1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Read-Copy Update definitions shared among RCU implementations.
4 *
5 * Copyright IBM Corporation, 2011
6 *
7 * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8 */
9
10#ifndef __LINUX_RCU_H
11#define __LINUX_RCU_H
12
13#include <linux/slab.h>
14#include <trace/events/rcu.h>
15
16/*
17 * Grace-period counter management.
18 *
19 * The two least significant bits contain the control flags.
20 * The most significant bits contain the grace-period sequence counter.
21 *
22 * When both control flags are zero, no grace period is in progress.
23 * When either bit is non-zero, a grace period has started and is in
24 * progress. When the grace period completes, the control flags are reset
25 * to 0 and the grace-period sequence counter is incremented.
26 *
27 * However some specific RCU usages make use of custom values.
28 *
29 * SRCU special control values:
30 *
31 *	SRCU_SNP_INIT_SEQ	:	Invalid/init value set when SRCU node
32 *					is initialized.
33 *
34 *	SRCU_STATE_IDLE		:	No SRCU gp is in progress
35 *
36 *	SRCU_STATE_SCAN1	:	State set by rcu_seq_start(). Indicates
37 *					we are scanning the readers on the slot
38 *					defined as inactive (there might well
39 *					be pending readers that will use that
40 *					index, but their number is bounded).
41 *
42 *	SRCU_STATE_SCAN2	:	State set manually via rcu_seq_set_state()
43 *					Indicates we are flipping the readers
44 *					index and then scanning the readers on the
45 *					slot newly designated as inactive (again,
46 *					the number of pending readers that will use
47 *					this inactive index is bounded).
48 *
49 * RCU polled GP special control value:
50 *
51 *	RCU_GET_STATE_COMPLETED :	State value indicating an already-completed
52 *					polled GP has completed.  This value covers
53 *					both the state and the counter of the
54 *					grace-period sequence number.
55 */
56
57#define RCU_SEQ_CTR_SHIFT	2
58#define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
59
60/* Low-order bit definition for polled grace-period APIs. */
61#define RCU_GET_STATE_COMPLETED	0x1
62
63extern int sysctl_sched_rt_runtime;
64
65/*
66 * Return the counter portion of a sequence number previously returned
67 * by rcu_seq_snap() or rcu_seq_current().
68 */
69static inline unsigned long rcu_seq_ctr(unsigned long s)
70{
71	return s >> RCU_SEQ_CTR_SHIFT;
72}
73
74/*
75 * Return the state portion of a sequence number previously returned
76 * by rcu_seq_snap() or rcu_seq_current().
77 */
78static inline int rcu_seq_state(unsigned long s)
79{
80	return s & RCU_SEQ_STATE_MASK;
81}
82
83/*
84 * Set the state portion of the pointed-to sequence number.
85 * The caller is responsible for preventing conflicting updates.
86 */
87static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
88{
89	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
90	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
91}
92
93/* Adjust sequence number for start of update-side operation. */
94static inline void rcu_seq_start(unsigned long *sp)
95{
96	WRITE_ONCE(*sp, *sp + 1);
97	smp_mb(); /* Ensure update-side operation after counter increment. */
98	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
99}
100
101/* Compute the end-of-grace-period value for the specified sequence number. */
102static inline unsigned long rcu_seq_endval(unsigned long *sp)
103{
104	return (*sp | RCU_SEQ_STATE_MASK) + 1;
105}
106
107/* Adjust sequence number for end of update-side operation. */
108static inline void rcu_seq_end(unsigned long *sp)
109{
110	smp_mb(); /* Ensure update-side operation before counter increment. */
111	WARN_ON_ONCE(!rcu_seq_state(*sp));
112	WRITE_ONCE(*sp, rcu_seq_endval(sp));
113}
114
115/*
116 * rcu_seq_snap - Take a snapshot of the update side's sequence number.
117 *
118 * This function returns the earliest value of the grace-period sequence number
119 * that will indicate that a full grace period has elapsed since the current
120 * time.  Once the grace-period sequence number has reached this value, it will
121 * be safe to invoke all callbacks that have been registered prior to the
122 * current time. This value is the current grace-period number plus two to the
123 * power of the number of low-order bits reserved for state, then rounded up to
124 * the next value in which the state bits are all zero.
