1// SPDX-License-Identifier: GPL-2.0-only
2/* Kernel thread helper functions.
3 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 *   Copyright (C) 2009 Red Hat, Inc.
5 *
6 * Creation is done via kthreadd, so that we get a clean environment
7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 * etc.).
9 */
10#include <uapi/linux/sched/types.h>
11#include <linux/mm.h>
12#include <linux/mmu_context.h>
13#include <linux/sched.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/task.h>
16#include <linux/kthread.h>
17#include <linux/completion.h>
18#include <linux/err.h>
19#include <linux/cgroup.h>
20#include <linux/cpuset.h>
21#include <linux/unistd.h>
22#include <linux/file.h>
23#include <linux/export.h>
24#include <linux/mutex.h>
25#include <linux/slab.h>
26#include <linux/freezer.h>
27#include <linux/ptrace.h>
28#include <linux/uaccess.h>
29#include <linux/numa.h>
30#include <linux/sched/isolation.h>
31#include <trace/events/sched.h>
32
33
34static DEFINE_SPINLOCK(kthread_create_lock);
35static LIST_HEAD(kthread_create_list);
36struct task_struct *kthreadd_task;
37
38struct kthread_create_info
39{
40	/* Information passed to kthread() from kthreadd. */
41	char *full_name;
42	int (*threadfn)(void *data);
43	void *data;
44	int node;
45
46	/* Result passed back to kthread_create() from kthreadd. */
47	struct task_struct *result;
48	struct completion *done;
49
50	struct list_head list;
51};
52
53struct kthread {
54	unsigned long flags;
55	unsigned int cpu;
56	int result;
57	int (*threadfn)(void *);
58	void *data;
59	struct completion parked;
60	struct completion exited;
61#ifdef CONFIG_BLK_CGROUP
62	struct cgroup_subsys_state *blkcg_css;
63#endif
64	/* To store the full name if task comm is truncated. */
65	char *full_name;
66};
67
68enum KTHREAD_BITS {
69	KTHREAD_IS_PER_CPU = 0,
70	KTHREAD_SHOULD_STOP,
71	KTHREAD_SHOULD_PARK,
72};
73
74static inline struct kthread *to_kthread(struct task_struct *k)
75{
76	WARN_ON(!(k->flags & PF_KTHREAD));
77	return k->worker_private;
78}
79
80/*
81 * Variant of to_kthread() that doesn't assume @p is a kthread.
82 *
83 * Per construction; when:
84 *
85 *   (p->flags & PF_KTHREAD) && p->worker_private
86 *
87 * the task is both a kthread and struct kthread is persistent. However
88 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
89 * begin_new_exec()).
90 */
91static inline struct kthread *__to_kthread(struct task_struct *p)
92{
93	void *kthread = p->worker_private;
94	if (kthread && !(p->flags & PF_KTHREAD))
95		kthread = NULL;
96	return kthread;
97}
98
99void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
100{
101	struct kthread *kthread = to_kthread(tsk);
102
103	if (!kthread || !kthread->full_name) {
104		__get_task_comm(buf, buf_size, tsk);
105		return;
106	}
107
108	strscpy_pad(buf, kthread->full_name, buf_size);
109}
110
111bool set_kthread_struct(struct task_struct *p)
112{
113	struct kthread *kthread;
114
115	if (WARN_ON_ONCE(to_kthread(p)))
116		return false;
117
118	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
119	if (!kthread)
120		return false;
121
122	init_completion(&kthread->exited);
123	init_completion(&kthread->parked);
124	p->vfork_done = &kthread->exited;
125
126	p->worker_private = kthread;
127	return true;
128}
129
130void free_kthread_struct(struct task_struct *k)
131{
132	struct kthread *kthread;
133
134	/*
135	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
136	 */
137	kthread = to_kthread(k);
138	if (!kthread)
139		return;
140
141#ifdef CONFIG_BLK_CGROUP
142	WARN_ON_ONCE(kthread->blkcg_css);
143#endif
144	k->worker_private = NULL;
145	kfree(kthread->full_name);
146	kfree(kthread);
147}
148
149/**
150 * kthread_should_stop - should this kthread return now?
151 *
152 * When someone calls kthread_stop() on your kthread, it will be woken
153 * and this will return true.  You should then return, and your return
154 * value will be passed through to kthread_stop().
155 */
156bool kthread_should_stop(void)
157{
158	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
159}
160EXPORT_SYMBOL(kthread_should_stop);
161
162static bool __kthread_should_park(struct task_struct *k)
163{
164	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
165}
166
167/**
168 * kthread_should_park - should this kthread park now?
169 *
170 * When someone calls kthread_park() on your kthread, it will be woken
171 * and this will return true.  You should then do the necessary
172 * cleanup and call kthread_parkme()
173 *
174 * Similar to kthread_should_stop(), but this keeps the thread alive
175 * and in a park position. kthread_unpark() "restarts" the thread and
176 * calls the thread function again.
177 */
178bool kthread_should_park(void)
179{
180	return __kthread_should_park(current);
181}
182EXPORT_SYMBOL_GPL(kthread_should_park);
183
184bool kthread_should_stop_or_park(void)
185{
186	struct kthread *kthread = __to_kthread(current);
187
188	if (!kthread)
189		return false;
190
191	return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
192}
193
194/**
195 * kthread_freezable_should_stop - should this freezable kthread return now?
196 * @was_frozen: optional out parameter, indicates whether %current was frozen
197 *
198 * kthread_should_stop() for freezable kthreads, which will enter
199 * refrigerator if necessary.  This function is safe from kthread_stop() /
200 * freezer deadlock and freezable kthreads should use this function instead
201 * of calling try_to_freeze() directly.
