = __request_region_locked(res, parent, start, n, name, flags);
1284	write_unlock(&resource_lock);
1285
1286	if (ret) {
1287		free_resource(res);
1288		return NULL;
1289	}
1290
1291	if (parent == &iomem_resource)
1292		revoke_iomem(res);
1293
1294	return res;
1295}
1296EXPORT_SYMBOL(__request_region);
1297
1298/**
1299 * __release_region - release a previously reserved resource region
1300 * @parent: parent resource descriptor
1301 * @start: resource start address
1302 * @n: resource region size
1303 *
1304 * The described resource region must match a currently busy region.
1305 */
1306void __release_region(struct resource *parent, resource_size_t start,
1307		      resource_size_t n)
1308{
1309	struct resource **p;
1310	resource_size_t end;
1311
1312	p = &parent->child;
1313	end = start + n - 1;
1314
1315	write_lock(&resource_lock);
1316
1317	for (;;) {
1318		struct resource *res = *p;
1319
1320		if (!res)
1321			break;
1322		if (res->start <= start && res->end >= end) {
1323			if (!(res->flags & IORESOURCE_BUSY)) {
1324				p = &res->child;
1325				continue;
1326			}
1327			if (res->start != start || res->end != end)
1328				break;
1329			*p = res->sibling;
1330			write_unlock(&resource_lock);
1331			if (res->flags & IORESOURCE_MUXED)
1332				wake_up(&muxed_resource_wait);
1333			free_resource(res);
1334			return;
1335		}
1336		p = &res->sibling;
1337	}
1338
1339	write_unlock(&resource_lock);
1340
1341	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1342}
1343EXPORT_SYMBOL(__release_region);
1344
1345#ifdef CONFIG_MEMORY_HOTREMOVE
1346/**
1347 * release_mem_region_adjustable - release a previously reserved memory region
1348 * @start: resource start address
1349 * @size: resource region size
1350 *
1351 * This interface is intended for memory hot-delete.  The requested region
1352 * is released from a currently busy memory resource.  The requested region
1353 * must either match exactly or fit into a single busy resource entry.  In
1354 * the latter case, the remaining resource is adjusted accordingly.
1355 * Existing children of the busy memory resource must be immutable in the
1356 * request.
1357 *
1358 * Note:
1359 * - Additional release conditions, such as overlapping region, can be
1360 *   supported after they are confirmed as valid cases.
1361 * - When a busy memory resource gets split into two entries, the code
1362 *   assumes that all children remain in the lower address entry for
1363 *   simplicity.  Enhance this logic when necessary.
1364 */
1365void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1366{
1367	struct resource *parent = &iomem_resource;
1368	struct resource *new_res = NULL;
1369	bool alloc_nofail = false;
1370	struct resource **p;
1371	struct resource *res;
1372	resource_size_t end;
1373
1374	end = start + size - 1;
1375	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1376		return;
1377
1378	/*
1379	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1380	 * just before releasing the region. This is highly unlikely to
1381	 * fail - let's play save and make it never fail as the caller cannot
1382	 * perform any error handling (e.g., trying to re-add memory will fail
1383	 * similarly).