125 */
126static inline unsigned long rcu_seq_snap(unsigned long *sp)
127{
128	unsigned long s;
129
130	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
131	smp_mb(); /* Above access must not bleed into critical section. */
132	return s;
133}
134
135/* Return the current value the update side's sequence number, no ordering. */
136static inline unsigned long rcu_seq_current(unsigned long *sp)
137{
138	return READ_ONCE(*sp);
139}
140
141/*
142 * Given a snapshot from rcu_seq_snap(), determine whether or not the
143 * corresponding update-side operation has started.
144 */
145static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
146{
147	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
148}
149
150/*
151 * Given a snapshot from rcu_seq_snap(), determine whether or not a
152 * full update-side operation has occurred.
153 */
154static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
155{
156	return ULONG_CMP_GE(READ_ONCE(*sp), s);
157}
158
159/*
160 * Given a snapshot from rcu_seq_snap(), determine whether or not a
161 * full update-side operation has occurred, but do not allow the
162 * (ULONG_MAX / 2) safety-factor/guard-band.
163 */
164static inline bool rcu_seq_done_exact(unsigned long *sp, unsigned long s)
165{
166	unsigned long cur_s = READ_ONCE(*sp);
167
168	return ULONG_CMP_GE(cur_s, s) || ULONG_CMP_LT(cur_s, s - (2 * RCU_SEQ_STATE_MASK + 1));
169}
170
171/*
172 * Has a grace period completed since the time the old gp_seq was collected?
173 */
174static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
175{
176	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
177}
178
179/*
180 * Has a grace period started since the time the old gp_seq was collected?
181 */
182static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
183{
184	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
185			    new);
186}
187
188/*
189 * Roughly how many full grace periods have elapsed between the collection
190 * of the two specified grace periods?
191 */
192static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
193{
194	unsigned long rnd_diff;
195
196	if (old == new)
197		return 0;
198	/*
199	 * Compute the number of grace periods (still shifted up), plus
200	 * one if either of new and old is not an exact grace period.
201	 */
202	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
203		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
204		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
205	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
206		return 1; /* Definitely no grace period has elapsed. */
207	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
208}
209
210/*
211 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
212 * by call_rcu() and rcu callback execution, and are therefore not part
213 * of the RCU API. These are in rcupdate.h because they are used by all
214 * RCU implementations.
215 */
216
217#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
218# define STATE_RCU_HEAD_READY	0
219# define STATE_RCU_HEAD_QUEUED	1
220
221extern const struct debug_obj_descr rcuhead_debug_descr;
222
223static inline int debug_rcu_head_queue(struct rcu_head *head)
224{
225	int r1;
226
227	r1 = debug_object_activate(head, &rcuhead_debug_descr);
228	debug_object_active_state(head, &rcuhead_debug_descr,
229				  STATE_RCU_HEAD_READY,
230				  STATE_RCU_HEAD_QUEUED);
231	return r1;
232}
233
234static inline void debug_rcu_head_unqueue(struct rcu_head *head)
235{
236	debug_object_active_state(head, &rcuhead_debug_descr,
237				  STATE_RCU_HEAD_QUEUED,
238				  STATE_RCU_HEAD_READY);
239	debug_object_deactivate(head, &rcuhead_debug_descr);
240}
241#else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
242static inline int debug_rcu_head_queue(struct rcu_head *head)
243{
244	return 0;
245}
246
247static inline void debug_rcu_head_unqueue(struct rcu_head *head)
248{
249}
250#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
251
252static inline void debug_rcu_head_callback(struct rcu_head *rhp)
253{
254	if (unlikely(!rhp->func))
255		kmem_dump_obj(rhp);
256}
257
258extern int rcu_cpu_stall_suppress_at_boot;
259
260static inline bool rcu_stall_is_suppressed_at_boot(void)
261{
262	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
263}
264
265extern int rcu_cpu_stall_notifiers;
266
267#ifdef CONFIG_RCU_STALL_COMMON
268
269extern int rcu_cpu_stall_ftrace_dump;
270extern int rcu_cpu_stall_suppress;
271extern int rcu_cpu_stall_timeout;
272extern int rcu_exp_cpu_stall_timeout;
273extern int rcu_cpu_stall_cputime;
274extern bool rcu_exp_stall_task_details __read_mostly;
275int rcu_jiffies_till_stall_check(void);
276int rcu_exp_jiffies_till_stall_check(void);
277
278static inline bool rcu_stall_is_suppressed(void)
279{
280	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
281}
282
283#define rcu_ftrace_dump_stall_suppress() \
284do { \
285	if (!rcu_cpu_stall_suppress) \
286		rcu_cpu_stall_suppress = 3; \
287} while (0)
288
289#define rcu_ftrace_dump_stall_unsuppress() \
290do { \
291	if (rcu_cpu_stall_suppress == 3) \
292		rcu_cpu_stall_suppress = 0; \
293} while (0)
294
295#else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
296
297static inline bool rcu_stall_is_suppressed(void)
298{
299	return rcu_stall_is_suppressed_at_boot();
300}
301#define rcu_ftrace_dump_stall_suppress()
302#define rcu_ftrace_dump_stall_unsuppress()
303#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
304
305/*
306 * Strings used in tracepoints need to be exported via the
307 * tracing system such that tools like perf and trace-cmd can
308 * translate the string address pointers to actual text.
