1// SPDX-License-Identifier: GPL-2.0+
2//
3// Scalability test comparing RCU vs other mechanisms
4// for acquiring references on objects.
5//
6// Copyright (C) Google, 2020.
7//
8// Author: Joel Fernandes <joel@joelfernandes.org>
9
10#define pr_fmt(fmt) fmt
11
12#include <linux/atomic.h>
13#include <linux/bitops.h>
14#include <linux/completion.h>
15#include <linux/cpu.h>
16#include <linux/delay.h>
17#include <linux/err.h>
18#include <linux/init.h>
19#include <linux/interrupt.h>
20#include <linux/kthread.h>
21#include <linux/kernel.h>
22#include <linux/mm.h>
23#include <linux/module.h>
24#include <linux/moduleparam.h>
25#include <linux/notifier.h>
26#include <linux/percpu.h>
27#include <linux/rcupdate.h>
28#include <linux/rcupdate_trace.h>
29#include <linux/reboot.h>
30#include <linux/sched.h>
31#include <linux/spinlock.h>
32#include <linux/smp.h>
33#include <linux/stat.h>
34#include <linux/srcu.h>
35#include <linux/slab.h>
36#include <linux/torture.h>
37#include <linux/types.h>
38
39#include "rcu.h"
40
41#define SCALE_FLAG "-ref-scale: "
42
43#define SCALEOUT(s, x...) \
44	pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
45
46#define VERBOSE_SCALEOUT(s, x...) \
47	do { \
48		if (verbose) \
49			pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
50	} while (0)
51
52static atomic_t verbose_batch_ctr;
53
54#define VERBOSE_SCALEOUT_BATCH(s, x...)							\
55do {											\
56	if (verbose &&									\
57	    (verbose_batched <= 0 ||							\
58	     !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {		\
59		schedule_timeout_uninterruptible(1);					\
60		pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);			\
61	}										\
62} while (0)
63
64#define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
65
66MODULE_LICENSE("GPL");
67MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
68
69static char *scale_type = "rcu";
70module_param(scale_type, charp, 0444);
71MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
72
73torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
74torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
75
76// Wait until there are multiple CPUs before starting test.
77torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
78	      "Holdoff time before test start (s)");
79// Number of typesafe_lookup structures, that is, the degree of concurrency.
80torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
81// Number of loops per experiment, all readers execute operations concurrently.
82torture_param(long, loops, 10000, "Number of loops per experiment.");
83// Number of readers, with -1 defaulting to about 75% of the CPUs.
84torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
85// Number of runs.
86torture_param(int, nruns, 30, "Number of experiments to run.");
87// Reader delay in nanoseconds, 0 for no delay.
88torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
89
90#ifdef MODULE
91# define REFSCALE_SHUTDOWN 0
92#else
93# define REFSCALE_SHUTDOWN 1
94#endif
95
96torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
97	      "Shutdown at end of scalability tests.");
98
99struct reader_task {
100	struct task_struct *task;
101	int start_reader;
102	wait_queue_head_t wq;
103	u64 last_duration_ns;
104};
105
106static struct task_struct *shutdown_task;
107static wait_queue_head_t shutdown_wq;
108
109static struct task_struct *main_task;
110static wait_queue_head_t main_wq;
111static int shutdown_start;
112
113static struct reader_task *reader_tasks;
114
115// Number of readers that are part of the current experiment.
116static atomic_t nreaders_exp;
117
118// Use to wait for all threads to start.
119static atomic_t n_init;
120static atomic_t n_started;
121static atomic_t n_warmedup;
122static atomic_t n_cooleddown;
123
124// Track which experiment is currently running.
125static int exp_idx;
126
127// Operations vector for selecting different types of tests.