1384	 */
1385retry:
1386	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1387
1388	p = &parent->child;
1389	write_lock(&resource_lock);
1390
1391	while ((res = *p)) {
1392		if (res->start >= end)
1393			break;
1394
1395		/* look for the next resource if it does not fit into */
1396		if (res->start > start || res->end < end) {
1397			p = &res->sibling;
1398			continue;
1399		}
1400
1401		if (!(res->flags & IORESOURCE_MEM))
1402			break;
1403
1404		if (!(res->flags & IORESOURCE_BUSY)) {
1405			p = &res->child;
1406			continue;
1407		}
1408
1409		/* found the target resource; let's adjust accordingly */
1410		if (res->start == start && res->end == end) {
1411			/* free the whole entry */
1412			*p = res->sibling;
1413			free_resource(res);
1414		} else if (res->start == start && res->end != end) {
1415			/* adjust the start */
1416			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1417						       res->end - end));
1418		} else if (res->start != start && res->end == end) {
1419			/* adjust the end */
1420			WARN_ON_ONCE(__adjust_resource(res, res->start,
1421						       start - res->start));
1422		} else {
1423			/* split into two entries - we need a new resource */
1424			if (!new_res) {
1425				new_res = alloc_resource(GFP_ATOMIC);
1426				if (!new_res) {
1427					alloc_nofail = true;
1428					write_unlock(&resource_lock);
1429					goto retry;
1430				}
1431			}
1432			new_res->name = res->name;
1433			new_res->start = end + 1;
1434			new_res->end = res->end;
1435			new_res->flags = res->flags;
1436			new_res->desc = res->desc;
1437			new_res->parent = res->parent;
1438			new_res->sibling = res->sibling;
1439			new_res->child = NULL;
1440
1441			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1442							   start - res->start)))
1443				break;
1444			res->sibling = new_res;
1445			new_res = NULL;
1446		}
1447
1448		break;
1449	}
1450
1451	write_unlock(&resource_lock);
1452	free_resource(new_res);
1453}
1454#endif	/* CONFIG_MEMORY_HOTREMOVE */
1455
1456#ifdef CONFIG_MEMORY_HOTPLUG
1457static bool system_ram_resources_mergeable(struct resource *r1,
1458					   struct resource *r2)
1459{
1460	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1461	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1462	       r1->name == r2->name && r1->desc == r2->desc &&
1463	       !r1->child && !r2->child;
1464}
1465
1466/**
1467 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1468 *	merge it with adjacent, mergeable resources
1469 * @res: resource descriptor
1470 *
1471 * This interface is intended for memory hotplug, whereby lots of contiguous
1472 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1473 * the actual resource boundaries are not of interest (e.g., it might be
1474 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1475 * same parent, and that don't have any children are considered. All mergeable
1476 * resources must be immutable during the request.
1477 *
1478 * Note:
1479 * - The caller has to make sure that no pointers to resources that are
1480 *   marked mergeable are used anymore after this call - the resource might
1481 *   be freed and the pointer might be stale!
1482 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1483 */
1484void merge_system_ram_resource(struct resource *res)
1485{
1486	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1487	struct resource *cur;
1488
1489	if (WARN_ON_ONCE((res->flags & flags) != flags))
1490		return;
1491
1492	write_lock(&resource_lock);
1493	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1494
1495	/* Try to merge with next item in the list. */
1496	cur = res->sibling;
1497	if (cur && system_ram_resources_mergeable(res, cur)) {
1498		res->end = cur->end;
1499		res->sibling = cur->sibling;
1500		free_resource(cur);
1501	}
1502
1503	/* Try to merge with previous item in the list. */
1504	cur = res->parent->child;
1505	while (cur && cur->sibling != res)
1506		cur = cur->sibling;
1507	if (cur && system_ram_resources_mergeable(cur, res)) {
1508		cur->end = res->end;
1509		cur->sibling = res->sibling;
1510		free_resource(res);
1511	}
1512	write_unlock(&resource_lock);
1513}
1514#endif	/* CONFIG_MEMORY_HOTPLUG */
1515
1516/*
1517 * Managed region resource
1518 */
1519static void devm_resource_release(struct device *dev, void *ptr)
1520{
1521	struct resource **r = ptr;
1522
1523	release_resource(*r);
1524}
1525
1526/**
1527 * devm_request_resource() - request and reserve an I/O or memory resource
1528 * @dev: device for which to request the resource
1529 * @root: root of the resource tree from which to request the resource
1530 * @new: descriptor of the resource to request
1531 *
1532 * This is a device-managed version of request_resource(). There is usually
1533 * no need to release resources requested by this function explicitly since
1534 * that will be taken care of when the device is unbound from its driver.
