1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Sleepable Read-Copy Update mechanism for mutual exclusion.
4 *
5 * Copyright (C) IBM Corporation, 2006
6 * Copyright (C) Fujitsu, 2012
7 *
8 * Authors: Paul McKenney <paulmck@linux.ibm.com>
9 *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10 *
11 * For detailed explanation of Read-Copy Update mechanism see -
12 *		Documentation/RCU/ *.txt
13 *
14 */
15
16#define pr_fmt(fmt) "rcu: " fmt
17
18#include <linux/export.h>
19#include <linux/mutex.h>
20#include <linux/percpu.h>
21#include <linux/preempt.h>
22#include <linux/rcupdate_wait.h>
23#include <linux/sched.h>
24#include <linux/smp.h>
25#include <linux/delay.h>
26#include <linux/module.h>
27#include <linux/slab.h>
28#include <linux/srcu.h>
29
30#include "rcu.h"
31#include "rcu_segcblist.h"
32
33/* Holdoff in nanoseconds for auto-expediting. */
34#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36module_param(exp_holdoff, ulong, 0444);
37
38/* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39static ulong counter_wrap_check = (ULONG_MAX >> 2);
40module_param(counter_wrap_check, ulong, 0444);
41
42/*
43 * Control conversion to SRCU_SIZE_BIG:
44 *    0: Don't convert at all.
45 *    1: Convert at init_srcu_struct() time.
46 *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47 *    3: Decide at boot time based on system shape (default).
48 * 0x1x: Convert when excessive contention encountered.
49 */
50#define SRCU_SIZING_NONE	0
51#define SRCU_SIZING_INIT	1
52#define SRCU_SIZING_TORTURE	2
53#define SRCU_SIZING_AUTO	3
54#define SRCU_SIZING_CONTEND	0x10
55#define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56#define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57#define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58#define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59#define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60static int convert_to_big = SRCU_SIZING_AUTO;
61module_param(convert_to_big, int, 0444);
62
63/* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64static int big_cpu_lim __read_mostly = 128;
65module_param(big_cpu_lim, int, 0444);
66
67/* Contention events per jiffy to initiate transition to big. */
68static int small_contention_lim __read_mostly = 100;
69module_param(small_contention_lim, int, 0444);
70
71/* Early-boot callback-management, so early that no lock is required! */
72static LIST_HEAD(srcu_boot_list);
73static bool __read_mostly srcu_init_done;
74
75static void srcu_invoke_callbacks(struct work_struct *work);
76static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77static void process_srcu(struct work_struct *work);
78static void srcu_delay_timer(struct timer_list *t);
79
80/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81#define spin_lock_rcu_node(p)							\
82do {										\
83	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84	smp_mb__after_unlock_lock();						\
85} while (0)
86
87#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88
89#define spin_lock_irq_rcu_node(p)						\
90do {										\
91	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92	smp_mb__after_unlock_lock();						\
93} while (0)
94
95#define spin_unlock_irq_rcu_node(p)						\
96	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97
98#define spin_lock_irqsave_rcu_node(p, flags)					\
99do {										\
100	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101	smp_mb__after_unlock_lock();						\
102} while (0)
103
104#define spin_trylock_irqsave_rcu_node(p, flags)					\
105({										\
106	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107										\
108	if (___locked)								\
109		smp_mb__after_unlock_lock();					\
110	___locked;								\
111})
112
113#define spin_unlock_irqrestore_rcu_node(p, flags)				\
114	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115
116/*
117 * Initialize SRCU per-CPU data.  Note that statically allocated
118 * srcu_struct structures might already have srcu_read_lock() and
119 * srcu_read_unlock() running against them.  So if the is_static parameter
120 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121 */
122static void init_srcu_struct_data(struct srcu_struct *ssp)
123{
124	int cpu;
125	struct srcu_data *sdp;
126
127	/*
128	 * Initialize the per-CPU srcu_data array, which feeds into the
129	 * leaves of the srcu_node tree.
130	 */
131	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
132		     ARRAY_SIZE(sdp->srcu_unlock_count));
133	for_each_possible_cpu(cpu) {
134		sdp = per_cpu_ptr(ssp->sda, cpu);
135		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136		rcu_segcblist_init(&sdp->srcu_cblist);
137		sdp->srcu_cblist_invoking = false;
138		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
139		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
140		sdp->mynode = NULL;
141		sdp->cpu = cpu;
142		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144		sdp->ssp = ssp;
145	}
146}
147
148/* Invalid seq state, used during snp node initialization */
149#define SRCU_SNP_INIT_SEQ		0x2
150
151/*
152 * Check whether sequence number corresponding to snp node,
153 * is invalid.
154 */
155static inline bool srcu_invl_snp_seq(unsigned long s)
156{
157	return s == SRCU_SNP_INIT_SEQ;
158}
159
160/*
161 * Allocated and initialize SRCU combining tree.  Returns @true if
162 * allocation succeeded and @false otherwise.
163 */
164static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165{
166	int cpu;
167	int i;
168	int level = 0;
169	int levelspread[RCU_NUM_LVLS];
170	struct srcu_data *sdp;
171	struct srcu_node *snp;
172	struct srcu_node *snp_first;
173
174	/* Initialize geometry if it has not already been initialized. */
175	rcu_init_geometry();
176	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177	if (!ssp->srcu_sup->node)
178		return false;
179
180	/* Work out the overall tree geometry. */
181	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182	for (i = 1; i < rcu_num_lvls; i++)
183		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184	rcu_init_levelspread(levelspread, num_rcu_lvl);
185
186	/* Each pass through this loop initializes one srcu_node structure. */
187	srcu_for_each_node_breadth_first(ssp, snp) {
188		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
190			     ARRAY_SIZE(snp->srcu_data_have_cbs));
191		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193			snp->srcu_data_have_cbs[i] = 0;
194		}
195		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196		snp->grplo = -1;
197		snp->grphi = -1;
198		if (snp == &ssp->srcu_sup->node[0]) {
199			/* Root node, special case. */
200			snp->srcu_parent = NULL;
201			continue;
202		}
203
204		/* Non-root node. */
205		if (snp == ssp->srcu_sup->level[level + 1])
206			level++;
207		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208				   (snp - ssp->srcu_sup->level[level]) /
209				   levelspread[level - 1];
210	}
211
212	/*
213	 * Initialize the per-CPU srcu_data array, which feeds into the
214	 * leaves of the srcu_node tree.
215	 */
216	level = rcu_num_lvls - 1;
217	snp_first = ssp->srcu_sup->level[level];
218	for_each_possible_cpu(cpu) {
219		sdp = per_cpu_ptr(ssp->sda, cpu);
220		sdp->mynode = &snp_first[cpu / levelspread[level]];
221		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222			if (snp->grplo < 0)
223				snp->grplo = cpu;
224			snp->grphi = cpu;
225		}
226		sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
227	}
228	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229	return true;
230}
231
232/*
233 * Initialize non-compile-time initialized fields, including the
234 * associated srcu_node and srcu_data structures.  The is_static parameter
235 * tells us that ->sda has already been wired up to srcu_data.
236 */
237static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238{
239	if (!is_static)
240		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241	if (!ssp->srcu_sup)
242		return -ENOMEM;
243	if (!is_static)
244		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246	ssp->srcu_sup->node = NULL;
247	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249	ssp->srcu_idx = 0;
250	ssp->srcu_sup->srcu_gp_seq = 0;
251	ssp->srcu_sup->srcu_barrier_seq = 0;
252	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
253	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
254	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
255	ssp->srcu_sup->sda_is_static = is_static;
256	if (!is_static)
257		ssp->sda = alloc_percpu(struct srcu_data);
258	if (!ssp->sda)
259		goto err_free_sup;
260	init_srcu_struct_data(ssp);
261	ssp->srcu_sup->srcu_gp_seq_needed_exp = 0;
262	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
263	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
264		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
265			goto err_free_sda;
266		WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
267	}
268	ssp->srcu_sup->srcu_ssp = ssp;
269	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */
270	return 0;
271
272err_free_sda:
273	if (!is_static) {
274		free_percpu(ssp->sda);
275		ssp->sda = NULL;
276	}
277err_free_sup:
278	if (!is_static) {
279		kfree(ssp->srcu_sup);
280		ssp->srcu_sup = NULL;
281	}
282	return -ENOMEM;
283}
284
285#ifdef CONFIG_DEBUG_LOCK_ALLOC
286
287int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
288		       struct lock_class_key *key)
289{
290	/* Don't re-initialize a lock while it is held. */
291	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
292	lockdep_init_map(&ssp->dep_map, name, key, 0);
293	return init_srcu_struct_fields(ssp, false);
294}
295EXPORT_SYMBOL_GPL(__init_srcu_struct);
296
297#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
298
299/**
300 * init_srcu_struct - initialize a sleep-RCU structure
301 * @ssp: structure to initialize.
