1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 * Copyright SUSE, 2021
10 *
11 * Author: Ingo Molnar <mingo@elte.hu>
12 *	   Paul E. McKenney <paulmck@linux.ibm.com>
13 *	   Frederic Weisbecker <frederic@kernel.org>
14 */
15
16#ifdef CONFIG_RCU_NOCB_CPU
17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20{
21	return lockdep_is_held(&rdp->nocb_lock);
22}
23
24static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25{
26	/* Race on early boot between thread creation and assignment */
27	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28		return true;
29
30	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31		if (in_task())
32			return true;
33	return false;
34}
35
36/*
37 * Offload callback processing from the boot-time-specified set of CPUs
38 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
39 * created that pull the callbacks from the corresponding CPU, wait for
40 * a grace period to elapse, and invoke the callbacks.  These kthreads
41 * are organized into GP kthreads, which manage incoming callbacks, wait for
42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
44 * do a wake_up() on their GP kthread when they insert a callback into any
45 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46 * in which case each kthread actively polls its CPU.  (Which isn't so great
47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48 *
49 * This is intended to be used in conjunction with Frederic Weisbecker's
50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51 * running CPU-bound user-mode computations.
52 *
53 * Offloading of callbacks can also be used as an energy-efficiency
54 * measure because CPUs with no RCU callbacks queued are more aggressive
55 * about entering dyntick-idle mode.
56 */
57
58
59/*
60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62 */
63static int __init rcu_nocb_setup(char *str)
64{
65	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66	if (*str == '=') {
67		if (cpulist_parse(++str, rcu_nocb_mask)) {
68			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
69			cpumask_setall(rcu_nocb_mask);
70		}
71	}
72	rcu_state.nocb_is_setup = true;
73	return 1;
74}
75__setup("rcu_nocbs", rcu_nocb_setup);
76
77static int __init parse_rcu_nocb_poll(char *arg)
78{
79	rcu_nocb_poll = true;
80	return 1;
81}
82__setup("rcu_nocb_poll", parse_rcu_nocb_poll);
83
84/*
85 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
86 * After all, the main point of bypassing is to avoid lock contention
87 * on ->nocb_lock, which only can happen at high call_rcu() rates.
88 */
89static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
90module_param(nocb_nobypass_lim_per_jiffy, int, 0);
91
92/*
93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
94 * lock isn't immediately available, increment ->nocb_lock_contended to
95 * flag the contention.
96 */
97static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
98	__acquires(&rdp->nocb_bypass_lock)
99{
100	lockdep_assert_irqs_disabled();
101	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
102		return;
103	atomic_inc(&rdp->nocb_lock_contended);
104	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
105	smp_mb__after_atomic(); /* atomic_inc() before lock. */
106	raw_spin_lock(&rdp->nocb_bypass_lock);
107	smp_mb__before_atomic(); /* atomic_dec() after lock. */
108	atomic_dec(&rdp->nocb_lock_contended);
109}
110
111/*
112 * Spinwait until the specified rcu_data structure's ->nocb_lock is
113 * not contended.  Please note that this is extremely special-purpose,
114 * relying on the fact that at most two kthreads and one CPU contend for
115 * this lock, and also that the two kthreads are guaranteed to have frequent
116 * grace-period-duration time intervals between successive acquisitions
117 * of the lock.  This allows us to use an extremely simple throttling
118 * mechanism, and further to apply it only to the CPU doing floods of
119 * call_rcu() invocations.  Don't try this at home!
120 */
121static void rcu_nocb_wait_contended(struct rcu_data *rdp)
122{
123	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
124	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
125		cpu_relax();
126}
127
128/*
129 * Conditionally acquire the specified rcu_data structure's
130 * ->nocb_bypass_lock.
131 */
132static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
133{
134	lockdep_assert_irqs_disabled();
135	return raw_spin_trylock(&rdp->nocb_bypass_lock);
136}
137
138/*
139 * Release the specified rcu_data structure's ->nocb_bypass_lock.
140 */
141static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
142	__releases(&rdp->nocb_bypass_lock)
143{
144	lockdep_assert_irqs_disabled();
145	raw_spin_unlock(&rdp->nocb_bypass_lock);
146}
147
148/*
149 * Acquire the specified rcu_data structure's ->nocb_lock, but only
150 * if it corresponds to a no-CBs CPU.
151 */
152static void rcu_nocb_lock(struct rcu_data *rdp)
153{
154	lockdep_assert_irqs_disabled();
155	if (!rcu_rdp_is_offloaded(rdp))
156		return;
157	raw_spin_lock(&rdp->nocb_lock);
158}
159
160/*
161 * Release the specified rcu_data structure's ->nocb_lock, but only
162 * if it corresponds to a no-CBs CPU.
163 */
164static void rcu_nocb_unlock(struct rcu_data *rdp)
165{
166	if (rcu_rdp_is_offloaded(rdp)) {
167		lockdep_assert_irqs_disabled();
168		raw_spin_unlock(&rdp->nocb_lock);
169	}
170}
171
172/*
173 * Release the specified rcu_data structure's ->nocb_lock and restore
174 * interrupts, but only if it corresponds to a no-CBs CPU.
175 */
176static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
177				       unsigned long flags)
178{
179	if (rcu_rdp_is_offloaded(rdp)) {
180		lockdep_assert_irqs_disabled();
181		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
182	} else {
183		local_irq_restore(flags);
184	}
185}
186
187/* Lockdep check that ->cblist may be safely accessed. */
188static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
189{
190	lockdep_assert_irqs_disabled();
191	if (rcu_rdp_is_offloaded(rdp))
192		lockdep_assert_held(&rdp->nocb_lock);
193}
194
195/*
196 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
197 * grace period.
198 */
199static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
200{
201	swake_up_all(sq);
202}
203
204static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
205{
206	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
207}
208
209static void rcu_init_one_nocb(struct rcu_node *rnp)
210{
211	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
212	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
213}
214
215static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
216			   struct rcu_data *rdp,
217			   bool force, unsigned long flags)
218	__releases(rdp_gp->nocb_gp_lock)
219{
220	bool needwake = false;
221
222	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
223		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
224		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
225				    TPS("AlreadyAwake"));
226		return false;
227	}
228
229	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
230		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
231		del_timer(&rdp_gp->nocb_timer);
232	}
233
234	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
235		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
236		needwake = true;
237	}
238	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
239	if (needwake) {
240		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
241		wake_up_process(rdp_gp->nocb_gp_kthread);
242	}
243
244	return needwake;
245}
246
247/*
248 * Kick the GP kthread for this NOCB group.
