1// SPDX-License-Identifier: GPL-2.0
2/* kernel/rwsem.c: R/W semaphores, public implementation
3 *
4 * Written by David Howells (dhowells@redhat.com).
5 * Derived from asm-i386/semaphore.h
6 *
7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8 * and Michel Lespinasse <walken@google.com>
9 *
10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12 *
13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
14 * Waiman Long <longman@redhat.com> and
15 * Peter Zijlstra <peterz@infradead.org>.
16 */
17
18#include <linux/types.h>
19#include <linux/kernel.h>
20#include <linux/sched.h>
21#include <linux/sched/rt.h>
22#include <linux/sched/task.h>
23#include <linux/sched/debug.h>
24#include <linux/sched/wake_q.h>
25#include <linux/sched/signal.h>
26#include <linux/sched/clock.h>
27#include <linux/export.h>
28#include <linux/rwsem.h>
29#include <linux/atomic.h>
30#include <trace/events/lock.h>
31
32#ifndef CONFIG_PREEMPT_RT
33#include "lock_events.h"
34
35/*
36 * The least significant 2 bits of the owner value has the following
37 * meanings when set.
38 *  - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
39 *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40 *
41 * When the rwsem is reader-owned and a spinning writer has timed out,
42 * the nonspinnable bit will be set to disable optimistic spinning.
43
44 * When a writer acquires a rwsem, it puts its task_struct pointer
45 * into the owner field. It is cleared after an unlock.
46 *
47 * When a reader acquires a rwsem, it will also puts its task_struct
48 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49 * On unlock, the owner field will largely be left untouched. So
50 * for a free or reader-owned rwsem, the owner value may contain
51 * information about the last reader that acquires the rwsem.
52 *
53 * That information may be helpful in debugging cases where the system
54 * seems to hang on a reader owned rwsem especially if only one reader
55 * is involved. Ideally we would like to track all the readers that own
56 * a rwsem, but the overhead is simply too big.
57 *
58 * A fast path reader optimistic lock stealing is supported when the rwsem
59 * is previously owned by a writer and the following conditions are met:
60 *  - rwsem is not currently writer owned
61 *  - the handoff isn't set.
62 */
63#define RWSEM_READER_OWNED	(1UL << 0)
64#define RWSEM_NONSPINNABLE	(1UL << 1)
65#define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66
67#ifdef CONFIG_DEBUG_RWSEMS
68# define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
69	if (!debug_locks_silent &&				\
70	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71		#c, atomic_long_read(&(sem)->count),		\
72		(unsigned long) sem->magic,			\
73		atomic_long_read(&(sem)->owner), (long)current,	\
74		list_empty(&(sem)->wait_list) ? "" : "not "))	\
75			debug_locks_off();			\
76	} while (0)
77#else
78# define DEBUG_RWSEMS_WARN_ON(c, sem)
79#endif
80
81/*
82 * On 64-bit architectures, the bit definitions of the count are:
83 *
84 * Bit  0    - writer locked bit
85 * Bit  1    - waiters present bit
86 * Bit  2    - lock handoff bit
87 * Bits 3-7  - reserved
88 * Bits 8-62 - 55-bit reader count
89 * Bit  63   - read fail bit
90 *
91 * On 32-bit architectures, the bit definitions of the count are:
92 *
93 * Bit  0    - writer locked bit
94 * Bit  1    - waiters present bit
95 * Bit  2    - lock handoff bit
96 * Bits 3-7  - reserved
97 * Bits 8-30 - 23-bit reader count
98 * Bit  31   - read fail bit
99 *
100 * It is not likely that the most significant bit (read fail bit) will ever
101 * be set. This guard bit is still checked anyway in the down_read() fastpath
102 * just in case we need to use up more of the reader bits for other purpose
103 * in the future.
104 *
105 * atomic_long_fetch_add() is used to obtain reader lock, whereas
106 * atomic_long_cmpxchg() will be used to obtain writer lock.
107 *
108 * There are three places where the lock handoff bit may be set or cleared.
109 * 1) rwsem_mark_wake() for readers		-- set, clear
110 * 2) rwsem_try_write_lock() for writers	-- set, clear
111 * 3) rwsem_del_waiter()			-- clear
112 *
113 * For all the above cases, wait_lock will be held. A writer must also
114 * be the first one in the wait_list to be eligible for setting the handoff
115 * bit. So concurrent setting/clearing of handoff bit is not possible.
116 */
117#define RWSEM_WRITER_LOCKED	(1UL << 0)
118#define RWSEM_FLAG_WAITERS	(1UL << 1)
119#define RWSEM_FLAG_HANDOFF	(1UL << 2)
120#define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
121
122#define RWSEM_READER_SHIFT	8
123#define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
124#define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
125#define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
126#define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127#define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129
130/*
131 * All writes to owner are protected by WRITE_ONCE() to make sure that
132 * store tearing can't happen as optimistic spinners may read and use
133 * the owner value concurrently without lock. Read from owner, however,
134 * may not need READ_ONCE() as long as the pointer value is only used
135 * for comparison and isn't being dereferenced.
136 *
137 * Both rwsem_{set,clear}_owner() functions should be in the same
138 * preempt disable section as the atomic op that changes sem->count.
139 */
140static inline void rwsem_set_owner(struct rw_semaphore *sem)
141{
142	lockdep_assert_preemption_disabled();
143	atomic_long_set(&sem->owner, (long)current);
144}
145
146static inline void rwsem_clear_owner(struct rw_semaphore *sem)
147{
148	lockdep_assert_preemption_disabled();
149	atomic_long_set(&sem->owner, 0);
150}
151
152/*
153 * Test the flags in the owner field.
154 */
155static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
156{
157	return atomic_long_read(&sem->owner) & flags;
158}
159
160/*
161 * The task_struct pointer of the last owning reader will be left in
162 * the owner field.
163 *
164 * Note that the owner value just indicates the task has owned the rwsem
165 * previously, it may not be the real owner or one of the real owners
166 * anymore when that field is examined, so take it with a grain of salt.
167 *
168 * The reader non-spinnable bit is preserved.
169 */
170static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
171					    struct task_struct *owner)
172{
173	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
174		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
175
176	atomic_long_set(&sem->owner, val);
177}
178
179static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
180{
181	__rwsem_set_reader_owned(sem, current);
182}
183
184/*
185 * Return true if the rwsem is owned by a reader.
