1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 *      Vivek Goyal <vgoyal@redhat.com>
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/capability.h>
13#include <linux/mm.h>
14#include <linux/file.h>
15#include <linux/slab.h>
16#include <linux/kexec.h>
17#include <linux/memblock.h>
18#include <linux/mutex.h>
19#include <linux/list.h>
20#include <linux/fs.h>
21#include <linux/ima.h>
22#include <crypto/hash.h>
23#include <crypto/sha2.h>
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/syscalls.h>
29#include <linux/vmalloc.h>
30#include "kexec_internal.h"
31
32#ifdef CONFIG_KEXEC_SIG
33static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34
35void set_kexec_sig_enforced(void)
36{
37	sig_enforce = true;
38}
39#endif
40
41static int kexec_calculate_store_digests(struct kimage *image);
42
43/* Maximum size in bytes for kernel/initrd files. */
44#define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
45
46/*
47 * Currently this is the only default function that is exported as some
48 * architectures need it to do additional handlings.
49 * In the future, other default functions may be exported too if required.
50 */
51int kexec_image_probe_default(struct kimage *image, void *buf,
52			      unsigned long buf_len)
53{
54	const struct kexec_file_ops * const *fops;
55	int ret = -ENOEXEC;
56
57	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58		ret = (*fops)->probe(buf, buf_len);
59		if (!ret) {
60			image->fops = *fops;
61			return ret;
62		}
63	}
64
65	return ret;
66}
67
68static void *kexec_image_load_default(struct kimage *image)
69{
70	if (!image->fops || !image->fops->load)
71		return ERR_PTR(-ENOEXEC);
72
73	return image->fops->load(image, image->kernel_buf,
74				 image->kernel_buf_len, image->initrd_buf,
75				 image->initrd_buf_len, image->cmdline_buf,
76				 image->cmdline_buf_len);
77}
78
79int kexec_image_post_load_cleanup_default(struct kimage *image)
80{
81	if (!image->fops || !image->fops->cleanup)
82		return 0;
83
84	return image->fops->cleanup(image->image_loader_data);
85}
86
87/*
88 * Free up memory used by kernel, initrd, and command line. This is temporary
89 * memory allocation which is not needed any more after these buffers have
90 * been loaded into separate segments and have been copied elsewhere.
91 */
92void kimage_file_post_load_cleanup(struct kimage *image)
93{
94	struct purgatory_info *pi = &image->purgatory_info;
95
96	vfree(image->kernel_buf);
97	image->kernel_buf = NULL;
98
99	vfree(image->initrd_buf);
100	image->initrd_buf = NULL;
101
102	kfree(image->cmdline_buf);
103	image->cmdline_buf = NULL;
104
105	vfree(pi->purgatory_buf);
106	pi->purgatory_buf = NULL;
107
108	vfree(pi->sechdrs);
109	pi->sechdrs = NULL;
110
111#ifdef CONFIG_IMA_KEXEC
112	vfree(image->ima_buffer);
113	image->ima_buffer = NULL;
114#endif /* CONFIG_IMA_KEXEC */
115
116	/* See if architecture has anything to cleanup post load */
117	arch_kimage_file_post_load_cleanup(image);
118
119	/*
120	 * Above call should have called into bootloader to free up
121	 * any data stored in kimage->image_loader_data. It should
122	 * be ok now to free it up.
123	 */
124	kfree(image->image_loader_data);
125	image->image_loader_data = NULL;
126
127	kexec_file_dbg_print = false;
128}
129
130#ifdef CONFIG_KEXEC_SIG
131#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
132int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
133{
134	int ret;
135
136	ret = verify_pefile_signature(kernel, kernel_len,
137				      VERIFY_USE_SECONDARY_KEYRING,
138				      VERIFYING_KEXEC_PE_SIGNATURE);
139	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
140		ret = verify_pefile_signature(kernel, kernel_len,
141					      VERIFY_USE_PLATFORM_KEYRING,
142					      VERIFYING_KEXEC_PE_SIGNATURE);
143	}
144	return ret;
145}
146#endif
147
148static int kexec_image_verify_sig(struct kimage *image, void *buf,
149				  unsigned long buf_len)
150{
151	if (!image->fops || !image->fops->verify_sig) {
152		pr_debug("kernel loader does not support signature verification.\n");
153		return -EKEYREJECTED;
154	}
155
156	return image->fops->verify_sig(buf, buf_len);
157}
158
159static int
160kimage_validate_signature(struct kimage *image)
161{
162	int ret;
163
164	ret = kexec_image_verify_sig(image, image->kernel_buf,
165				     image->kernel_buf_len);
166	if (ret) {
167
168		if (sig_enforce) {
169			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
170			return ret;
171		}
172
173		/*
174		 * If IMA is guaranteed to appraise a signature on the kexec
175		 * image, permit it even if the kernel is otherwise locked
176		 * down.