128struct ref_scale_ops {
129	bool (*init)(void);
130	void (*cleanup)(void);
131	void (*readsection)(const int nloops);
132	void (*delaysection)(const int nloops, const int udl, const int ndl);
133	const char *name;
134};
135
136static struct ref_scale_ops *cur_ops;
137
138static void un_delay(const int udl, const int ndl)
139{
140	if (udl)
141		udelay(udl);
142	if (ndl)
143		ndelay(ndl);
144}
145
146static void ref_rcu_read_section(const int nloops)
147{
148	int i;
149
150	for (i = nloops; i >= 0; i--) {
151		rcu_read_lock();
152		rcu_read_unlock();
153	}
154}
155
156static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
157{
158	int i;
159
160	for (i = nloops; i >= 0; i--) {
161		rcu_read_lock();
162		un_delay(udl, ndl);
163		rcu_read_unlock();
164	}
165}
166
167static bool rcu_sync_scale_init(void)
168{
169	return true;
170}
171
172static struct ref_scale_ops rcu_ops = {
173	.init		= rcu_sync_scale_init,
174	.readsection	= ref_rcu_read_section,
175	.delaysection	= ref_rcu_delay_section,
176	.name		= "rcu"
177};
178
179// Definitions for SRCU ref scale testing.
180DEFINE_STATIC_SRCU(srcu_refctl_scale);
181static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
182
183static void srcu_ref_scale_read_section(const int nloops)
184{
185	int i;
186	int idx;
187
188	for (i = nloops; i >= 0; i--) {
189		idx = srcu_read_lock(srcu_ctlp);
190		srcu_read_unlock(srcu_ctlp, idx);
191	}
192}
193
194static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
195{
196	int i;
197	int idx;
198
199	for (i = nloops; i >= 0; i--) {
200		idx = srcu_read_lock(srcu_ctlp);
201		un_delay(udl, ndl);
202		srcu_read_unlock(srcu_ctlp, idx);
203	}
204}
205
206static struct ref_scale_ops srcu_ops = {
207	.init		= rcu_sync_scale_init,
208	.readsection	= srcu_ref_scale_read_section,
209	.delaysection	= srcu_ref_scale_delay_section,
210	.name		= "srcu"
211};
212
213#ifdef CONFIG_TASKS_RCU
214
215// Definitions for RCU Tasks ref scale testing: Empty read markers.
216// These definitions also work for RCU Rude readers.
217static void rcu_tasks_ref_scale_read_section(const int nloops)
218{
219	int i;
220
221	for (i = nloops; i >= 0; i--)
222		continue;
223}
224
225static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
226{
227	int i;
228
229	for (i = nloops; i >= 0; i--)
230		un_delay(udl, ndl);
231}
232
233static struct ref_scale_ops rcu_tasks_ops = {
234	.init		= rcu_sync_scale_init,
235	.readsection	= rcu_tasks_ref_scale_read_section,
236	.delaysection	= rcu_tasks_ref_scale_delay_section,
237	.name		= "rcu-tasks"
238};
239
240#define RCU_TASKS_OPS &rcu_tasks_ops,
241
242#else // #ifdef CONFIG_TASKS_RCU
243
244#define RCU_TASKS_OPS
245
246#endif // #else // #ifdef CONFIG_TASKS_RCU
247
248#ifdef CONFIG_TASKS_TRACE_RCU
249
250// Definitions for RCU Tasks Trace ref scale testing.