1535 * If for some reason the resource needs to be released explicitly, because
1536 * of ordering issues for example, drivers must call devm_release_resource()
1537 * rather than the regular release_resource().
1538 *
1539 * When a conflict is detected between any existing resources and the newly
1540 * requested resource, an error message will be printed.
1541 *
1542 * Returns 0 on success or a negative error code on failure.
1543 */
1544int devm_request_resource(struct device *dev, struct resource *root,
1545			  struct resource *new)
1546{
1547	struct resource *conflict, **ptr;
1548
1549	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1550	if (!ptr)
1551		return -ENOMEM;
1552
1553	*ptr = new;
1554
1555	conflict = request_resource_conflict(root, new);
1556	if (conflict) {
1557		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1558			new, conflict->name, conflict);
1559		devres_free(ptr);
1560		return -EBUSY;
1561	}
1562
1563	devres_add(dev, ptr);
1564	return 0;
1565}
1566EXPORT_SYMBOL(devm_request_resource);
1567
1568static int devm_resource_match(struct device *dev, void *res, void *data)
1569{
1570	struct resource **ptr = res;
1571
1572	return *ptr == data;
1573}
1574
1575/**
1576 * devm_release_resource() - release a previously requested resource
1577 * @dev: device for which to release the resource
1578 * @new: descriptor of the resource to release
1579 *
1580 * Releases a resource previously requested using devm_request_resource().
1581 */
1582void devm_release_resource(struct device *dev, struct resource *new)
1583{
1584	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1585			       new));
1586}
1587EXPORT_SYMBOL(devm_release_resource);
1588
1589struct region_devres {
1590	struct resource *parent;
1591	resource_size_t start;
1592	resource_size_t n;
1593};
1594
1595static void devm_region_release(struct device *dev, void *res)
1596{
1597	struct region_devres *this = res;
1598
1599	__release_region(this->parent, this->start, this->n);
1600}
1601
1602static int devm_region_match(struct device *dev, void *res, void *match_data)
1603{
1604	struct region_devres *this = res, *match = match_data;
1605
1606	return this->parent == match->parent &&
1607		this->start == match->start && this->n == match->n;
1608}
1609
1610struct resource *
1611__devm_request_region(struct device *dev, struct resource *parent,
1612		      resource_size_t start, resource_size_t n, const char *name)
1613{
1614	struct region_devres *dr = NULL;
1615	struct resource *res;
1616
1617	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1618			  GFP_KERNEL);
1619	if (!dr)
1620		return NULL;
1621
1622	dr->parent = parent;
1623	dr->start = start;
1624	dr->n = n;
1625
1626	res = __request_region(parent, start, n, name, 0);
1627	if (res)
1628		devres_add(dev, dr);
1629	else
1630		devres_free(dr);
1631
1632	return res;
1633}
1634EXPORT_SYMBOL(__devm_request_region);
1635
1636void __devm_release_region(struct device *dev, struct resource *parent,
1637			   resource_size_t start, resource_size_t n)
1638{
1639	struct region_devres match_data = { parent, start, n };
1640
1641	__release_region(parent, start, n);
1642	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1643			       &match_data));
1644}
1645EXPORT_SYMBOL(__devm_release_region);
1646
1647/*
1648 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1649 */
1650#define MAXRESERVE 4
1651static int __init reserve_setup(char *str)
1652{
1653	static int reserved;
1654	static struct resource reserve[MAXRESERVE];
1655
1656	for (;;) {
1657		unsigned int io_start, io_num;
1658		int x = reserved;
1659		struct resource *parent;
1660
1661		if (get_option(&str, &io_start) != 2)
1662			break;
1663		if (get_option(&str, &io_num) == 0)
1664			break;
1665		if (x < MAXRESERVE) {
1666			struct resource *res = reserve + x;
1667
1668			/*
1669			 * If the region starts below 0x10000, we assume it's
1670			 * I/O port space; otherwise assume it's memory.