309 */
310#define TPS(x)  tracepoint_string(x)
311
312/*
313 * Dump the ftrace buffer, but only one time per callsite per boot.
314 */
315#define rcu_ftrace_dump(oops_dump_mode) \
316do { \
317	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
318	\
319	if (!atomic_read(&___rfd_beenhere) && \
320	    !atomic_xchg(&___rfd_beenhere, 1)) { \
321		tracing_off(); \
322		rcu_ftrace_dump_stall_suppress(); \
323		ftrace_dump(oops_dump_mode); \
324		rcu_ftrace_dump_stall_unsuppress(); \
325	} \
326} while (0)
327
328void rcu_early_boot_tests(void);
329void rcu_test_sync_prims(void);
330
331/*
332 * This function really isn't for public consumption, but RCU is special in
333 * that context switches can allow the state machine to make progress.
334 */
335extern void resched_cpu(int cpu);
336
337#if !defined(CONFIG_TINY_RCU)
338
339#include <linux/rcu_node_tree.h>
340
341extern int rcu_num_lvls;
342extern int num_rcu_lvl[];
343extern int rcu_num_nodes;
344static bool rcu_fanout_exact;
345static int rcu_fanout_leaf;
346
347/*
348 * Compute the per-level fanout, either using the exact fanout specified
349 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
350 */
351static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
352{
353	int i;
354
355	for (i = 0; i < RCU_NUM_LVLS; i++)
356		levelspread[i] = INT_MIN;
357	if (rcu_fanout_exact) {
358		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
359		for (i = rcu_num_lvls - 2; i >= 0; i--)
360			levelspread[i] = RCU_FANOUT;
361	} else {
362		int ccur;
363		int cprv;
364
365		cprv = nr_cpu_ids;
366		for (i = rcu_num_lvls - 1; i >= 0; i--) {
367			ccur = levelcnt[i];
368			levelspread[i] = (cprv + ccur - 1) / ccur;
369			cprv = ccur;
370		}
371	}
372}
373
374extern void rcu_init_geometry(void);
375
376/* Returns a pointer to the first leaf rcu_node structure. */
377#define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
378
379/* Is this rcu_node a leaf? */
380#define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
381
382/* Is this rcu_node the last leaf? */
383#define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
384
385/*
386 * Do a full breadth-first scan of the {s,}rcu_node structures for the
387 * specified state structure (for SRCU) or the only rcu_state structure
388 * (for RCU).
389 */
390#define _rcu_for_each_node_breadth_first(sp, rnp) \
391	for ((rnp) = &(sp)->node[0]; \
392	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
393#define rcu_for_each_node_breadth_first(rnp) \
394	_rcu_for_each_node_breadth_first(&rcu_state, rnp)
395#define srcu_for_each_node_breadth_first(ssp, rnp) \
396	_rcu_for_each_node_breadth_first(ssp->srcu_sup, rnp)
397
398/*
399 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
400 * Note that if there is a singleton rcu_node tree with but one rcu_node
401 * structure, this loop -will- visit the rcu_node structure.  It is still
402 * a leaf node, even if it is also the root node.
403 */
404#define rcu_for_each_leaf_node(rnp) \
405	for ((rnp) = rcu_first_leaf_node(); \
406	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
407
408/*
409 * Iterate over all possible CPUs in a leaf RCU node.
410 */
411#define for_each_leaf_node_possible_cpu(rnp, cpu) \
412	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
413	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
414	     (cpu) <= rnp->grphi; \
415	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
416
417/*
418 * Iterate over all CPUs in a leaf RCU node's specified mask.
419 */
420#define rcu_find_next_bit(rnp, cpu, mask) \
421	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
422#define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
423	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
424	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
425	     (cpu) <= rnp->grphi; \
426	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
427
428#endif /* !defined(CONFIG_TINY_RCU) */
429
430#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
431
432/*
433 * Wrappers for the rcu_node::lock acquire and release.
