1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic pidhash and scalable, time-bounded PID allocator
4 *
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
8 *
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
12 *
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
16 *
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 *
23 * Pid namespaces:
24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 *     Many thanks to Oleg Nesterov for comments and help
27 *
28 */
29
30#include <linux/mm.h>
31#include <linux/export.h>
32#include <linux/slab.h>
33#include <linux/init.h>
34#include <linux/rculist.h>
35#include <linux/memblock.h>
36#include <linux/pid_namespace.h>
37#include <linux/init_task.h>
38#include <linux/syscalls.h>
39#include <linux/proc_ns.h>
40#include <linux/refcount.h>
41#include <linux/anon_inodes.h>
42#include <linux/sched/signal.h>
43#include <linux/sched/task.h>
44#include <linux/idr.h>
45#include <linux/pidfs.h>
46#include <net/sock.h>
47#include <uapi/linux/pidfd.h>
48
49struct pid init_struct_pid = {
50	.count		= REFCOUNT_INIT(1),
51	.tasks		= {
52		{ .first = NULL },
53		{ .first = NULL },
54		{ .first = NULL },
55	},
56	.level		= 0,
57	.numbers	= { {
58		.nr		= 0,
59		.ns		= &init_pid_ns,
60	}, }
61};
62
63int pid_max = PID_MAX_DEFAULT;
64
65int pid_max_min = RESERVED_PIDS + 1;
66int pid_max_max = PID_MAX_LIMIT;
67/*
68 * Pseudo filesystems start inode numbering after one. We use Reserved
69 * PIDs as a natural offset.
70 */
71static u64 pidfs_ino = RESERVED_PIDS;
72
73/*
74 * PID-map pages start out as NULL, they get allocated upon
75 * first use and are never deallocated. This way a low pid_max
76 * value does not cause lots of bitmaps to be allocated, but
77 * the scheme scales to up to 4 million PIDs, runtime.
78 */
79struct pid_namespace init_pid_ns = {
80	.ns.count = REFCOUNT_INIT(2),
81	.idr = IDR_INIT(init_pid_ns.idr),
82	.pid_allocated = PIDNS_ADDING,
83	.level = 0,
84	.child_reaper = &init_task,
85	.user_ns = &init_user_ns,
86	.ns.inum = PROC_PID_INIT_INO,
87#ifdef CONFIG_PID_NS
88	.ns.ops = &pidns_operations,
89#endif
90#if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
91	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
92#endif
93};
94EXPORT_SYMBOL_GPL(init_pid_ns);
95
96/*
97 * Note: disable interrupts while the pidmap_lock is held as an
98 * interrupt might come in and do read_lock(&tasklist_lock).
99 *
100 * If we don't disable interrupts there is a nasty deadlock between
101 * detach_pid()->free_pid() and another cpu that does
102 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
103 * read_lock(&tasklist_lock);
104 *
105 * After we clean up the tasklist_lock and know there are no
106 * irq handlers that take it we can leave the interrupts enabled.
107 * For now it is easier to be safe than to prove it can't happen.
108 */
109
110static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
111
112void put_pid(struct pid *pid)
113{
114	struct pid_namespace *ns;
115
116	if (!pid)
117		return;
118
119	ns = pid->numbers[pid->level].ns;
120	if (refcount_dec_and_test(&pid->count)) {
121		kmem_cache_free(ns->pid_cachep, pid);
122		put_pid_ns(ns);
123	}
124}
125EXPORT_SYMBOL_GPL(put_pid);
126
127static void delayed_put_pid(struct rcu_head *rhp)
128{
129	struct pid *pid = container_of(rhp, struct pid, rcu);
130	put_pid(pid);
131}
132
133void free_pid(struct pid *pid)
134{
135	/* We can be called with write_lock_irq(&tasklist_lock) held */
136	int i;
137	unsigned long flags;
138
139	spin_lock_irqsave(&pidmap_lock, flags);
140	for (i = 0; i <= pid->level; i++) {
141		struct upid *upid = pid->numbers + i;
142		struct pid_namespace *ns = upid->ns;
143		switch (--ns->pid_allocated) {
144		case 2:
145		case 1:
146			/* When all that is left in the pid namespace
147			 * is the reaper wake up the reaper.  The reaper
148			 * may be sleeping in zap_pid_ns_processes().