177		 */
178		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
179		    security_locked_down(LOCKDOWN_KEXEC))
180			return -EPERM;
181
182		pr_debug("kernel signature verification failed (%d).\n", ret);
183	}
184
185	return 0;
186}
187#endif
188
189/*
190 * In file mode list of segments is prepared by kernel. Copy relevant
191 * data from user space, do error checking, prepare segment list
192 */
193static int
194kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
195			     const char __user *cmdline_ptr,
196			     unsigned long cmdline_len, unsigned flags)
197{
198	ssize_t ret;
199	void *ldata;
200
201	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
202				       KEXEC_FILE_SIZE_MAX, NULL,
203				       READING_KEXEC_IMAGE);
204	if (ret < 0)
205		return ret;
206	image->kernel_buf_len = ret;
207	kexec_dprintk("kernel: %p kernel_size: %#lx\n",
208		      image->kernel_buf, image->kernel_buf_len);
209
210	/* Call arch image probe handlers */
211	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212					    image->kernel_buf_len);
213	if (ret)
214		goto out;
215
216#ifdef CONFIG_KEXEC_SIG
217	ret = kimage_validate_signature(image);
218
219	if (ret)
220		goto out;
221#endif
222	/* It is possible that there no initramfs is being loaded */
223	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225					       KEXEC_FILE_SIZE_MAX, NULL,
226					       READING_KEXEC_INITRAMFS);
227		if (ret < 0)
228			goto out;
229		image->initrd_buf_len = ret;
230		ret = 0;
231	}
232
233	if (cmdline_len) {
234		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235		if (IS_ERR(image->cmdline_buf)) {
236			ret = PTR_ERR(image->cmdline_buf);
237			image->cmdline_buf = NULL;
238			goto out;
239		}
240
241		image->cmdline_buf_len = cmdline_len;
242
243		/* command line should be a string with last byte null */
244		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245			ret = -EINVAL;
246			goto out;
247		}
248
249		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250				  image->cmdline_buf_len - 1);
251	}
252
253	/* IMA needs to pass the measurement list to the next kernel. */
254	ima_add_kexec_buffer(image);
255
256	/* Call image load handler */
257	ldata = kexec_image_load_default(image);
258
259	if (IS_ERR(ldata)) {
260		ret = PTR_ERR(ldata);
261		goto out;
262	}
263
264	image->image_loader_data = ldata;
265out:
266	/* In case of error, free up all allocated memory in this function */
267	if (ret)
268		kimage_file_post_load_cleanup(image);
269	return ret;
270}
271
272static int
273kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274		       int initrd_fd, const char __user *cmdline_ptr,
275		       unsigned long cmdline_len, unsigned long flags)
276{
277	int ret;
278	struct kimage *image;
279	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280
281	image = do_kimage_alloc_init();
282	if (!image)
283		return -ENOMEM;
284
285	kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
286	image->file_mode = 1;
287
288#ifdef CONFIG_CRASH_DUMP
289	if (kexec_on_panic) {
290		/* Enable special crash kernel control page alloc policy. */
291		image->control_page = crashk_res.start;
292		image->type = KEXEC_TYPE_CRASH;
293	}
294#endif
295
296	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
297					   cmdline_ptr, cmdline_len, flags);
298	if (ret)
299		goto out_free_image;
300
301	ret = sanity_check_segment_list(image);
302	if (ret)
303		goto out_free_post_load_bufs;
304
305	ret = -ENOMEM;
306	image->control_code_page = kimage_alloc_control_pages(image,
307					   get_order(KEXEC_CONTROL_PAGE_SIZE));
308	if (!image->control_code_page) {
309		pr_err("Could not allocate control_code_buffer\n");
310		goto out_free_post_load_bufs;
311	}
312
313	if (!kexec_on_panic) {
314		image->swap_page = kimage_alloc_control_pages(image, 0);
315		if (!image->swap_page) {
316			pr_err("Could not allocate swap buffer\n");