251static void rcu_trace_ref_scale_read_section(const int nloops)
252{
253	int i;
254
255	for (i = nloops; i >= 0; i--) {
256		rcu_read_lock_trace();
257		rcu_read_unlock_trace();
258	}
259}
260
261static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
262{
263	int i;
264
265	for (i = nloops; i >= 0; i--) {
266		rcu_read_lock_trace();
267		un_delay(udl, ndl);
268		rcu_read_unlock_trace();
269	}
270}
271
272static struct ref_scale_ops rcu_trace_ops = {
273	.init		= rcu_sync_scale_init,
274	.readsection	= rcu_trace_ref_scale_read_section,
275	.delaysection	= rcu_trace_ref_scale_delay_section,
276	.name		= "rcu-trace"
277};
278
279#define RCU_TRACE_OPS &rcu_trace_ops,
280
281#else // #ifdef CONFIG_TASKS_TRACE_RCU
282
283#define RCU_TRACE_OPS
284
285#endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
286
287// Definitions for reference count
288static atomic_t refcnt;
289
290static void ref_refcnt_section(const int nloops)
291{
292	int i;
293
294	for (i = nloops; i >= 0; i--) {
295		atomic_inc(&refcnt);
296		atomic_dec(&refcnt);
297	}
298}
299
300static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
301{
302	int i;
303
304	for (i = nloops; i >= 0; i--) {
305		atomic_inc(&refcnt);
306		un_delay(udl, ndl);
307		atomic_dec(&refcnt);
308	}
309}
310
311static struct ref_scale_ops refcnt_ops = {
312	.init		= rcu_sync_scale_init,
313	.readsection	= ref_refcnt_section,
314	.delaysection	= ref_refcnt_delay_section,
315	.name		= "refcnt"
316};
317
318// Definitions for rwlock
319static rwlock_t test_rwlock;
320
321static bool ref_rwlock_init(void)
322{
323	rwlock_init(&test_rwlock);
324	return true;
325}
326
327static void ref_rwlock_section(const int nloops)
328{
329	int i;
330
331	for (i = nloops; i >= 0; i--) {
332		read_lock(&test_rwlock);
333		read_unlock(&test_rwlock);
334	}
335}
336
337static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
338{
339	int i;
340
341	for (i = nloops; i >= 0; i--) {
342		read_lock(&test_rwlock);
343		un_delay(udl, ndl);
344		read_unlock(&test_rwlock);
345	}
346}
347
348static struct ref_scale_ops rwlock_ops = {
349	.init		= ref_rwlock_init,
350	.readsection	= ref_rwlock_section,
351	.delaysection	= ref_rwlock_delay_section,
352	.name		= "rwlock"
353};
354
355// Definitions for rwsem
356static struct rw_semaphore test_rwsem;
357
358static bool ref_rwsem_init(void)
359{
360	init_rwsem(&test_rwsem);
361	return true;
362}
363
364static void ref_rwsem_section(const int nloops)
365{
366	int i;
367
368	for (i = nloops; i >= 0; i--) {
369		down_read(&test_rwsem);
370		up_read(&test_rwsem);
371	}
372}
373
374static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
375{
376	int i;
377
378	for (i = nloops; i >= 0; i--) {
379		down_read(&test_rwsem);
380		un_delay(udl, ndl);
381		up_read(&test_rwsem);
382	}
383}
384
385static struct ref_scale_ops rwsem_ops = {
386	.init		= ref_rwsem_init,
387	.readsection	= ref_rwsem_section,
388	.delaysection	= ref_rwsem_delay_section,
389	.name		= "rwsem"
390};
391
392// Definitions for global spinlock
393static DEFINE_RAW_SPINLOCK(test_lock);
394
395static void ref_lock_section(const int nloops)
396{
397	int i;
398
399	preempt_disable();
400	for (i = nloops; i >= 0; i--) {
401		raw_spin_lock(&test_lock);
402		raw_spin_unlock(&test_lock);
403	}
404	preempt_enable();
405}
406
407static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
408{
409	int i;
410
411	preempt_disable();
412	for (i = nloops; i >= 0; i--) {
413		raw_spin_lock(&test_lock);
414		un_delay(udl, ndl);
415		raw_spin_unlock(&test_lock);
416	}
417	preempt_enable();
418}
419
420static struct ref_scale_ops lock_ops = {
421	.readsection	= ref_lock_section,
422	.delaysection	= ref_lock_delay_section,
423	.name		= "lock"
424};
425
426// Definitions for global irq-save spinlock
427
428static void ref_lock_irq_section(const int nloops)
429{
430	unsigned long flags;
431	int i;
432
433	preempt_disable();
434	for (i = nloops; i >= 0; i--) {
435		raw_spin_lock_irqsave(&test_lock, flags);
436		raw_spin_unlock_irqrestore(&test_lock, flags);
437	}
438	preempt_enable();
439}
440
441static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
442{
443	unsigned long flags;
444	int i;
445
446	preempt_disable();
447	for (i = nloops; i >= 0; i--) {
448		raw_spin_lock_irqsave(&test_lock, flags);
449		un_delay(udl, ndl);
450		raw_spin_unlock_irqrestore(&test_lock, flags);
451	}
452	preempt_enable();
453}
454
455static struct ref_scale_ops lock_irq_ops = {
456	.readsection	= ref_lock_irq_section,
457	.delaysection	= ref_lock_irq_delay_section,
458	.name		= "lock-irq"
459};
460
461// Definitions acquire-release.