249 */
250static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
251{
252	unsigned long flags;
253	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
254
255	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
256	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
257}
258
259#ifdef CONFIG_RCU_LAZY
260/*
261 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
262 * can elapse before lazy callbacks are flushed. Lazy callbacks
263 * could be flushed much earlier for a number of other reasons
264 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
265 * left unsubmitted to RCU after those many jiffies.
266 */
267#define LAZY_FLUSH_JIFFIES (10 * HZ)
268static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
269
270// To be called only from test code.
271void rcu_set_jiffies_lazy_flush(unsigned long jif)
272{
273	jiffies_lazy_flush = jif;
274}
275EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
276
277unsigned long rcu_get_jiffies_lazy_flush(void)
278{
279	return jiffies_lazy_flush;
280}
281EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
282#endif
283
284/*
285 * Arrange to wake the GP kthread for this NOCB group at some future
286 * time when it is safe to do so.
287 */
288static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
289			       const char *reason)
290{
291	unsigned long flags;
292	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
293
294	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
295
296	/*
297	 * Bypass wakeup overrides previous deferments. In case of
298	 * callback storms, no need to wake up too early.
299	 */
300	if (waketype == RCU_NOCB_WAKE_LAZY &&
301	    rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
302		mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
303		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
304	} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
305		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
306		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
307	} else {
308		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
309			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
310		if (rdp_gp->nocb_defer_wakeup < waketype)
311			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
312	}
313
314	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
315
316	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
317}
318
319/*
320 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
321 * However, if there is a callback to be enqueued and if ->nocb_bypass
322 * proves to be initially empty, just return false because the no-CB GP
323 * kthread may need to be awakened in this case.
324 *
325 * Return true if there was something to be flushed and it succeeded, otherwise
326 * false.
327 *
328 * Note that this function always returns true if rhp is NULL.
329 */
330static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
331				     unsigned long j, bool lazy)
332{
333	struct rcu_cblist rcl;
334	struct rcu_head *rhp = rhp_in;
335
336	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
337	rcu_lockdep_assert_cblist_protected(rdp);
338	lockdep_assert_held(&rdp->nocb_bypass_lock);
339	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
340		raw_spin_unlock(&rdp->nocb_bypass_lock);
341		return false;
342	}
343	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
344	if (rhp)
345		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
346
347	/*
348	 * If the new CB requested was a lazy one, queue it onto the main
349	 * ->cblist so that we can take advantage of the grace-period that will
350	 * happen regardless. But queue it onto the bypass list first so that
351	 * the lazy CB is ordered with the existing CBs in the bypass list.
352	 */
353	if (lazy && rhp) {
354		rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
355		rhp = NULL;
356	}
357	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
358	WRITE_ONCE(rdp->lazy_len, 0);
359
360	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
361	WRITE_ONCE(rdp->nocb_bypass_first, j);
362	rcu_nocb_bypass_unlock(rdp);
363	return true;
364}
365
366/*
367 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
368 * However, if there is a callback to be enqueued and if ->nocb_bypass
369 * proves to be initially empty, just return false because the no-CB GP
370 * kthread may need to be awakened in this case.
371 *
372 * Note that this function always returns true if rhp is NULL.
373 */
374static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
375				  unsigned long j, bool lazy)
376{
377	if (!rcu_rdp_is_offloaded(rdp))
378		return true;
379	rcu_lockdep_assert_cblist_protected(rdp);
380	rcu_nocb_bypass_lock(rdp);
381	return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
382}
383
384/*
385 * If the ->nocb_bypass_lock is immediately available, flush the
386 * ->nocb_bypass queue into ->cblist.
387 */
388static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
389{
390	rcu_lockdep_assert_cblist_protected(rdp);
391	if (!rcu_rdp_is_offloaded(rdp) ||
392	    !rcu_nocb_bypass_trylock(rdp))
393		return;
394	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
395}
396
397/*
398 * See whether it is appropriate to use the ->nocb_bypass list in order
399 * to control contention on ->nocb_lock.  A limited number of direct
400 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
401 * is non-empty, further callbacks must be placed into ->nocb_bypass,
402 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
403 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
404 * used if ->cblist is empty, because otherwise callbacks can be stranded
405 * on ->nocb_bypass because we cannot count on the current CPU ever again
406 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
407 * non-empty, the corresponding no-CBs grace-period kthread must not be
408 * in an indefinite sleep state.
409 *
410 * Finally, it is not permitted to use the bypass during early boot,
411 * as doing so would confuse the auto-initialization code.  Besides
412 * which, there is no point in worrying about lock contention while
413 * there is only one CPU in operation.
414 */
415static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
416				bool *was_alldone, unsigned long flags,
417				bool lazy)
418{
419	unsigned long c;
420	unsigned long cur_gp_seq;
421	unsigned long j = jiffies;
422	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
423	bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
424
425	lockdep_assert_irqs_disabled();
426
427	// Pure softirq/rcuc based processing: no bypassing, no
428	// locking.
429	if (!rcu_rdp_is_offloaded(rdp)) {
430		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
431		return false;
432	}
433
434	// In the process of (de-)offloading: no bypassing, but
435	// locking.
436	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
437		rcu_nocb_lock(rdp);
438		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
439		return false; /* Not offloaded, no bypassing. */
440	}
441
442	// Don't use ->nocb_bypass during early boot.
443	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
444		rcu_nocb_lock(rdp);
445		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
446		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
447		return false;
448	}
449
450	// If we have advanced to a new jiffy, reset counts to allow
451	// moving back from ->nocb_bypass to ->cblist.
452	if (j == rdp->nocb_nobypass_last) {
453		c = rdp->nocb_nobypass_count + 1;
454	} else {
455		WRITE_ONCE(rdp->nocb_nobypass_last, j);
456		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
457		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
458				 nocb_nobypass_lim_per_jiffy))
459			c = 0;
460		else if (c > nocb_nobypass_lim_per_jiffy)
461			c = nocb_nobypass_lim_per_jiffy;
462	}
463	WRITE_ONCE(rdp->nocb_nobypass_count, c);
464
465	// If there hasn't yet been all that many ->cblist enqueues
466	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
467	// ->nocb_bypass first.
468	// Lazy CBs throttle this back and do immediate bypass queuing.
469	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
470		rcu_nocb_lock(rdp);
471		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
472		if (*was_alldone)
473			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
474					    TPS("FirstQ"));
475
476		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
477		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
478		return false; // Caller must enqueue the callback.
479	}
480
481	// If ->nocb_bypass has been used too long or is too full,
482	// flush ->nocb_bypass to ->cblist.