317			goto out_free_control_pages;
318		}
319	}
320
321	*rimage = image;
322	return 0;
323out_free_control_pages:
324	kimage_free_page_list(&image->control_pages);
325out_free_post_load_bufs:
326	kimage_file_post_load_cleanup(image);
327out_free_image:
328	kfree(image);
329	return ret;
330}
331
332SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
333		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
334		unsigned long, flags)
335{
336	int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
337			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
338	struct kimage **dest_image, *image;
339	int ret = 0, i;
340
341	/* We only trust the superuser with rebooting the system. */
342	if (!kexec_load_permitted(image_type))
343		return -EPERM;
344
345	/* Make sure we have a legal set of flags */
346	if (flags != (flags & KEXEC_FILE_FLAGS))
347		return -EINVAL;
348
349	image = NULL;
350
351	if (!kexec_trylock())
352		return -EBUSY;
353
354#ifdef CONFIG_CRASH_DUMP
355	if (image_type == KEXEC_TYPE_CRASH) {
356		dest_image = &kexec_crash_image;
357		if (kexec_crash_image)
358			arch_kexec_unprotect_crashkres();
359	} else
360#endif
361		dest_image = &kexec_image;
362
363	if (flags & KEXEC_FILE_UNLOAD)
364		goto exchange;
365
366	/*
367	 * In case of crash, new kernel gets loaded in reserved region. It is
368	 * same memory where old crash kernel might be loaded. Free any
369	 * current crash dump kernel before we corrupt it.
370	 */
371	if (flags & KEXEC_FILE_ON_CRASH)
372		kimage_free(xchg(&kexec_crash_image, NULL));
373
374	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
375				     cmdline_len, flags);
376	if (ret)
377		goto out;
378
379	ret = machine_kexec_prepare(image);
380	if (ret)
381		goto out;
382
383	/*
384	 * Some architecture(like S390) may touch the crash memory before
385	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
386	 */
387	ret = kimage_crash_copy_vmcoreinfo(image);
388	if (ret)
389		goto out;
390
391	ret = kexec_calculate_store_digests(image);
392	if (ret)
393		goto out;
394
395	kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
396	for (i = 0; i < image->nr_segments; i++) {
397		struct kexec_segment *ksegment;
398
399		ksegment = &image->segment[i];
400		kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
401			      i, ksegment->buf, ksegment->bufsz, ksegment->mem,
402			      ksegment->memsz);
403
404		ret = kimage_load_segment(image, &image->segment[i]);
405		if (ret)
406			goto out;
407	}
408
409	kimage_terminate(image);
410
411	ret = machine_kexec_post_load(image);
412	if (ret)
413		goto out;
414
415	kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
416		      image->type, image->start, image->head, flags);
417	/*
418	 * Free up any temporary buffers allocated which are not needed
419	 * after image has been loaded
420	 */
421	kimage_file_post_load_cleanup(image);
422exchange:
423	image = xchg(dest_image, image);
424out:
425#ifdef CONFIG_CRASH_DUMP
426	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
427		arch_kexec_protect_crashkres();
428#endif
429
430	kexec_unlock();
431	kimage_free(image);
432	return ret;
433}
434
435static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
436				    struct kexec_buf *kbuf)
437{
438	struct kimage *image = kbuf->image;
439	unsigned long temp_start, temp_end;
440
441	temp_end = min(end, kbuf->buf_max);
442	temp_start = temp_end - kbuf->memsz + 1;
443
444	do {
445		/* align down start */
446		temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
447
448		if (temp_start < start || temp_start < kbuf->buf_min)
449			return 0;
450
451		temp_end = temp_start + kbuf->memsz - 1;
452
453		/*
454		 * Make sure this does not conflict with any of existing
455		 * segments
456		 */
457		if (kimage_is_destination_range(image, temp_start, temp_end)) {
458			temp_start = temp_start - PAGE_SIZE;
459			continue;
460		}
461
462		/* We found a suitable memory range */