462static DEFINE_PER_CPU(unsigned long, test_acqrel);
463
464static void ref_acqrel_section(const int nloops)
465{
466	unsigned long x;
467	int i;
468
469	preempt_disable();
470	for (i = nloops; i >= 0; i--) {
471		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
472		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
473	}
474	preempt_enable();
475}
476
477static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
478{
479	unsigned long x;
480	int i;
481
482	preempt_disable();
483	for (i = nloops; i >= 0; i--) {
484		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
485		un_delay(udl, ndl);
486		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
487	}
488	preempt_enable();
489}
490
491static struct ref_scale_ops acqrel_ops = {
492	.readsection	= ref_acqrel_section,
493	.delaysection	= ref_acqrel_delay_section,
494	.name		= "acqrel"
495};
496
497static volatile u64 stopopts;
498
499static void ref_clock_section(const int nloops)
500{
501	u64 x = 0;
502	int i;
503
504	preempt_disable();
505	for (i = nloops; i >= 0; i--)
506		x += ktime_get_real_fast_ns();
507	preempt_enable();
508	stopopts = x;
509}
510
511static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
512{
513	u64 x = 0;
514	int i;
515
516	preempt_disable();
517	for (i = nloops; i >= 0; i--) {
518		x += ktime_get_real_fast_ns();
519		un_delay(udl, ndl);
520	}
521	preempt_enable();
522	stopopts = x;
523}
524
525static struct ref_scale_ops clock_ops = {
526	.readsection	= ref_clock_section,
527	.delaysection	= ref_clock_delay_section,
528	.name		= "clock"
529};
530
531static void ref_jiffies_section(const int nloops)
532{
533	u64 x = 0;
534	int i;
535
536	preempt_disable();
537	for (i = nloops; i >= 0; i--)
538		x += jiffies;
539	preempt_enable();
540	stopopts = x;
541}
542
543static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
544{
545	u64 x = 0;
546	int i;
547
548	preempt_disable();
549	for (i = nloops; i >= 0; i--) {
550		x += jiffies;
551		un_delay(udl, ndl);
552	}
553	preempt_enable();
554	stopopts = x;
555}
556
557static struct ref_scale_ops jiffies_ops = {
558	.readsection	= ref_jiffies_section,
559	.delaysection	= ref_jiffies_delay_section,
560	.name		= "jiffies"
561};
562
563////////////////////////////////////////////////////////////////////////
564//
565// Methods leveraging SLAB_TYPESAFE_BY_RCU.
566//
567
568// Item to look up in a typesafe manner.  Array of pointers to these.
569struct refscale_typesafe {
570	atomic_t rts_refctr;  // Used by all flavors
571	spinlock_t rts_lock;
572	seqlock_t rts_seqlock;
573	unsigned int a;
574	unsigned int b;
575};
576
577static struct kmem_cache *typesafe_kmem_cachep;
578static struct refscale_typesafe **rtsarray;
579static long rtsarray_size;
580static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
581static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
582static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
583
584// Conditionally acquire an explicit in-structure reference count.
585static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
586{
587	return atomic_inc_not_zero(&rtsp->rts_refctr);
588}
589
590// Unconditionally release an explicit in-structure reference count.
591static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
592{
593	if (!atomic_dec_return(&rtsp->rts_refctr)) {
594		WRITE_ONCE(rtsp->a, rtsp->a + 1);
595		kmem_cache_free(typesafe_kmem_cachep, rtsp);
596	}
597	return true;
598}
599
600// Unconditionally acquire an explicit in-structure spinlock.
601static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
602{
603	spin_lock(&rtsp->rts_lock);
604	return true;
605}
606
607// Unconditionally release an explicit in-structure spinlock.
608static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
609{
610	spin_unlock(&rtsp->rts_lock);
611	return true;
612}
613
614// Unconditionally acquire an explicit in-structure sequence lock.