483	if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
484	    (ncbs &&  bypass_is_lazy &&
485	     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
486	    ncbs >= qhimark) {
487		rcu_nocb_lock(rdp);
488		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
489
490		if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
491			if (*was_alldone)
492				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
493						    TPS("FirstQ"));
494			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
495			return false; // Caller must enqueue the callback.
496		}
497		if (j != rdp->nocb_gp_adv_time &&
498		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
499		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
500			rcu_advance_cbs_nowake(rdp->mynode, rdp);
501			rdp->nocb_gp_adv_time = j;
502		}
503
504		// The flush succeeded and we moved CBs into the regular list.
505		// Don't wait for the wake up timer as it may be too far ahead.
506		// Wake up the GP thread now instead, if the cblist was empty.
507		__call_rcu_nocb_wake(rdp, *was_alldone, flags);
508
509		return true; // Callback already enqueued.
510	}
511
512	// We need to use the bypass.
513	rcu_nocb_wait_contended(rdp);
514	rcu_nocb_bypass_lock(rdp);
515	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
516	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
517	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
518
519	if (lazy)
520		WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
521
522	if (!ncbs) {
523		WRITE_ONCE(rdp->nocb_bypass_first, j);
524		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
525	}
526	rcu_nocb_bypass_unlock(rdp);
527	smp_mb(); /* Order enqueue before wake. */
528	// A wake up of the grace period kthread or timer adjustment
529	// needs to be done only if:
530	// 1. Bypass list was fully empty before (this is the first
531	//    bypass list entry), or:
532	// 2. Both of these conditions are met:
533	//    a. The bypass list previously had only lazy CBs, and:
534	//    b. The new CB is non-lazy.
535	if (!ncbs || (bypass_is_lazy && !lazy)) {
536		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
537		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
538		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
539			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
540					    TPS("FirstBQwake"));
541			__call_rcu_nocb_wake(rdp, true, flags);
542		} else {
543			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
544					    TPS("FirstBQnoWake"));
545			rcu_nocb_unlock(rdp);
546		}
547	}
548	return true; // Callback already enqueued.
549}
550
551/*
552 * Awaken the no-CBs grace-period kthread if needed, either due to it
553 * legitimately being asleep or due to overload conditions.
554 *
555 * If warranted, also wake up the kthread servicing this CPUs queues.
556 */
557static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
558				 unsigned long flags)
559				 __releases(rdp->nocb_lock)
560{
561	long bypass_len;
562	unsigned long cur_gp_seq;
563	unsigned long j;
564	long lazy_len;
565	long len;
566	struct task_struct *t;
567	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
568
569	// If we are being polled or there is no kthread, just leave.
570	t = READ_ONCE(rdp->nocb_gp_kthread);
571	if (rcu_nocb_poll || !t) {
572		rcu_nocb_unlock(rdp);
573		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
574				    TPS("WakeNotPoll"));
575		return;
576	}
577	// Need to actually to a wakeup.
578	len = rcu_segcblist_n_cbs(&rdp->cblist);
579	bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
580	lazy_len = READ_ONCE(rdp->lazy_len);
581	if (was_alldone) {
582		rdp->qlen_last_fqs_check = len;
583		// Only lazy CBs in bypass list
584		if (lazy_len && bypass_len == lazy_len) {
585			rcu_nocb_unlock(rdp);
586			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
587					   TPS("WakeLazy"));
588		} else if (!irqs_disabled_flags(flags)) {
589			/* ... if queue was empty ... */
590			rcu_nocb_unlock(rdp);
591			wake_nocb_gp(rdp, false);
592			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
593					    TPS("WakeEmpty"));
594		} else {
595			rcu_nocb_unlock(rdp);
596			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
597					   TPS("WakeEmptyIsDeferred"));
598		}
599	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
600		/* ... or if many callbacks queued. */
601		rdp->qlen_last_fqs_check = len;
602		j = jiffies;
603		if (j != rdp->nocb_gp_adv_time &&
604		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
605		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
606			rcu_advance_cbs_nowake(rdp->mynode, rdp);
607			rdp->nocb_gp_adv_time = j;
608		}
609		smp_mb(); /* Enqueue before timer_pending(). */
610		if ((rdp->nocb_cb_sleep ||
611		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
612		    !timer_pending(&rdp_gp->nocb_timer)) {
613			rcu_nocb_unlock(rdp);
614			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
615					   TPS("WakeOvfIsDeferred"));
616		} else {
617			rcu_nocb_unlock(rdp);
618			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
619		}
620	} else {
621		rcu_nocb_unlock(rdp);
622		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
623	}
624}
625
626static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
627			  rcu_callback_t func, unsigned long flags, bool lazy)
628{
629	bool was_alldone;
630
631	if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
632		/* Not enqueued on bypass but locked, do regular enqueue */
633		rcutree_enqueue(rdp, head, func);
634		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
635	}
636}
637
638static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
639			       bool *wake_state)
640{
641	struct rcu_segcblist *cblist = &rdp->cblist;
642	unsigned long flags;
643	int ret;
644
645	rcu_nocb_lock_irqsave(rdp, flags);
646	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
647	    !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
648		/*
649		 * Offloading. Set our flag and notify the offload worker.
650		 * We will handle this rdp until it ever gets de-offloaded.
651		 */
652		rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
653		if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
654			*wake_state = true;
655		ret = 1;
656	} else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
657		   rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
658		/*
659		 * De-offloading. Clear our flag and notify the de-offload worker.
660		 * We will ignore this rdp until it ever gets re-offloaded.
661		 */
662		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
663		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
664			*wake_state = true;
665		ret = 0;
666	} else {
667		WARN_ON_ONCE(1);
668		ret = -1;
669	}
670
671	rcu_nocb_unlock_irqrestore(rdp, flags);
672
673	return ret;
674}
675
676static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
677{
678	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
679	swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
680					!READ_ONCE(my_rdp->nocb_gp_sleep));
681	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
682}
683
684/*
685 * No-CBs GP kthreads come here to wait for additional callbacks to show up
686 * or for grace periods to end.
687 */
688static void nocb_gp_wait(struct rcu_data *my_rdp)
689{
690	bool bypass = false;
691	int __maybe_unused cpu = my_rdp->cpu;
692	unsigned long cur_gp_seq;
693	unsigned long flags;
694	bool gotcbs = false;
695	unsigned long j = jiffies;
696	bool lazy = false;
697	bool needwait_gp = false; // This prevents actual uninitialized use.
698	bool needwake;
699	bool needwake_gp;
700	struct rcu_data *rdp, *rdp_toggling = NULL;
701	struct rcu_node *rnp;
702	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
703	bool wasempty = false;
704
705	/*
706	 * Each pass through the following loop checks for CBs and for the
707	 * nearest grace period (if any) to wait for next.  The CB kthreads
708	 * and the global grace-period kthread are awakened if needed.