463		break;
464	} while (1);
465
466	/* If we are here, we found a suitable memory range */
467	kbuf->mem = temp_start;
468
469	/* Success, stop navigating through remaining System RAM ranges */
470	return 1;
471}
472
473static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
474				     struct kexec_buf *kbuf)
475{
476	struct kimage *image = kbuf->image;
477	unsigned long temp_start, temp_end;
478
479	temp_start = max(start, kbuf->buf_min);
480
481	do {
482		temp_start = ALIGN(temp_start, kbuf->buf_align);
483		temp_end = temp_start + kbuf->memsz - 1;
484
485		if (temp_end > end || temp_end > kbuf->buf_max)
486			return 0;
487		/*
488		 * Make sure this does not conflict with any of existing
489		 * segments
490		 */
491		if (kimage_is_destination_range(image, temp_start, temp_end)) {
492			temp_start = temp_start + PAGE_SIZE;
493			continue;
494		}
495
496		/* We found a suitable memory range */
497		break;
498	} while (1);
499
500	/* If we are here, we found a suitable memory range */
501	kbuf->mem = temp_start;
502
503	/* Success, stop navigating through remaining System RAM ranges */
504	return 1;
505}
506
507static int locate_mem_hole_callback(struct resource *res, void *arg)
508{
509	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
510	u64 start = res->start, end = res->end;
511	unsigned long sz = end - start + 1;
512
513	/* Returning 0 will take to next memory range */
514
515	/* Don't use memory that will be detected and handled by a driver. */
516	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
517		return 0;
518
519	if (sz < kbuf->memsz)
520		return 0;
521
522	if (end < kbuf->buf_min || start > kbuf->buf_max)
523		return 0;
524
525	/*
526	 * Allocate memory top down with-in ram range. Otherwise bottom up
527	 * allocation.
528	 */
529	if (kbuf->top_down)
530		return locate_mem_hole_top_down(start, end, kbuf);
531	return locate_mem_hole_bottom_up(start, end, kbuf);
532}
533
534#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
535static int kexec_walk_memblock(struct kexec_buf *kbuf,
536			       int (*func)(struct resource *, void *))
537{
538	int ret = 0;
539	u64 i;
540	phys_addr_t mstart, mend;
541	struct resource res = { };
542
543#ifdef CONFIG_CRASH_DUMP
544	if (kbuf->image->type == KEXEC_TYPE_CRASH)
545		return func(&crashk_res, kbuf);
546#endif
547
548	/*
549	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
550	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
551	 * locate_mem_hole_callback().
552	 */
553	if (kbuf->top_down) {
554		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
555						&mstart, &mend, NULL) {
556			/*
557			 * In memblock, end points to the first byte after the
558			 * range while in kexec, end points to the last byte
559			 * in the range.
560			 */
561			res.start = mstart;
562			res.end = mend - 1;
563			ret = func(&res, kbuf);
564			if (ret)
565				break;
566		}
567	} else {
568		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
569					&mstart, &mend, NULL) {
570			/*
571			 * In memblock, end points to the first byte after the
572			 * range while in kexec, end points to the last byte
573			 * in the range.
574			 */
575			res.start = mstart;
576			res.end = mend - 1;
577			ret = func(&res, kbuf);
578			if (ret)
579				break;
580		}
581	}
582
583	return ret;
584}
585#else
586static int kexec_walk_memblock(struct kexec_buf *kbuf,
587			       int (*func)(struct resource *, void *))
588{
589	return 0;
590}
591#endif
592
593/**
594 * kexec_walk_resources - call func(data) on free memory regions
595 * @kbuf:	Context info for the search. Also passed to @func.
596 * @func:	Function to call for each memory region.
597 *
598 * Return: The memory walk will stop when func returns a non-zero value
599 * and that value will be returned. If all free regions are visited without
600 * func returning non-zero, then zero will be returned.