202 */
203bool kthread_freezable_should_stop(bool *was_frozen)
204{
205	bool frozen = false;
206
207	might_sleep();
208
209	if (unlikely(freezing(current)))
210		frozen = __refrigerator(true);
211
212	if (was_frozen)
213		*was_frozen = frozen;
214
215	return kthread_should_stop();
216}
217EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
218
219/**
220 * kthread_func - return the function specified on kthread creation
221 * @task: kthread task in question
222 *
223 * Returns NULL if the task is not a kthread.
224 */
225void *kthread_func(struct task_struct *task)
226{
227	struct kthread *kthread = __to_kthread(task);
228	if (kthread)
229		return kthread->threadfn;
230	return NULL;
231}
232EXPORT_SYMBOL_GPL(kthread_func);
233
234/**
235 * kthread_data - return data value specified on kthread creation
236 * @task: kthread task in question
237 *
238 * Return the data value specified when kthread @task was created.
239 * The caller is responsible for ensuring the validity of @task when
240 * calling this function.
241 */
242void *kthread_data(struct task_struct *task)
243{
244	return to_kthread(task)->data;
245}
246EXPORT_SYMBOL_GPL(kthread_data);
247
248/**
249 * kthread_probe_data - speculative version of kthread_data()
250 * @task: possible kthread task in question
251 *
252 * @task could be a kthread task.  Return the data value specified when it
253 * was created if accessible.  If @task isn't a kthread task or its data is
254 * inaccessible for any reason, %NULL is returned.  This function requires
255 * that @task itself is safe to dereference.
256 */
257void *kthread_probe_data(struct task_struct *task)
258{
259	struct kthread *kthread = __to_kthread(task);
260	void *data = NULL;
261
262	if (kthread)
263		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
264	return data;
265}
266
267static void __kthread_parkme(struct kthread *self)
268{
269	for (;;) {
270		/*
271		 * TASK_PARKED is a special state; we must serialize against
272		 * possible pending wakeups to avoid store-store collisions on
273		 * task->state.
274		 *
275		 * Such a collision might possibly result in the task state
276		 * changin from TASK_PARKED and us failing the
277		 * wait_task_inactive() in kthread_park().
278		 */
279		set_special_state(TASK_PARKED);
280		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
281			break;
282
283		/*
284		 * Thread is going to call schedule(), do not preempt it,
285		 * or the caller of kthread_park() may spend more time in
286		 * wait_task_inactive().
287		 */
288		preempt_disable();
289		complete(&self->parked);
290		schedule_preempt_disabled();
291		preempt_enable();
292	}
293	__set_current_state(TASK_RUNNING);
294}
295
296void kthread_parkme(void)
297{
298	__kthread_parkme(to_kthread(current));
299}
300EXPORT_SYMBOL_GPL(kthread_parkme);
301
302/**
303 * kthread_exit - Cause the current kthread return @result to kthread_stop().
304 * @result: The integer value to return to kthread_stop().
305 *
306 * While kthread_exit can be called directly, it exists so that
307 * functions which do some additional work in non-modular code such as
308 * module_put_and_kthread_exit can be implemented.
309 *
310 * Does not return.
311 */
312void __noreturn kthread_exit(long result)
313{
314	struct kthread *kthread = to_kthread(current);
315	kthread->result = result;
316	do_exit(0);
317}
318
319/**
320 * kthread_complete_and_exit - Exit the current kthread.
321 * @comp: Completion to complete
322 * @code: The integer value to return to kthread_stop().
323 *
324 * If present, complete @comp and then return code to kthread_stop().
325 *
326 * A kernel thread whose module may be removed after the completion of
327 * @comp can use this function to exit safely.
328 *
329 * Does not return.
330 */
331void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
332{
333	if (comp)
334		complete(comp);
335
336	kthread_exit(code);
337}
338EXPORT_SYMBOL(kthread_complete_and_exit);
339
340static int kthread(void *_create)
341{
342	static const struct sched_param param = { .sched_priority = 0 };
343	/* Copy data: it's on kthread's stack */
344	struct kthread_create_info *create = _create;
345	int (*threadfn)(void *data) = create->threadfn;
346	void *data = create->data;
347	struct completion *done;
348	struct kthread *self;
349	int ret;
350
351	self = to_kthread(current);
352
353	/* Release the structure when caller killed by a fatal signal. */
354	done = xchg(&create->done, NULL);
355	if (!done) {
356		kfree(create->full_name);
357		kfree(create);
358		kthread_exit(-EINTR);
359	}
360
361	self->full_name = create->full_name;
362	self->threadfn = threadfn;
363	self->data = data;
364
365	/*
366	 * The new thread inherited kthreadd's priority and CPU mask. Reset
367	 * back to default in case they have been changed.
368	 */
369	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
370	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
371
372	/* OK, tell user we're spawned, wait for stop or wakeup */
373	__set_current_state(TASK_UNINTERRUPTIBLE);
374	create->result = current;
375	/*
376	 * Thread is going to call schedule(), do not preempt it,
377	 * or the creator may spend more time in wait_task_inactive().