149			 */
150			wake_up_process(ns->child_reaper);
151			break;
152		case PIDNS_ADDING:
153			/* Handle a fork failure of the first process */
154			WARN_ON(ns->child_reaper);
155			ns->pid_allocated = 0;
156			break;
157		}
158
159		idr_remove(&ns->idr, upid->nr);
160	}
161	spin_unlock_irqrestore(&pidmap_lock, flags);
162
163	call_rcu(&pid->rcu, delayed_put_pid);
164}
165
166struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
167		      size_t set_tid_size)
168{
169	struct pid *pid;
170	enum pid_type type;
171	int i, nr;
172	struct pid_namespace *tmp;
173	struct upid *upid;
174	int retval = -ENOMEM;
175
176	/*
177	 * set_tid_size contains the size of the set_tid array. Starting at
178	 * the most nested currently active PID namespace it tells alloc_pid()
179	 * which PID to set for a process in that most nested PID namespace
180	 * up to set_tid_size PID namespaces. It does not have to set the PID
181	 * for a process in all nested PID namespaces but set_tid_size must
182	 * never be greater than the current ns->level + 1.
183	 */
184	if (set_tid_size > ns->level + 1)
185		return ERR_PTR(-EINVAL);
186
187	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
188	if (!pid)
189		return ERR_PTR(retval);
190
191	tmp = ns;
192	pid->level = ns->level;
193
194	for (i = ns->level; i >= 0; i--) {
195		int tid = 0;
196
197		if (set_tid_size) {
198			tid = set_tid[ns->level - i];
199
200			retval = -EINVAL;
201			if (tid < 1 || tid >= pid_max)
202				goto out_free;
203			/*
204			 * Also fail if a PID != 1 is requested and
205			 * no PID 1 exists.
206			 */
207			if (tid != 1 && !tmp->child_reaper)
208				goto out_free;
209			retval = -EPERM;
210			if (!checkpoint_restore_ns_capable(tmp->user_ns))
211				goto out_free;
212			set_tid_size--;
213		}
214
215		idr_preload(GFP_KERNEL);
216		spin_lock_irq(&pidmap_lock);
217
218		if (tid) {
219			nr = idr_alloc(&tmp->idr, NULL, tid,
220				       tid + 1, GFP_ATOMIC);
221			/*
222			 * If ENOSPC is returned it means that the PID is
223			 * alreay in use. Return EEXIST in that case.
224			 */
225			if (nr == -ENOSPC)
226				nr = -EEXIST;
227		} else {
228			int pid_min = 1;
229			/*
230			 * init really needs pid 1, but after reaching the
231			 * maximum wrap back to RESERVED_PIDS
232			 */
233			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
234				pid_min = RESERVED_PIDS;
235
236			/*
237			 * Store a null pointer so find_pid_ns does not find
238			 * a partially initialized PID (see below).
239			 */
240			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
241					      pid_max, GFP_ATOMIC);
242		}
243		spin_unlock_irq(&pidmap_lock);
244		idr_preload_end();
245
246		if (nr < 0) {
247			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
248			goto out_free;
249		}
250
251		pid->numbers[i].nr = nr;
252		pid->numbers[i].ns = tmp;
253		tmp = tmp->parent;
254	}
255
256	/*
257	 * ENOMEM is not the most obvious choice especially for the case
258	 * where the child subreaper has already exited and the pid
259	 * namespace denies the creation of any new processes. But ENOMEM
260	 * is what we have exposed to userspace for a long time and it is
261	 * documented behavior for pid namespaces. So we can't easily
262	 * change it even if there were an error code better suited.