709	 */
710	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
711	/*
712	 * An rcu_data structure is removed from the list after its
713	 * CPU is de-offloaded and added to the list before that CPU is
714	 * (re-)offloaded.  If the following loop happens to be referencing
715	 * that rcu_data structure during the time that the corresponding
716	 * CPU is de-offloaded and then immediately re-offloaded, this
717	 * loop's rdp pointer will be carried to the end of the list by
718	 * the resulting pair of list operations.  This can cause the loop
719	 * to skip over some of the rcu_data structures that were supposed
720	 * to have been scanned.  Fortunately a new iteration through the
721	 * entire loop is forced after a given CPU's rcu_data structure
722	 * is added to the list, so the skipped-over rcu_data structures
723	 * won't be ignored for long.
724	 */
725	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
726		long bypass_ncbs;
727		bool flush_bypass = false;
728		long lazy_ncbs;
729
730		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
731		rcu_nocb_lock_irqsave(rdp, flags);
732		lockdep_assert_held(&rdp->nocb_lock);
733		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
734		lazy_ncbs = READ_ONCE(rdp->lazy_len);
735
736		if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
737		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
738		     bypass_ncbs > 2 * qhimark)) {
739			flush_bypass = true;
740		} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
741		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
742		     bypass_ncbs > 2 * qhimark)) {
743			flush_bypass = true;
744		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
745			rcu_nocb_unlock_irqrestore(rdp, flags);
746			continue; /* No callbacks here, try next. */
747		}
748
749		if (flush_bypass) {
750			// Bypass full or old, so flush it.
751			(void)rcu_nocb_try_flush_bypass(rdp, j);
752			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
753			lazy_ncbs = READ_ONCE(rdp->lazy_len);
754		}
755
756		if (bypass_ncbs) {
757			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
758					    bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
759			if (bypass_ncbs == lazy_ncbs)
760				lazy = true;
761			else
762				bypass = true;
763		}
764		rnp = rdp->mynode;
765
766		// Advance callbacks if helpful and low contention.
767		needwake_gp = false;
768		if (!rcu_segcblist_restempty(&rdp->cblist,
769					     RCU_NEXT_READY_TAIL) ||
770		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
771		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
772			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
773			needwake_gp = rcu_advance_cbs(rnp, rdp);
774			wasempty = rcu_segcblist_restempty(&rdp->cblist,
775							   RCU_NEXT_READY_TAIL);
776			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
777		}
778		// Need to wait on some grace period?
779		WARN_ON_ONCE(wasempty &&
780			     !rcu_segcblist_restempty(&rdp->cblist,
781						      RCU_NEXT_READY_TAIL));
782		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
783			if (!needwait_gp ||
784			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
785				wait_gp_seq = cur_gp_seq;
786			needwait_gp = true;
787			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
788					    TPS("NeedWaitGP"));
789		}
790		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
791			needwake = rdp->nocb_cb_sleep;
792			WRITE_ONCE(rdp->nocb_cb_sleep, false);
793		} else {
794			needwake = false;
795		}
796		rcu_nocb_unlock_irqrestore(rdp, flags);
797		if (needwake) {
798			swake_up_one(&rdp->nocb_cb_wq);
799			gotcbs = true;
800		}
801		if (needwake_gp)
802			rcu_gp_kthread_wake();
803	}
804
805	my_rdp->nocb_gp_bypass = bypass;
806	my_rdp->nocb_gp_gp = needwait_gp;
807	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
808
809	// At least one child with non-empty ->nocb_bypass, so set
810	// timer in order to avoid stranding its callbacks.
811	if (!rcu_nocb_poll) {
812		// If bypass list only has lazy CBs. Add a deferred lazy wake up.
813		if (lazy && !bypass) {
814			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
815					TPS("WakeLazyIsDeferred"));
816		// Otherwise add a deferred bypass wake up.
817		} else if (bypass) {
818			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
819					TPS("WakeBypassIsDeferred"));
820		}
821	}
822
823	if (rcu_nocb_poll) {
824		/* Polling, so trace if first poll in the series. */
825		if (gotcbs)
826			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
827		if (list_empty(&my_rdp->nocb_head_rdp)) {
828			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
829			if (!my_rdp->nocb_toggling_rdp)
830				WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
831			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
832			/* Wait for any offloading rdp */
833			nocb_gp_sleep(my_rdp, cpu);
834		} else {
835			schedule_timeout_idle(1);
836		}
837	} else if (!needwait_gp) {
838		/* Wait for callbacks to appear. */
839		nocb_gp_sleep(my_rdp, cpu);
840	} else {
841		rnp = my_rdp->mynode;
842		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
843		swait_event_interruptible_exclusive(
844			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
845			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
846			!READ_ONCE(my_rdp->nocb_gp_sleep));
847		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
848	}
849
850	if (!rcu_nocb_poll) {
851		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
852		// (De-)queue an rdp to/from the group if its nocb state is changing
853		rdp_toggling = my_rdp->nocb_toggling_rdp;
854		if (rdp_toggling)
855			my_rdp->nocb_toggling_rdp = NULL;
856
857		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
858			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
859			del_timer(&my_rdp->nocb_timer);
860		}
861		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
862		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
863	} else {
864		rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
865		if (rdp_toggling) {
866			/*
867			 * Paranoid locking to make sure nocb_toggling_rdp is well
868			 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
869			 * race with another round of nocb toggling for this rdp.
870			 * Nocb locking should prevent from that already but we stick
871			 * to paranoia, especially in rare path.
872			 */
873			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
874			my_rdp->nocb_toggling_rdp = NULL;
875			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
876		}
877	}
878
879	if (rdp_toggling) {
880		bool wake_state = false;
881		int ret;
882
883		ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
884		if (ret == 1)
885			list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
886		else if (ret == 0)
887			list_del(&rdp_toggling->nocb_entry_rdp);
888		if (wake_state)
889			swake_up_one(&rdp_toggling->nocb_state_wq);
890	}
891
892	my_rdp->nocb_gp_seq = -1;
893	WARN_ON(signal_pending(current));
894}
895
896/*
897 * No-CBs grace-period-wait kthread.  There is one of these per group
898 * of CPUs, but only once at least one CPU in that group has come online
899 * at least once since boot.  This kthread checks for newly posted
900 * callbacks from any of the CPUs it is responsible for, waits for a
901 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
902 * that then have callback-invocation work to do.