615static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
616{
617	*start = read_seqbegin(&rtsp->rts_seqlock);
618	return true;
619}
620
621// Conditionally release an explicit in-structure sequence lock.  Return
622// true if this release was successful, that is, if no retry is required.
623static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
624{
625	return !read_seqretry(&rtsp->rts_seqlock, start);
626}
627
628// Do a read-side critical section with the specified delay in
629// microseconds and nanoseconds inserted so as to increase probability
630// of failure.
631static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
632{
633	unsigned int a;
634	unsigned int b;
635	int i;
636	long idx;
637	struct refscale_typesafe *rtsp;
638	unsigned int start;
639
640	for (i = nloops; i >= 0; i--) {
641		preempt_disable();
642		idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
643		preempt_enable();
644retry:
645		rcu_read_lock();
646		rtsp = rcu_dereference(rtsarray[idx]);
647		a = READ_ONCE(rtsp->a);
648		if (!rts_acquire(rtsp, &start)) {
649			rcu_read_unlock();
650			goto retry;
651		}
652		if (a != READ_ONCE(rtsp->a)) {
653			(void)rts_release(rtsp, start);
654			rcu_read_unlock();
655			goto retry;
656		}
657		un_delay(udl, ndl);
658		b = READ_ONCE(rtsp->a);
659		// Remember, seqlock read-side release can fail.
660		if (!rts_release(rtsp, start)) {
661			rcu_read_unlock();
662			goto retry;
663		}
664		WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
665		b = rtsp->b;
666		rcu_read_unlock();
667		WARN_ON_ONCE(a * a != b);
668	}
669}
670
671// Because the acquisition and release methods are expensive, there
672// is no point in optimizing away the un_delay() function's two checks.
673// Thus simply define typesafe_read_section() as a simple wrapper around
674// typesafe_delay_section().
675static void typesafe_read_section(const int nloops)
676{
677	typesafe_delay_section(nloops, 0, 0);
678}
679
680// Allocate and initialize one refscale_typesafe structure.
681static struct refscale_typesafe *typesafe_alloc_one(void)
682{
683	struct refscale_typesafe *rtsp;
684
685	rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
686	if (!rtsp)
687		return NULL;
688	atomic_set(&rtsp->rts_refctr, 1);
689	WRITE_ONCE(rtsp->a, rtsp->a + 1);
690	WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
691	return rtsp;
692}
693
694// Slab-allocator constructor for refscale_typesafe structures created
695// out of a new slab of system memory.
696static void refscale_typesafe_ctor(void *rtsp_in)
697{
698	struct refscale_typesafe *rtsp = rtsp_in;
699
700	spin_lock_init(&rtsp->rts_lock);
701	seqlock_init(&rtsp->rts_seqlock);
702	preempt_disable();
703	rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
704	preempt_enable();
705}
706
707static struct ref_scale_ops typesafe_ref_ops;
708static struct ref_scale_ops typesafe_lock_ops;
709static struct ref_scale_ops typesafe_seqlock_ops;
710
711// Initialize for a typesafe test.
712static bool typesafe_init(void)
713{
714	long idx;
715	long si = lookup_instances;
716
717	typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
718						 sizeof(struct refscale_typesafe), sizeof(void *),
719						 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
720	if (!typesafe_kmem_cachep)
721		return false;
722	if (si < 0)
723		si = -si * nr_cpu_ids;
724	else if (si == 0)
725		si = nr_cpu_ids;
726	rtsarray_size = si;
727	rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
728	if (!rtsarray)
729		return false;
730	for (idx = 0; idx < rtsarray_size; idx++) {
731		rtsarray[idx] = typesafe_alloc_one();
732		if (!rtsarray[idx])
733			return false;
734	}
735	if (cur_ops == &typesafe_ref_ops) {
736		rts_acquire = typesafe_ref_acquire;
737		rts_release = typesafe_ref_release;
738	} else if (cur_ops == &typesafe_lock_ops) {
739		rts_acquire = typesafe_lock_acquire;
740		rts_release = typesafe_lock_release;
741	} else if (cur_ops == &typesafe_seqlock_ops) {
742		rts_acquire = typesafe_seqlock_acquire;
743		rts_release = typesafe_seqlock_release;
744	} else {
745		WARN_ON_ONCE(1);
746		return false;
747	}
748	return true;
749}
750
751// Clean up after a typesafe test.