263	 */
264	retval = -ENOMEM;
265
266	get_pid_ns(ns);
267	refcount_set(&pid->count, 1);
268	spin_lock_init(&pid->lock);
269	for (type = 0; type < PIDTYPE_MAX; ++type)
270		INIT_HLIST_HEAD(&pid->tasks[type]);
271
272	init_waitqueue_head(&pid->wait_pidfd);
273	INIT_HLIST_HEAD(&pid->inodes);
274
275	upid = pid->numbers + ns->level;
276	spin_lock_irq(&pidmap_lock);
277	if (!(ns->pid_allocated & PIDNS_ADDING))
278		goto out_unlock;
279	pid->stashed = NULL;
280	pid->ino = ++pidfs_ino;
281	for ( ; upid >= pid->numbers; --upid) {
282		/* Make the PID visible to find_pid_ns. */
283		idr_replace(&upid->ns->idr, pid, upid->nr);
284		upid->ns->pid_allocated++;
285	}
286	spin_unlock_irq(&pidmap_lock);
287
288	return pid;
289
290out_unlock:
291	spin_unlock_irq(&pidmap_lock);
292	put_pid_ns(ns);
293
294out_free:
295	spin_lock_irq(&pidmap_lock);
296	while (++i <= ns->level) {
297		upid = pid->numbers + i;
298		idr_remove(&upid->ns->idr, upid->nr);
299	}
300
301	/* On failure to allocate the first pid, reset the state */
302	if (ns->pid_allocated == PIDNS_ADDING)
303		idr_set_cursor(&ns->idr, 0);
304
305	spin_unlock_irq(&pidmap_lock);
306
307	kmem_cache_free(ns->pid_cachep, pid);
308	return ERR_PTR(retval);
309}
310
311void disable_pid_allocation(struct pid_namespace *ns)
312{
313	spin_lock_irq(&pidmap_lock);
314	ns->pid_allocated &= ~PIDNS_ADDING;
315	spin_unlock_irq(&pidmap_lock);
316}
317
318struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
319{
320	return idr_find(&ns->idr, nr);
321}
322EXPORT_SYMBOL_GPL(find_pid_ns);
323
324struct pid *find_vpid(int nr)
325{
326	return find_pid_ns(nr, task_active_pid_ns(current));
327}
328EXPORT_SYMBOL_GPL(find_vpid);
329
330static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
331{
332	return (type == PIDTYPE_PID) ?
333		&task->thread_pid :
334		&task->signal->pids[type];
335}
336
337/*
338 * attach_pid() must be called with the tasklist_lock write-held.
339 */
340void attach_pid(struct task_struct *task, enum pid_type type)
341{
342	struct pid *pid = *task_pid_ptr(task, type);
343	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
344}
345
346static void __change_pid(struct task_struct *task, enum pid_type type,
347			struct pid *new)
348{
349	struct pid **pid_ptr = task_pid_ptr(task, type);
350	struct pid *pid;
351	int tmp;
352
353	pid = *pid_ptr;
354
355	hlist_del_rcu(&task->pid_links[type]);
356	*pid_ptr = new;
357
358	if (type == PIDTYPE_PID) {
359		WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
360		wake_up_all(&pid->wait_pidfd);
361	}
362
363	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364		if (pid_has_task(pid, tmp))
365			return;
366
367	free_pid(pid);
368}
369
370void detach_pid(struct task_struct *task, enum pid_type type)
371{
372	__change_pid(task, type, NULL);
373}
374
375void change_pid(struct task_struct *task, enum pid_type type,
376		struct pid *pid)
377{
378	__change_pid(task, type, pid);
379	attach_pid(task, type);
380}
381
382void exchange_tids(struct task_struct *left, struct task_struct *right)
383{
384	struct pid *pid1 = left->thread_pid;
385	struct pid *pid2 = right->thread_pid;
386	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
387	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
388
389	/* Swap the single entry tid lists */
390	hlists_swap_heads_rcu(head1, head2);
391
392	/* Swap the per task_struct pid */
393	rcu_assign_pointer(left->thread_pid, pid2);
394	rcu_assign_pointer(right->thread_pid, pid1);
395
396	/* Swap the cached value */
397	WRITE_ONCE(left->pid, pid_nr(pid2));
398	WRITE_ONCE(right->pid, pid_nr(pid1));
399}
400
401/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
402void transfer_pid(struct task_struct *old, struct task_struct *new,
403			   enum pid_type type)
404{
405	WARN_ON_ONCE(type == PIDTYPE_PID);
406	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
407}
408
409struct task_struct *pid_task(struct pid *pid, enum pid_type type)
410{
411	struct task_struct *result = NULL;
412	if (pid) {
413		struct hlist_node *first;
414		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
415					      lockdep_tasklist_lock_is_held());
416		if (first)
417			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
418	}
419	return result;
420}
421EXPORT_SYMBOL(pid_task);
422
423/*
424 * Must be called under rcu_read_lock().