903 */
904static int rcu_nocb_gp_kthread(void *arg)
905{
906	struct rcu_data *rdp = arg;
907
908	for (;;) {
909		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
910		nocb_gp_wait(rdp);
911		cond_resched_tasks_rcu_qs();
912	}
913	return 0;
914}
915
916static inline bool nocb_cb_can_run(struct rcu_data *rdp)
917{
918	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
919
920	return rcu_segcblist_test_flags(&rdp->cblist, flags);
921}
922
923static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
924{
925	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
926}
927
928/*
929 * Invoke any ready callbacks from the corresponding no-CBs CPU,
930 * then, if there are no more, wait for more to appear.
931 */
932static void nocb_cb_wait(struct rcu_data *rdp)
933{
934	struct rcu_segcblist *cblist = &rdp->cblist;
935	unsigned long cur_gp_seq;
936	unsigned long flags;
937	bool needwake_state = false;
938	bool needwake_gp = false;
939	bool can_sleep = true;
940	struct rcu_node *rnp = rdp->mynode;
941
942	do {
943		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
944						    nocb_cb_wait_cond(rdp));
945
946		if (READ_ONCE(rdp->nocb_cb_sleep)) {
947			WARN_ON(signal_pending(current));
948			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
949		}
950	} while (!nocb_cb_can_run(rdp));
951
952
953	local_irq_save(flags);
954	rcu_momentary_dyntick_idle();
955	local_irq_restore(flags);
956	/*
957	 * Disable BH to provide the expected environment.  Also, when
958	 * transitioning to/from NOCB mode, a self-requeuing callback might
959	 * be invoked from softirq.  A short grace period could cause both
960	 * instances of this callback would execute concurrently.
961	 */
962	local_bh_disable();
963	rcu_do_batch(rdp);
964	local_bh_enable();
965	lockdep_assert_irqs_enabled();
966	rcu_nocb_lock_irqsave(rdp, flags);
967	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
968	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
969	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
970		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
971		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
972	}
973
974	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
975		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
976			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
977			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
978				needwake_state = true;
979		}
980		if (rcu_segcblist_ready_cbs(cblist))
981			can_sleep = false;
982	} else {
983		/*
984		 * De-offloading. Clear our flag and notify the de-offload worker.
985		 * We won't touch the callbacks and keep sleeping until we ever
986		 * get re-offloaded.
987		 */
988		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
989		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
990		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
991			needwake_state = true;
992	}
993
994	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
995
996	if (rdp->nocb_cb_sleep)
997		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
998
999	rcu_nocb_unlock_irqrestore(rdp, flags);
1000	if (needwake_gp)
1001		rcu_gp_kthread_wake();
1002
1003	if (needwake_state)
1004		swake_up_one(&rdp->nocb_state_wq);
1005}
1006
1007/*
1008 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
1009 * nocb_cb_wait() to do the dirty work.
1010 */
1011static int rcu_nocb_cb_kthread(void *arg)
1012{
1013	struct rcu_data *rdp = arg;
1014
1015	// Each pass through this loop does one callback batch, and,
1016	// if there are no more ready callbacks, waits for them.
1017	for (;;) {
1018		nocb_cb_wait(rdp);
1019		cond_resched_tasks_rcu_qs();
1020	}
1021	return 0;
1022}
1023
1024/* Is a deferred wakeup of rcu_nocb_kthread() required? */
1025static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1026{
1027	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
1028}
1029
1030/* Do a deferred wakeup of rcu_nocb_kthread(). */
1031static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
1032					   struct rcu_data *rdp, int level,
1033					   unsigned long flags)
1034	__releases(rdp_gp->nocb_gp_lock)
1035{
1036	int ndw;
1037	int ret;
1038
1039	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
1040		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1041		return false;
1042	}
1043
1044	ndw = rdp_gp->nocb_defer_wakeup;
1045	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
1046	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
1047
1048	return ret;
1049}
1050
1051/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
1052static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
1053{
1054	unsigned long flags;
1055	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
1056
1057	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
1058	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1059
1060	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1061	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1062	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1063}
1064
1065/*
1066 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1067 * This means we do an inexact common-case check.  Note that if
1068 * we miss, ->nocb_timer will eventually clean things up.
1069 */
1070static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1071{
1072	unsigned long flags;
1073	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1074
1075	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1076		return false;
1077
1078	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1079	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1080}
1081
1082void rcu_nocb_flush_deferred_wakeup(void)
1083{
1084	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1085}
1086EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1087
1088static int rdp_offload_toggle(struct rcu_data *rdp,
1089			       bool offload, unsigned long flags)
1090	__releases(rdp->nocb_lock)
1091{
1092	struct rcu_segcblist *cblist = &rdp->cblist;
1093	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1094	bool wake_gp = false;
1095
1096	rcu_segcblist_offload(cblist, offload);
1097
1098	if (rdp->nocb_cb_sleep)
1099		rdp->nocb_cb_sleep = false;
1100	rcu_nocb_unlock_irqrestore(rdp, flags);
1101
1102	/*
1103	 * Ignore former value of nocb_cb_sleep and force wake up as it could
1104	 * have been spuriously set to false already.
1105	 */
1106	swake_up_one(&rdp->nocb_cb_wq);
1107
1108	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1109	// Queue this rdp for add/del to/from the list to iterate on rcuog
1110	WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1111	if (rdp_gp->nocb_gp_sleep) {
1112		rdp_gp->nocb_gp_sleep = false;
1113		wake_gp = true;
1114	}
1115	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1116
1117	return wake_gp;
1118}
1119
1120static long rcu_nocb_rdp_deoffload(void *arg)
1121{
1122	struct rcu_data *rdp = arg;
1123	struct rcu_segcblist *cblist = &rdp->cblist;
1124	unsigned long flags;
1125	int wake_gp;
1126	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1127
1128	/*
1129	 * rcu_nocb_rdp_deoffload() may be called directly if
1130	 * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1131	 * is not online yet.
1132	 */
1133	WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1134
1135	pr_info("De-offloading %d\n", rdp->cpu);
1136
1137	rcu_nocb_lock_irqsave(rdp, flags);
1138	/*
1139	 * Flush once and for all now. This suffices because we are
1140	 * running on the target CPU holding ->nocb_lock (thus having
1141	 * interrupts disabled), and because rdp_offload_toggle()
1142	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1143	 * Thus future calls to rcu_segcblist_completely_offloaded() will
1144	 * return false, which means that future calls to rcu_nocb_try_bypass()
1145	 * will refuse to put anything into the bypass.