302 *
303 * Must invoke this on a given srcu_struct before passing that srcu_struct
304 * to any other function.  Each srcu_struct represents a separate domain
305 * of SRCU protection.
306 */
307int init_srcu_struct(struct srcu_struct *ssp)
308{
309	return init_srcu_struct_fields(ssp, false);
310}
311EXPORT_SYMBOL_GPL(init_srcu_struct);
312
313#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
314
315/*
316 * Initiate a transition to SRCU_SIZE_BIG with lock held.
317 */
318static void __srcu_transition_to_big(struct srcu_struct *ssp)
319{
320	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
321	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
322}
323
324/*
325 * Initiate an idempotent transition to SRCU_SIZE_BIG.
326 */
327static void srcu_transition_to_big(struct srcu_struct *ssp)
328{
329	unsigned long flags;
330
331	/* Double-checked locking on ->srcu_size-state. */
332	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
333		return;
334	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
335	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
336		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
337		return;
338	}
339	__srcu_transition_to_big(ssp);
340	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
341}
342
343/*
344 * Check to see if the just-encountered contention event justifies
345 * a transition to SRCU_SIZE_BIG.
346 */
347static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
348{
349	unsigned long j;
350
351	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
352		return;
353	j = jiffies;
354	if (ssp->srcu_sup->srcu_size_jiffies != j) {
355		ssp->srcu_sup->srcu_size_jiffies = j;
356		ssp->srcu_sup->srcu_n_lock_retries = 0;
357	}
358	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
359		return;
360	__srcu_transition_to_big(ssp);
361}
362
363/*
364 * Acquire the specified srcu_data structure's ->lock, but check for
365 * excessive contention, which results in initiation of a transition
366 * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
367 * parameter permits this.
368 */
369static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
370{
371	struct srcu_struct *ssp = sdp->ssp;
372
373	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
374		return;
375	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
376	spin_lock_irqsave_check_contention(ssp);
377	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
378	spin_lock_irqsave_rcu_node(sdp, *flags);
379}
380
381/*
382 * Acquire the specified srcu_struct structure's ->lock, but check for
383 * excessive contention, which results in initiation of a transition
384 * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
385 * parameter permits this.
386 */
387static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
388{
389	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
390		return;
391	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
392	spin_lock_irqsave_check_contention(ssp);
393}
394
395/*
396 * First-use initialization of statically allocated srcu_struct
397 * structure.  Wiring up the combining tree is more than can be
398 * done with compile-time initialization, so this check is added
399 * to each update-side SRCU primitive.  Use ssp->lock, which -is-
400 * compile-time initialized, to resolve races involving multiple
401 * CPUs trying to garner first-use privileges.
402 */
403static void check_init_srcu_struct(struct srcu_struct *ssp)
404{
405	unsigned long flags;
406
407	/* The smp_load_acquire() pairs with the smp_store_release(). */
408	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
409		return; /* Already initialized. */
410	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
411	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
412		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
413		return;
414	}
415	init_srcu_struct_fields(ssp, true);
416	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
417}
418
419/*
420 * Returns approximate total of the readers' ->srcu_lock_count[] values
421 * for the rank of per-CPU counters specified by idx.
422 */
423static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
424{
425	int cpu;
426	unsigned long sum = 0;
427
428	for_each_possible_cpu(cpu) {
429		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
430
431		sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
432	}
433	return sum;
434}
435
436/*
437 * Returns approximate total of the readers' ->srcu_unlock_count[] values
438 * for the rank of per-CPU counters specified by idx.
439 */
440static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
441{
442	int cpu;
443	unsigned long mask = 0;
444	unsigned long sum = 0;
445
446	for_each_possible_cpu(cpu) {
447		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
448
449		sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
450		if (IS_ENABLED(CONFIG_PROVE_RCU))
451			mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
452	}
453	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
454		  "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
455	return sum;
456}
457
458/*
459 * Return true if the number of pre-existing readers is determined to
460 * be zero.
461 */
462static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
463{
464	unsigned long unlocks;
465
466	unlocks = srcu_readers_unlock_idx(ssp, idx);
467
468	/*
469	 * Make sure that a lock is always counted if the corresponding
470	 * unlock is counted. Needs to be a smp_mb() as the read side may
471	 * contain a read from a variable that is written to before the
472	 * synchronize_srcu() in the write side. In this case smp_mb()s
473	 * A and B act like the store buffering pattern.
474	 *
475	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
476	 * after the synchronize_srcu() from being executed before the
477	 * grace period ends.
478	 */
479	smp_mb(); /* A */
480
481	/*
482	 * If the locks are the same as the unlocks, then there must have
483	 * been no readers on this index at some point in this function.
484	 * But there might be more readers, as a task might have read
485	 * the current ->srcu_idx but not yet have incremented its CPU's
486	 * ->srcu_lock_count[idx] counter.  In fact, it is possible
487	 * that most of the tasks have been preempted between fetching
488	 * ->srcu_idx and incrementing ->srcu_lock_count[idx].  And there
489	 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
490	 * in a system whose address space was fully populated with memory.
491	 * Call this quantity Nt.
492	 *
493	 * So suppose that the updater is preempted at this point in the
494	 * code for a long time.  That now-preempted updater has already
495	 * flipped ->srcu_idx (possibly during the preceding grace period),
496	 * done an smp_mb() (again, possibly during the preceding grace
497	 * period), and summed up the ->srcu_unlock_count[idx] counters.
498	 * How many times can a given one of the aforementioned Nt tasks
499	 * increment the old ->srcu_idx value's ->srcu_lock_count[idx]
500	 * counter, in the absence of nesting?
501	 *
502	 * It can clearly do so once, given that it has already fetched
503	 * the old value of ->srcu_idx and is just about to use that value
504	 * to index its increment of ->srcu_lock_count[idx].  But as soon as
505	 * it leaves that SRCU read-side critical section, it will increment
506	 * ->srcu_unlock_count[idx], which must follow the updater's above
507	 * read from that same value.  Thus, as soon the reading task does
508	 * an smp_mb() and a later fetch from ->srcu_idx, that task will be
509	 * guaranteed to get the new index.  Except that the increment of
510	 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
511	 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
512	 * is before the smp_mb().  Thus, that task might not see the new
513	 * value of ->srcu_idx until the -second- __srcu_read_lock(),
514	 * which in turn means that this task might well increment
515	 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
516	 * not just once.
517	 *
518	 * However, it is important to note that a given smp_mb() takes
519	 * effect not just for the task executing it, but also for any
520	 * later task running on that same CPU.
521	 *
522	 * That is, there can be almost Nt + Nc further increments of
523	 * ->srcu_lock_count[idx] for the old index, where Nc is the number
524	 * of CPUs.  But this is OK because the size of the task_struct
525	 * structure limits the value of Nt and current systems limit Nc
526	 * to a few thousand.
527	 *
528	 * OK, but what about nesting?  This does impose a limit on
529	 * nesting of half of the size of the task_struct structure
530	 * (measured in bytes), which should be sufficient.  A late 2022
531	 * TREE01 rcutorture run reported this size to be no less than
532	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
533	 * comfortably beyond excessive.  Especially on 64-bit systems,
534	 * which are unlikely to be configured with an address space fully
535	 * populated with memory, at least not anytime soon.