186 */
187static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
188{
189#ifdef CONFIG_DEBUG_RWSEMS
190	/*
191	 * Check the count to see if it is write-locked.
192	 */
193	long count = atomic_long_read(&sem->count);
194
195	if (count & RWSEM_WRITER_MASK)
196		return false;
197#endif
198	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
199}
200
201#ifdef CONFIG_DEBUG_RWSEMS
202/*
203 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
204 * is a task pointer in owner of a reader-owned rwsem, it will be the
205 * real owner or one of the real owners. The only exception is when the
206 * unlock is done by up_read_non_owner().
207 */
208static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
209{
210	unsigned long val = atomic_long_read(&sem->owner);
211
212	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
213		if (atomic_long_try_cmpxchg(&sem->owner, &val,
214					    val & RWSEM_OWNER_FLAGS_MASK))
215			return;
216	}
217}
218#else
219static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
220{
221}
222#endif
223
224/*
225 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
226 * remains set. Otherwise, the operation will be aborted.
227 */
228static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
229{
230	unsigned long owner = atomic_long_read(&sem->owner);
231
232	do {
233		if (!(owner & RWSEM_READER_OWNED))
234			break;
235		if (owner & RWSEM_NONSPINNABLE)
236			break;
237	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
238					  owner | RWSEM_NONSPINNABLE));
239}
240
241static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
242{
243	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
244
245	if (WARN_ON_ONCE(*cntp < 0))
246		rwsem_set_nonspinnable(sem);
247
248	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
249		rwsem_set_reader_owned(sem);
250		return true;
251	}
252
253	return false;
254}
255
256static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
257{
258	long tmp = RWSEM_UNLOCKED_VALUE;
259
260	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
261		rwsem_set_owner(sem);
262		return true;
263	}
264
265	return false;
266}
267
268/*
269 * Return just the real task structure pointer of the owner
270 */
271static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
272{
273	return (struct task_struct *)
274		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
275}
276
277/*
278 * Return the real task structure pointer of the owner and the embedded
279 * flags in the owner. pflags must be non-NULL.
280 */
281static inline struct task_struct *
282rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
283{
284	unsigned long owner = atomic_long_read(&sem->owner);
285
286	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
287	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
288}
289
290/*
291 * Guide to the rw_semaphore's count field.
292 *
293 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
294 * by a writer.
295 *
296 * The lock is owned by readers when
297 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
298 * (2) some of the reader bits are set in count, and
299 * (3) the owner field has RWSEM_READ_OWNED bit set.
300 *
301 * Having some reader bits set is not enough to guarantee a readers owned
302 * lock as the readers may be in the process of backing out from the count
303 * and a writer has just released the lock. So another writer may steal
304 * the lock immediately after that.
305 */
306
307/*
308 * Initialize an rwsem:
309 */
310void __init_rwsem(struct rw_semaphore *sem, const char *name,
311		  struct lock_class_key *key)
312{
313#ifdef CONFIG_DEBUG_LOCK_ALLOC
314	/*
315	 * Make sure we are not reinitializing a held semaphore:
316	 */
317	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
318	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
319#endif
320#ifdef CONFIG_DEBUG_RWSEMS
321	sem->magic = sem;
322#endif
323	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
324	raw_spin_lock_init(&sem->wait_lock);
325	INIT_LIST_HEAD(&sem->wait_list);
326	atomic_long_set(&sem->owner, 0L);
327#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
328	osq_lock_init(&sem->osq);
329#endif
330}
331EXPORT_SYMBOL(__init_rwsem);
332
333enum rwsem_waiter_type {
334	RWSEM_WAITING_FOR_WRITE,
335	RWSEM_WAITING_FOR_READ
336};
337
338struct rwsem_waiter {
339	struct list_head list;
340	struct task_struct *task;
341	enum rwsem_waiter_type type;
342	unsigned long timeout;
343	bool handoff_set;
344};
345#define rwsem_first_waiter(sem) \
346	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
347
348enum rwsem_wake_type {
349	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
350	RWSEM_WAKE_READERS,	/* Wake readers only */
351	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
352};
353
354/*
355 * The typical HZ value is either 250 or 1000. So set the minimum waiting
356 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
357 * queue before initiating the handoff protocol.
358 */
359#define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
360
361/*
362 * Magic number to batch-wakeup waiting readers, even when writers are
363 * also present in the queue. This both limits the amount of work the
364 * waking thread must do and also prevents any potential counter overflow,
365 * however unlikely.
366 */
367#define MAX_READERS_WAKEUP	0x100
368
369static inline void
370rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
371{
372	lockdep_assert_held(&sem->wait_lock);
373	list_add_tail(&waiter->list, &sem->wait_list);
374	/* caller will set RWSEM_FLAG_WAITERS */
375}
376
377/*
378 * Remove a waiter from the wait_list and clear flags.
379 *
380 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
381 * this function. Modify with care.
382 *
383 * Return: true if wait_list isn't empty and false otherwise
384 */
385static inline bool
386rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
387{
388	lockdep_assert_held(&sem->wait_lock);
389	list_del(&waiter->list);
390	if (likely(!list_empty(&sem->wait_list)))
391		return true;
392
393	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
394	return false;
395}
396
397/*
398 * handle the lock release when processes blocked on it that can now run
399 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
400 *   have been set.
401 * - there must be someone on the queue
402 * - the wait_lock must be held by the caller
403 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
404 *   to actually wakeup the blocked task(s) and drop the reference count,
405 *   preferably when the wait_lock is released
406 * - woken process blocks are discarded from the list after having task zeroed
407 * - writers are only marked woken if downgrading is false
408 *
409 * Implies rwsem_del_waiter() for all woken readers.
410 */
411static void rwsem_mark_wake(struct rw_semaphore *sem,
412			    enum rwsem_wake_type wake_type,
413			    struct wake_q_head *wake_q)
414{
415	struct rwsem_waiter *waiter, *tmp;
416	long oldcount, woken = 0, adjustment = 0;
417	struct list_head wlist;
418
419	lockdep_assert_held(&sem->wait_lock);
420
421	/*
422	 * Take a peek at the queue head waiter such that we can determine
423	 * the wakeup(s) to perform.
424	 */
425	waiter = rwsem_first_waiter(sem);
426
427	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
428		if (wake_type == RWSEM_WAKE_ANY) {
429			/*
430			 * Mark writer at the front of the queue for wakeup.