1146	 */
1147	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
1148	/*
1149	 * Start with invoking rcu_core() early. This way if the current thread
1150	 * happens to preempt an ongoing call to rcu_core() in the middle,
1151	 * leaving some work dismissed because rcu_core() still thinks the rdp is
1152	 * completely offloaded, we are guaranteed a nearby future instance of
1153	 * rcu_core() to catch up.
1154	 */
1155	rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1156	invoke_rcu_core();
1157	wake_gp = rdp_offload_toggle(rdp, false, flags);
1158
1159	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1160	if (rdp_gp->nocb_gp_kthread) {
1161		if (wake_gp)
1162			wake_up_process(rdp_gp->nocb_gp_kthread);
1163
1164		/*
1165		 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1166		 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1167		 */
1168		if (!rdp->nocb_cb_kthread) {
1169			rcu_nocb_lock_irqsave(rdp, flags);
1170			rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1171			rcu_nocb_unlock_irqrestore(rdp, flags);
1172		}
1173
1174		swait_event_exclusive(rdp->nocb_state_wq,
1175					!rcu_segcblist_test_flags(cblist,
1176					  SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1177	} else {
1178		/*
1179		 * No kthread to clear the flags for us or remove the rdp from the nocb list
1180		 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1181		 * but we stick to paranoia in this rare path.
1182		 */
1183		rcu_nocb_lock_irqsave(rdp, flags);
1184		rcu_segcblist_clear_flags(&rdp->cblist,
1185				SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1186		rcu_nocb_unlock_irqrestore(rdp, flags);
1187
1188		list_del(&rdp->nocb_entry_rdp);
1189	}
1190	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1191
1192	/*
1193	 * Lock one last time to acquire latest callback updates from kthreads
1194	 * so we can later handle callbacks locally without locking.
1195	 */
1196	rcu_nocb_lock_irqsave(rdp, flags);
1197	/*
1198	 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1199	 * lock is released but how about being paranoid for once?
1200	 */
1201	rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1202	/*
1203	 * Without SEGCBLIST_LOCKING, we can't use
1204	 * rcu_nocb_unlock_irqrestore() anymore.
1205	 */
1206	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1207
1208	/* Sanity check */
1209	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1210
1211
1212	return 0;
1213}
1214
1215int rcu_nocb_cpu_deoffload(int cpu)
1216{
1217	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1218	int ret = 0;
1219
1220	cpus_read_lock();
1221	mutex_lock(&rcu_state.barrier_mutex);
1222	if (rcu_rdp_is_offloaded(rdp)) {
1223		if (cpu_online(cpu)) {
1224			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1225			if (!ret)
1226				cpumask_clear_cpu(cpu, rcu_nocb_mask);
1227		} else {
1228			pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1229			ret = -EINVAL;
1230		}
1231	}
1232	mutex_unlock(&rcu_state.barrier_mutex);
1233	cpus_read_unlock();
1234
1235	return ret;
1236}
1237EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1238
1239static long rcu_nocb_rdp_offload(void *arg)
1240{
1241	struct rcu_data *rdp = arg;
1242	struct rcu_segcblist *cblist = &rdp->cblist;
1243	unsigned long flags;
1244	int wake_gp;
1245	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1246
1247	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1248	/*
1249	 * For now we only support re-offload, ie: the rdp must have been
1250	 * offloaded on boot first.
1251	 */
1252	if (!rdp->nocb_gp_rdp)
1253		return -EINVAL;
1254
1255	if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1256		return -EINVAL;
1257
1258	pr_info("Offloading %d\n", rdp->cpu);
1259
1260	/*
1261	 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1262	 * is set.
1263	 */
1264	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1265
1266	/*
1267	 * We didn't take the nocb lock while working on the
1268	 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1269	 * Every modifications that have been done previously on
1270	 * rdp->cblist must be visible remotely by the nocb kthreads
1271	 * upon wake up after reading the cblist flags.
1272	 *
1273	 * The layout against nocb_lock enforces that ordering:
1274	 *
1275	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1276	 * -------------------------   ----------------------------
1277	 *      WRITE callbacks           rcu_nocb_lock()
1278	 *      rcu_nocb_lock()           READ flags
1279	 *      WRITE flags               READ callbacks
1280	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
1281	 */
1282	wake_gp = rdp_offload_toggle(rdp, true, flags);
1283	if (wake_gp)
1284		wake_up_process(rdp_gp->nocb_gp_kthread);
1285	swait_event_exclusive(rdp->nocb_state_wq,
1286			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1287			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1288
1289	/*
1290	 * All kthreads are ready to work, we can finally relieve rcu_core() and
1291	 * enable nocb bypass.
1292	 */
1293	rcu_nocb_lock_irqsave(rdp, flags);
1294	rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1295	rcu_nocb_unlock_irqrestore(rdp, flags);
1296
1297	return 0;
1298}
1299
1300int rcu_nocb_cpu_offload(int cpu)
1301{
1302	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1303	int ret = 0;
1304
1305	cpus_read_lock();
1306	mutex_lock(&rcu_state.barrier_mutex);
1307	if (!rcu_rdp_is_offloaded(rdp)) {
1308		if (cpu_online(cpu)) {
1309			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1310			if (!ret)
1311				cpumask_set_cpu(cpu, rcu_nocb_mask);
1312		} else {
1313			pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1314			ret = -EINVAL;
1315		}
1316	}
1317	mutex_unlock(&rcu_state.barrier_mutex);
1318	cpus_read_unlock();
1319
1320	return ret;
1321}
1322EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1323
1324#ifdef CONFIG_RCU_LAZY
1325static unsigned long
1326lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1327{
1328	int cpu;
1329	unsigned long count = 0;
1330
1331	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1332		return 0;
1333
1334	/*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
1335	if (!mutex_trylock(&rcu_state.barrier_mutex))
1336		return 0;
1337
1338	/* Snapshot count of all CPUs */
1339	for_each_cpu(cpu, rcu_nocb_mask) {
1340		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1341
1342		count +=  READ_ONCE(rdp->lazy_len);
1343	}
1344
1345	mutex_unlock(&rcu_state.barrier_mutex);
1346
1347	return count ? count : SHRINK_EMPTY;
1348}
1349
1350static unsigned long
1351lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1352{
1353	int cpu;
1354	unsigned long flags;
1355	unsigned long count = 0;
1356
1357	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1358		return 0;
1359	/*
1360	 * Protect against concurrent (de-)offloading. Otherwise nocb locking
1361	 * may be ignored or imbalanced.
1362	 */
1363	if (!mutex_trylock(&rcu_state.barrier_mutex)) {
1364		/*
1365		 * But really don't insist if barrier_mutex is contended since we
1366		 * can't guarantee that it will never engage in a dependency
1367		 * chain involving memory allocation. The lock is seldom contended
1368		 * anyway.