378	 */
379	preempt_disable();
380	complete(done);
381	schedule_preempt_disabled();
382	preempt_enable();
383
384	ret = -EINTR;
385	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
386		cgroup_kthread_ready();
387		__kthread_parkme(self);
388		ret = threadfn(data);
389	}
390	kthread_exit(ret);
391}
392
393/* called from kernel_clone() to get node information for about to be created task */
394int tsk_fork_get_node(struct task_struct *tsk)
395{
396#ifdef CONFIG_NUMA
397	if (tsk == kthreadd_task)
398		return tsk->pref_node_fork;
399#endif
400	return NUMA_NO_NODE;
401}
402
403static void create_kthread(struct kthread_create_info *create)
404{
405	int pid;
406
407#ifdef CONFIG_NUMA
408	current->pref_node_fork = create->node;
409#endif
410	/* We want our own signal handler (we take no signals by default). */
411	pid = kernel_thread(kthread, create, create->full_name,
412			    CLONE_FS | CLONE_FILES | SIGCHLD);
413	if (pid < 0) {
414		/* Release the structure when caller killed by a fatal signal. */
415		struct completion *done = xchg(&create->done, NULL);
416
417		kfree(create->full_name);
418		if (!done) {
419			kfree(create);
420			return;
421		}
422		create->result = ERR_PTR(pid);
423		complete(done);
424	}
425}
426
427static __printf(4, 0)
428struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
429						    void *data, int node,
430						    const char namefmt[],
431						    va_list args)
432{
433	DECLARE_COMPLETION_ONSTACK(done);
434	struct task_struct *task;
435	struct kthread_create_info *create = kmalloc(sizeof(*create),
436						     GFP_KERNEL);
437
438	if (!create)
439		return ERR_PTR(-ENOMEM);
440	create->threadfn = threadfn;
441	create->data = data;
442	create->node = node;
443	create->done = &done;
444	create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
445	if (!create->full_name) {
446		task = ERR_PTR(-ENOMEM);
447		goto free_create;
448	}
449
450	spin_lock(&kthread_create_lock);
451	list_add_tail(&create->list, &kthread_create_list);
452	spin_unlock(&kthread_create_lock);
453
454	wake_up_process(kthreadd_task);
455	/*
456	 * Wait for completion in killable state, for I might be chosen by
457	 * the OOM killer while kthreadd is trying to allocate memory for
458	 * new kernel thread.
459	 */
460	if (unlikely(wait_for_completion_killable(&done))) {
461		/*
462		 * If I was killed by a fatal signal before kthreadd (or new
463		 * kernel thread) calls complete(), leave the cleanup of this
464		 * structure to that thread.
465		 */
466		if (xchg(&create->done, NULL))
467			return ERR_PTR(-EINTR);
468		/*
469		 * kthreadd (or new kernel thread) will call complete()
470		 * shortly.
471		 */
472		wait_for_completion(&done);
473	}
474	task = create->result;
475free_create:
476	kfree(create);
477	return task;
478}
479
480/**
481 * kthread_create_on_node - create a kthread.
482 * @threadfn: the function to run until signal_pending(current).
483 * @data: data ptr for @threadfn.
484 * @node: task and thread structures for the thread are allocated on this node
485 * @namefmt: printf-style name for the thread.
486 *
487 * Description: This helper function creates and names a kernel
488 * thread.  The thread will be stopped: use wake_up_process() to start
489 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
490 * is affine to all CPUs.
491 *
492 * If thread is going to be bound on a particular cpu, give its node
493 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
494 * When woken, the thread will run @threadfn() with @data as its
495 * argument. @threadfn() can either return directly if it is a
496 * standalone thread for which no one will call kthread_stop(), or
497 * return when 'kthread_should_stop()' is true (which means
498 * kthread_stop() has been called).  The return value should be zero
499 * or a negative error number; it will be passed to kthread_stop().
500 *
501 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
502 */
503struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
504					   void *data, int node,
505					   const char namefmt[],
506					   ...)
507{
508	struct task_struct *task;
509	va_list args;
510
511	va_start(args, namefmt);
512	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
513	va_end(args);
514
515	return task;
516}
517EXPORT_SYMBOL(kthread_create_on_node);
518
519static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
520{
521	unsigned long flags;
522
523	if (!wait_task_inactive(p, state)) {
524		WARN_ON(1);
525		return;
526	}
527
528	/* It's safe because the task is inactive. */
529	raw_spin_lock_irqsave(&p->pi_lock, flags);
530	do_set_cpus_allowed(p, mask);
531	p->flags |= PF_NO_SETAFFINITY;
532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
533}
534
535static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
536{
537	__kthread_bind_mask(p, cpumask_of(cpu), state);
538}
539
540void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
541{
542	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
543}
544
545/**
546 * kthread_bind - bind a just-created kthread to a cpu.
547 * @p: thread created by kthread_create().
548 * @cpu: cpu (might not be online, must be possible) for @k to run on.
549 *
550 * Description: This function is equivalent to set_cpus_allowed(),
551 * except that @cpu doesn't need to be online, and the thread must be
552 * stopped (i.e., just returned from kthread_create()).
553 */
554void kthread_bind(struct task_struct *p, unsigned int cpu)
555{
556	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
557}
558EXPORT_SYMBOL(kthread_bind);
559
560/**
561 * kthread_create_on_cpu - Create a cpu bound kthread
562 * @threadfn: the function to run until signal_pending(current).
563 * @data: data ptr for @threadfn.
564 * @cpu: The cpu on which the thread should be bound,
565 * @namefmt: printf-style name for the thread. Format is restricted
566 *	     to "name.*%u". Code fills in cpu number.
567 *
568 * Description: This helper function creates and names a kernel thread
569 */
570struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
571					  void *data, unsigned int cpu,
572					  const char *namefmt)
573{
574	struct task_struct *p;
575
576	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
577				   cpu);
578	if (IS_ERR(p))
579		return p;
580	kthread_bind(p, cpu);
581	/* CPU hotplug need to bind once again when unparking the thread. */
582	to_kthread(p)->cpu = cpu;
583	return p;
584}
585EXPORT_SYMBOL(kthread_create_on_cpu);
586
587void kthread_set_per_cpu(struct task_struct *k, int cpu)
588{
589	struct kthread *kthread = to_kthread(k);
590	if (!kthread)
591		return;
592
593	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
594
595	if (cpu < 0) {
596		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
597		return;
598	}
599
600	kthread->cpu = cpu;
601	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
602}
603
604bool kthread_is_per_cpu(struct task_struct *p)
605{
606	struct kthread *kthread = __to_kthread(p);
607	if (!kthread)
608		return false;
609
610	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
611}
612
613/**
614 * kthread_unpark - unpark a thread created by kthread_create().
615 * @k:		thread created by kthread_create().
616 *
617 * Sets kthread_should_park() for @k to return false, wakes it, and
618 * waits for it to return. If the thread is marked percpu then its
619 * bound to the cpu again.