536	 */
537	return srcu_readers_lock_idx(ssp, idx) == unlocks;
538}
539
540/**
541 * srcu_readers_active - returns true if there are readers. and false
542 *                       otherwise
543 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
544 *
545 * Note that this is not an atomic primitive, and can therefore suffer
546 * severe errors when invoked on an active srcu_struct.  That said, it
547 * can be useful as an error check at cleanup time.
548 */
549static bool srcu_readers_active(struct srcu_struct *ssp)
550{
551	int cpu;
552	unsigned long sum = 0;
553
554	for_each_possible_cpu(cpu) {
555		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
556
557		sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
558		sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
559		sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
560		sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
561	}
562	return sum;
563}
564
565/*
566 * We use an adaptive strategy for synchronize_srcu() and especially for
567 * synchronize_srcu_expedited().  We spin for a fixed time period
568 * (defined below, boot time configurable) to allow SRCU readers to exit
569 * their read-side critical sections.  If there are still some readers
570 * after one jiffy, we repeatedly block for one jiffy time periods.
571 * The blocking time is increased as the grace-period age increases,
572 * with max blocking time capped at 10 jiffies.
573 */
574#define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
575
576static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
577module_param(srcu_retry_check_delay, ulong, 0444);
578
579#define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
580#define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
581
582#define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
583							// no-delay instances.
584#define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
585							// no-delay instances.
586
587#define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
588#define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
589#define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
590// per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
591// one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
592// called from process_srcu().
593#define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
594	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
595
596// Maximum per-GP-phase consecutive no-delay instances.
597#define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
598	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
599		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
600		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
601
602static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
603module_param(srcu_max_nodelay_phase, ulong, 0444);
604
605// Maximum consecutive no-delay instances.
606#define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
607					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
608
609static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
610module_param(srcu_max_nodelay, ulong, 0444);
611
612/*
613 * Return grace-period delay, zero if there are expedited grace
614 * periods pending, SRCU_INTERVAL otherwise.
615 */
616static unsigned long srcu_get_delay(struct srcu_struct *ssp)
617{
618	unsigned long gpstart;
619	unsigned long j;
620	unsigned long jbase = SRCU_INTERVAL;
621	struct srcu_usage *sup = ssp->srcu_sup;
622
623	if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
624		jbase = 0;
625	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
626		j = jiffies - 1;
627		gpstart = READ_ONCE(sup->srcu_gp_start);
628		if (time_after(j, gpstart))
629			jbase += j - gpstart;
630		if (!jbase) {
631			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
632			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
633				jbase = 1;
634		}
635	}
636	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
637}
638
639/**
640 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
641 * @ssp: structure to clean up.
642 *
643 * Must invoke this after you are finished using a given srcu_struct that
644 * was initialized via init_srcu_struct(), else you leak memory.
645 */
646void cleanup_srcu_struct(struct srcu_struct *ssp)
647{
648	int cpu;
649	struct srcu_usage *sup = ssp->srcu_sup;
650
651	if (WARN_ON(!srcu_get_delay(ssp)))
652		return; /* Just leak it! */
653	if (WARN_ON(srcu_readers_active(ssp)))
654		return; /* Just leak it! */
655	flush_delayed_work(&sup->work);
656	for_each_possible_cpu(cpu) {
657		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
658
659		del_timer_sync(&sdp->delay_work);
660		flush_work(&sdp->work);
661		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
662			return; /* Forgot srcu_barrier(), so just leak it! */
663	}
664	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
665	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
666	    WARN_ON(srcu_readers_active(ssp))) {
667		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
668			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
669			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
670		return; /* Caller forgot to stop doing call_srcu()? */
671	}
672	kfree(sup->node);
673	sup->node = NULL;
674	sup->srcu_size_state = SRCU_SIZE_SMALL;
675	if (!sup->sda_is_static) {
676		free_percpu(ssp->sda);
677		ssp->sda = NULL;
678		kfree(sup);
679		ssp->srcu_sup = NULL;
680	}
681}
682EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
683
684#ifdef CONFIG_PROVE_RCU
685/*
686 * Check for consistent NMI safety.
687 */
688void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
689{
690	int nmi_safe_mask = 1 << nmi_safe;
691	int old_nmi_safe_mask;
692	struct srcu_data *sdp;
693
694	/* NMI-unsafe use in NMI is a bad sign */
695	WARN_ON_ONCE(!nmi_safe && in_nmi());
696	sdp = raw_cpu_ptr(ssp->sda);
697	old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
698	if (!old_nmi_safe_mask) {
699		WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
700		return;
701	}
702	WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
703}
704EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
705#endif /* CONFIG_PROVE_RCU */
706
707/*
708 * Counts the new reader in the appropriate per-CPU element of the
709 * srcu_struct.
710 * Returns an index that must be passed to the matching srcu_read_unlock().
711 */
712int __srcu_read_lock(struct srcu_struct *ssp)
713{
714	int idx;
715
716	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
717	this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
718	smp_mb(); /* B */  /* Avoid leaking the critical section. */
719	return idx;
720}
721EXPORT_SYMBOL_GPL(__srcu_read_lock);
722
723/*
724 * Removes the count for the old reader from the appropriate per-CPU
725 * element of the srcu_struct.  Note that this may well be a different
726 * CPU than that which was incremented by the corresponding srcu_read_lock().
727 */
728void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
729{
730	smp_mb(); /* C */  /* Avoid leaking the critical section. */
731	this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
732}
733EXPORT_SYMBOL_GPL(__srcu_read_unlock);
734
735#ifdef CONFIG_NEED_SRCU_NMI_SAFE
736
737/*
738 * Counts the new reader in the appropriate per-CPU element of the
739 * srcu_struct, but in an NMI-safe manner using RMW atomics.
740 * Returns an index that must be passed to the matching srcu_read_unlock().
741 */
742int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
743{
744	int idx;
745	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
746
747	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
748	atomic_long_inc(&sdp->srcu_lock_count[idx]);
749	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
750	return idx;
751}
752EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
753
754/*
755 * Removes the count for the old reader from the appropriate per-CPU
756 * element of the srcu_struct.  Note that this may well be a different
757 * CPU than that which was incremented by the corresponding srcu_read_lock().
758 */
759void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
760{
761	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
762
763	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
764	atomic_long_inc(&sdp->srcu_unlock_count[idx]);
765}
766EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
767
768#endif // CONFIG_NEED_SRCU_NMI_SAFE
769
770/*
771 * Start an SRCU grace period.
772 */
773static void srcu_gp_start(struct srcu_struct *ssp)
774{
775	int state;
776
777	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
778	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
779	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
780	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
781	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
782	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
783	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
784	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
785}
786
787
788static void srcu_delay_timer(struct timer_list *t)
789{
790	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
791
792	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
793}
794
795static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
796				       unsigned long delay)
797{
798	if (!delay) {
799		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
800		return;
801	}
802
803	timer_reduce(&sdp->delay_work, jiffies + delay);
804}
805
806/*
807 * Schedule callback invocation for the specified srcu_data structure,
808 * if possible, on the corresponding CPU.
809 */
810static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
811{
812	srcu_queue_delayed_work_on(sdp, delay);
813}
814
815/*
816 * Schedule callback invocation for all srcu_data structures associated
817 * with the specified srcu_node structure that have callbacks for the
818 * just-completed grace period, the one corresponding to idx.  If possible,
819 * schedule this invocation on the corresponding CPUs.
820 */
821static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
822				  unsigned long mask, unsigned long delay)
823{
824	int cpu;
825
826	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
827		if (!(mask & (1UL << (cpu - snp->grplo))))
828			continue;
829		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
830	}
831}
832
833/*
834 * Note the end of an SRCU grace period.  Initiates callback invocation
835 * and starts a new grace period if needed.
836 *
837 * The ->srcu_cb_mutex acquisition does not protect any data, but
838 * instead prevents more than one grace period from starting while we
839 * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
840 * array to have a finite number of elements.