1369		 */
1370		return 0;
1371	}
1372
1373	/* Snapshot count of all CPUs */
1374	for_each_cpu(cpu, rcu_nocb_mask) {
1375		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1376		int _count;
1377
1378		if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1379			continue;
1380
1381		if (!READ_ONCE(rdp->lazy_len))
1382			continue;
1383
1384		rcu_nocb_lock_irqsave(rdp, flags);
1385		/*
1386		 * Recheck under the nocb lock. Since we are not holding the bypass
1387		 * lock we may still race with increments from the enqueuer but still
1388		 * we know for sure if there is at least one lazy callback.
1389		 */
1390		_count = READ_ONCE(rdp->lazy_len);
1391		if (!_count) {
1392			rcu_nocb_unlock_irqrestore(rdp, flags);
1393			continue;
1394		}
1395		rcu_nocb_try_flush_bypass(rdp, jiffies);
1396		rcu_nocb_unlock_irqrestore(rdp, flags);
1397		wake_nocb_gp(rdp, false);
1398		sc->nr_to_scan -= _count;
1399		count += _count;
1400		if (sc->nr_to_scan <= 0)
1401			break;
1402	}
1403
1404	mutex_unlock(&rcu_state.barrier_mutex);
1405
1406	return count ? count : SHRINK_STOP;
1407}
1408#endif // #ifdef CONFIG_RCU_LAZY
1409
1410void __init rcu_init_nohz(void)
1411{
1412	int cpu;
1413	struct rcu_data *rdp;
1414	const struct cpumask *cpumask = NULL;
1415	struct shrinker * __maybe_unused lazy_rcu_shrinker;
1416
1417#if defined(CONFIG_NO_HZ_FULL)
1418	if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1419		cpumask = tick_nohz_full_mask;
1420#endif
1421
1422	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1423	    !rcu_state.nocb_is_setup && !cpumask)
1424		cpumask = cpu_possible_mask;
1425
1426	if (cpumask) {
1427		if (!cpumask_available(rcu_nocb_mask)) {
1428			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1429				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1430				return;
1431			}
1432		}
1433
1434		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1435		rcu_state.nocb_is_setup = true;
1436	}
1437
1438	if (!rcu_state.nocb_is_setup)
1439		return;
1440
1441#ifdef CONFIG_RCU_LAZY
1442	lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
1443	if (!lazy_rcu_shrinker) {
1444		pr_err("Failed to allocate lazy_rcu shrinker!\n");
1445	} else {
1446		lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
1447		lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
1448
1449		shrinker_register(lazy_rcu_shrinker);
1450	}
1451#endif // #ifdef CONFIG_RCU_LAZY
1452
1453	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1454		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1455		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1456			    rcu_nocb_mask);
1457	}
1458	if (cpumask_empty(rcu_nocb_mask))
1459		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1460	else
1461		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1462			cpumask_pr_args(rcu_nocb_mask));
1463	if (rcu_nocb_poll)
1464		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1465
1466	for_each_cpu(cpu, rcu_nocb_mask) {
1467		rdp = per_cpu_ptr(&rcu_data, cpu);
1468		if (rcu_segcblist_empty(&rdp->cblist))
1469			rcu_segcblist_init(&rdp->cblist);
1470		rcu_segcblist_offload(&rdp->cblist, true);
1471		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1472		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1473	}
1474	rcu_organize_nocb_kthreads();
1475}
1476
1477/* Initialize per-rcu_data variables for no-CBs CPUs. */
1478static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1479{
1480	init_swait_queue_head(&rdp->nocb_cb_wq);
1481	init_swait_queue_head(&rdp->nocb_gp_wq);
1482	init_swait_queue_head(&rdp->nocb_state_wq);
1483	raw_spin_lock_init(&rdp->nocb_lock);
1484	raw_spin_lock_init(&rdp->nocb_bypass_lock);
1485	raw_spin_lock_init(&rdp->nocb_gp_lock);
1486	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1487	rcu_cblist_init(&rdp->nocb_bypass);
1488	WRITE_ONCE(rdp->lazy_len, 0);
1489	mutex_init(&rdp->nocb_gp_kthread_mutex);
1490}
1491
1492/*
1493 * If the specified CPU is a no-CBs CPU that does not already have its
1494 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1495 * for this CPU's group has not yet been created, spawn it as well.
1496 */
1497static void rcu_spawn_cpu_nocb_kthread(int cpu)
1498{
1499	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1500	struct rcu_data *rdp_gp;
1501	struct task_struct *t;
1502	struct sched_param sp;
1503
1504	if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1505		return;
1506
1507	/* If there already is an rcuo kthread, then nothing to do. */
1508	if (rdp->nocb_cb_kthread)
1509		return;
1510
1511	/* If we didn't spawn the GP kthread first, reorganize! */
1512	sp.sched_priority = kthread_prio;
1513	rdp_gp = rdp->nocb_gp_rdp;
1514	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1515	if (!rdp_gp->nocb_gp_kthread) {
1516		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1517				"rcuog/%d", rdp_gp->cpu);
1518		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1519			mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1520			goto end;
1521		}
1522		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1523		if (kthread_prio)
1524			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1525	}
1526	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1527
1528	/* Spawn the kthread for this CPU. */
1529	t = kthread_run(rcu_nocb_cb_kthread, rdp,
1530			"rcuo%c/%d", rcu_state.abbr, cpu);
1531	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1532		goto end;
1533
1534	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1535		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1536
1537	WRITE_ONCE(rdp->nocb_cb_kthread, t);
1538	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1539	return;
1540end:
1541	mutex_lock(&rcu_state.barrier_mutex);
1542	if (rcu_rdp_is_offloaded(rdp)) {
1543		rcu_nocb_rdp_deoffload(rdp);
1544		cpumask_clear_cpu(cpu, rcu_nocb_mask);
1545	}
1546	mutex_unlock(&rcu_state.barrier_mutex);
1547}
1548
1549/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1550static int rcu_nocb_gp_stride = -1;
1551module_param(rcu_nocb_gp_stride, int, 0444);
1552
1553/*
1554 * Initialize GP-CB relationships for all no-CBs CPU.
1555 */
1556static void __init rcu_organize_nocb_kthreads(void)
1557{
1558	int cpu;
1559	bool firsttime = true;
1560	bool gotnocbs = false;
1561	bool gotnocbscbs = true;
1562	int ls = rcu_nocb_gp_stride;
1563	int nl = 0;  /* Next GP kthread. */
1564	struct rcu_data *rdp;
1565	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1566
1567	if (!cpumask_available(rcu_nocb_mask))
1568		return;
1569	if (ls == -1) {
1570		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1571		rcu_nocb_gp_stride = ls;
1572	}
1573
1574	/*
1575	 * Each pass through this loop sets up one rcu_data structure.