431			 * Until the task is actually later awoken later by
432			 * the caller, other writers are able to steal it.
433			 * Readers, on the other hand, will block as they
434			 * will notice the queued writer.
435			 */
436			wake_q_add(wake_q, waiter->task);
437			lockevent_inc(rwsem_wake_writer);
438		}
439
440		return;
441	}
442
443	/*
444	 * No reader wakeup if there are too many of them already.
445	 */
446	if (unlikely(atomic_long_read(&sem->count) < 0))
447		return;
448
449	/*
450	 * Writers might steal the lock before we grant it to the next reader.
451	 * We prefer to do the first reader grant before counting readers
452	 * so we can bail out early if a writer stole the lock.
453	 */
454	if (wake_type != RWSEM_WAKE_READ_OWNED) {
455		struct task_struct *owner;
456
457		adjustment = RWSEM_READER_BIAS;
458		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
459		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
460			/*
461			 * When we've been waiting "too" long (for writers
462			 * to give up the lock), request a HANDOFF to
463			 * force the issue.
464			 */
465			if (time_after(jiffies, waiter->timeout)) {
466				if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
467					adjustment -= RWSEM_FLAG_HANDOFF;
468					lockevent_inc(rwsem_rlock_handoff);
469				}
470				waiter->handoff_set = true;
471			}
472
473			atomic_long_add(-adjustment, &sem->count);
474			return;
475		}
476		/*
477		 * Set it to reader-owned to give spinners an early
478		 * indication that readers now have the lock.
479		 * The reader nonspinnable bit seen at slowpath entry of
480		 * the reader is copied over.
481		 */
482		owner = waiter->task;
483		__rwsem_set_reader_owned(sem, owner);
484	}
485
486	/*
487	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
488	 * queue. We know that the woken will be at least 1 as we accounted
489	 * for above. Note we increment the 'active part' of the count by the
490	 * number of readers before waking any processes up.
491	 *
492	 * This is an adaptation of the phase-fair R/W locks where at the
493	 * reader phase (first waiter is a reader), all readers are eligible
494	 * to acquire the lock at the same time irrespective of their order
495	 * in the queue. The writers acquire the lock according to their
496	 * order in the queue.
497	 *
498	 * We have to do wakeup in 2 passes to prevent the possibility that
499	 * the reader count may be decremented before it is incremented. It
500	 * is because the to-be-woken waiter may not have slept yet. So it
501	 * may see waiter->task got cleared, finish its critical section and
502	 * do an unlock before the reader count increment.
503	 *
504	 * 1) Collect the read-waiters in a separate list, count them and
505	 *    fully increment the reader count in rwsem.
506	 * 2) For each waiters in the new list, clear waiter->task and
507	 *    put them into wake_q to be woken up later.
508	 */
509	INIT_LIST_HEAD(&wlist);
510	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
511		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
512			continue;
513
514		woken++;
515		list_move_tail(&waiter->list, &wlist);
516
517		/*
518		 * Limit # of readers that can be woken up per wakeup call.
519		 */
520		if (unlikely(woken >= MAX_READERS_WAKEUP))
521			break;
522	}
523
524	adjustment = woken * RWSEM_READER_BIAS - adjustment;
525	lockevent_cond_inc(rwsem_wake_reader, woken);
526
527	oldcount = atomic_long_read(&sem->count);
528	if (list_empty(&sem->wait_list)) {
529		/*
530		 * Combined with list_move_tail() above, this implies
531		 * rwsem_del_waiter().
532		 */
533		adjustment -= RWSEM_FLAG_WAITERS;
534		if (oldcount & RWSEM_FLAG_HANDOFF)
535			adjustment -= RWSEM_FLAG_HANDOFF;
536	} else if (woken) {
537		/*
538		 * When we've woken a reader, we no longer need to force
539		 * writers to give up the lock and we can clear HANDOFF.
540		 */
541		if (oldcount & RWSEM_FLAG_HANDOFF)
542			adjustment -= RWSEM_FLAG_HANDOFF;
543	}
544
545	if (adjustment)
546		atomic_long_add(adjustment, &sem->count);
547
548	/* 2nd pass */
549	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
550		struct task_struct *tsk;
551
552		tsk = waiter->task;
553		get_task_struct(tsk);
554
555		/*
556		 * Ensure calling get_task_struct() before setting the reader
557		 * waiter to nil such that rwsem_down_read_slowpath() cannot
558		 * race with do_exit() by always holding a reference count
559		 * to the task to wakeup.
560		 */
561		smp_store_release(&waiter->task, NULL);
562		/*
563		 * Ensure issuing the wakeup (either by us or someone else)
564		 * after setting the reader waiter to nil.
565		 */
566		wake_q_add_safe(wake_q, tsk);
567	}
568}
569
570/*
571 * Remove a waiter and try to wake up other waiters in the wait queue
572 * This function is called from the out_nolock path of both the reader and
573 * writer slowpaths with wait_lock held. It releases the wait_lock and
574 * optionally wake up waiters before it returns.
575 */
576static inline void
577rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
578		      struct wake_q_head *wake_q)
579		      __releases(&sem->wait_lock)
580{
581	bool first = rwsem_first_waiter(sem) == waiter;
582
583	wake_q_init(wake_q);
584
585	/*
586	 * If the wait_list isn't empty and the waiter to be deleted is
587	 * the first waiter, we wake up the remaining waiters as they may
588	 * be eligible to acquire or spin on the lock.
589	 */
590	if (rwsem_del_waiter(sem, waiter) && first)
591		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
592	raw_spin_unlock_irq(&sem->wait_lock);
593	if (!wake_q_empty(wake_q))
594		wake_up_q(wake_q);
595}
596
597/*
598 * This function must be called with the sem->wait_lock held to prevent
599 * race conditions between checking the rwsem wait list and setting the
600 * sem->count accordingly.
601 *
602 * Implies rwsem_del_waiter() on success.
603 */
604static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
605					struct rwsem_waiter *waiter)
606{
607	struct rwsem_waiter *first = rwsem_first_waiter(sem);
608	long count, new;
609
610	lockdep_assert_held(&sem->wait_lock);
611
612	count = atomic_long_read(&sem->count);
613	do {
614		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
615
616		if (has_handoff) {
617			/*
618			 * Honor handoff bit and yield only when the first
619			 * waiter is the one that set it. Otherwisee, we
620			 * still try to acquire the rwsem.