841 */
842static void srcu_gp_end(struct srcu_struct *ssp)
843{
844	unsigned long cbdelay = 1;
845	bool cbs;
846	bool last_lvl;
847	int cpu;
848	unsigned long flags;
849	unsigned long gpseq;
850	int idx;
851	unsigned long mask;
852	struct srcu_data *sdp;
853	unsigned long sgsne;
854	struct srcu_node *snp;
855	int ss_state;
856	struct srcu_usage *sup = ssp->srcu_sup;
857
858	/* Prevent more than one additional grace period. */
859	mutex_lock(&sup->srcu_cb_mutex);
860
861	/* End the current grace period. */
862	spin_lock_irq_rcu_node(sup);
863	idx = rcu_seq_state(sup->srcu_gp_seq);
864	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
865	if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
866		cbdelay = 0;
867
868	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
869	rcu_seq_end(&sup->srcu_gp_seq);
870	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
871	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
872		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
873	spin_unlock_irq_rcu_node(sup);
874	mutex_unlock(&sup->srcu_gp_mutex);
875	/* A new grace period can start at this point.  But only one. */
876
877	/* Initiate callback invocation as needed. */
878	ss_state = smp_load_acquire(&sup->srcu_size_state);
879	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
880		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
881					cbdelay);
882	} else {
883		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
884		srcu_for_each_node_breadth_first(ssp, snp) {
885			spin_lock_irq_rcu_node(snp);
886			cbs = false;
887			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
888			if (last_lvl)
889				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
890			snp->srcu_have_cbs[idx] = gpseq;
891			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
892			sgsne = snp->srcu_gp_seq_needed_exp;
893			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
894				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
895			if (ss_state < SRCU_SIZE_BIG)
896				mask = ~0;
897			else
898				mask = snp->srcu_data_have_cbs[idx];
899			snp->srcu_data_have_cbs[idx] = 0;
900			spin_unlock_irq_rcu_node(snp);
901			if (cbs)
902				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
903		}
904	}
905
906	/* Occasionally prevent srcu_data counter wrap. */
907	if (!(gpseq & counter_wrap_check))
908		for_each_possible_cpu(cpu) {
909			sdp = per_cpu_ptr(ssp->sda, cpu);
910			spin_lock_irqsave_rcu_node(sdp, flags);
911			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
912				sdp->srcu_gp_seq_needed = gpseq;
913			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
914				sdp->srcu_gp_seq_needed_exp = gpseq;
915			spin_unlock_irqrestore_rcu_node(sdp, flags);
916		}
917
918	/* Callback initiation done, allow grace periods after next. */
919	mutex_unlock(&sup->srcu_cb_mutex);
920
921	/* Start a new grace period if needed. */
922	spin_lock_irq_rcu_node(sup);
923	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
924	if (!rcu_seq_state(gpseq) &&
925	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
926		srcu_gp_start(ssp);
927		spin_unlock_irq_rcu_node(sup);
928		srcu_reschedule(ssp, 0);
929	} else {
930		spin_unlock_irq_rcu_node(sup);
931	}
932
933	/* Transition to big if needed. */
934	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
935		if (ss_state == SRCU_SIZE_ALLOC)
936			init_srcu_struct_nodes(ssp, GFP_KERNEL);
937		else
938			smp_store_release(&sup->srcu_size_state, ss_state + 1);
939	}
940}
941
942/*
943 * Funnel-locking scheme to scalably mediate many concurrent expedited
944 * grace-period requests.  This function is invoked for the first known
945 * expedited request for a grace period that has already been requested,
946 * but without expediting.  To start a completely new grace period,
947 * whether expedited or not, use srcu_funnel_gp_start() instead.
948 */
949static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
950				  unsigned long s)
951{
952	unsigned long flags;
953	unsigned long sgsne;
954
955	if (snp)
956		for (; snp != NULL; snp = snp->srcu_parent) {
957			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
958			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
959			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
960				return;
961			spin_lock_irqsave_rcu_node(snp, flags);
962			sgsne = snp->srcu_gp_seq_needed_exp;
963			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
964				spin_unlock_irqrestore_rcu_node(snp, flags);
965				return;
966			}
967			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
968			spin_unlock_irqrestore_rcu_node(snp, flags);
969		}
970	spin_lock_irqsave_ssp_contention(ssp, &flags);
971	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
972		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
973	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
974}
975
976/*
977 * Funnel-locking scheme to scalably mediate many concurrent grace-period
978 * requests.  The winner has to do the work of actually starting grace
979 * period s.  Losers must either ensure that their desired grace-period
980 * number is recorded on at least their leaf srcu_node structure, or they
981 * must take steps to invoke their own callbacks.
982 *
983 * Note that this function also does the work of srcu_funnel_exp_start(),
984 * in some cases by directly invoking it.
985 *
986 * The srcu read lock should be hold around this function. And s is a seq snap
987 * after holding that lock.
988 */
989static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
990				 unsigned long s, bool do_norm)
991{
992	unsigned long flags;
993	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
994	unsigned long sgsne;
995	struct srcu_node *snp;
996	struct srcu_node *snp_leaf;
997	unsigned long snp_seq;
998	struct srcu_usage *sup = ssp->srcu_sup;
999
1000	/* Ensure that snp node tree is fully initialized before traversing it */
1001	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1002		snp_leaf = NULL;
1003	else
1004		snp_leaf = sdp->mynode;
1005
1006	if (snp_leaf)
1007		/* Each pass through the loop does one level of the srcu_node tree. */
1008		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1009			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1010				return; /* GP already done and CBs recorded. */
1011			spin_lock_irqsave_rcu_node(snp, flags);
1012			snp_seq = snp->srcu_have_cbs[idx];
1013			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1014				if (snp == snp_leaf && snp_seq == s)
1015					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1016				spin_unlock_irqrestore_rcu_node(snp, flags);
1017				if (snp == snp_leaf && snp_seq != s) {
1018					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1019					return;
1020				}
1021				if (!do_norm)
1022					srcu_funnel_exp_start(ssp, snp, s);
1023				return;
1024			}
1025			snp->srcu_have_cbs[idx] = s;
1026			if (snp == snp_leaf)
1027				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1028			sgsne = snp->srcu_gp_seq_needed_exp;
1029			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1030				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1031			spin_unlock_irqrestore_rcu_node(snp, flags);
1032		}
1033
1034	/* Top of tree, must ensure the grace period will be started. */
1035	spin_lock_irqsave_ssp_contention(ssp, &flags);
1036	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1037		/*
1038		 * Record need for grace period s.  Pair with load
1039		 * acquire setting up for initialization.
1040		 */
1041		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1042	}
1043	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1044		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1045
1046	/* If grace period not already in progress, start it. */
1047	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1048	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1049		WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed));
1050		srcu_gp_start(ssp);
1051
1052		// And how can that list_add() in the "else" clause
1053		// possibly be safe for concurrent execution?  Well,
1054		// it isn't.  And it does not have to be.  After all, it
1055		// can only be executed during early boot when there is only
1056		// the one boot CPU running with interrupts still disabled.
1057		if (likely(srcu_init_done))
1058			queue_delayed_work(rcu_gp_wq, &sup->work,
1059					   !!srcu_get_delay(ssp));
1060		else if (list_empty(&sup->work.work.entry))
1061			list_add(&sup->work.work.entry, &srcu_boot_list);
1062	}
1063	spin_unlock_irqrestore_rcu_node(sup, flags);
1064}
1065
1066/*
1067 * Wait until all readers counted by array index idx complete, but
1068 * loop an additional time if there is an expedited grace period pending.
1069 * The caller must ensure that ->srcu_idx is not changed while checking.