434 *
435 * Because the rcu_nodes form a tree, the tree traversal locking will observe
436 * different lock values, this in turn means that an UNLOCK of one level
437 * followed by a LOCK of another level does not imply a full memory barrier;
438 * and most importantly transitivity is lost.
439 *
440 * In order to restore full ordering between tree levels, augment the regular
441 * lock acquire functions with smp_mb__after_unlock_lock().
442 *
443 * As ->lock of struct rcu_node is a __private field, therefore one should use
444 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
445 */
446#define raw_spin_lock_rcu_node(p)					\
447do {									\
448	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
449	smp_mb__after_unlock_lock();					\
450} while (0)
451
452#define raw_spin_unlock_rcu_node(p)					\
453do {									\
454	lockdep_assert_irqs_disabled();					\
455	raw_spin_unlock(&ACCESS_PRIVATE(p, lock));			\
456} while (0)
457
458#define raw_spin_lock_irq_rcu_node(p)					\
459do {									\
460	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
461	smp_mb__after_unlock_lock();					\
462} while (0)
463
464#define raw_spin_unlock_irq_rcu_node(p)					\
465do {									\
466	lockdep_assert_irqs_disabled();					\
467	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock));			\
468} while (0)
469
470#define raw_spin_lock_irqsave_rcu_node(p, flags)			\
471do {									\
472	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
473	smp_mb__after_unlock_lock();					\
474} while (0)
475
476#define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
477do {									\
478	lockdep_assert_irqs_disabled();					\
479	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags);	\
480} while (0)
481
482#define raw_spin_trylock_rcu_node(p)					\
483({									\
484	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
485									\
486	if (___locked)							\
487		smp_mb__after_unlock_lock();				\
488	___locked;							\
489})
490
491#define raw_lockdep_assert_held_rcu_node(p)				\
492	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
493
494#endif // #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
495
496#ifdef CONFIG_TINY_RCU
497/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
498static inline bool rcu_gp_is_normal(void) { return true; }
499static inline bool rcu_gp_is_expedited(void) { return false; }
500static inline bool rcu_async_should_hurry(void) { return false; }
501static inline void rcu_expedite_gp(void) { }
502static inline void rcu_unexpedite_gp(void) { }
503static inline void rcu_async_hurry(void) { }
504static inline void rcu_async_relax(void) { }
505static inline bool rcu_cpu_online(int cpu) { return true; }
506#else /* #ifdef CONFIG_TINY_RCU */
507bool rcu_gp_is_normal(void);     /* Internal RCU use. */
508bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
509bool rcu_async_should_hurry(void);  /* Internal RCU use. */
510void rcu_expedite_gp(void);
511void rcu_unexpedite_gp(void);
512void rcu_async_hurry(void);
513void rcu_async_relax(void);
514void rcupdate_announce_bootup_oddness(void);
515bool rcu_cpu_online(int cpu);
516#ifdef CONFIG_TASKS_RCU_GENERIC
517void show_rcu_tasks_gp_kthreads(void);
518#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
519static inline void show_rcu_tasks_gp_kthreads(void) {}
520#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
521#endif /* #else #ifdef CONFIG_TINY_RCU */
522
523#ifdef CONFIG_TASKS_RCU
524struct task_struct *get_rcu_tasks_gp_kthread(void);
525#endif // # ifdef CONFIG_TASKS_RCU
526
527#ifdef CONFIG_TASKS_RUDE_RCU
528struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
529#endif // # ifdef CONFIG_TASKS_RUDE_RCU
530
531#ifdef CONFIG_TASKS_RCU_GENERIC
532void tasks_cblist_init_generic(void);
533#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
534static inline void tasks_cblist_init_generic(void) { }
535#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
536
537#define RCU_SCHEDULER_INACTIVE	0
538#define RCU_SCHEDULER_INIT	1
539#define RCU_SCHEDULER_RUNNING	2
540
541enum rcutorture_type {
542	RCU_FLAVOR,
543	RCU_TASKS_FLAVOR,
544	RCU_TASKS_RUDE_FLAVOR,
545	RCU_TASKS_TRACING_FLAVOR,
546	RCU_TRIVIAL_FLAVOR,
547	SRCU_FLAVOR,
548	INVALID_RCU_FLAVOR
549};
550
551#if defined(CONFIG_RCU_LAZY)
552unsigned long rcu_get_jiffies_lazy_flush(void);
553void rcu_set_jiffies_lazy_flush(unsigned long j);