620 */
621void kthread_unpark(struct task_struct *k)
622{
623	struct kthread *kthread = to_kthread(k);
624
625	/*
626	 * Newly created kthread was parked when the CPU was offline.
627	 * The binding was lost and we need to set it again.
628	 */
629	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
630		__kthread_bind(k, kthread->cpu, TASK_PARKED);
631
632	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
633	/*
634	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
635	 */
636	wake_up_state(k, TASK_PARKED);
637}
638EXPORT_SYMBOL_GPL(kthread_unpark);
639
640/**
641 * kthread_park - park a thread created by kthread_create().
642 * @k: thread created by kthread_create().
643 *
644 * Sets kthread_should_park() for @k to return true, wakes it, and
645 * waits for it to return. This can also be called after kthread_create()
646 * instead of calling wake_up_process(): the thread will park without
647 * calling threadfn().
648 *
649 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
650 * If called by the kthread itself just the park bit is set.
651 */
652int kthread_park(struct task_struct *k)
653{
654	struct kthread *kthread = to_kthread(k);
655
656	if (WARN_ON(k->flags & PF_EXITING))
657		return -ENOSYS;
658
659	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
660		return -EBUSY;
661
662	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
663	if (k != current) {
664		wake_up_process(k);
665		/*
666		 * Wait for __kthread_parkme() to complete(), this means we
667		 * _will_ have TASK_PARKED and are about to call schedule().
668		 */
669		wait_for_completion(&kthread->parked);
670		/*
671		 * Now wait for that schedule() to complete and the task to
672		 * get scheduled out.
673		 */
674		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
675	}
676
677	return 0;
678}
679EXPORT_SYMBOL_GPL(kthread_park);
680
681/**
682 * kthread_stop - stop a thread created by kthread_create().
683 * @k: thread created by kthread_create().
684 *
685 * Sets kthread_should_stop() for @k to return true, wakes it, and
686 * waits for it to exit. This can also be called after kthread_create()
687 * instead of calling wake_up_process(): the thread will exit without
688 * calling threadfn().
689 *
690 * If threadfn() may call kthread_exit() itself, the caller must ensure
691 * task_struct can't go away.
692 *
693 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
694 * was never called.
695 */
696int kthread_stop(struct task_struct *k)
697{
698	struct kthread *kthread;
699	int ret;
700
701	trace_sched_kthread_stop(k);
702
703	get_task_struct(k);
704	kthread = to_kthread(k);
705	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
706	kthread_unpark(k);
707	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
708	wake_up_process(k);
709	wait_for_completion(&kthread->exited);
710	ret = kthread->result;
711	put_task_struct(k);
712
713	trace_sched_kthread_stop_ret(ret);
714	return ret;
715}
716EXPORT_SYMBOL(kthread_stop);
717
718/**
719 * kthread_stop_put - stop a thread and put its task struct
720 * @k: thread created by kthread_create().
721 *
722 * Stops a thread created by kthread_create() and put its task_struct.
723 * Only use when holding an extra task struct reference obtained by
724 * calling get_task_struct().
725 */
726int kthread_stop_put(struct task_struct *k)
727{
728	int ret;
729
730	ret = kthread_stop(k);
731	put_task_struct(k);
732	return ret;
733}
734EXPORT_SYMBOL(kthread_stop_put);
735
736int kthreadd(void *unused)
737{
738	struct task_struct *tsk = current;
739
740	/* Setup a clean context for our children to inherit. */
741	set_task_comm(tsk, "kthreadd");
742	ignore_signals(tsk);
743	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
744	set_mems_allowed(node_states[N_MEMORY]);
745
746	current->flags |= PF_NOFREEZE;
747	cgroup_init_kthreadd();
748
749	for (;;) {
750		set_current_state(TASK_INTERRUPTIBLE);
751		if (list_empty(&kthread_create_list))
752			schedule();
753		__set_current_state(TASK_RUNNING);
754
755		spin_lock(&kthread_create_lock);
756		while (!list_empty(&kthread_create_list)) {
757			struct kthread_create_info *create;
758
759			create = list_entry(kthread_create_list.next,
760					    struct kthread_create_info, list);
761			list_del_init(&create->list);
762			spin_unlock(&kthread_create_lock);
763
764			create_kthread(create);
765
766			spin_lock(&kthread_create_lock);
767		}
768		spin_unlock(&kthread_create_lock);
769	}
770
771	return 0;
772}
773
774void __kthread_init_worker(struct kthread_worker *worker,
775				const char *name,
776				struct lock_class_key *key)
777{
778	memset(worker, 0, sizeof(struct kthread_worker));
779	raw_spin_lock_init(&worker->lock);
780	lockdep_set_class_and_name(&worker->lock, key, name);
781	INIT_LIST_HEAD(&worker->work_list);
782	INIT_LIST_HEAD(&worker->delayed_work_list);
783}
784EXPORT_SYMBOL_GPL(__kthread_init_worker);
785
786/**
787 * kthread_worker_fn - kthread function to process kthread_worker
788 * @worker_ptr: pointer to initialized kthread_worker
789 *
790 * This function implements the main cycle of kthread worker. It processes
791 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
792 * is empty.
793 *
794 * The works are not allowed to keep any locks, disable preemption or interrupts
795 * when they finish. There is defined a safe point for freezing when one work
796 * finishes and before a new one is started.
797 *
798 * Also the works must not be handled by more than one worker at the same time,
799 * see also kthread_queue_work().
800 */
801int kthread_worker_fn(void *worker_ptr)
802{
803	struct kthread_worker *worker = worker_ptr;
804	struct kthread_work *work;
805
806	/*
807	 * FIXME: Update the check and remove the assignment when all kthread
808	 * worker users are created using kthread_create_worker*() functions.