621			 */
622			if (first->handoff_set && (waiter != first))
623				return false;
624		}
625
626		new = count;
627
628		if (count & RWSEM_LOCK_MASK) {
629			/*
630			 * A waiter (first or not) can set the handoff bit
631			 * if it is an RT task or wait in the wait queue
632			 * for too long.
633			 */
634			if (has_handoff || (!rt_task(waiter->task) &&
635					    !time_after(jiffies, waiter->timeout)))
636				return false;
637
638			new |= RWSEM_FLAG_HANDOFF;
639		} else {
640			new |= RWSEM_WRITER_LOCKED;
641			new &= ~RWSEM_FLAG_HANDOFF;
642
643			if (list_is_singular(&sem->wait_list))
644				new &= ~RWSEM_FLAG_WAITERS;
645		}
646	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
647
648	/*
649	 * We have either acquired the lock with handoff bit cleared or set
650	 * the handoff bit. Only the first waiter can have its handoff_set
651	 * set here to enable optimistic spinning in slowpath loop.
652	 */
653	if (new & RWSEM_FLAG_HANDOFF) {
654		first->handoff_set = true;
655		lockevent_inc(rwsem_wlock_handoff);
656		return false;
657	}
658
659	/*
660	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
661	 * success.
662	 */
663	list_del(&waiter->list);
664	rwsem_set_owner(sem);
665	return true;
666}
667
668/*
669 * The rwsem_spin_on_owner() function returns the following 4 values
670 * depending on the lock owner state.
671 *   OWNER_NULL  : owner is currently NULL
672 *   OWNER_WRITER: when owner changes and is a writer
673 *   OWNER_READER: when owner changes and the new owner may be a reader.
674 *   OWNER_NONSPINNABLE:
675 *		   when optimistic spinning has to stop because either the
676 *		   owner stops running, is unknown, or its timeslice has
677 *		   been used up.
678 */
679enum owner_state {
680	OWNER_NULL		= 1 << 0,
681	OWNER_WRITER		= 1 << 1,
682	OWNER_READER		= 1 << 2,
683	OWNER_NONSPINNABLE	= 1 << 3,
684};
685
686#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
687/*
688 * Try to acquire write lock before the writer has been put on wait queue.
689 */
690static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
691{
692	long count = atomic_long_read(&sem->count);
693
694	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
695		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
696					count | RWSEM_WRITER_LOCKED)) {
697			rwsem_set_owner(sem);
698			lockevent_inc(rwsem_opt_lock);
699			return true;
700		}
701	}
702	return false;
703}
704
705static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
706{
707	struct task_struct *owner;
708	unsigned long flags;
709	bool ret = true;
710
711	if (need_resched()) {
712		lockevent_inc(rwsem_opt_fail);
713		return false;
714	}
715
716	/*
717	 * Disable preemption is equal to the RCU read-side crital section,
718	 * thus the task_strcut structure won't go away.
719	 */
720	owner = rwsem_owner_flags(sem, &flags);
721	/*
722	 * Don't check the read-owner as the entry may be stale.
723	 */
724	if ((flags & RWSEM_NONSPINNABLE) ||
725	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
726		ret = false;
727
728	lockevent_cond_inc(rwsem_opt_fail, !ret);
729	return ret;
730}
731
732#define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
733
734static inline enum owner_state
735rwsem_owner_state(struct task_struct *owner, unsigned long flags)
736{
737	if (flags & RWSEM_NONSPINNABLE)
738		return OWNER_NONSPINNABLE;
739
740	if (flags & RWSEM_READER_OWNED)
741		return OWNER_READER;
742
743	return owner ? OWNER_WRITER : OWNER_NULL;
744}
745
746static noinline enum owner_state
747rwsem_spin_on_owner(struct rw_semaphore *sem)
748{
749	struct task_struct *new, *owner;
750	unsigned long flags, new_flags;
751	enum owner_state state;
752
753	lockdep_assert_preemption_disabled();
754
755	owner = rwsem_owner_flags(sem, &flags);
756	state = rwsem_owner_state(owner, flags);
757	if (state != OWNER_WRITER)
758		return state;
759
760	for (;;) {
761		/*
762		 * When a waiting writer set the handoff flag, it may spin
763		 * on the owner as well. Once that writer acquires the lock,
764		 * we can spin on it. So we don't need to quit even when the
765		 * handoff bit is set.
766		 */
767		new = rwsem_owner_flags(sem, &new_flags);
768		if ((new != owner) || (new_flags != flags)) {
769			state = rwsem_owner_state(new, new_flags);
770			break;
771		}
772
773		/*
774		 * Ensure we emit the owner->on_cpu, dereference _after_
775		 * checking sem->owner still matches owner, if that fails,
776		 * owner might point to free()d memory, if it still matches,
777		 * our spinning context already disabled preemption which is
778		 * equal to RCU read-side crital section ensures the memory
779		 * stays valid.
780		 */
781		barrier();
782
783		if (need_resched() || !owner_on_cpu(owner)) {
784			state = OWNER_NONSPINNABLE;
785			break;
786		}
787
788		cpu_relax();
789	}
790
791	return state;
792}
793
794/*
795 * Calculate reader-owned rwsem spinning threshold for writer
796 *
797 * The more readers own the rwsem, the longer it will take for them to
798 * wind down and free the rwsem. So the empirical formula used to
799 * determine the actual spinning time limit here is:
800 *
801 *   Spinning threshold = (10 + nr_readers/2)us
802 *
803 * The limit is capped to a maximum of 25us (30 readers). This is just
804 * a heuristic and is subjected to change in the future.
805 */
806static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
807{
808	long count = atomic_long_read(&sem->count);
809	int readers = count >> RWSEM_READER_SHIFT;
810	u64 delta;
811
812	if (readers > 30)
813		readers = 30;
814	delta = (20 + readers) * NSEC_PER_USEC / 2;
815
816	return sched_clock() + delta;
817}
818
819static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
820{
821	bool taken = false;
822	int prev_owner_state = OWNER_NULL;
823	int loop = 0;
824	u64 rspin_threshold = 0;
825
826	/* sem->wait_lock should not be held when doing optimistic spinning */
827	if (!osq_lock(&sem->osq))
828		goto done;
829
830	/*
831	 * Optimistically spin on the owner field and attempt to acquire the
832	 * lock whenever the owner changes. Spinning will be stopped when:
833	 *  1) the owning writer isn't running; or
834	 *  2) readers own the lock and spinning time has exceeded limit.