752static void typesafe_cleanup(void)
753{
754	long idx;
755
756	if (rtsarray) {
757		for (idx = 0; idx < rtsarray_size; idx++)
758			kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
759		kfree(rtsarray);
760		rtsarray = NULL;
761		rtsarray_size = 0;
762	}
763	kmem_cache_destroy(typesafe_kmem_cachep);
764	typesafe_kmem_cachep = NULL;
765	rts_acquire = NULL;
766	rts_release = NULL;
767}
768
769// The typesafe_init() function distinguishes these structures by address.
770static struct ref_scale_ops typesafe_ref_ops = {
771	.init		= typesafe_init,
772	.cleanup	= typesafe_cleanup,
773	.readsection	= typesafe_read_section,
774	.delaysection	= typesafe_delay_section,
775	.name		= "typesafe_ref"
776};
777
778static struct ref_scale_ops typesafe_lock_ops = {
779	.init		= typesafe_init,
780	.cleanup	= typesafe_cleanup,
781	.readsection	= typesafe_read_section,
782	.delaysection	= typesafe_delay_section,
783	.name		= "typesafe_lock"
784};
785
786static struct ref_scale_ops typesafe_seqlock_ops = {
787	.init		= typesafe_init,
788	.cleanup	= typesafe_cleanup,
789	.readsection	= typesafe_read_section,
790	.delaysection	= typesafe_delay_section,
791	.name		= "typesafe_seqlock"
792};
793
794static void rcu_scale_one_reader(void)
795{
796	if (readdelay <= 0)
797		cur_ops->readsection(loops);
798	else
799		cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
800}
801
802// Reader kthread.  Repeatedly does empty RCU read-side
803// critical section, minimizing update-side interference.
804static int
805ref_scale_reader(void *arg)
806{
807	unsigned long flags;
808	long me = (long)arg;
809	struct reader_task *rt = &(reader_tasks[me]);
810	u64 start;
811	s64 duration;
812
813	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
814	WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
815	set_user_nice(current, MAX_NICE);
816	atomic_inc(&n_init);
817	if (holdoff)
818		schedule_timeout_interruptible(holdoff * HZ);
819repeat:
820	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
821
822	// Wait for signal that this reader can start.
823	wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
824			   torture_must_stop());
825
826	if (torture_must_stop())
827		goto end;
828
829	// Make sure that the CPU is affinitized appropriately during testing.
830	WARN_ON_ONCE(raw_smp_processor_id() != me);
831
832	WRITE_ONCE(rt->start_reader, 0);
833	if (!atomic_dec_return(&n_started))
834		while (atomic_read_acquire(&n_started))
835			cpu_relax();
836
837	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
838
839
840	// To reduce noise, do an initial cache-warming invocation, check
841	// in, and then keep warming until everyone has checked in.
842	rcu_scale_one_reader();
843	if (!atomic_dec_return(&n_warmedup))
844		while (atomic_read_acquire(&n_warmedup))
845			rcu_scale_one_reader();
846	// Also keep interrupts disabled.  This also has the effect
847	// of preventing entries into slow path for rcu_read_unlock().
848	local_irq_save(flags);
849	start = ktime_get_mono_fast_ns();
850
851	rcu_scale_one_reader();
852
853	duration = ktime_get_mono_fast_ns() - start;
854	local_irq_restore(flags);
855
856	rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
857	// To reduce runtime-skew noise, do maintain-load invocations until
858	// everyone is done.
859	if (!atomic_dec_return(&n_cooleddown))
860		while (atomic_read_acquire(&n_cooleddown))
861			rcu_scale_one_reader();
862
863	if (atomic_dec_and_test(&nreaders_exp))
864		wake_up(&main_wq);
865
866	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
867				me, exp_idx, atomic_read(&nreaders_exp));
868
869	if (!torture_must_stop())
870		goto repeat;
871end:
872	torture_kthread_stopping("ref_scale_reader");
873	return 0;
874}
875
876static void reset_readers(void)
877{
878	int i;
879	struct reader_task *rt;
880
881	for (i = 0; i < nreaders; i++) {
882		rt = &(reader_tasks[i]);
883
884		rt->last_duration_ns = 0;
885	}
886}
887
888// Print the results of each reader and return the sum of all their durations.