1671			 */
1672			if (io_start < 0x10000) {
1673				res->flags = IORESOURCE_IO;
1674				parent = &ioport_resource;
1675			} else {
1676				res->flags = IORESOURCE_MEM;
1677				parent = &iomem_resource;
1678			}
1679			res->name = "reserved";
1680			res->start = io_start;
1681			res->end = io_start + io_num - 1;
1682			res->flags |= IORESOURCE_BUSY;
1683			res->desc = IORES_DESC_NONE;
1684			res->child = NULL;
1685			if (request_resource(parent, res) == 0)
1686				reserved = x+1;
1687		}
1688	}
1689	return 1;
1690}
1691__setup("reserve=", reserve_setup);
1692
1693/*
1694 * Check if the requested addr and size spans more than any slot in the
1695 * iomem resource tree.
1696 */
1697int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1698{
1699	resource_size_t end = addr + size - 1;
1700	struct resource *p;
1701	int err = 0;
1702
1703	read_lock(&resource_lock);
1704	for_each_resource(&iomem_resource, p, false) {
1705		/*
1706		 * We can probably skip the resources without
1707		 * IORESOURCE_IO attribute?
1708		 */
1709		if (p->start > end)
1710			continue;
1711		if (p->end < addr)
1712			continue;
1713		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1714		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1715			continue;
1716		/*
1717		 * if a resource is "BUSY", it's not a hardware resource
1718		 * but a driver mapping of such a resource; we don't want
1719		 * to warn for those; some drivers legitimately map only
1720		 * partial hardware resources. (example: vesafb)
1721		 */
1722		if (p->flags & IORESOURCE_BUSY)
1723			continue;
1724
1725		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1726			&addr, &end, p->name, p);
1727		err = -1;
1728		break;
1729	}
1730	read_unlock(&resource_lock);
1731
1732	return err;
1733}
1734
1735#ifdef CONFIG_STRICT_DEVMEM
1736static int strict_iomem_checks = 1;
1737#else
1738static int strict_iomem_checks;
1739#endif
1740
1741/*
1742 * Check if an address is exclusive to the kernel and must not be mapped to
1743 * user space, for example, via /dev/mem.
1744 *
1745 * Returns true if exclusive to the kernel, otherwise returns false.
1746 */
1747bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1748{
1749	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1750						  IORESOURCE_EXCLUSIVE;
1751	bool skip_children = false, err = false;
1752	struct resource *p;
1753
1754	read_lock(&resource_lock);
1755	for_each_resource(root, p, skip_children) {
1756		if (p->start >= addr + size)
1757			break;
1758		if (p->end < addr) {
1759			skip_children = true;
1760			continue;
1761		}
1762		skip_children = false;
1763
1764		/*
1765		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1766		 * IORESOURCE_EXCLUSIVE is set, even if they
1767		 * are not busy and even if "iomem=relaxed" is set. The
1768		 * responsible driver dynamically adds/removes system RAM within
1769		 * such an area and uncontrolled access is dangerous.
1770		 */
1771		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1772			err = true;
1773			break;
1774		}
1775
1776		/*
1777		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1778		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1779		 * resource is busy.