835	 */
836	for (;;) {
837		enum owner_state owner_state;
838
839		owner_state = rwsem_spin_on_owner(sem);
840		if (!(owner_state & OWNER_SPINNABLE))
841			break;
842
843		/*
844		 * Try to acquire the lock
845		 */
846		taken = rwsem_try_write_lock_unqueued(sem);
847
848		if (taken)
849			break;
850
851		/*
852		 * Time-based reader-owned rwsem optimistic spinning
853		 */
854		if (owner_state == OWNER_READER) {
855			/*
856			 * Re-initialize rspin_threshold every time when
857			 * the owner state changes from non-reader to reader.
858			 * This allows a writer to steal the lock in between
859			 * 2 reader phases and have the threshold reset at
860			 * the beginning of the 2nd reader phase.
861			 */
862			if (prev_owner_state != OWNER_READER) {
863				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
864					break;
865				rspin_threshold = rwsem_rspin_threshold(sem);
866				loop = 0;
867			}
868
869			/*
870			 * Check time threshold once every 16 iterations to
871			 * avoid calling sched_clock() too frequently so
872			 * as to reduce the average latency between the times
873			 * when the lock becomes free and when the spinner
874			 * is ready to do a trylock.
875			 */
876			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
877				rwsem_set_nonspinnable(sem);
878				lockevent_inc(rwsem_opt_nospin);
879				break;
880			}
881		}
882
883		/*
884		 * An RT task cannot do optimistic spinning if it cannot
885		 * be sure the lock holder is running or live-lock may
886		 * happen if the current task and the lock holder happen
887		 * to run in the same CPU. However, aborting optimistic
888		 * spinning while a NULL owner is detected may miss some
889		 * opportunity where spinning can continue without causing
890		 * problem.
891		 *
892		 * There are 2 possible cases where an RT task may be able
893		 * to continue spinning.
894		 *
895		 * 1) The lock owner is in the process of releasing the
896		 *    lock, sem->owner is cleared but the lock has not
897		 *    been released yet.
898		 * 2) The lock was free and owner cleared, but another
899		 *    task just comes in and acquire the lock before
900		 *    we try to get it. The new owner may be a spinnable
901		 *    writer.
902		 *
903		 * To take advantage of two scenarios listed above, the RT
904		 * task is made to retry one more time to see if it can
905		 * acquire the lock or continue spinning on the new owning
906		 * writer. Of course, if the time lag is long enough or the
907		 * new owner is not a writer or spinnable, the RT task will
908		 * quit spinning.
909		 *
910		 * If the owner is a writer, the need_resched() check is
911		 * done inside rwsem_spin_on_owner(). If the owner is not
912		 * a writer, need_resched() check needs to be done here.
913		 */
914		if (owner_state != OWNER_WRITER) {
915			if (need_resched())
916				break;
917			if (rt_task(current) &&
918			   (prev_owner_state != OWNER_WRITER))
919				break;
920		}
921		prev_owner_state = owner_state;
922
923		/*
924		 * The cpu_relax() call is a compiler barrier which forces
925		 * everything in this loop to be re-loaded. We don't need
926		 * memory barriers as we'll eventually observe the right
927		 * values at the cost of a few extra spins.
928		 */
929		cpu_relax();
930	}
931	osq_unlock(&sem->osq);
932done:
933	lockevent_cond_inc(rwsem_opt_fail, !taken);
934	return taken;
935}
936
937/*
938 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
939 * only be called when the reader count reaches 0.
940 */
941static inline void clear_nonspinnable(struct rw_semaphore *sem)
942{
943	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
944		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
945}
946
947#else
948static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
949{
950	return false;
951}
952
953static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
954{
955	return false;
956}
957
958static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
959
960static inline enum owner_state
961rwsem_spin_on_owner(struct rw_semaphore *sem)
962{
963	return OWNER_NONSPINNABLE;
964}
965#endif
966
967/*
968 * Prepare to wake up waiter(s) in the wait queue by putting them into the
969 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
970 * reader-owned, wake up read lock waiters in queue front or wake up any
971 * front waiter otherwise.
972
973 * This is being called from both reader and writer slow paths.
974 */
975static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
976					  struct wake_q_head *wake_q)
977{
978	enum rwsem_wake_type wake_type;
979
980	if (count & RWSEM_WRITER_MASK)
981		return;
982
983	if (count & RWSEM_READER_MASK) {
984		wake_type = RWSEM_WAKE_READERS;
985	} else {
986		wake_type = RWSEM_WAKE_ANY;
987		clear_nonspinnable(sem);
988	}
989	rwsem_mark_wake(sem, wake_type, wake_q);
990}
991
992/*
993 * Wait for the read lock to be granted
994 */
995static struct rw_semaphore __sched *
996rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
997{
998	long adjustment = -RWSEM_READER_BIAS;
999	long rcnt = (count >> RWSEM_READER_SHIFT);
1000	struct rwsem_waiter waiter;
1001	DEFINE_WAKE_Q(wake_q);
1002
1003	/*
1004	 * To prevent a constant stream of readers from starving a sleeping
1005	 * writer, don't attempt optimistic lock stealing if the lock is
1006	 * very likely owned by readers.
1007	 */
1008	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1009	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1010		goto queue;
1011
1012	/*
1013	 * Reader optimistic lock stealing.
1014	 */
1015	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1016		rwsem_set_reader_owned(sem);
1017		lockevent_inc(rwsem_rlock_steal);
1018
1019		/*
1020		 * Wake up other readers in the wait queue if it is
1021		 * the first reader.
1022		 */
1023		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1024			raw_spin_lock_irq(&sem->wait_lock);
1025			if (!list_empty(&sem->wait_list))
1026				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1027						&wake_q);
1028			raw_spin_unlock_irq(&sem->wait_lock);
1029			wake_up_q(&wake_q);
1030		}
1031		return sem;
1032	}
1033
1034queue:
1035	waiter.task = current;
1036	waiter.type = RWSEM_WAITING_FOR_READ;
1037	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1038	waiter.handoff_set = false;
1039
1040	raw_spin_lock_irq(&sem->wait_lock);
1041	if (list_empty(&sem->wait_list)) {
1042		/*
1043		 * In case the wait queue is empty and the lock isn't owned
1044		 * by a writer, this reader can exit the slowpath and return
1045		 * immediately as its RWSEM_READER_BIAS has already been set
1046		 * in the count.