1070 */
1071static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1072{
1073	unsigned long curdelay;
1074
1075	curdelay = !srcu_get_delay(ssp);
1076
1077	for (;;) {
1078		if (srcu_readers_active_idx_check(ssp, idx))
1079			return true;
1080		if ((--trycount + curdelay) <= 0)
1081			return false;
1082		udelay(srcu_retry_check_delay);
1083	}
1084}
1085
1086/*
1087 * Increment the ->srcu_idx counter so that future SRCU readers will
1088 * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1089 * us to wait for pre-existing readers in a starvation-free manner.
1090 */
1091static void srcu_flip(struct srcu_struct *ssp)
1092{
1093	/*
1094	 * Because the flip of ->srcu_idx is executed only if the
1095	 * preceding call to srcu_readers_active_idx_check() found that
1096	 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched
1097	 * and because that summing uses atomic_long_read(), there is
1098	 * ordering due to a control dependency between that summing and
1099	 * the WRITE_ONCE() in this call to srcu_flip().  This ordering
1100	 * ensures that if this updater saw a given reader's increment from
1101	 * __srcu_read_lock(), that reader was using a value of ->srcu_idx
1102	 * from before the previous call to srcu_flip(), which should be
1103	 * quite rare.  This ordering thus helps forward progress because
1104	 * the grace period could otherwise be delayed by additional
1105	 * calls to __srcu_read_lock() using that old (soon to be new)
1106	 * value of ->srcu_idx.
1107	 *
1108	 * This sum-equality check and ordering also ensures that if
1109	 * a given call to __srcu_read_lock() uses the new value of
1110	 * ->srcu_idx, this updater's earlier scans cannot have seen
1111	 * that reader's increments, which is all to the good, because
1112	 * this grace period need not wait on that reader.  After all,
1113	 * if those earlier scans had seen that reader, there would have
1114	 * been a sum mismatch and this code would not be reached.
1115	 *
1116	 * This means that the following smp_mb() is redundant, but
1117	 * it stays until either (1) Compilers learn about this sort of
1118	 * control dependency or (2) Some production workload running on
1119	 * a production system is unduly delayed by this slowpath smp_mb().
1120	 */
1121	smp_mb(); /* E */  /* Pairs with B and C. */
1122
1123	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter.
1124
1125	/*
1126	 * Ensure that if the updater misses an __srcu_read_unlock()
1127	 * increment, that task's __srcu_read_lock() following its next
1128	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1129	 * counter update.  Note that both this memory barrier and the
1130	 * one in srcu_readers_active_idx_check() provide the guarantee
1131	 * for __srcu_read_lock().
1132	 */
1133	smp_mb(); /* D */  /* Pairs with C. */
1134}
1135
1136/*
1137 * If SRCU is likely idle, return true, otherwise return false.
1138 *
1139 * Note that it is OK for several current from-idle requests for a new
1140 * grace period from idle to specify expediting because they will all end
1141 * up requesting the same grace period anyhow.  So no loss.
1142 *
1143 * Note also that if any CPU (including the current one) is still invoking
1144 * callbacks, this function will nevertheless say "idle".  This is not
1145 * ideal, but the overhead of checking all CPUs' callback lists is even
1146 * less ideal, especially on large systems.  Furthermore, the wakeup
1147 * can happen before the callback is fully removed, so we have no choice
1148 * but to accept this type of error.
1149 *
1150 * This function is also subject to counter-wrap errors, but let's face
1151 * it, if this function was preempted for enough time for the counters
1152 * to wrap, it really doesn't matter whether or not we expedite the grace
1153 * period.  The extra overhead of a needlessly expedited grace period is
1154 * negligible when amortized over that time period, and the extra latency
1155 * of a needlessly non-expedited grace period is similarly negligible.
1156 */
1157static bool srcu_might_be_idle(struct srcu_struct *ssp)
1158{
1159	unsigned long curseq;
1160	unsigned long flags;
1161	struct srcu_data *sdp;
1162	unsigned long t;
1163	unsigned long tlast;
1164
1165	check_init_srcu_struct(ssp);
1166	/* If the local srcu_data structure has callbacks, not idle.  */
1167	sdp = raw_cpu_ptr(ssp->sda);
1168	spin_lock_irqsave_rcu_node(sdp, flags);
1169	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1170		spin_unlock_irqrestore_rcu_node(sdp, flags);
1171		return false; /* Callbacks already present, so not idle. */
1172	}
1173	spin_unlock_irqrestore_rcu_node(sdp, flags);
1174
1175	/*
1176	 * No local callbacks, so probabilistically probe global state.
1177	 * Exact information would require acquiring locks, which would
1178	 * kill scalability, hence the probabilistic nature of the probe.
1179	 */
1180
1181	/* First, see if enough time has passed since the last GP. */
1182	t = ktime_get_mono_fast_ns();
1183	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1184	if (exp_holdoff == 0 ||
1185	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1186		return false; /* Too soon after last GP. */
1187
1188	/* Next, check for probable idleness. */
1189	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1190	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1191	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1192		return false; /* Grace period in progress, so not idle. */
1193	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1194	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1195		return false; /* GP # changed, so not idle. */
1196	return true; /* With reasonable probability, idle! */
1197}
1198
1199/*
1200 * SRCU callback function to leak a callback.
1201 */
1202static void srcu_leak_callback(struct rcu_head *rhp)
1203{
1204}
1205
1206/*
1207 * Start an SRCU grace period, and also queue the callback if non-NULL.
1208 */
1209static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1210					     struct rcu_head *rhp, bool do_norm)
1211{
1212	unsigned long flags;
1213	int idx;
1214	bool needexp = false;
1215	bool needgp = false;
1216	unsigned long s;
1217	struct srcu_data *sdp;
1218	struct srcu_node *sdp_mynode;
1219	int ss_state;
1220
1221	check_init_srcu_struct(ssp);
1222	/*
1223	 * While starting a new grace period, make sure we are in an
1224	 * SRCU read-side critical section so that the grace-period
1225	 * sequence number cannot wrap around in the meantime.
1226	 */
1227	idx = __srcu_read_lock_nmisafe(ssp);
1228	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1229	if (ss_state < SRCU_SIZE_WAIT_CALL)
1230		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1231	else
1232		sdp = raw_cpu_ptr(ssp->sda);
1233	spin_lock_irqsave_sdp_contention(sdp, &flags);
1234	if (rhp)
1235		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1236	/*
1237	 * It's crucial to capture the snapshot 's' for acceleration before
1238	 * reading the current gp_seq that is used for advancing. This is
1239	 * essential because if the acceleration snapshot is taken after a
1240	 * failed advancement attempt, there's a risk that a grace period may
1241	 * conclude and a new one may start in the interim. If the snapshot is
1242	 * captured after this sequence of events, the acceleration snapshot 's'
1243	 * could be excessively advanced, leading to acceleration failure.
1244	 * In such a scenario, an 'acceleration leak' can occur, where new
1245	 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1246	 * Also note that encountering advancing failures is a normal
1247	 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1248	 *
1249	 * To see this, consider the following events which occur if
1250	 * rcu_seq_snap() were to be called after advance:
1251	 *
1252	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1253	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1254	 *
1255	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1256	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1257	 *
1258	 *  3) This value is passed to rcu_segcblist_advance() which can't move
1259	 *     any segment forward and fails.
1260	 *
1261	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1262	 *     But then the call to rcu_seq_snap() observes the grace period for the
1263	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1264	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1265	 *     so it returns a snapshot of the next grace period, which is X + 12.
1266	 *
1267	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1268	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1269	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1270	 *     period (gp_num = X + 8). So acceleration fails.