889static u64 process_durations(int n)
890{
891	int i;
892	struct reader_task *rt;
893	char buf1[64];
894	char *buf;
895	u64 sum = 0;
896
897	buf = kmalloc(800 + 64, GFP_KERNEL);
898	if (!buf)
899		return 0;
900	buf[0] = 0;
901	sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
902		exp_idx);
903
904	for (i = 0; i < n && !torture_must_stop(); i++) {
905		rt = &(reader_tasks[i]);
906		sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns);
907
908		if (i % 5 == 0)
909			strcat(buf, "\n");
910		if (strlen(buf) >= 800) {
911			pr_alert("%s", buf);
912			buf[0] = 0;
913		}
914		strcat(buf, buf1);
915
916		sum += rt->last_duration_ns;
917	}
918	pr_alert("%s\n", buf);
919
920	kfree(buf);
921	return sum;
922}
923
924// The main_func is the main orchestrator, it performs a bunch of
925// experiments.  For every experiment, it orders all the readers
926// involved to start and waits for them to finish the experiment. It
927// then reads their timestamps and starts the next experiment. Each
928// experiment progresses from 1 concurrent reader to N of them at which
929// point all the timestamps are printed.
930static int main_func(void *arg)
931{
932	int exp, r;
933	char buf1[64];
934	char *buf;
935	u64 *result_avg;
936
937	set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
938	set_user_nice(current, MAX_NICE);
939
940	VERBOSE_SCALEOUT("main_func task started");
941	result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
942	buf = kzalloc(800 + 64, GFP_KERNEL);
943	if (!result_avg || !buf) {
944		SCALEOUT_ERRSTRING("out of memory");
945		goto oom_exit;
946	}
947	if (holdoff)
948		schedule_timeout_interruptible(holdoff * HZ);
949
950	// Wait for all threads to start.
951	atomic_inc(&n_init);
952	while (atomic_read(&n_init) < nreaders + 1)
953		schedule_timeout_uninterruptible(1);
954
955	// Start exp readers up per experiment
956	for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
957		if (torture_must_stop())
958			goto end;
959
960		reset_readers();
961		atomic_set(&nreaders_exp, nreaders);
962		atomic_set(&n_started, nreaders);
963		atomic_set(&n_warmedup, nreaders);
964		atomic_set(&n_cooleddown, nreaders);
965
966		exp_idx = exp;
967
968		for (r = 0; r < nreaders; r++) {
969			smp_store_release(&reader_tasks[r].start_reader, 1);
970			wake_up(&reader_tasks[r].wq);
971		}
972
973		VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
974				nreaders);
975
976		wait_event(main_wq,
977			   !atomic_read(&nreaders_exp) || torture_must_stop());
978
979		VERBOSE_SCALEOUT("main_func: experiment ended");
980
981		if (torture_must_stop())
982			goto end;
983
984		result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
985	}
986
987	// Print the average of all experiments
988	SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
989
990	pr_alert("Runs\tTime(ns)\n");
991	for (exp = 0; exp < nruns; exp++) {
992		u64 avg;
993		u32 rem;
994
995		avg = div_u64_rem(result_avg[exp], 1000, &rem);
996		sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
997		strcat(buf, buf1);
998		if (strlen(buf) >= 800) {
999			pr_alert("%s", buf);
1000			buf[0] = 0;
1001		}
1002	}
1003
1004	pr_alert("%s", buf);
1005
1006oom_exit:
1007	// This will shutdown everything including us.