1576	 * Should the corresponding CPU come online in the future, then
1577	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1578	 */
1579	for_each_possible_cpu(cpu) {
1580		rdp = per_cpu_ptr(&rcu_data, cpu);
1581		if (rdp->cpu >= nl) {
1582			/* New GP kthread, set up for CBs & next GP. */
1583			gotnocbs = true;
1584			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1585			rdp_gp = rdp;
1586			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1587			if (dump_tree) {
1588				if (!firsttime)
1589					pr_cont("%s\n", gotnocbscbs
1590							? "" : " (self only)");
1591				gotnocbscbs = false;
1592				firsttime = false;
1593				pr_alert("%s: No-CB GP kthread CPU %d:",
1594					 __func__, cpu);
1595			}
1596		} else {
1597			/* Another CB kthread, link to previous GP kthread. */
1598			gotnocbscbs = true;
1599			if (dump_tree)
1600				pr_cont(" %d", cpu);
1601		}
1602		rdp->nocb_gp_rdp = rdp_gp;
1603		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1604			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1605	}
1606	if (gotnocbs && dump_tree)
1607		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1608}
1609
1610/*
1611 * Bind the current task to the offloaded CPUs.  If there are no offloaded
1612 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1613 */
1614void rcu_bind_current_to_nocb(void)
1615{
1616	if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1617		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1618}
1619EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1620
1621// The ->on_cpu field is available only in CONFIG_SMP=y, so...
1622#ifdef CONFIG_SMP
1623static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1624{
1625	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1626}
1627#else // #ifdef CONFIG_SMP
1628static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1629{
1630	return "";
1631}
1632#endif // #else #ifdef CONFIG_SMP
1633
1634/*
1635 * Dump out nocb grace-period kthread state for the specified rcu_data
1636 * structure.
1637 */
1638static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1639{
1640	struct rcu_node *rnp = rdp->mynode;
1641
1642	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1643		rdp->cpu,
1644		"kK"[!!rdp->nocb_gp_kthread],
1645		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1646		"dD"[!!rdp->nocb_defer_wakeup],
1647		"tT"[timer_pending(&rdp->nocb_timer)],
1648		"sS"[!!rdp->nocb_gp_sleep],
1649		".W"[swait_active(&rdp->nocb_gp_wq)],
1650		".W"[swait_active(&rnp->nocb_gp_wq[0])],
1651		".W"[swait_active(&rnp->nocb_gp_wq[1])],
1652		".B"[!!rdp->nocb_gp_bypass],
1653		".G"[!!rdp->nocb_gp_gp],
1654		(long)rdp->nocb_gp_seq,
1655		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1656		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1657		rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1658		show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1659}
1660
1661/* Dump out nocb kthread state for the specified rcu_data structure. */
1662static void show_rcu_nocb_state(struct rcu_data *rdp)
1663{
1664	char bufw[20];
1665	char bufr[20];
1666	struct rcu_data *nocb_next_rdp;
1667	struct rcu_segcblist *rsclp = &rdp->cblist;
1668	bool waslocked;
1669	bool wassleep;
1670
1671	if (rdp->nocb_gp_rdp == rdp)
1672		show_rcu_nocb_gp_state(rdp);
1673
1674	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1675					      &rdp->nocb_entry_rdp,
1676					      typeof(*rdp),
1677					      nocb_entry_rdp);
1678
1679	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1680	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1681	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1682		rdp->cpu, rdp->nocb_gp_rdp->cpu,
1683		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1684		"kK"[!!rdp->nocb_cb_kthread],
1685		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1686		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1687		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1688		"sS"[!!rdp->nocb_cb_sleep],
1689		".W"[swait_active(&rdp->nocb_cb_wq)],
1690		jiffies - rdp->nocb_bypass_first,
1691		jiffies - rdp->nocb_nobypass_last,
1692		rdp->nocb_nobypass_count,
1693		".D"[rcu_segcblist_ready_cbs(rsclp)],
1694		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1695		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1696		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1697		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1698		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1699		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1700		rcu_segcblist_n_cbs(&rdp->cblist),
1701		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1702		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1703		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1704
1705	/* It is OK for GP kthreads to have GP state. */
1706	if (rdp->nocb_gp_rdp == rdp)
1707		return;
1708
1709	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1710	wassleep = swait_active(&rdp->nocb_gp_wq);
1711	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1712		return;  /* Nothing untoward. */
1713
1714	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1715		"lL"[waslocked],
1716		"dD"[!!rdp->nocb_defer_wakeup],
1717		"sS"[!!rdp->nocb_gp_sleep],
1718		".W"[wassleep]);
1719}
1720
1721#else /* #ifdef CONFIG_RCU_NOCB_CPU */
1722
1723static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1724{
1725	return 0;
1726}
1727
1728static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1729{
1730	return false;
1731}
1732
1733/* No ->nocb_lock to acquire.  */
1734static void rcu_nocb_lock(struct rcu_data *rdp)
1735{
1736}
1737
1738/* No ->nocb_lock to release.  */
1739static void rcu_nocb_unlock(struct rcu_data *rdp)
1740{
1741}
1742
1743/* No ->nocb_lock to release.  */
1744static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1745				       unsigned long flags)
1746{
1747	local_irq_restore(flags);
1748}
1749
1750/* Lockdep check that ->cblist may be safely accessed. */
1751static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1752{
1753	lockdep_assert_irqs_disabled();
1754}
1755
1756static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1757{
1758}
1759
1760static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1761{
1762	return NULL;
1763}
1764
1765static void rcu_init_one_nocb(struct rcu_node *rnp)
1766{
1767}
1768
1769static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1770{
1771	return false;
1772}
1773
1774static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1775				  unsigned long j, bool lazy)
1776{
1777	return true;
1778}
1779
1780static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
1781			  rcu_callback_t func, unsigned long flags, bool lazy)
1782{
1783	WARN_ON_ONCE(1);  /* Should be dead code! */
1784}
1785
1786static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1787				 unsigned long flags)
1788{
1789	WARN_ON_ONCE(1);  /* Should be dead code! */
1790}
1791
1792static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1793{
1794}
1795
1796static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1797{
1798	return false;
1799}
1800
1801static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1802{
1803	return false;
1804}
1805
1806static void rcu_spawn_cpu_nocb_kthread(int cpu)
1807{
1808}
1809
1810static void show_rcu_nocb_state(struct rcu_data *rdp)
1811{
1812}
1813
1814#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1815