1271	 */
1272	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1273	if (rhp) {
1274		rcu_segcblist_advance(&sdp->srcu_cblist,
1275				      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1276		/*
1277		 * Acceleration can never fail because the base current gp_seq
1278		 * used for acceleration is <= the value of gp_seq used for
1279		 * advancing. This means that RCU_NEXT_TAIL segment will
1280		 * always be able to be emptied by the acceleration into the
1281		 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1282		 */
1283		WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1284	}
1285	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1286		sdp->srcu_gp_seq_needed = s;
1287		needgp = true;
1288	}
1289	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1290		sdp->srcu_gp_seq_needed_exp = s;
1291		needexp = true;
1292	}
1293	spin_unlock_irqrestore_rcu_node(sdp, flags);
1294
1295	/* Ensure that snp node tree is fully initialized before traversing it */
1296	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1297		sdp_mynode = NULL;
1298	else
1299		sdp_mynode = sdp->mynode;
1300
1301	if (needgp)
1302		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1303	else if (needexp)
1304		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1305	__srcu_read_unlock_nmisafe(ssp, idx);
1306	return s;
1307}
1308
1309/*
1310 * Enqueue an SRCU callback on the srcu_data structure associated with
1311 * the current CPU and the specified srcu_struct structure, initiating
1312 * grace-period processing if it is not already running.
1313 *
1314 * Note that all CPUs must agree that the grace period extended beyond
1315 * all pre-existing SRCU read-side critical section.  On systems with
1316 * more than one CPU, this means that when "func()" is invoked, each CPU
1317 * is guaranteed to have executed a full memory barrier since the end of
1318 * its last corresponding SRCU read-side critical section whose beginning
1319 * preceded the call to call_srcu().  It also means that each CPU executing
1320 * an SRCU read-side critical section that continues beyond the start of
1321 * "func()" must have executed a memory barrier after the call_srcu()
1322 * but before the beginning of that SRCU read-side critical section.
1323 * Note that these guarantees include CPUs that are offline, idle, or
1324 * executing in user mode, as well as CPUs that are executing in the kernel.
1325 *
1326 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1327 * resulting SRCU callback function "func()", then both CPU A and CPU
1328 * B are guaranteed to execute a full memory barrier during the time
1329 * interval between the call to call_srcu() and the invocation of "func()".
1330 * This guarantee applies even if CPU A and CPU B are the same CPU (but
1331 * again only if the system has more than one CPU).
1332 *
1333 * Of course, these guarantees apply only for invocations of call_srcu(),
1334 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1335 * srcu_struct structure.
1336 */
1337static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1338			rcu_callback_t func, bool do_norm)
1339{
1340	if (debug_rcu_head_queue(rhp)) {
1341		/* Probable double call_srcu(), so leak the callback. */
1342		WRITE_ONCE(rhp->func, srcu_leak_callback);
1343		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1344		return;
1345	}
1346	rhp->func = func;
1347	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1348}
1349
1350/**
1351 * call_srcu() - Queue a callback for invocation after an SRCU grace period
1352 * @ssp: srcu_struct in queue the callback
1353 * @rhp: structure to be used for queueing the SRCU callback.
1354 * @func: function to be invoked after the SRCU grace period
1355 *
1356 * The callback function will be invoked some time after a full SRCU
1357 * grace period elapses, in other words after all pre-existing SRCU
1358 * read-side critical sections have completed.  However, the callback
1359 * function might well execute concurrently with other SRCU read-side
1360 * critical sections that started after call_srcu() was invoked.  SRCU
1361 * read-side critical sections are delimited by srcu_read_lock() and
1362 * srcu_read_unlock(), and may be nested.
1363 *
1364 * The callback will be invoked from process context, but must nevertheless
1365 * be fast and must not block.
1366 */
1367void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1368	       rcu_callback_t func)
1369{
1370	__call_srcu(ssp, rhp, func, true);
1371}
1372EXPORT_SYMBOL_GPL(call_srcu);
1373
1374/*
1375 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1376 */
1377static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1378{
1379	struct rcu_synchronize rcu;
1380
1381	srcu_lock_sync(&ssp->dep_map);
1382
1383	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1384			 lock_is_held(&rcu_bh_lock_map) ||
1385			 lock_is_held(&rcu_lock_map) ||
1386			 lock_is_held(&rcu_sched_lock_map),
1387			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1388
1389	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1390		return;
1391	might_sleep();
1392	check_init_srcu_struct(ssp);
1393	init_completion(&rcu.completion);
1394	init_rcu_head_on_stack(&rcu.head);
1395	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1396	wait_for_completion(&rcu.completion);
1397	destroy_rcu_head_on_stack(&rcu.head);
1398
1399	/*
1400	 * Make sure that later code is ordered after the SRCU grace
1401	 * period.  This pairs with the spin_lock_irq_rcu_node()
1402	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1403	 * because the current CPU might have been totally uninvolved with
1404	 * (and thus unordered against) that grace period.
1405	 */
1406	smp_mb();
1407}
1408
1409/**
1410 * synchronize_srcu_expedited - Brute-force SRCU grace period
1411 * @ssp: srcu_struct with which to synchronize.
1412 *
1413 * Wait for an SRCU grace period to elapse, but be more aggressive about
1414 * spinning rather than blocking when waiting.
1415 *
1416 * Note that synchronize_srcu_expedited() has the same deadlock and
1417 * memory-ordering properties as does synchronize_srcu().
1418 */
1419void synchronize_srcu_expedited(struct srcu_struct *ssp)
1420{
1421	__synchronize_srcu(ssp, rcu_gp_is_normal());
1422}
1423EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1424
1425/**
1426 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1427 * @ssp: srcu_struct with which to synchronize.
1428 *
1429 * Wait for the count to drain to zero of both indexes. To avoid the
1430 * possible starvation of synchronize_srcu(), it waits for the count of
1431 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1432 * and then flip the srcu_idx and wait for the count of the other index.
1433 *
1434 * Can block; must be called from process context.
1435 *
1436 * Note that it is illegal to call synchronize_srcu() from the corresponding
1437 * SRCU read-side critical section; doing so will result in deadlock.
1438 * However, it is perfectly legal to call synchronize_srcu() on one
1439 * srcu_struct from some other srcu_struct's read-side critical section,
1440 * as long as the resulting graph of srcu_structs is acyclic.
1441 *
1442 * There are memory-ordering constraints implied by synchronize_srcu().
1443 * On systems with more than one CPU, when synchronize_srcu() returns,
1444 * each CPU is guaranteed to have executed a full memory barrier since
1445 * the end of its last corresponding SRCU read-side critical section
1446 * whose beginning preceded the call to synchronize_srcu().  In addition,
1447 * each CPU having an SRCU read-side critical section that extends beyond
1448 * the return from synchronize_srcu() is guaranteed to have executed a
1449 * full memory barrier after the beginning of synchronize_srcu() and before
1450 * the beginning of that SRCU read-side critical section.  Note that these
1451 * guarantees include CPUs that are offline, idle, or executing in user mode,
1452 * as well as CPUs that are executing in the kernel.
1453 *
1454 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1455 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1456 * to have executed a full memory barrier during the execution of
1457 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1458 * are the same CPU, but again only if the system has more than one CPU.
1459 *
1460 * Of course, these memory-ordering guarantees apply only when
1461 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1462 * passed the same srcu_struct structure.
1463 *
1464 * Implementation of these memory-ordering guarantees is similar to
1465 * that of synchronize_rcu().
1466 *
1467 * If SRCU is likely idle, expedite the first request.  This semantic
1468 * was provided by Classic SRCU, and is relied upon by its users, so TREE
1469 * SRCU must also provide it.  Note that detecting idleness is heuristic
1470 * and subject to both false positives and negatives.
1471 */
1472void synchronize_srcu(struct srcu_struct *ssp)
1473{
1474	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1475		synchronize_srcu_expedited(ssp);
1476	else
1477		__synchronize_srcu(ssp, true);
1478}
1479EXPORT_SYMBOL_GPL(synchronize_srcu);
1480
1481/**
1482 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1483 * @ssp: srcu_struct to provide cookie for.
1484 *
1485 * This function returns a cookie that can be passed to
1486 * poll_state_synchronize_srcu(), which will return true if a full grace
1487 * period has elapsed in the meantime.  It is the caller's responsibility
1488 * to make sure that grace period happens, for example, by invoking
1489 * call_srcu() after return from get_state_synchronize_srcu().
1490 */
1491unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1492{
1493	// Any prior manipulation of SRCU-protected data must happen
1494	// before the load from ->srcu_gp_seq.