601 */
602static int kexec_walk_resources(struct kexec_buf *kbuf,
603				int (*func)(struct resource *, void *))
604{
605#ifdef CONFIG_CRASH_DUMP
606	if (kbuf->image->type == KEXEC_TYPE_CRASH)
607		return walk_iomem_res_desc(crashk_res.desc,
608					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
609					   crashk_res.start, crashk_res.end,
610					   kbuf, func);
611#endif
612	if (kbuf->top_down)
613		return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
614	else
615		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
616}
617
618/**
619 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
620 * @kbuf:	Parameters for the memory search.
621 *
622 * On success, kbuf->mem will have the start address of the memory region found.
623 *
624 * Return: 0 on success, negative errno on error.
625 */
626int kexec_locate_mem_hole(struct kexec_buf *kbuf)
627{
628	int ret;
629
630	/* Arch knows where to place */
631	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
632		return 0;
633
634	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
635		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
636	else
637		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
638
639	return ret == 1 ? 0 : -EADDRNOTAVAIL;
640}
641
642/**
643 * kexec_add_buffer - place a buffer in a kexec segment
644 * @kbuf:	Buffer contents and memory parameters.
645 *
646 * This function assumes that kexec_lock is held.
647 * On successful return, @kbuf->mem will have the physical address of
648 * the buffer in memory.
649 *
650 * Return: 0 on success, negative errno on error.
651 */
652int kexec_add_buffer(struct kexec_buf *kbuf)
653{
654	struct kexec_segment *ksegment;
655	int ret;
656
657	/* Currently adding segment this way is allowed only in file mode */
658	if (!kbuf->image->file_mode)
659		return -EINVAL;
660
661	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
662		return -EINVAL;
663
664	/*
665	 * Make sure we are not trying to add buffer after allocating
666	 * control pages. All segments need to be placed first before
667	 * any control pages are allocated. As control page allocation
668	 * logic goes through list of segments to make sure there are
669	 * no destination overlaps.
670	 */
671	if (!list_empty(&kbuf->image->control_pages)) {
672		WARN_ON(1);
673		return -EINVAL;
674	}
675
676	/* Ensure minimum alignment needed for segments. */
677	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
678	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
679
680	/* Walk the RAM ranges and allocate a suitable range for the buffer */
681	ret = arch_kexec_locate_mem_hole(kbuf);
682	if (ret)
683		return ret;
684
685	/* Found a suitable memory range */
686	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
687	ksegment->kbuf = kbuf->buffer;
688	ksegment->bufsz = kbuf->bufsz;
689	ksegment->mem = kbuf->mem;
690	ksegment->memsz = kbuf->memsz;
691	kbuf->image->nr_segments++;
692	return 0;
693}
694
695/* Calculate and store the digest of segments */
696static int kexec_calculate_store_digests(struct kimage *image)
697{
698	struct crypto_shash *tfm;
699	struct shash_desc *desc;
700	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
701	size_t desc_size, nullsz;
702	char *digest;
703	void *zero_buf;
704	struct kexec_sha_region *sha_regions;
705	struct purgatory_info *pi = &image->purgatory_info;
706
707	if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
708		return 0;
709
710	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
711	zero_buf_sz = PAGE_SIZE;
712
713	tfm = crypto_alloc_shash("sha256", 0, 0);
714	if (IS_ERR(tfm)) {
715		ret = PTR_ERR(tfm);
716		goto out;
717	}
718
719	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
720	desc = kzalloc(desc_size, GFP_KERNEL);
721	if (!desc) {
722		ret = -ENOMEM;
723		goto out_free_tfm;
724	}
725
726	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
727	sha_regions = vzalloc(sha_region_sz);
728	if (!sha_regions) {
729		ret = -ENOMEM;
730		goto out_free_desc;
731	}
732
733	desc->tfm   = tfm;
734
735	ret = crypto_shash_init(desc);
736	if (ret < 0)
737		goto out_free_sha_regions;
738
739	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
740	if (!digest) {
741		ret = -ENOMEM;
742		goto out_free_sha_regions;
743	}
744
745	for (j = i = 0; i < image->nr_segments; i++) {
746		struct kexec_segment *ksegment;
747
748#ifdef CONFIG_CRASH_HOTPLUG
749		/* Exclude elfcorehdr segment to allow future changes via hotplug */
750		if (j == image->elfcorehdr_index)
751			continue;
752#endif
753
754		ksegment = &image->segment[i];
755		/*
756		 * Skip purgatory as it will be modified once we put digest
757		 * info in purgatory.