1780		 */
1781		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1782			continue;
1783		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1784				|| p->flags & IORESOURCE_EXCLUSIVE) {
1785			err = true;
1786			break;
1787		}
1788	}
1789	read_unlock(&resource_lock);
1790
1791	return err;
1792}
1793
1794bool iomem_is_exclusive(u64 addr)
1795{
1796	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1797				     PAGE_SIZE);
1798}
1799
1800struct resource_entry *resource_list_create_entry(struct resource *res,
1801						  size_t extra_size)
1802{
1803	struct resource_entry *entry;
1804
1805	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1806	if (entry) {
1807		INIT_LIST_HEAD(&entry->node);
1808		entry->res = res ? res : &entry->__res;
1809	}
1810
1811	return entry;
1812}
1813EXPORT_SYMBOL(resource_list_create_entry);
1814
1815void resource_list_free(struct list_head *head)
1816{
1817	struct resource_entry *entry, *tmp;
1818
1819	list_for_each_entry_safe(entry, tmp, head, node)
1820		resource_list_destroy_entry(entry);
1821}
1822EXPORT_SYMBOL(resource_list_free);
1823
1824#ifdef CONFIG_GET_FREE_REGION
1825#define GFR_DESCENDING		(1UL << 0)
1826#define GFR_REQUEST_REGION	(1UL << 1)
1827#define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1828
1829static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1830				 resource_size_t align, unsigned long flags)
1831{
1832	if (flags & GFR_DESCENDING) {
1833		resource_size_t end;
1834
1835		end = min_t(resource_size_t, base->end,
1836			    (1ULL << MAX_PHYSMEM_BITS) - 1);
1837		return end - size + 1;
1838	}
1839
1840	return ALIGN(base->start, align);
1841}
1842
1843static bool gfr_continue(struct resource *base, resource_size_t addr,
1844			 resource_size_t size, unsigned long flags)
1845{
1846	if (flags & GFR_DESCENDING)
1847		return addr > size && addr >= base->start;
1848	/*
1849	 * In the ascend case be careful that the last increment by
1850	 * @size did not wrap 0.
1851	 */
1852	return addr > addr - size &&
1853	       addr <= min_t(resource_size_t, base->end,
1854			     (1ULL << MAX_PHYSMEM_BITS) - 1);
1855}
1856
1857static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1858				unsigned long flags)
1859{
1860	if (flags & GFR_DESCENDING)
1861		return addr - size;
1862	return addr + size;
1863}
1864
1865static void remove_free_mem_region(void *_res)
1866{
1867	struct resource *res = _res;
1868
1869	if (res->parent)
1870		remove_resource(res);
1871	free_resource(res);
1872}
1873
1874static struct resource *
1875get_free_mem_region(struct device *dev, struct resource *base,
1876		    resource_size_t size, const unsigned long align,
1877		    const char *name, const unsigned long desc,
1878		    const unsigned long flags)
1879{
1880	resource_size_t addr;
1881	struct resource *res;
1882	struct region_devres *dr = NULL;
1883
1884	size = ALIGN(size, align);
1885
1886	res = alloc_resource(GFP_KERNEL);
1887	if (!res)
1888		return ERR_PTR(-ENOMEM);
1889
1890	if (dev && (flags & GFR_REQUEST_REGION)) {
1891		dr = devres_alloc(devm_region_release,
1892				sizeof(struct region_devres), GFP_KERNEL);
1893		if (!dr) {
1894			free_resource(res);
1895			return ERR_PTR(-ENOMEM);
1896		}
1897	} else if (dev) {
1898		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1899			return ERR_PTR(-ENOMEM);
1900	}
1901
1902	write_lock(&resource_lock);
1903	for (addr = gfr_start(base, size, align, flags);
1904	     gfr_continue(base, addr, align, flags);
1905	     addr = gfr_next(addr, align, flags)) {
1906		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1907		    REGION_DISJOINT)
1908			continue;
1909
1910		if (flags & GFR_REQUEST_REGION) {
1911			if (__request_region_locked(res, &iomem_resource, addr,
1912						    size, name, 0))
1913				break;
1914
1915			if (dev) {
1916				dr->parent = &iomem_resource;
1917				dr->start = addr;
1918				dr->n = size;
1919				devres_add(dev, dr);
1920			}
1921
1922			res->desc = desc;
1923			write_unlock(&resource_lock);
1924
1925
1926			/*
1927			 * A driver is claiming this region so revoke any
1928			 * mappings.