809	 */
810	WARN_ON(worker->task && worker->task != current);
811	worker->task = current;
812
813	if (worker->flags & KTW_FREEZABLE)
814		set_freezable();
815
816repeat:
817	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
818
819	if (kthread_should_stop()) {
820		__set_current_state(TASK_RUNNING);
821		raw_spin_lock_irq(&worker->lock);
822		worker->task = NULL;
823		raw_spin_unlock_irq(&worker->lock);
824		return 0;
825	}
826
827	work = NULL;
828	raw_spin_lock_irq(&worker->lock);
829	if (!list_empty(&worker->work_list)) {
830		work = list_first_entry(&worker->work_list,
831					struct kthread_work, node);
832		list_del_init(&work->node);
833	}
834	worker->current_work = work;
835	raw_spin_unlock_irq(&worker->lock);
836
837	if (work) {
838		kthread_work_func_t func = work->func;
839		__set_current_state(TASK_RUNNING);
840		trace_sched_kthread_work_execute_start(work);
841		work->func(work);
842		/*
843		 * Avoid dereferencing work after this point.  The trace
844		 * event only cares about the address.
845		 */
846		trace_sched_kthread_work_execute_end(work, func);
847	} else if (!freezing(current))
848		schedule();
849
850	try_to_freeze();
851	cond_resched();
852	goto repeat;
853}
854EXPORT_SYMBOL_GPL(kthread_worker_fn);
855
856static __printf(3, 0) struct kthread_worker *
857__kthread_create_worker(int cpu, unsigned int flags,
858			const char namefmt[], va_list args)
859{
860	struct kthread_worker *worker;
861	struct task_struct *task;
862	int node = NUMA_NO_NODE;
863
864	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
865	if (!worker)
866		return ERR_PTR(-ENOMEM);
867
868	kthread_init_worker(worker);
869
870	if (cpu >= 0)
871		node = cpu_to_node(cpu);
872
873	task = __kthread_create_on_node(kthread_worker_fn, worker,
874						node, namefmt, args);
875	if (IS_ERR(task))
876		goto fail_task;
877
878	if (cpu >= 0)
879		kthread_bind(task, cpu);
880
881	worker->flags = flags;
882	worker->task = task;
883	wake_up_process(task);
884	return worker;
885
886fail_task:
887	kfree(worker);
888	return ERR_CAST(task);
889}
890
891/**
892 * kthread_create_worker - create a kthread worker
893 * @flags: flags modifying the default behavior of the worker
894 * @namefmt: printf-style name for the kthread worker (task).
895 *
896 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
897 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
898 * when the caller was killed by a fatal signal.
899 */
900struct kthread_worker *
901kthread_create_worker(unsigned int flags, const char namefmt[], ...)
902{
903	struct kthread_worker *worker;
904	va_list args;
905
906	va_start(args, namefmt);
907	worker = __kthread_create_worker(-1, flags, namefmt, args);
908	va_end(args);
909
910	return worker;
911}
912EXPORT_SYMBOL(kthread_create_worker);
913
914/**
915 * kthread_create_worker_on_cpu - create a kthread worker and bind it
916 *	to a given CPU and the associated NUMA node.
917 * @cpu: CPU number
918 * @flags: flags modifying the default behavior of the worker
919 * @namefmt: printf-style name for the kthread worker (task).
920 *
921 * Use a valid CPU number if you want to bind the kthread worker
922 * to the given CPU and the associated NUMA node.
923 *
924 * A good practice is to add the cpu number also into the worker name.
925 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
926 *
927 * CPU hotplug:
928 * The kthread worker API is simple and generic. It just provides a way
929 * to create, use, and destroy workers.
930 *
931 * It is up to the API user how to handle CPU hotplug. They have to decide
932 * how to handle pending work items, prevent queuing new ones, and
933 * restore the functionality when the CPU goes off and on. There are a
934 * few catches:
935 *
936 *    - CPU affinity gets lost when it is scheduled on an offline CPU.
937 *
938 *    - The worker might not exist when the CPU was off when the user
939 *      created the workers.
940 *
941 * Good practice is to implement two CPU hotplug callbacks and to
942 * destroy/create the worker when the CPU goes down/up.
943 *
944 * Return:
945 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
946 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
947 * when the caller was killed by a fatal signal.
948 */
949struct kthread_worker *
950kthread_create_worker_on_cpu(int cpu, unsigned int flags,
951			     const char namefmt[], ...)
952{
953	struct kthread_worker *worker;
954	va_list args;
955
956	va_start(args, namefmt);
957	worker = __kthread_create_worker(cpu, flags, namefmt, args);
958	va_end(args);
959
960	return worker;
961}
962EXPORT_SYMBOL(kthread_create_worker_on_cpu);
963
964/*
965 * Returns true when the work could not be queued at the moment.
966 * It happens when it is already pending in a worker list
967 * or when it is being cancelled.
968 */
969static inline bool queuing_blocked(struct kthread_worker *worker,
970				   struct kthread_work *work)
971{
972	lockdep_assert_held(&worker->lock);
973
974	return !list_empty(&work->node) || work->canceling;
975}
976
977static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
978					     struct kthread_work *work)
979{
980	lockdep_assert_held(&worker->lock);
981	WARN_ON_ONCE(!list_empty(&work->node));
982	/* Do not use a work with >1 worker, see kthread_queue_work() */
983	WARN_ON_ONCE(work->worker && work->worker != worker);
984}
985
986/* insert @work before @pos in @worker */
987static void kthread_insert_work(struct kthread_worker *worker,
988				struct kthread_work *work,
989				struct list_head *pos)
990{
991	kthread_insert_work_sanity_check(worker, work);
992
993	trace_sched_kthread_work_queue_work(worker, work);
994
995	list_add_tail(&work->node, pos);
996	work->worker = worker;
997	if (!worker->current_work && likely(worker->task))
998		wake_up_process(worker->task);
999}
1000
1001/**
1002 * kthread_queue_work - queue a kthread_work
1003 * @worker: target kthread_worker
1004 * @work: kthread_work to queue
1005 *
1006 * Queue @work to work processor @task for async execution.  @task
1007 * must have been created with kthread_worker_create().  Returns %true
1008 * if @work was successfully queued, %false if it was already pending.