758		 */
759		if (ksegment->kbuf == pi->purgatory_buf)
760			continue;
761
762		ret = crypto_shash_update(desc, ksegment->kbuf,
763					  ksegment->bufsz);
764		if (ret)
765			break;
766
767		/*
768		 * Assume rest of the buffer is filled with zero and
769		 * update digest accordingly.
770		 */
771		nullsz = ksegment->memsz - ksegment->bufsz;
772		while (nullsz) {
773			unsigned long bytes = nullsz;
774
775			if (bytes > zero_buf_sz)
776				bytes = zero_buf_sz;
777			ret = crypto_shash_update(desc, zero_buf, bytes);
778			if (ret)
779				break;
780			nullsz -= bytes;
781		}
782
783		if (ret)
784			break;
785
786		sha_regions[j].start = ksegment->mem;
787		sha_regions[j].len = ksegment->memsz;
788		j++;
789	}
790
791	if (!ret) {
792		ret = crypto_shash_final(desc, digest);
793		if (ret)
794			goto out_free_digest;
795		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
796						     sha_regions, sha_region_sz, 0);
797		if (ret)
798			goto out_free_digest;
799
800		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
801						     digest, SHA256_DIGEST_SIZE, 0);
802		if (ret)
803			goto out_free_digest;
804	}
805
806out_free_digest:
807	kfree(digest);
808out_free_sha_regions:
809	vfree(sha_regions);
810out_free_desc:
811	kfree(desc);
812out_free_tfm:
813	kfree(tfm);
814out:
815	return ret;
816}
817
818#ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
819/*
820 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
821 * @pi:		Purgatory to be loaded.
822 * @kbuf:	Buffer to setup.
823 *
824 * Allocates the memory needed for the buffer. Caller is responsible to free
825 * the memory after use.
826 *
827 * Return: 0 on success, negative errno on error.
828 */
829static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
830				      struct kexec_buf *kbuf)
831{
832	const Elf_Shdr *sechdrs;
833	unsigned long bss_align;
834	unsigned long bss_sz;
835	unsigned long align;
836	int i, ret;
837
838	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
839	kbuf->buf_align = bss_align = 1;
840	kbuf->bufsz = bss_sz = 0;
841
842	for (i = 0; i < pi->ehdr->e_shnum; i++) {
843		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
844			continue;
845
846		align = sechdrs[i].sh_addralign;
847		if (sechdrs[i].sh_type != SHT_NOBITS) {
848			if (kbuf->buf_align < align)
849				kbuf->buf_align = align;
850			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
851			kbuf->bufsz += sechdrs[i].sh_size;
852		} else {
853			if (bss_align < align)
854				bss_align = align;
855			bss_sz = ALIGN(bss_sz, align);
856			bss_sz += sechdrs[i].sh_size;
857		}
858	}
859	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
860	kbuf->memsz = kbuf->bufsz + bss_sz;
861	if (kbuf->buf_align < bss_align)
862		kbuf->buf_align = bss_align;
863
864	kbuf->buffer = vzalloc(kbuf->bufsz);
865	if (!kbuf->buffer)
866		return -ENOMEM;
867	pi->purgatory_buf = kbuf->buffer;
868
869	ret = kexec_add_buffer(kbuf);
870	if (ret)
871		goto out;
872
873	return 0;
874out:
875	vfree(pi->purgatory_buf);
876	pi->purgatory_buf = NULL;
877	return ret;
878}
879
880/*
881 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
882 * @pi:		Purgatory to be loaded.
883 * @kbuf:	Buffer prepared to store purgatory.
884 *
885 * Allocates the memory needed for the buffer. Caller is responsible to free
886 * the memory after use.
887 *
888 * Return: 0 on success, negative errno on error.
889 */
890static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
891					 struct kexec_buf *kbuf)
892{
893	unsigned long bss_addr;
894	unsigned long offset;
895	size_t sechdrs_size;
896	Elf_Shdr *sechdrs;
897	int i;
898
899	/*
900	 * The section headers in kexec_purgatory are read-only. In order to
901	 * have them modifiable make a temporary copy.