1495	smp_mb();
1496	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1497}
1498EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1499
1500/**
1501 * start_poll_synchronize_srcu - Provide cookie and start grace period
1502 * @ssp: srcu_struct to provide cookie for.
1503 *
1504 * This function returns a cookie that can be passed to
1505 * poll_state_synchronize_srcu(), which will return true if a full grace
1506 * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1507 * this function also ensures that any needed SRCU grace period will be
1508 * started.  This convenience does come at a cost in terms of CPU overhead.
1509 */
1510unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1511{
1512	return srcu_gp_start_if_needed(ssp, NULL, true);
1513}
1514EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1515
1516/**
1517 * poll_state_synchronize_srcu - Has cookie's grace period ended?
1518 * @ssp: srcu_struct to provide cookie for.
1519 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1520 *
1521 * This function takes the cookie that was returned from either
1522 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1523 * returns @true if an SRCU grace period elapsed since the time that the
1524 * cookie was created.
1525 *
1526 * Because cookies are finite in size, wrapping/overflow is possible.
1527 * This is more pronounced on 32-bit systems where cookies are 32 bits,
1528 * where in theory wrapping could happen in about 14 hours assuming
1529 * 25-microsecond expedited SRCU grace periods.  However, a more likely
1530 * overflow lower bound is on the order of 24 days in the case of
1531 * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1532 * system requires geologic timespans, as in more than seven million years
1533 * even for expedited SRCU grace periods.
1534 *
1535 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1536 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1537 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1538 * few minutes.  If this proves to be a problem, this counter will be
1539 * expanded to the same size as for Tree SRCU.
1540 */
1541bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1542{
1543	if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
1544		return false;
1545	// Ensure that the end of the SRCU grace period happens before
1546	// any subsequent code that the caller might execute.
1547	smp_mb(); // ^^^
1548	return true;
1549}
1550EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1551
1552/*
1553 * Callback function for srcu_barrier() use.
1554 */
1555static void srcu_barrier_cb(struct rcu_head *rhp)
1556{
1557	struct srcu_data *sdp;
1558	struct srcu_struct *ssp;
1559
1560	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1561	ssp = sdp->ssp;
1562	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1563		complete(&ssp->srcu_sup->srcu_barrier_completion);
1564}
1565
1566/*
1567 * Enqueue an srcu_barrier() callback on the specified srcu_data
1568 * structure's ->cblist.  but only if that ->cblist already has at least one
1569 * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1570 * it must have already registered the need for a future grace period,
1571 * so all we need do is enqueue a callback that will use the same grace
1572 * period as the last callback already in the queue.
1573 */
1574static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1575{
1576	spin_lock_irq_rcu_node(sdp);
1577	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1578	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1579	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1580	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1581				   &sdp->srcu_barrier_head)) {
1582		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1583		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1584	}
1585	spin_unlock_irq_rcu_node(sdp);
1586}
1587
1588/**
1589 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1590 * @ssp: srcu_struct on which to wait for in-flight callbacks.
1591 */
1592void srcu_barrier(struct srcu_struct *ssp)
1593{
1594	int cpu;
1595	int idx;
1596	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1597
1598	check_init_srcu_struct(ssp);
1599	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1600	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1601		smp_mb(); /* Force ordering following return. */
1602		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1603		return; /* Someone else did our work for us. */
1604	}
1605	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1606	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1607
1608	/* Initial count prevents reaching zero until all CBs are posted. */
1609	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1610
1611	idx = __srcu_read_lock_nmisafe(ssp);
1612	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1613		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1614	else
1615		for_each_possible_cpu(cpu)
1616			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1617	__srcu_read_unlock_nmisafe(ssp, idx);
1618
1619	/* Remove the initial count, at which point reaching zero can happen. */
1620	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1621		complete(&ssp->srcu_sup->srcu_barrier_completion);
1622	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1623
1624	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1625	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1626}
1627EXPORT_SYMBOL_GPL(srcu_barrier);
1628
1629/**
1630 * srcu_batches_completed - return batches completed.
1631 * @ssp: srcu_struct on which to report batch completion.
1632 *
1633 * Report the number of batches, correlated with, but not necessarily
1634 * precisely the same as, the number of grace periods that have elapsed.
1635 */
1636unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1637{
1638	return READ_ONCE(ssp->srcu_idx);
1639}
1640EXPORT_SYMBOL_GPL(srcu_batches_completed);
1641
1642/*
1643 * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1644 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1645 * completed in that state.
1646 */
1647static void srcu_advance_state(struct srcu_struct *ssp)
1648{
1649	int idx;
1650
1651	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1652
1653	/*
1654	 * Because readers might be delayed for an extended period after
1655	 * fetching ->srcu_idx for their index, at any point in time there
1656	 * might well be readers using both idx=0 and idx=1.  We therefore
1657	 * need to wait for readers to clear from both index values before
1658	 * invoking a callback.
1659	 *
1660	 * The load-acquire ensures that we see the accesses performed
1661	 * by the prior grace period.
1662	 */
1663	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1664	if (idx == SRCU_STATE_IDLE) {
1665		spin_lock_irq_rcu_node(ssp->srcu_sup);
1666		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1667			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1668			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1669			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1670			return;
1671		}
1672		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1673		if (idx == SRCU_STATE_IDLE)
1674			srcu_gp_start(ssp);
1675		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1676		if (idx != SRCU_STATE_IDLE) {
1677			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1678			return; /* Someone else started the grace period. */
1679		}
1680	}
1681
1682	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1683		idx = 1 ^ (ssp->srcu_idx & 1);
1684		if (!try_check_zero(ssp, idx, 1)) {
1685			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1686			return; /* readers present, retry later. */
1687		}
1688		srcu_flip(ssp);
1689		spin_lock_irq_rcu_node(ssp->srcu_sup);
1690		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1691		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1692		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1693	}
1694
1695	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1696
1697		/*
1698		 * SRCU read-side critical sections are normally short,
1699		 * so check at least twice in quick succession after a flip.
1700		 */
1701		idx = 1 ^ (ssp->srcu_idx & 1);
1702		if (!try_check_zero(ssp, idx, 2)) {
1703			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1704			return; /* readers present, retry later. */
1705		}
1706		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1707		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1708	}
1709}
1710
1711/*
1712 * Invoke a limited number of SRCU callbacks that have passed through
1713 * their grace period.  If there are more to do, SRCU will reschedule
1714 * the workqueue.  Note that needed memory barriers have been executed
1715 * in this task's context by srcu_readers_active_idx_check().
1716 */
1717static void srcu_invoke_callbacks(struct work_struct *work)
1718{
1719	long len;
1720	bool more;
1721	struct rcu_cblist ready_cbs;
1722	struct rcu_head *rhp;
1723	struct srcu_data *sdp;
1724	struct srcu_struct *ssp;
1725
1726	sdp = container_of(work, struct srcu_data, work);
1727
1728	ssp = sdp->ssp;
1729	rcu_cblist_init(&ready_cbs);
1730	spin_lock_irq_rcu_node(sdp);
1731	WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1732	rcu_segcblist_advance(&sdp->srcu_cblist,
1733			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1734	/*
1735	 * Although this function is theoretically re-entrant, concurrent
1736	 * callbacks invocation is disallowed to avoid executing an SRCU barrier
1737	 * too early.
1738	 */
1739	if (sdp->srcu_cblist_invoking ||
1740	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1741		spin_unlock_irq_rcu_node(sdp);
1742		return;  /* Someone else on the job or nothing to do. */
1743	}
1744
1745	/* We are on the job!  Extract and invoke ready callbacks. */
1746	sdp->srcu_cblist_invoking = true;
1747	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1748	len = ready_cbs.len;
1749	spin_unlock_irq_rcu_node(sdp);
1750	rhp = rcu_cblist_dequeue(&ready_cbs);
1751	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1752		debug_rcu_head_unqueue(rhp);
1753		debug_rcu_head_callback(rhp);
1754		local_bh_disable();
1755		rhp->func(rhp);
1756		local_bh_enable();
1757	}
1758	WARN_ON_ONCE(ready_cbs.len);
1759
1760	/*
1761	 * Update counts, accelerate new callbacks, and if needed,
1762	 * schedule another round of callback invocation.