554#else
555static inline unsigned long rcu_get_jiffies_lazy_flush(void) { return 0; }
556static inline void rcu_set_jiffies_lazy_flush(unsigned long j) { }
557#endif
558
559#if defined(CONFIG_TREE_RCU)
560void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
561			    unsigned long *gp_seq);
562void do_trace_rcu_torture_read(const char *rcutorturename,
563			       struct rcu_head *rhp,
564			       unsigned long secs,
565			       unsigned long c_old,
566			       unsigned long c);
567void rcu_gp_set_torture_wait(int duration);
568#else
569static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
570					  int *flags, unsigned long *gp_seq)
571{
572	*flags = 0;
573	*gp_seq = 0;
574}
575#ifdef CONFIG_RCU_TRACE
576void do_trace_rcu_torture_read(const char *rcutorturename,
577			       struct rcu_head *rhp,
578			       unsigned long secs,
579			       unsigned long c_old,
580			       unsigned long c);
581#else
582#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
583	do { } while (0)
584#endif
585static inline void rcu_gp_set_torture_wait(int duration) { }
586#endif
587
588#ifdef CONFIG_TINY_SRCU
589
590static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
591					   struct srcu_struct *sp, int *flags,
592					   unsigned long *gp_seq)
593{
594	if (test_type != SRCU_FLAVOR)
595		return;
596	*flags = 0;
597	*gp_seq = sp->srcu_idx;
598}
599
600#elif defined(CONFIG_TREE_SRCU)
601
602void srcutorture_get_gp_data(enum rcutorture_type test_type,
603			     struct srcu_struct *sp, int *flags,
604			     unsigned long *gp_seq);
605
606#endif
607
608#ifdef CONFIG_TINY_RCU
609static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
610static inline unsigned long rcu_get_gp_seq(void) { return 0; }
611static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
612static inline unsigned long
613srcu_batches_completed(struct srcu_struct *sp) { return 0; }
614static inline void rcu_force_quiescent_state(void) { }
615static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
616static inline void show_rcu_gp_kthreads(void) { }
617static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
618static inline void rcu_fwd_progress_check(unsigned long j) { }
619static inline void rcu_gp_slow_register(atomic_t *rgssp) { }
620static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { }
621#else /* #ifdef CONFIG_TINY_RCU */
622bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
623unsigned long rcu_get_gp_seq(void);
624unsigned long rcu_exp_batches_completed(void);
625unsigned long srcu_batches_completed(struct srcu_struct *sp);
626bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
627void show_rcu_gp_kthreads(void);
628int rcu_get_gp_kthreads_prio(void);
629void rcu_fwd_progress_check(unsigned long j);
630void rcu_force_quiescent_state(void);
631extern struct workqueue_struct *rcu_gp_wq;
632extern struct kthread_worker *rcu_exp_gp_kworker;
633void rcu_gp_slow_register(atomic_t *rgssp);
634void rcu_gp_slow_unregister(atomic_t *rgssp);
635#endif /* #else #ifdef CONFIG_TINY_RCU */
636
637#ifdef CONFIG_RCU_NOCB_CPU
638void rcu_bind_current_to_nocb(void);
639#else
640static inline void rcu_bind_current_to_nocb(void) { }
641#endif
642
643#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
644void show_rcu_tasks_classic_gp_kthread(void);
645#else
646static inline void show_rcu_tasks_classic_gp_kthread(void) {}
647#endif
648#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
649void show_rcu_tasks_rude_gp_kthread(void);
650#else
651static inline void show_rcu_tasks_rude_gp_kthread(void) {}
652#endif
653#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
654void show_rcu_tasks_trace_gp_kthread(void);
655#else
656static inline void show_rcu_tasks_trace_gp_kthread(void) {}
657#endif
658
659#ifdef CONFIG_TINY_RCU
660static inline bool rcu_cpu_beenfullyonline(int cpu) { return true; }
661#else
662bool rcu_cpu_beenfullyonline(int cpu);
663#endif
664
665#if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
666int rcu_stall_notifier_call_chain(unsigned long val, void *v);
667#else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
668static inline int rcu_stall_notifier_call_chain(unsigned long val, void *v) { return NOTIFY_DONE; }
669#endif // #else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
670
671#endif /* __LINUX_RCU_H */
672