902	 */
903	sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
904	sechdrs = vzalloc(sechdrs_size);
905	if (!sechdrs)
906		return -ENOMEM;
907	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
908	pi->sechdrs = sechdrs;
909
910	offset = 0;
911	bss_addr = kbuf->mem + kbuf->bufsz;
912	kbuf->image->start = pi->ehdr->e_entry;
913
914	for (i = 0; i < pi->ehdr->e_shnum; i++) {
915		unsigned long align;
916		void *src, *dst;
917
918		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
919			continue;
920
921		align = sechdrs[i].sh_addralign;
922		if (sechdrs[i].sh_type == SHT_NOBITS) {
923			bss_addr = ALIGN(bss_addr, align);
924			sechdrs[i].sh_addr = bss_addr;
925			bss_addr += sechdrs[i].sh_size;
926			continue;
927		}
928
929		offset = ALIGN(offset, align);
930
931		/*
932		 * Check if the segment contains the entry point, if so,
933		 * calculate the value of image->start based on it.
934		 * If the compiler has produced more than one .text section
935		 * (Eg: .text.hot), they are generally after the main .text
936		 * section, and they shall not be used to calculate
937		 * image->start. So do not re-calculate image->start if it
938		 * is not set to the initial value, and warn the user so they
939		 * have a chance to fix their purgatory's linker script.
940		 */
941		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
942		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
943		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
944					 + sechdrs[i].sh_size) &&
945		    !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
946			kbuf->image->start -= sechdrs[i].sh_addr;
947			kbuf->image->start += kbuf->mem + offset;
948		}
949
950		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
951		dst = pi->purgatory_buf + offset;
952		memcpy(dst, src, sechdrs[i].sh_size);
953
954		sechdrs[i].sh_addr = kbuf->mem + offset;
955		sechdrs[i].sh_offset = offset;
956		offset += sechdrs[i].sh_size;
957	}
958
959	return 0;
960}
961
962static int kexec_apply_relocations(struct kimage *image)
963{
964	int i, ret;
965	struct purgatory_info *pi = &image->purgatory_info;
966	const Elf_Shdr *sechdrs;
967
968	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
969
970	for (i = 0; i < pi->ehdr->e_shnum; i++) {
971		const Elf_Shdr *relsec;
972		const Elf_Shdr *symtab;
973		Elf_Shdr *section;
974
975		relsec = sechdrs + i;
976
977		if (relsec->sh_type != SHT_RELA &&
978		    relsec->sh_type != SHT_REL)
979			continue;
980
981		/*
982		 * For section of type SHT_RELA/SHT_REL,
983		 * ->sh_link contains section header index of associated
984		 * symbol table. And ->sh_info contains section header
985		 * index of section to which relocations apply.
986		 */
987		if (relsec->sh_info >= pi->ehdr->e_shnum ||
988		    relsec->sh_link >= pi->ehdr->e_shnum)
989			return -ENOEXEC;
990
991		section = pi->sechdrs + relsec->sh_info;
992		symtab = sechdrs + relsec->sh_link;
993
994		if (!(section->sh_flags & SHF_ALLOC))
995			continue;
996
997		/*
998		 * symtab->sh_link contain section header index of associated
999		 * string table.
1000		 */
1001		if (symtab->sh_link >= pi->ehdr->e_shnum)
1002			/* Invalid section number? */
1003			continue;
1004
1005		/*
1006		 * Respective architecture needs to provide support for applying
1007		 * relocations of type SHT_RELA/SHT_REL.
1008		 */
1009		if (relsec->sh_type == SHT_RELA)
1010			ret = arch_kexec_apply_relocations_add(pi, section,
1011							       relsec, symtab);
1012		else if (relsec->sh_type == SHT_REL)
1013			ret = arch_kexec_apply_relocations(pi, section,
1014							   relsec, symtab);
1015		if (ret)
1016			return ret;
1017	}
1018
1019	return 0;
1020}
1021
1022/*
1023 * kexec_load_purgatory - Load and relocate the purgatory object.
1024 * @image:	Image to add the purgatory to.
1025 * @kbuf:	Memory parameters to use.
1026 *
1027 * Allocates the memory needed for image->purgatory_info.sechdrs and
1028 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1029 * to free the memory after use.