1047		 */
1048		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1049			/* Provide lock ACQUIRE */
1050			smp_acquire__after_ctrl_dep();
1051			raw_spin_unlock_irq(&sem->wait_lock);
1052			rwsem_set_reader_owned(sem);
1053			lockevent_inc(rwsem_rlock_fast);
1054			return sem;
1055		}
1056		adjustment += RWSEM_FLAG_WAITERS;
1057	}
1058	rwsem_add_waiter(sem, &waiter);
1059
1060	/* we're now waiting on the lock, but no longer actively locking */
1061	count = atomic_long_add_return(adjustment, &sem->count);
1062
1063	rwsem_cond_wake_waiter(sem, count, &wake_q);
1064	raw_spin_unlock_irq(&sem->wait_lock);
1065
1066	if (!wake_q_empty(&wake_q))
1067		wake_up_q(&wake_q);
1068
1069	trace_contention_begin(sem, LCB_F_READ);
1070
1071	/* wait to be given the lock */
1072	for (;;) {
1073		set_current_state(state);
1074		if (!smp_load_acquire(&waiter.task)) {
1075			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1076			break;
1077		}
1078		if (signal_pending_state(state, current)) {
1079			raw_spin_lock_irq(&sem->wait_lock);
1080			if (waiter.task)
1081				goto out_nolock;
1082			raw_spin_unlock_irq(&sem->wait_lock);
1083			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1084			break;
1085		}
1086		schedule_preempt_disabled();
1087		lockevent_inc(rwsem_sleep_reader);
1088	}
1089
1090	__set_current_state(TASK_RUNNING);
1091	lockevent_inc(rwsem_rlock);
1092	trace_contention_end(sem, 0);
1093	return sem;
1094
1095out_nolock:
1096	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1097	__set_current_state(TASK_RUNNING);
1098	lockevent_inc(rwsem_rlock_fail);
1099	trace_contention_end(sem, -EINTR);
1100	return ERR_PTR(-EINTR);
1101}
1102
1103/*
1104 * Wait until we successfully acquire the write lock
1105 */
1106static struct rw_semaphore __sched *
1107rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1108{
1109	struct rwsem_waiter waiter;
1110	DEFINE_WAKE_Q(wake_q);
1111
1112	/* do optimistic spinning and steal lock if possible */
1113	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1114		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1115		return sem;
1116	}
1117
1118	/*
1119	 * Optimistic spinning failed, proceed to the slowpath
1120	 * and block until we can acquire the sem.
1121	 */
1122	waiter.task = current;
1123	waiter.type = RWSEM_WAITING_FOR_WRITE;
1124	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1125	waiter.handoff_set = false;
1126
1127	raw_spin_lock_irq(&sem->wait_lock);
1128	rwsem_add_waiter(sem, &waiter);
1129
1130	/* we're now waiting on the lock */
1131	if (rwsem_first_waiter(sem) != &waiter) {
1132		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1133				       &wake_q);
1134		if (!wake_q_empty(&wake_q)) {
1135			/*
1136			 * We want to minimize wait_lock hold time especially
1137			 * when a large number of readers are to be woken up.
1138			 */
1139			raw_spin_unlock_irq(&sem->wait_lock);
1140			wake_up_q(&wake_q);
1141			raw_spin_lock_irq(&sem->wait_lock);
1142		}
1143	} else {
1144		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1145	}
1146
1147	/* wait until we successfully acquire the lock */
1148	set_current_state(state);
1149	trace_contention_begin(sem, LCB_F_WRITE);
1150
1151	for (;;) {
1152		if (rwsem_try_write_lock(sem, &waiter)) {
1153			/* rwsem_try_write_lock() implies ACQUIRE on success */
1154			break;
1155		}
1156
1157		raw_spin_unlock_irq(&sem->wait_lock);
1158
1159		if (signal_pending_state(state, current))
1160			goto out_nolock;
1161
1162		/*
1163		 * After setting the handoff bit and failing to acquire
1164		 * the lock, attempt to spin on owner to accelerate lock
1165		 * transfer. If the previous owner is a on-cpu writer and it
1166		 * has just released the lock, OWNER_NULL will be returned.
1167		 * In this case, we attempt to acquire the lock again
1168		 * without sleeping.