1008	if (shutdown) {
1009		shutdown_start = 1;
1010		wake_up(&shutdown_wq);
1011	}
1012
1013	// Wait for torture to stop us
1014	while (!torture_must_stop())
1015		schedule_timeout_uninterruptible(1);
1016
1017end:
1018	torture_kthread_stopping("main_func");
1019	kfree(result_avg);
1020	kfree(buf);
1021	return 0;
1022}
1023
1024static void
1025ref_scale_print_module_parms(struct ref_scale_ops *cur_ops, const char *tag)
1026{
1027	pr_alert("%s" SCALE_FLAG
1028		 "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1029		 verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1030}
1031
1032static void
1033ref_scale_cleanup(void)
1034{
1035	int i;
1036
1037	if (torture_cleanup_begin())
1038		return;
1039
1040	if (!cur_ops) {
1041		torture_cleanup_end();
1042		return;
1043	}
1044
1045	if (reader_tasks) {
1046		for (i = 0; i < nreaders; i++)
1047			torture_stop_kthread("ref_scale_reader",
1048					     reader_tasks[i].task);
1049	}
1050	kfree(reader_tasks);
1051
1052	torture_stop_kthread("main_task", main_task);
1053	kfree(main_task);
1054
1055	// Do scale-type-specific cleanup operations.
1056	if (cur_ops->cleanup != NULL)
1057		cur_ops->cleanup();
1058
1059	torture_cleanup_end();
1060}
1061
1062// Shutdown kthread.  Just waits to be awakened, then shuts down system.
1063static int
1064ref_scale_shutdown(void *arg)
1065{
1066	wait_event_idle(shutdown_wq, shutdown_start);
1067
1068	smp_mb(); // Wake before output.
1069	ref_scale_cleanup();
1070	kernel_power_off();
1071
1072	return -EINVAL;
1073}
1074
1075static int __init
1076ref_scale_init(void)
1077{
1078	long i;
1079	int firsterr = 0;
1080	static struct ref_scale_ops *scale_ops[] = {
1081		&rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
1082		&rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops,
1083		&typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1084	};
1085
1086	if (!torture_init_begin(scale_type, verbose))
1087		return -EBUSY;
1088
1089	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1090		cur_ops = scale_ops[i];
1091		if (strcmp(scale_type, cur_ops->name) == 0)
1092			break;
1093	}
1094	if (i == ARRAY_SIZE(scale_ops)) {
1095		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1096		pr_alert("rcu-scale types:");
1097		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1098			pr_cont(" %s", scale_ops[i]->name);
1099		pr_cont("\n");
1100		firsterr = -EINVAL;
1101		cur_ops = NULL;
1102		goto unwind;
1103	}
1104	if (cur_ops->init)
1105		if (!cur_ops->init()) {
1106			firsterr = -EUCLEAN;
1107			goto unwind;
1108		}
1109
1110	ref_scale_print_module_parms(cur_ops, "Start of test");
1111
1112	// Shutdown task
1113	if (shutdown) {
1114		init_waitqueue_head(&shutdown_wq);
1115		firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1116						  shutdown_task);
1117		if (torture_init_error(firsterr))
1118			goto unwind;
1119		schedule_timeout_uninterruptible(1);
1120	}
1121
1122	// Reader tasks (default to ~75% of online CPUs).
1123	if (nreaders < 0)
1124		nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1125	if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1126		loops = 1;
1127	if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1128		nreaders = 1;
1129	if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1130		nruns = 1;
1131	reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1132			       GFP_KERNEL);
1133	if (!reader_tasks) {
1134		SCALEOUT_ERRSTRING("out of memory");
1135		firsterr = -ENOMEM;
1136		goto unwind;
1137	}
1138
1139	VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1140
1141	for (i = 0; i < nreaders; i++) {
1142		init_waitqueue_head(&reader_tasks[i].wq);
1143		firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1144						  reader_tasks[i].task);
1145		if (torture_init_error(firsterr))
1146			goto unwind;
1147	}
1148
1149	// Main Task
1150	init_waitqueue_head(&main_wq);
1151	firsterr = torture_create_kthread(main_func, NULL, main_task);
1152	if (torture_init_error(firsterr))
1153		goto unwind;
1154
1155	torture_init_end();
1156	return 0;
1157
1158unwind:
1159	torture_init_end();
1160	ref_scale_cleanup();
1161	if (shutdown) {
1162		WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1163		kernel_power_off();
1164	}
1165	return firsterr;
1166}
1167
1168module_init(ref_scale_init);
1169module_exit(ref_scale_cleanup);
1170