1030 *
1031 * Return: 0 on success, negative errno on error.
1032 */
1033int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1034{
1035	struct purgatory_info *pi = &image->purgatory_info;
1036	int ret;
1037
1038	if (kexec_purgatory_size <= 0)
1039		return -EINVAL;
1040
1041	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1042
1043	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1044	if (ret)
1045		return ret;
1046
1047	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1048	if (ret)
1049		goto out_free_kbuf;
1050
1051	ret = kexec_apply_relocations(image);
1052	if (ret)
1053		goto out;
1054
1055	return 0;
1056out:
1057	vfree(pi->sechdrs);
1058	pi->sechdrs = NULL;
1059out_free_kbuf:
1060	vfree(pi->purgatory_buf);
1061	pi->purgatory_buf = NULL;
1062	return ret;
1063}
1064
1065/*
1066 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1067 * @pi:		Purgatory to search in.
1068 * @name:	Name of the symbol.
1069 *
1070 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1071 */
1072static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1073						  const char *name)
1074{
1075	const Elf_Shdr *sechdrs;
1076	const Elf_Ehdr *ehdr;
1077	const Elf_Sym *syms;
1078	const char *strtab;
1079	int i, k;
1080
1081	if (!pi->ehdr)
1082		return NULL;
1083
1084	ehdr = pi->ehdr;
1085	sechdrs = (void *)ehdr + ehdr->e_shoff;
1086
1087	for (i = 0; i < ehdr->e_shnum; i++) {
1088		if (sechdrs[i].sh_type != SHT_SYMTAB)
1089			continue;
1090
1091		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1092			/* Invalid strtab section number */
1093			continue;
1094		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1095		syms = (void *)ehdr + sechdrs[i].sh_offset;
1096
1097		/* Go through symbols for a match */
1098		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1099			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1100				continue;
1101
1102			if (strcmp(strtab + syms[k].st_name, name) != 0)
1103				continue;
1104
1105			if (syms[k].st_shndx == SHN_UNDEF ||
1106			    syms[k].st_shndx >= ehdr->e_shnum) {
1107				pr_debug("Symbol: %s has bad section index %d.\n",
1108						name, syms[k].st_shndx);
1109				return NULL;
1110			}
1111
1112			/* Found the symbol we are looking for */
1113			return &syms[k];
1114		}
1115	}
1116
1117	return NULL;
1118}
1119
1120void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1121{
1122	struct purgatory_info *pi = &image->purgatory_info;
1123	const Elf_Sym *sym;
1124	Elf_Shdr *sechdr;
1125
1126	sym = kexec_purgatory_find_symbol(pi, name);
1127	if (!sym)
1128		return ERR_PTR(-EINVAL);
1129
1130	sechdr = &pi->sechdrs[sym->st_shndx];
1131
1132	/*
1133	 * Returns the address where symbol will finally be loaded after
1134	 * kexec_load_segment()
1135	 */
1136	return (void *)(sechdr->sh_addr + sym->st_value);
1137}
1138
1139/*
1140 * Get or set value of a symbol. If "get_value" is true, symbol value is
1141 * returned in buf otherwise symbol value is set based on value in buf.
1142 */
1143int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1144				   void *buf, unsigned int size, bool get_value)
1145{
1146	struct purgatory_info *pi = &image->purgatory_info;
1147	const Elf_Sym *sym;
1148	Elf_Shdr *sec;
1149	char *sym_buf;
1150
1151	sym = kexec_purgatory_find_symbol(pi, name);
1152	if (!sym)
1153		return -EINVAL;
1154
1155	if (sym->st_size != size) {
1156		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1157		       name, (unsigned long)sym->st_size, size);
1158		return -EINVAL;
1159	}
1160
1161	sec = pi->sechdrs + sym->st_shndx;
1162
1163	if (sec->sh_type == SHT_NOBITS) {
1164		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1165		       get_value ? "get" : "set");
1166		return -EINVAL;
1167	}
1168
1169	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1170
1171	if (get_value)
1172		memcpy((void *)buf, sym_buf, size);
1173	else
1174		memcpy((void *)sym_buf, buf, size);
1175
1176	return 0;
1177}
1178#endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
1179