1169		 */
1170		if (waiter.handoff_set) {
1171			enum owner_state owner_state;
1172
1173			owner_state = rwsem_spin_on_owner(sem);
1174			if (owner_state == OWNER_NULL)
1175				goto trylock_again;
1176		}
1177
1178		schedule_preempt_disabled();
1179		lockevent_inc(rwsem_sleep_writer);
1180		set_current_state(state);
1181trylock_again:
1182		raw_spin_lock_irq(&sem->wait_lock);
1183	}
1184	__set_current_state(TASK_RUNNING);
1185	raw_spin_unlock_irq(&sem->wait_lock);
1186	lockevent_inc(rwsem_wlock);
1187	trace_contention_end(sem, 0);
1188	return sem;
1189
1190out_nolock:
1191	__set_current_state(TASK_RUNNING);
1192	raw_spin_lock_irq(&sem->wait_lock);
1193	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1194	lockevent_inc(rwsem_wlock_fail);
1195	trace_contention_end(sem, -EINTR);
1196	return ERR_PTR(-EINTR);
1197}
1198
1199/*
1200 * handle waking up a waiter on the semaphore
1201 * - up_read/up_write has decremented the active part of count if we come here
1202 */
1203static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1204{
1205	unsigned long flags;
1206	DEFINE_WAKE_Q(wake_q);
1207
1208	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1209
1210	if (!list_empty(&sem->wait_list))
1211		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1212
1213	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1214	wake_up_q(&wake_q);
1215
1216	return sem;
1217}
1218
1219/*
1220 * downgrade a write lock into a read lock
1221 * - caller incremented waiting part of count and discovered it still negative
1222 * - just wake up any readers at the front of the queue
1223 */
1224static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1225{
1226	unsigned long flags;
1227	DEFINE_WAKE_Q(wake_q);
1228
1229	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1230
1231	if (!list_empty(&sem->wait_list))
1232		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1233
1234	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1235	wake_up_q(&wake_q);
1236
1237	return sem;
1238}
1239
1240/*
1241 * lock for reading
1242 */
1243static __always_inline int __down_read_common(struct rw_semaphore *sem, int state)
1244{
1245	int ret = 0;
1246	long count;
1247
1248	preempt_disable();
1249	if (!rwsem_read_trylock(sem, &count)) {
1250		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) {
1251			ret = -EINTR;
1252			goto out;
1253		}
1254		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1255	}
1256out:
1257	preempt_enable();
1258	return ret;
1259}
1260
1261static __always_inline void __down_read(struct rw_semaphore *sem)
1262{
1263	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1264}
1265
1266static __always_inline int __down_read_interruptible(struct rw_semaphore *sem)
1267{
1268	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1269}
1270
1271static __always_inline int __down_read_killable(struct rw_semaphore *sem)
1272{
1273	return __down_read_common(sem, TASK_KILLABLE);
1274}
1275
1276static inline int __down_read_trylock(struct rw_semaphore *sem)
1277{
1278	int ret = 0;
1279	long tmp;
1280
1281	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1282
1283	preempt_disable();
1284	tmp = atomic_long_read(&sem->count);
1285	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1286		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1287						    tmp + RWSEM_READER_BIAS)) {
1288			rwsem_set_reader_owned(sem);
1289			ret = 1;
1290			break;
1291		}
1292	}
1293	preempt_enable();
1294	return ret;
1295}
1296
1297/*
1298 * lock for writing
1299 */
1300static inline int __down_write_common(struct rw_semaphore *sem, int state)
1301{
1302	int ret = 0;
1303
1304	preempt_disable();
1305	if (unlikely(!rwsem_write_trylock(sem))) {
1306		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1307			ret = -EINTR;
1308	}
1309	preempt_enable();
1310	return ret;
1311}
1312
1313static inline void __down_write(struct rw_semaphore *sem)
1314{
1315	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1316}
1317
1318static inline int __down_write_killable(struct rw_semaphore *sem)
1319{
1320	return __down_write_common(sem, TASK_KILLABLE);
1321}
1322
1323static inline int __down_write_trylock(struct rw_semaphore *sem)
1324{
1325	int ret;
1326
1327	preempt_disable();
1328	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1329	ret = rwsem_write_trylock(sem);
1330	preempt_enable();
1331
1332	return ret;
1333}
1334
1335/*
1336 * unlock after reading
1337 */
1338static inline void __up_read(struct rw_semaphore *sem)
1339{
1340	long tmp;
1341
1342	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1343	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1344
1345	preempt_disable();
1346	rwsem_clear_reader_owned(sem);
1347	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1348	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1349	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1350		      RWSEM_FLAG_WAITERS)) {
1351		clear_nonspinnable(sem);
1352		rwsem_wake(sem);
1353	}
1354	preempt_enable();
1355}
1356
1357/*
1358 * unlock after writing
1359 */
1360static inline void __up_write(struct rw_semaphore *sem)
1361{
1362	long tmp;
1363
1364	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1365	/*
1366	 * sem->owner may differ from current if the ownership is transferred
1367	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1368	 */
1369	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1370			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1371
1372	preempt_disable();
1373	rwsem_clear_owner(sem);
1374	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1375	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1376		rwsem_wake(sem);
1377	preempt_enable();
1378}
1379
1380/*
1381 * downgrade write lock to read lock
1382 */
1383static inline void __downgrade_write(struct rw_semaphore *sem)
1384{
1385	long tmp;
1386
1387	/*
1388	 * When downgrading from exclusive to shared ownership,
1389	 * anything inside the write-locked region cannot leak
1390	 * into the read side. In contrast, anything in the
1391	 * read-locked region is ok to be re-ordered into the
1392	 * write side. As such, rely on RELEASE semantics.
1393	 */
1394	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1395	preempt_disable();
1396	tmp = atomic_long_fetch_add_release(
1397		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1398	rwsem_set_reader_owned(sem);
1399	if (tmp & RWSEM_FLAG_WAITERS)
1400		rwsem_downgrade_wake(sem);
1401	preempt_enable();
1402}
1403
1404#else /* !CONFIG_PREEMPT_RT */
1405
1406#define RT_MUTEX_BUILD_MUTEX
1407#include "rtmutex.c"
1408
1409#define rwbase_set_and_save_current_state(state)	\
1410	set_current_state(state)
1411
1412#define rwbase_restore_current_state()			\
1413	__set_current_state(TASK_RUNNING)
1414
1415#define rwbase_rtmutex_lock_state(rtm, state)		\
1416	__rt_mutex_lock(rtm, state)
1417
1418#define rwbase_rtmutex_slowlock_locked(rtm, state)	\
1419	__rt_mutex_slowlock_locked(rtm, NULL, state)
1420
1421#define rwbase_rtmutex_unlock(rtm)			\
1422	__rt_mutex_unlock(rtm)
1423
1424#define rwbase_rtmutex_trylock(rtm)			\
1425	__rt_mutex_trylock(rtm)
1426
1427#define rwbase_signal_pending_state(state, current)	\
1428	signal_pending_state(state, current)
1429
1430#define rwbase_pre_schedule()				\
1431	rt_mutex_pre_schedule()
1432
1433#define rwbase_schedule()				\
1434	rt_mutex_schedule()
1435
1436#define rwbase_post_schedule()				\
1437	rt_mutex_post_schedule()