425 */
426struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
427{
428	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
429			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
430	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
431}
432
433struct task_struct *find_task_by_vpid(pid_t vnr)
434{
435	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
436}
437
438struct task_struct *find_get_task_by_vpid(pid_t nr)
439{
440	struct task_struct *task;
441
442	rcu_read_lock();
443	task = find_task_by_vpid(nr);
444	if (task)
445		get_task_struct(task);
446	rcu_read_unlock();
447
448	return task;
449}
450
451struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
452{
453	struct pid *pid;
454	rcu_read_lock();
455	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
456	rcu_read_unlock();
457	return pid;
458}
459EXPORT_SYMBOL_GPL(get_task_pid);
460
461struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
462{
463	struct task_struct *result;
464	rcu_read_lock();
465	result = pid_task(pid, type);
466	if (result)
467		get_task_struct(result);
468	rcu_read_unlock();
469	return result;
470}
471EXPORT_SYMBOL_GPL(get_pid_task);
472
473struct pid *find_get_pid(pid_t nr)
474{
475	struct pid *pid;
476
477	rcu_read_lock();
478	pid = get_pid(find_vpid(nr));
479	rcu_read_unlock();
480
481	return pid;
482}
483EXPORT_SYMBOL_GPL(find_get_pid);
484
485pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
486{
487	struct upid *upid;
488	pid_t nr = 0;
489
490	if (pid && ns->level <= pid->level) {
491		upid = &pid->numbers[ns->level];
492		if (upid->ns == ns)
493			nr = upid->nr;
494	}
495	return nr;
496}
497EXPORT_SYMBOL_GPL(pid_nr_ns);
498
499pid_t pid_vnr(struct pid *pid)
500{
501	return pid_nr_ns(pid, task_active_pid_ns(current));
502}
503EXPORT_SYMBOL_GPL(pid_vnr);
504
505pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
506			struct pid_namespace *ns)
507{
508	pid_t nr = 0;
509
510	rcu_read_lock();
511	if (!ns)
512		ns = task_active_pid_ns(current);
513	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
514	rcu_read_unlock();
515
516	return nr;
517}
518EXPORT_SYMBOL(__task_pid_nr_ns);
519
520struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
521{
522	return ns_of_pid(task_pid(tsk));
523}
524EXPORT_SYMBOL_GPL(task_active_pid_ns);
525
526/*
527 * Used by proc to find the first pid that is greater than or equal to nr.
528 *
529 * If there is a pid at nr this function is exactly the same as find_pid_ns.
530 */
531struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
532{
533	return idr_get_next(&ns->idr, &nr);
534}
535EXPORT_SYMBOL_GPL(find_ge_pid);
536
537struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
538{
539	struct fd f;
540	struct pid *pid;
541
542	f = fdget(fd);
543	if (!f.file)
544		return ERR_PTR(-EBADF);
545
546	pid = pidfd_pid(f.file);
547	if (!IS_ERR(pid)) {
548		get_pid(pid);
549		*flags = f.file->f_flags;
550	}
551
552	fdput(f);
553	return pid;
554}
555
556/**
557 * pidfd_get_task() - Get the task associated with a pidfd
558 *
559 * @pidfd: pidfd for which to get the task
560 * @flags: flags associated with this pidfd
561 *
562 * Return the task associated with @pidfd. The function takes a reference on
563 * the returned task. The caller is responsible for releasing that reference.
564 *
565 * Return: On success, the task_struct associated with the pidfd.
566 *	   On error, a negative errno number will be returned.
567 */
568struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
569{
570	unsigned int f_flags;
571	struct pid *pid;
572	struct task_struct *task;
573
574	pid = pidfd_get_pid(pidfd, &f_flags);
575	if (IS_ERR(pid))
576		return ERR_CAST(pid);
577
578	task = get_pid_task(pid, PIDTYPE_TGID);
579	put_pid(pid);
580	if (!task)
581		return ERR_PTR(-ESRCH);
582
583	*flags = f_flags;
584	return task;
585}
586
587/**
588 * pidfd_create() - Create a new pid file descriptor.
589 *
590 * @pid:   struct pid that the pidfd will reference
591 * @flags: flags to pass
592 *
593 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
594 *
595 * Note, that this function can only be called after the fd table has
596 * been unshared to avoid leaking the pidfd to the new process.
597 *
598 * This symbol should not be explicitly exported to loadable modules.
599 *
600 * Return: On success, a cloexec pidfd is returned.
601 *         On error, a negative errno number will be returned.
602 */
603static int pidfd_create(struct pid *pid, unsigned int flags)
604{
605	int pidfd;
606	struct file *pidfd_file;
607
608	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
609	if (pidfd < 0)
610		return pidfd;
611
612	fd_install(pidfd, pidfd_file);
613	return pidfd;
614}
615
616/**
617 * sys_pidfd_open() - Open new pid file descriptor.