1929			 */
1930			revoke_iomem(res);
1931		} else {
1932			res->start = addr;
1933			res->end = addr + size - 1;
1934			res->name = name;
1935			res->desc = desc;
1936			res->flags = IORESOURCE_MEM;
1937
1938			/*
1939			 * Only succeed if the resource hosts an exclusive
1940			 * range after the insert
1941			 */
1942			if (__insert_resource(base, res) || res->child)
1943				break;
1944
1945			write_unlock(&resource_lock);
1946		}
1947
1948		return res;
1949	}
1950	write_unlock(&resource_lock);
1951
1952	if (flags & GFR_REQUEST_REGION) {
1953		free_resource(res);
1954		devres_free(dr);
1955	} else if (dev)
1956		devm_release_action(dev, remove_free_mem_region, res);
1957
1958	return ERR_PTR(-ERANGE);
1959}
1960
1961/**
1962 * devm_request_free_mem_region - find free region for device private memory
1963 *
1964 * @dev: device struct to bind the resource to
1965 * @size: size in bytes of the device memory to add
1966 * @base: resource tree to look in
1967 *
1968 * This function tries to find an empty range of physical address big enough to
1969 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1970 * memory, which in turn allocates struct pages.
1971 */
1972struct resource *devm_request_free_mem_region(struct device *dev,
1973		struct resource *base, unsigned long size)
1974{
1975	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1976
1977	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
1978				   dev_name(dev),
1979				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1980}
1981EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1982
1983struct resource *request_free_mem_region(struct resource *base,
1984		unsigned long size, const char *name)
1985{
1986	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1987
1988	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
1989				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1990}
1991EXPORT_SYMBOL_GPL(request_free_mem_region);
1992
1993/**
1994 * alloc_free_mem_region - find a free region relative to @base
1995 * @base: resource that will parent the new resource
1996 * @size: size in bytes of memory to allocate from @base
1997 * @align: alignment requirements for the allocation
1998 * @name: resource name
1999 *
2000 * Buses like CXL, that can dynamically instantiate new memory regions,
2001 * need a method to allocate physical address space for those regions.
2002 * Allocate and insert a new resource to cover a free, unclaimed by a
2003 * descendant of @base, range in the span of @base.
2004 */
2005struct resource *alloc_free_mem_region(struct resource *base,
2006				       unsigned long size, unsigned long align,
2007				       const char *name)
2008{
2009	/* Default of ascending direction and insert resource */
2010	unsigned long flags = 0;
2011
2012	return get_free_mem_region(NULL, base, size, align, name,
2013				   IORES_DESC_NONE, flags);
2014}
2015EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL);
2016#endif /* CONFIG_GET_FREE_REGION */
2017
2018static int __init strict_iomem(char *str)
2019{
2020	if (strstr(str, "relaxed"))
2021		strict_iomem_checks = 0;
2022	if (strstr(str, "strict"))
2023		strict_iomem_checks = 1;
2024	return 1;
2025}
2026
2027static int iomem_fs_init_fs_context(struct fs_context *fc)
2028{
2029	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2030}
2031
2032static struct file_system_type iomem_fs_type = {
2033	.name		= "iomem",
2034	.owner		= THIS_MODULE,
2035	.init_fs_context = iomem_fs_init_fs_context,
2036	.kill_sb	= kill_anon_super,
2037};
2038
2039static int __init iomem_init_inode(void)
2040{
2041	static struct vfsmount *iomem_vfs_mount;
2042	static int iomem_fs_cnt;
2043	struct inode *inode;
2044	int rc;
2045
2046	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2047	if (rc < 0) {
2048		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2049		return rc;
2050	}
2051
2052	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2053	if (IS_ERR(inode)) {
2054		rc = PTR_ERR(inode);
2055		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2056		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2057		return rc;
2058	}
2059
2060	/*
2061	 * Publish iomem revocation inode initialized.
2062	 * Pairs with smp_load_acquire() in revoke_iomem().
2063	 */
2064	smp_store_release(&iomem_inode, inode);
2065
2066	return 0;
2067}
2068
2069fs_initcall(iomem_init_inode);
2070
2071__setup("iomem=", strict_iomem);
2072