1009 *
1010 * Reinitialize the work if it needs to be used by another worker.
1011 * For example, when the worker was stopped and started again.
1012 */
1013bool kthread_queue_work(struct kthread_worker *worker,
1014			struct kthread_work *work)
1015{
1016	bool ret = false;
1017	unsigned long flags;
1018
1019	raw_spin_lock_irqsave(&worker->lock, flags);
1020	if (!queuing_blocked(worker, work)) {
1021		kthread_insert_work(worker, work, &worker->work_list);
1022		ret = true;
1023	}
1024	raw_spin_unlock_irqrestore(&worker->lock, flags);
1025	return ret;
1026}
1027EXPORT_SYMBOL_GPL(kthread_queue_work);
1028
1029/**
1030 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1031 *	delayed work when the timer expires.
1032 * @t: pointer to the expired timer
1033 *
1034 * The format of the function is defined by struct timer_list.
1035 * It should have been called from irqsafe timer with irq already off.
1036 */
1037void kthread_delayed_work_timer_fn(struct timer_list *t)
1038{
1039	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1040	struct kthread_work *work = &dwork->work;
1041	struct kthread_worker *worker = work->worker;
1042	unsigned long flags;
1043
1044	/*
1045	 * This might happen when a pending work is reinitialized.
1046	 * It means that it is used a wrong way.
1047	 */
1048	if (WARN_ON_ONCE(!worker))
1049		return;
1050
1051	raw_spin_lock_irqsave(&worker->lock, flags);
1052	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1053	WARN_ON_ONCE(work->worker != worker);
1054
1055	/* Move the work from worker->delayed_work_list. */
1056	WARN_ON_ONCE(list_empty(&work->node));
1057	list_del_init(&work->node);
1058	if (!work->canceling)
1059		kthread_insert_work(worker, work, &worker->work_list);
1060
1061	raw_spin_unlock_irqrestore(&worker->lock, flags);
1062}
1063EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1064
1065static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1066					 struct kthread_delayed_work *dwork,
1067					 unsigned long delay)
1068{
1069	struct timer_list *timer = &dwork->timer;
1070	struct kthread_work *work = &dwork->work;
1071
1072	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1073
1074	/*
1075	 * If @delay is 0, queue @dwork->work immediately.  This is for
1076	 * both optimization and correctness.  The earliest @timer can
1077	 * expire is on the closest next tick and delayed_work users depend
1078	 * on that there's no such delay when @delay is 0.
1079	 */
1080	if (!delay) {
1081		kthread_insert_work(worker, work, &worker->work_list);
1082		return;
1083	}
1084
1085	/* Be paranoid and try to detect possible races already now. */
1086	kthread_insert_work_sanity_check(worker, work);
1087
1088	list_add(&work->node, &worker->delayed_work_list);
1089	work->worker = worker;
1090	timer->expires = jiffies + delay;
1091	add_timer(timer);
1092}
1093
1094/**
1095 * kthread_queue_delayed_work - queue the associated kthread work
1096 *	after a delay.
1097 * @worker: target kthread_worker
1098 * @dwork: kthread_delayed_work to queue
1099 * @delay: number of jiffies to wait before queuing
1100 *
1101 * If the work has not been pending it starts a timer that will queue
1102 * the work after the given @delay. If @delay is zero, it queues the
1103 * work immediately.
1104 *
1105 * Return: %false if the @work has already been pending. It means that
1106 * either the timer was running or the work was queued. It returns %true
1107 * otherwise.
1108 */
1109bool kthread_queue_delayed_work(struct kthread_worker *worker,
1110				struct kthread_delayed_work *dwork,
1111				unsigned long delay)
1112{
1113	struct kthread_work *work = &dwork->work;
1114	unsigned long flags;
1115	bool ret = false;
1116
1117	raw_spin_lock_irqsave(&worker->lock, flags);
1118
1119	if (!queuing_blocked(worker, work)) {
1120		__kthread_queue_delayed_work(worker, dwork, delay);
1121		ret = true;
1122	}
1123
1124	raw_spin_unlock_irqrestore(&worker->lock, flags);
1125	return ret;
1126}
1127EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1128
1129struct kthread_flush_work {
1130	struct kthread_work	work;
1131	struct completion	done;
1132};
1133
1134static void kthread_flush_work_fn(struct kthread_work *work)
1135{
1136	struct kthread_flush_work *fwork =
1137		container_of(work, struct kthread_flush_work, work);
1138	complete(&fwork->done);
1139}
1140
1141/**
1142 * kthread_flush_work - flush a kthread_work
1143 * @work: work to flush
1144 *
1145 * If @work is queued or executing, wait for it to finish execution.
1146 */
1147void kthread_flush_work(struct kthread_work *work)
1148{
1149	struct kthread_flush_work fwork = {
1150		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1151		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1152	};
1153	struct kthread_worker *worker;
1154	bool noop = false;
1155
1156	worker = work->worker;
1157	if (!worker)
1158		return;
1159
1160	raw_spin_lock_irq(&worker->lock);
1161	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1162	WARN_ON_ONCE(work->worker != worker);
1163
1164	if (!list_empty(&work->node))
1165		kthread_insert_work(worker, &fwork.work, work->node.next);
1166	else if (worker->current_work == work)
1167		kthread_insert_work(worker, &fwork.work,
1168				    worker->work_list.next);
1169	else
1170		noop = true;
1171
1172	raw_spin_unlock_irq(&worker->lock);
1173
1174	if (!noop)
1175		wait_for_completion(&fwork.done);
1176}
1177EXPORT_SYMBOL_GPL(kthread_flush_work);
1178
1179/*
1180 * Make sure that the timer is neither set nor running and could
1181 * not manipulate the work list_head any longer.
1182 *
1183 * The function is called under worker->lock. The lock is temporary
1184 * released but the timer can't be set again in the meantime.