1763	 */
1764	spin_lock_irq_rcu_node(sdp);
1765	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1766	sdp->srcu_cblist_invoking = false;
1767	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1768	spin_unlock_irq_rcu_node(sdp);
1769	/* An SRCU barrier or callbacks from previous nesting work pending */
1770	if (more)
1771		srcu_schedule_cbs_sdp(sdp, 0);
1772}
1773
1774/*
1775 * Finished one round of SRCU grace period.  Start another if there are
1776 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1777 */
1778static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1779{
1780	bool pushgp = true;
1781
1782	spin_lock_irq_rcu_node(ssp->srcu_sup);
1783	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1784		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1785			/* All requests fulfilled, time to go idle. */
1786			pushgp = false;
1787		}
1788	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1789		/* Outstanding request and no GP.  Start one. */
1790		srcu_gp_start(ssp);
1791	}
1792	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1793
1794	if (pushgp)
1795		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1796}
1797
1798/*
1799 * This is the work-queue function that handles SRCU grace periods.
1800 */
1801static void process_srcu(struct work_struct *work)
1802{
1803	unsigned long curdelay;
1804	unsigned long j;
1805	struct srcu_struct *ssp;
1806	struct srcu_usage *sup;
1807
1808	sup = container_of(work, struct srcu_usage, work.work);
1809	ssp = sup->srcu_ssp;
1810
1811	srcu_advance_state(ssp);
1812	curdelay = srcu_get_delay(ssp);
1813	if (curdelay) {
1814		WRITE_ONCE(sup->reschedule_count, 0);
1815	} else {
1816		j = jiffies;
1817		if (READ_ONCE(sup->reschedule_jiffies) == j) {
1818			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1819			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1820				curdelay = 1;
1821		} else {
1822			WRITE_ONCE(sup->reschedule_count, 1);
1823			WRITE_ONCE(sup->reschedule_jiffies, j);
1824		}
1825	}
1826	srcu_reschedule(ssp, curdelay);
1827}
1828
1829void srcutorture_get_gp_data(enum rcutorture_type test_type,
1830			     struct srcu_struct *ssp, int *flags,
1831			     unsigned long *gp_seq)
1832{
1833	if (test_type != SRCU_FLAVOR)
1834		return;
1835	*flags = 0;
1836	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1837}
1838EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1839
1840static const char * const srcu_size_state_name[] = {
1841	"SRCU_SIZE_SMALL",
1842	"SRCU_SIZE_ALLOC",
1843	"SRCU_SIZE_WAIT_BARRIER",
1844	"SRCU_SIZE_WAIT_CALL",
1845	"SRCU_SIZE_WAIT_CBS1",
1846	"SRCU_SIZE_WAIT_CBS2",
1847	"SRCU_SIZE_WAIT_CBS3",
1848	"SRCU_SIZE_WAIT_CBS4",
1849	"SRCU_SIZE_BIG",
1850	"SRCU_SIZE_???",
1851};
1852
1853void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1854{
1855	int cpu;
1856	int idx;
1857	unsigned long s0 = 0, s1 = 0;
1858	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1859	int ss_state_idx = ss_state;
1860
1861	idx = ssp->srcu_idx & 0x1;
1862	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1863		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1864	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1865		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1866		 srcu_size_state_name[ss_state_idx]);
1867	if (!ssp->sda) {
1868		// Called after cleanup_srcu_struct(), perhaps.
1869		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1870	} else {
1871		pr_cont(" per-CPU(idx=%d):", idx);
1872		for_each_possible_cpu(cpu) {
1873			unsigned long l0, l1;
1874			unsigned long u0, u1;
1875			long c0, c1;
1876			struct srcu_data *sdp;
1877
1878			sdp = per_cpu_ptr(ssp->sda, cpu);
1879			u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1880			u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1881
1882			/*
1883			 * Make sure that a lock is always counted if the corresponding
1884			 * unlock is counted.
1885			 */
1886			smp_rmb();
1887
1888			l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1889			l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1890
1891			c0 = l0 - u0;
1892			c1 = l1 - u1;
1893			pr_cont(" %d(%ld,%ld %c)",
1894				cpu, c0, c1,
1895				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1896			s0 += c0;
1897			s1 += c1;
1898		}
1899		pr_cont(" T(%ld,%ld)\n", s0, s1);
1900	}
1901	if (SRCU_SIZING_IS_TORTURE())
1902		srcu_transition_to_big(ssp);
1903}
1904EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1905
1906static int __init srcu_bootup_announce(void)
1907{
1908	pr_info("Hierarchical SRCU implementation.\n");
1909	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1910		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1911	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1912		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1913	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1914		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1915	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1916	return 0;
1917}
1918early_initcall(srcu_bootup_announce);
1919
1920void __init srcu_init(void)
1921{
1922	struct srcu_usage *sup;
1923
1924	/* Decide on srcu_struct-size strategy. */
1925	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1926		if (nr_cpu_ids >= big_cpu_lim) {
1927			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1928			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1929		} else {
1930			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1931			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1932		}
1933	}
1934
1935	/*
1936	 * Once that is set, call_srcu() can follow the normal path and
1937	 * queue delayed work. This must follow RCU workqueues creation
1938	 * and timers initialization.
1939	 */
1940	srcu_init_done = true;
1941	while (!list_empty(&srcu_boot_list)) {
1942		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
1943				      work.work.entry);
1944		list_del_init(&sup->work.work.entry);
1945		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1946		    sup->srcu_size_state == SRCU_SIZE_SMALL)
1947			sup->srcu_size_state = SRCU_SIZE_ALLOC;
1948		queue_work(rcu_gp_wq, &sup->work.work);
1949	}
1950}
1951
1952#ifdef CONFIG_MODULES
1953
1954/* Initialize any global-scope srcu_struct structures used by this module. */
1955static int srcu_module_coming(struct module *mod)
1956{
1957	int i;
1958	struct srcu_struct *ssp;
1959	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1960
1961	for (i = 0; i < mod->num_srcu_structs; i++) {
1962		ssp = *(sspp++);
1963		ssp->sda = alloc_percpu(struct srcu_data);
1964		if (WARN_ON_ONCE(!ssp->sda))
1965			return -ENOMEM;
1966	}
1967	return 0;
1968}
1969
1970/* Clean up any global-scope srcu_struct structures used by this module. */
1971static void srcu_module_going(struct module *mod)
1972{
1973	int i;
1974	struct srcu_struct *ssp;
1975	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1976
1977	for (i = 0; i < mod->num_srcu_structs; i++) {
1978		ssp = *(sspp++);
1979		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
1980		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
1981			cleanup_srcu_struct(ssp);
1982		if (!WARN_ON(srcu_readers_active(ssp)))
1983			free_percpu(ssp->sda);
1984	}
1985}
1986
1987/* Handle one module, either coming or going. */
1988static int srcu_module_notify(struct notifier_block *self,
1989			      unsigned long val, void *data)
1990{
1991	struct module *mod = data;
1992	int ret = 0;
1993
1994	switch (val) {
1995	case MODULE_STATE_COMING:
1996		ret = srcu_module_coming(mod);
1997		break;
1998	case MODULE_STATE_GOING:
1999		srcu_module_going(mod);
2000		break;
2001	default:
2002		break;
2003	}
2004	return ret;
2005}
2006
2007static struct notifier_block srcu_module_nb = {
2008	.notifier_call = srcu_module_notify,
2009	.priority = 0,
2010};
2011
2012static __init int init_srcu_module_notifier(void)
2013{
2014	int ret;
2015
2016	ret = register_module_notifier(&srcu_module_nb);
2017	if (ret)
2018		pr_warn("Failed to register srcu module notifier\n");
2019	return ret;
2020}
2021late_initcall(init_srcu_module_notifier);
2022
2023#endif /* #ifdef CONFIG_MODULES */
2024