618 *
619 * @pid:   pid for which to retrieve a pidfd
620 * @flags: flags to pass
621 *
622 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
623 * the task identified by @pid. Without PIDFD_THREAD flag the target task
624 * must be a thread-group leader.
625 *
626 * Return: On success, a cloexec pidfd is returned.
627 *         On error, a negative errno number will be returned.
628 */
629SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
630{
631	int fd;
632	struct pid *p;
633
634	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
635		return -EINVAL;
636
637	if (pid <= 0)
638		return -EINVAL;
639
640	p = find_get_pid(pid);
641	if (!p)
642		return -ESRCH;
643
644	fd = pidfd_create(p, flags);
645
646	put_pid(p);
647	return fd;
648}
649
650void __init pid_idr_init(void)
651{
652	/* Verify no one has done anything silly: */
653	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
654
655	/* bump default and minimum pid_max based on number of cpus */
656	pid_max = min(pid_max_max, max_t(int, pid_max,
657				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
658	pid_max_min = max_t(int, pid_max_min,
659				PIDS_PER_CPU_MIN * num_possible_cpus());
660	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
661
662	idr_init(&init_pid_ns.idr);
663
664	init_pid_ns.pid_cachep = kmem_cache_create("pid",
665			struct_size_t(struct pid, numbers, 1),
666			__alignof__(struct pid),
667			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
668			NULL);
669}
670
671static struct file *__pidfd_fget(struct task_struct *task, int fd)
672{
673	struct file *file;
674	int ret;
675
676	ret = down_read_killable(&task->signal->exec_update_lock);
677	if (ret)
678		return ERR_PTR(ret);
679
680	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
681		file = fget_task(task, fd);
682	else
683		file = ERR_PTR(-EPERM);
684
685	up_read(&task->signal->exec_update_lock);
686
687	if (!file) {
688		/*
689		 * It is possible that the target thread is exiting; it can be
690		 * either:
691		 * 1. before exit_signals(), which gives a real fd
692		 * 2. before exit_files() takes the task_lock() gives a real fd
693		 * 3. after exit_files() releases task_lock(), ->files is NULL;
694		 *    this has PF_EXITING, since it was set in exit_signals(),
695		 *    __pidfd_fget() returns EBADF.
696		 * In case 3 we get EBADF, but that really means ESRCH, since
697		 * the task is currently exiting and has freed its files
698		 * struct, so we fix it up.
699		 */
700		if (task->flags & PF_EXITING)
701			file = ERR_PTR(-ESRCH);
702		else
703			file = ERR_PTR(-EBADF);
704	}
705
706	return file;
707}
708
709static int pidfd_getfd(struct pid *pid, int fd)
710{
711	struct task_struct *task;
712	struct file *file;
713	int ret;
714
715	task = get_pid_task(pid, PIDTYPE_PID);
716	if (!task)
717		return -ESRCH;
718
719	file = __pidfd_fget(task, fd);
720	put_task_struct(task);
721	if (IS_ERR(file))
722		return PTR_ERR(file);
723
724	ret = receive_fd(file, NULL, O_CLOEXEC);
725	fput(file);
726
727	return ret;
728}
729
730/**
731 * sys_pidfd_getfd() - Get a file descriptor from another process
732 *
733 * @pidfd:	the pidfd file descriptor of the process
734 * @fd:		the file descriptor number to get
735 * @flags:	flags on how to get the fd (reserved)
736 *
737 * This syscall gets a copy of a file descriptor from another process
738 * based on the pidfd, and file descriptor number. It requires that
739 * the calling process has the ability to ptrace the process represented
740 * by the pidfd. The process which is having its file descriptor copied
741 * is otherwise unaffected.
742 *
743 * Return: On success, a cloexec file descriptor is returned.
744 *         On error, a negative errno number will be returned.
745 */
746SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
747		unsigned int, flags)
748{
749	struct pid *pid;
750	struct fd f;
751	int ret;
752
753	/* flags is currently unused - make sure it's unset */
754	if (flags)
755		return -EINVAL;
756
757	f = fdget(pidfd);
758	if (!f.file)
759		return -EBADF;
760
761	pid = pidfd_pid(f.file);
762	if (IS_ERR(pid))
763		ret = PTR_ERR(pid);
764	else
765		ret = pidfd_getfd(pid, fd);
766
767	fdput(f);
768	return ret;
769}
770