1185 */
1186static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1187					      unsigned long *flags)
1188{
1189	struct kthread_delayed_work *dwork =
1190		container_of(work, struct kthread_delayed_work, work);
1191	struct kthread_worker *worker = work->worker;
1192
1193	/*
1194	 * del_timer_sync() must be called to make sure that the timer
1195	 * callback is not running. The lock must be temporary released
1196	 * to avoid a deadlock with the callback. In the meantime,
1197	 * any queuing is blocked by setting the canceling counter.
1198	 */
1199	work->canceling++;
1200	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1201	del_timer_sync(&dwork->timer);
1202	raw_spin_lock_irqsave(&worker->lock, *flags);
1203	work->canceling--;
1204}
1205
1206/*
1207 * This function removes the work from the worker queue.
1208 *
1209 * It is called under worker->lock. The caller must make sure that
1210 * the timer used by delayed work is not running, e.g. by calling
1211 * kthread_cancel_delayed_work_timer().
1212 *
1213 * The work might still be in use when this function finishes. See the
1214 * current_work proceed by the worker.
1215 *
1216 * Return: %true if @work was pending and successfully canceled,
1217 *	%false if @work was not pending
1218 */
1219static bool __kthread_cancel_work(struct kthread_work *work)
1220{
1221	/*
1222	 * Try to remove the work from a worker list. It might either
1223	 * be from worker->work_list or from worker->delayed_work_list.
1224	 */
1225	if (!list_empty(&work->node)) {
1226		list_del_init(&work->node);
1227		return true;
1228	}
1229
1230	return false;
1231}
1232
1233/**
1234 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1235 * @worker: kthread worker to use
1236 * @dwork: kthread delayed work to queue
1237 * @delay: number of jiffies to wait before queuing
1238 *
1239 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1240 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1241 * @work is guaranteed to be queued immediately.
1242 *
1243 * Return: %false if @dwork was idle and queued, %true otherwise.
1244 *
1245 * A special case is when the work is being canceled in parallel.
1246 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1247 * or yet another kthread_mod_delayed_work() call. We let the other command
1248 * win and return %true here. The return value can be used for reference
1249 * counting and the number of queued works stays the same. Anyway, the caller
1250 * is supposed to synchronize these operations a reasonable way.
1251 *
1252 * This function is safe to call from any context including IRQ handler.
1253 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1254 * for details.
1255 */
1256bool kthread_mod_delayed_work(struct kthread_worker *worker,
1257			      struct kthread_delayed_work *dwork,
1258			      unsigned long delay)
1259{
1260	struct kthread_work *work = &dwork->work;
1261	unsigned long flags;
1262	int ret;
1263
1264	raw_spin_lock_irqsave(&worker->lock, flags);
1265
1266	/* Do not bother with canceling when never queued. */
1267	if (!work->worker) {
1268		ret = false;
1269		goto fast_queue;
1270	}
1271
1272	/* Work must not be used with >1 worker, see kthread_queue_work() */
1273	WARN_ON_ONCE(work->worker != worker);
1274
1275	/*
1276	 * Temporary cancel the work but do not fight with another command
1277	 * that is canceling the work as well.
1278	 *
1279	 * It is a bit tricky because of possible races with another
1280	 * mod_delayed_work() and cancel_delayed_work() callers.
1281	 *
1282	 * The timer must be canceled first because worker->lock is released
1283	 * when doing so. But the work can be removed from the queue (list)
1284	 * only when it can be queued again so that the return value can
1285	 * be used for reference counting.
1286	 */
1287	kthread_cancel_delayed_work_timer(work, &flags);
1288	if (work->canceling) {
1289		/* The number of works in the queue does not change. */
1290		ret = true;
1291		goto out;
1292	}
1293	ret = __kthread_cancel_work(work);
1294
1295fast_queue:
1296	__kthread_queue_delayed_work(worker, dwork, delay);
1297out:
1298	raw_spin_unlock_irqrestore(&worker->lock, flags);
1299	return ret;
1300}
1301EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1302
1303static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1304{
1305	struct kthread_worker *worker = work->worker;
1306	unsigned long flags;
1307	int ret = false;
1308
1309	if (!worker)
1310		goto out;
1311
1312	raw_spin_lock_irqsave(&worker->lock, flags);
1313	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1314	WARN_ON_ONCE(work->worker != worker);
1315
1316	if (is_dwork)
1317		kthread_cancel_delayed_work_timer(work, &flags);
1318
1319	ret = __kthread_cancel_work(work);
1320
1321	if (worker->current_work != work)
1322		goto out_fast;
1323
1324	/*
1325	 * The work is in progress and we need to wait with the lock released.
1326	 * In the meantime, block any queuing by setting the canceling counter.
1327	 */
1328	work->canceling++;
1329	raw_spin_unlock_irqrestore(&worker->lock, flags);
1330	kthread_flush_work(work);
1331	raw_spin_lock_irqsave(&worker->lock, flags);
1332	work->canceling--;
1333
1334out_fast:
1335	raw_spin_unlock_irqrestore(&worker->lock, flags);
1336out:
1337	return ret;
1338}
1339
1340/**
1341 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1342 * @work: the kthread work to cancel
1343 *
1344 * Cancel @work and wait for its execution to finish.  This function
1345 * can be used even if the work re-queues itself. On return from this
1346 * function, @work is guaranteed to be not pending or executing on any CPU.
1347 *
1348 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1349 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1350 *
1351 * The caller must ensure that the worker on which @work was last
1352 * queued can't be destroyed before this function returns.
1353 *
1354 * Return: %true if @work was pending, %false otherwise.
1355 */
1356bool kthread_cancel_work_sync(struct kthread_work *work)
1357{
1358	return __kthread_cancel_work_sync(work, false);
1359}
1360EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1361
1362/**
1363 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1364 *	wait for it to finish.
1365 * @dwork: the kthread delayed work to cancel
1366 *
1367 * This is kthread_cancel_work_sync() for delayed works.