1438
1439#include "rwbase_rt.c"
1440
1441void __init_rwsem(struct rw_semaphore *sem, const char *name,
1442		  struct lock_class_key *key)
1443{
1444	init_rwbase_rt(&(sem)->rwbase);
1445
1446#ifdef CONFIG_DEBUG_LOCK_ALLOC
1447	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1448	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1449#endif
1450}
1451EXPORT_SYMBOL(__init_rwsem);
1452
1453static inline void __down_read(struct rw_semaphore *sem)
1454{
1455	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1456}
1457
1458static inline int __down_read_interruptible(struct rw_semaphore *sem)
1459{
1460	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1461}
1462
1463static inline int __down_read_killable(struct rw_semaphore *sem)
1464{
1465	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1466}
1467
1468static inline int __down_read_trylock(struct rw_semaphore *sem)
1469{
1470	return rwbase_read_trylock(&sem->rwbase);
1471}
1472
1473static inline void __up_read(struct rw_semaphore *sem)
1474{
1475	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1476}
1477
1478static inline void __sched __down_write(struct rw_semaphore *sem)
1479{
1480	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1481}
1482
1483static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1484{
1485	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1486}
1487
1488static inline int __down_write_trylock(struct rw_semaphore *sem)
1489{
1490	return rwbase_write_trylock(&sem->rwbase);
1491}
1492
1493static inline void __up_write(struct rw_semaphore *sem)
1494{
1495	rwbase_write_unlock(&sem->rwbase);
1496}
1497
1498static inline void __downgrade_write(struct rw_semaphore *sem)
1499{
1500	rwbase_write_downgrade(&sem->rwbase);
1501}
1502
1503/* Debug stubs for the common API */
1504#define DEBUG_RWSEMS_WARN_ON(c, sem)
1505
1506static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1507					    struct task_struct *owner)
1508{
1509}
1510
1511static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1512{
1513	int count = atomic_read(&sem->rwbase.readers);
1514
1515	return count < 0 && count != READER_BIAS;
1516}
1517
1518#endif /* CONFIG_PREEMPT_RT */
1519
1520/*
1521 * lock for reading
1522 */
1523void __sched down_read(struct rw_semaphore *sem)
1524{
1525	might_sleep();
1526	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1527
1528	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1529}
1530EXPORT_SYMBOL(down_read);
1531
1532int __sched down_read_interruptible(struct rw_semaphore *sem)
1533{
1534	might_sleep();
1535	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1536
1537	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1538		rwsem_release(&sem->dep_map, _RET_IP_);
1539		return -EINTR;
1540	}
1541
1542	return 0;
1543}
1544EXPORT_SYMBOL(down_read_interruptible);
1545
1546int __sched down_read_killable(struct rw_semaphore *sem)
1547{
1548	might_sleep();
1549	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1550
1551	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1552		rwsem_release(&sem->dep_map, _RET_IP_);
1553		return -EINTR;
1554	}
1555
1556	return 0;
1557}
1558EXPORT_SYMBOL(down_read_killable);
1559
1560/*
1561 * trylock for reading -- returns 1 if successful, 0 if contention
1562 */
1563int down_read_trylock(struct rw_semaphore *sem)
1564{
1565	int ret = __down_read_trylock(sem);
1566
1567	if (ret == 1)
1568		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1569	return ret;
1570}
1571EXPORT_SYMBOL(down_read_trylock);
1572
1573/*
1574 * lock for writing
1575 */
1576void __sched down_write(struct rw_semaphore *sem)
1577{
1578	might_sleep();
1579	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1580	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1581}
1582EXPORT_SYMBOL(down_write);
1583
1584/*
1585 * lock for writing
1586 */
1587int __sched down_write_killable(struct rw_semaphore *sem)
1588{
1589	might_sleep();
1590	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1591
1592	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1593				  __down_write_killable)) {
1594		rwsem_release(&sem->dep_map, _RET_IP_);
1595		return -EINTR;
1596	}
1597
1598	return 0;
1599}
1600EXPORT_SYMBOL(down_write_killable);
1601
1602/*
1603 * trylock for writing -- returns 1 if successful, 0 if contention
1604 */
1605int down_write_trylock(struct rw_semaphore *sem)
1606{
1607	int ret = __down_write_trylock(sem);
1608
1609	if (ret == 1)
1610		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1611
1612	return ret;
1613}
1614EXPORT_SYMBOL(down_write_trylock);
1615
1616/*
1617 * release a read lock
1618 */
1619void up_read(struct rw_semaphore *sem)
1620{
1621	rwsem_release(&sem->dep_map, _RET_IP_);
1622	__up_read(sem);
1623}
1624EXPORT_SYMBOL(up_read);
1625
1626/*
1627 * release a write lock
1628 */
1629void up_write(struct rw_semaphore *sem)
1630{
1631	rwsem_release(&sem->dep_map, _RET_IP_);
1632	__up_write(sem);
1633}
1634EXPORT_SYMBOL(up_write);
1635
1636/*
1637 * downgrade write lock to read lock
1638 */
1639void downgrade_write(struct rw_semaphore *sem)
1640{
1641	lock_downgrade(&sem->dep_map, _RET_IP_);
1642	__downgrade_write(sem);
1643}
1644EXPORT_SYMBOL(downgrade_write);
1645
1646#ifdef CONFIG_DEBUG_LOCK_ALLOC
1647
1648void down_read_nested(struct rw_semaphore *sem, int subclass)
1649{
1650	might_sleep();
1651	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1652	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1653}
1654EXPORT_SYMBOL(down_read_nested);
1655
1656int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1657{
1658	might_sleep();
1659	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1660
1661	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1662		rwsem_release(&sem->dep_map, _RET_IP_);
1663		return -EINTR;
1664	}
1665
1666	return 0;
1667}
1668EXPORT_SYMBOL(down_read_killable_nested);
1669
1670void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1671{
1672	might_sleep();
1673	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1674	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1675}
1676EXPORT_SYMBOL(_down_write_nest_lock);
1677
1678void down_read_non_owner(struct rw_semaphore *sem)
1679{
1680	might_sleep();
1681	__down_read(sem);
1682	/*
1683	 * The owner value for a reader-owned lock is mostly for debugging
1684	 * purpose only and is not critical to the correct functioning of
1685	 * rwsem. So it is perfectly fine to set it in a preempt-enabled
1686	 * context here.
1687	 */
1688	__rwsem_set_reader_owned(sem, NULL);
1689}
1690EXPORT_SYMBOL(down_read_non_owner);
1691
1692void down_write_nested(struct rw_semaphore *sem, int subclass)
1693{
1694	might_sleep();
1695	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1696	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1697}
1698EXPORT_SYMBOL(down_write_nested);
1699
1700int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1701{
1702	might_sleep();
1703	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1704
1705	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1706				  __down_write_killable)) {
1707		rwsem_release(&sem->dep_map, _RET_IP_);
1708		return -EINTR;
1709	}
1710
1711	return 0;
1712}
1713EXPORT_SYMBOL(down_write_killable_nested);
1714
1715void up_read_non_owner(struct rw_semaphore *sem)
1716{
1717	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1718	__up_read(sem);
1719}
1720EXPORT_SYMBOL(up_read_non_owner);
1721
1722#endif
1723