1368 *
1369 * Return: %true if @dwork was pending, %false otherwise.
1370 */
1371bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1372{
1373	return __kthread_cancel_work_sync(&dwork->work, true);
1374}
1375EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1376
1377/**
1378 * kthread_flush_worker - flush all current works on a kthread_worker
1379 * @worker: worker to flush
1380 *
1381 * Wait until all currently executing or pending works on @worker are
1382 * finished.
1383 */
1384void kthread_flush_worker(struct kthread_worker *worker)
1385{
1386	struct kthread_flush_work fwork = {
1387		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1388		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1389	};
1390
1391	kthread_queue_work(worker, &fwork.work);
1392	wait_for_completion(&fwork.done);
1393}
1394EXPORT_SYMBOL_GPL(kthread_flush_worker);
1395
1396/**
1397 * kthread_destroy_worker - destroy a kthread worker
1398 * @worker: worker to be destroyed
1399 *
1400 * Flush and destroy @worker.  The simple flush is enough because the kthread
1401 * worker API is used only in trivial scenarios.  There are no multi-step state
1402 * machines needed.
1403 *
1404 * Note that this function is not responsible for handling delayed work, so
1405 * caller should be responsible for queuing or canceling all delayed work items
1406 * before invoke this function.
1407 */
1408void kthread_destroy_worker(struct kthread_worker *worker)
1409{
1410	struct task_struct *task;
1411
1412	task = worker->task;
1413	if (WARN_ON(!task))
1414		return;
1415
1416	kthread_flush_worker(worker);
1417	kthread_stop(task);
1418	WARN_ON(!list_empty(&worker->delayed_work_list));
1419	WARN_ON(!list_empty(&worker->work_list));
1420	kfree(worker);
1421}
1422EXPORT_SYMBOL(kthread_destroy_worker);
1423
1424/**
1425 * kthread_use_mm - make the calling kthread operate on an address space
1426 * @mm: address space to operate on
1427 */
1428void kthread_use_mm(struct mm_struct *mm)
1429{
1430	struct mm_struct *active_mm;
1431	struct task_struct *tsk = current;
1432
1433	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1434	WARN_ON_ONCE(tsk->mm);
1435
1436	/*
1437	 * It is possible for mm to be the same as tsk->active_mm, but
1438	 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1439	 * because these references are not equivalent.
1440	 */
1441	mmgrab(mm);
1442
1443	task_lock(tsk);
1444	/* Hold off tlb flush IPIs while switching mm's */
1445	local_irq_disable();
1446	active_mm = tsk->active_mm;
1447	tsk->active_mm = mm;
1448	tsk->mm = mm;
1449	membarrier_update_current_mm(mm);
1450	switch_mm_irqs_off(active_mm, mm, tsk);
1451	local_irq_enable();
1452	task_unlock(tsk);
1453#ifdef finish_arch_post_lock_switch
1454	finish_arch_post_lock_switch();
1455#endif
1456
1457	/*
1458	 * When a kthread starts operating on an address space, the loop
1459	 * in membarrier_{private,global}_expedited() may not observe
1460	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1461	 * memory barrier after storing to tsk->mm, before accessing
1462	 * user-space memory. A full memory barrier for membarrier
1463	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1464	 * mmdrop_lazy_tlb().
1465	 */
1466	mmdrop_lazy_tlb(active_mm);
1467}
1468EXPORT_SYMBOL_GPL(kthread_use_mm);
1469
1470/**
1471 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1472 * @mm: address space to operate on
1473 */
1474void kthread_unuse_mm(struct mm_struct *mm)
1475{
1476	struct task_struct *tsk = current;
1477
1478	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1479	WARN_ON_ONCE(!tsk->mm);
1480
1481	task_lock(tsk);
1482	/*
1483	 * When a kthread stops operating on an address space, the loop
1484	 * in membarrier_{private,global}_expedited() may not observe
1485	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1486	 * memory barrier after accessing user-space memory, before
1487	 * clearing tsk->mm.
1488	 */
1489	smp_mb__after_spinlock();
1490	local_irq_disable();
1491	tsk->mm = NULL;
1492	membarrier_update_current_mm(NULL);
1493	mmgrab_lazy_tlb(mm);
1494	/* active_mm is still 'mm' */
1495	enter_lazy_tlb(mm, tsk);
1496	local_irq_enable();
1497	task_unlock(tsk);
1498
1499	mmdrop(mm);
1500}
1501EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1502
1503#ifdef CONFIG_BLK_CGROUP
1504/**
1505 * kthread_associate_blkcg - associate blkcg to current kthread
1506 * @css: the cgroup info
1507 *
1508 * Current thread must be a kthread. The thread is running jobs on behalf of
1509 * other threads. In some cases, we expect the jobs attach cgroup info of
1510 * original threads instead of that of current thread. This function stores
1511 * original thread's cgroup info in current kthread context for later
1512 * retrieval.
1513 */
1514void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1515{
1516	struct kthread *kthread;
1517
1518	if (!(current->flags & PF_KTHREAD))
1519		return;
1520	kthread = to_kthread(current);
1521	if (!kthread)
1522		return;
1523
1524	if (kthread->blkcg_css) {
1525		css_put(kthread->blkcg_css);
1526		kthread->blkcg_css = NULL;
1527	}
1528	if (css) {
1529		css_get(css);
1530		kthread->blkcg_css = css;
1531	}
1532}
1533EXPORT_SYMBOL(kthread_associate_blkcg);
1534
1535/**
1536 * kthread_blkcg - get associated blkcg css of current kthread
1537 *
1538 * Current thread must be a kthread.
1539 */
1540struct cgroup_subsys_state *kthread_blkcg(void)
1541{
1542	struct kthread *kthread;
1543
1544	if (current->flags & PF_KTHREAD) {
1545		kthread = to_kthread(current);
1546		if (kthread)
1547			return kthread->blkcg_css;
1548	}
1549	return NULL;
1550}
1551#endif
1552