1// SPDX-License-Identifier: GPL-2.0
2// Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org>
3#define pr_fmt(fmt) "irq_timings: " fmt
4
5#include <linux/kernel.h>
6#include <linux/percpu.h>
7#include <linux/slab.h>
8#include <linux/static_key.h>
9#include <linux/init.h>
10#include <linux/interrupt.h>
11#include <linux/idr.h>
12#include <linux/irq.h>
13#include <linux/math64.h>
14#include <linux/log2.h>
15
16#include <trace/events/irq.h>
17
18#include "internals.h"
19
20DEFINE_STATIC_KEY_FALSE(irq_timing_enabled);
21
22DEFINE_PER_CPU(struct irq_timings, irq_timings);
23
24static DEFINE_IDR(irqt_stats);
25
26void irq_timings_enable(void)
27{
28	static_branch_enable(&irq_timing_enabled);
29}
30
31void irq_timings_disable(void)
32{
33	static_branch_disable(&irq_timing_enabled);
34}
35
36/*
37 * The main goal of this algorithm is to predict the next interrupt
38 * occurrence on the current CPU.
39 *
40 * Currently, the interrupt timings are stored in a circular array
41 * buffer every time there is an interrupt, as a tuple: the interrupt
42 * number and the associated timestamp when the event occurred <irq,
43 * timestamp>.
44 *
45 * For every interrupt occurring in a short period of time, we can
46 * measure the elapsed time between the occurrences for the same
47 * interrupt and we end up with a suite of intervals. The experience
48 * showed the interrupts are often coming following a periodic
49 * pattern.
50 *
51 * The objective of the algorithm is to find out this periodic pattern
52 * in a fastest way and use its period to predict the next irq event.
53 *
54 * When the next interrupt event is requested, we are in the situation
55 * where the interrupts are disabled and the circular buffer
56 * containing the timings is filled with the events which happened
57 * after the previous next-interrupt-event request.
58 *
59 * At this point, we read the circular buffer and we fill the irq
60 * related statistics structure. After this step, the circular array
61 * containing the timings is empty because all the values are
62 * dispatched in their corresponding buffers.
63 *
64 * Now for each interrupt, we can predict the next event by using the
65 * suffix array, log interval and exponential moving average
66 *
67 * 1. Suffix array
68 *
69 * Suffix array is an array of all the suffixes of a string. It is
70 * widely used as a data structure for compression, text search, ...
71 * For instance for the word 'banana', the suffixes will be: 'banana'
72 * 'anana' 'nana' 'ana' 'na' 'a'
73 *
74 * Usually, the suffix array is sorted but for our purpose it is
75 * not necessary and won't provide any improvement in the context of
76 * the solved problem where we clearly define the boundaries of the
77 * search by a max period and min period.
78 *
79 * The suffix array will build a suite of intervals of different
80 * length and will look for the repetition of each suite. If the suite
81 * is repeating then we have the period because it is the length of
82 * the suite whatever its position in the buffer.
83 *
84 * 2. Log interval
85 *
86 * We saw the irq timings allow to compute the interval of the
87 * occurrences for a specific interrupt. We can reasonably assume the
88 * longer is the interval, the higher is the error for the next event
89 * and we can consider storing those interval values into an array
90 * where each slot in the array correspond to an interval at the power
91 * of 2 of the index. For example, index 12 will contain values
92 * between 2^11 and 2^12.
93 *
94 * At the end we have an array of values where at each index defines a
95 * [2^index - 1, 2 ^ index] interval values allowing to store a large
96 * number of values inside a small array.
97 *
98 * For example, if we have the value 1123, then we store it at
99 * ilog2(1123) = 10 index value.
100 *
101 * Storing those value at the specific index is done by computing an
102 * exponential moving average for this specific slot. For instance,
103 * for values 1800, 1123, 1453, ... fall under the same slot (10) and
104 * the exponential moving average is computed every time a new value
105 * is stored at this slot.
106 *
107 * 3. Exponential Moving Average
108 *
109 * The EMA is largely used to track a signal for stocks or as a low
110 * pass filter. The magic of the formula, is it is very simple and the
111 * reactivity of the average can be tuned with the factors called
112 * alpha.
113 *
114 * The higher the alphas are, the faster the average respond to the
115 * signal change. In our case, if a slot in the array is a big
116 * interval, we can have numbers with a big difference between
117 * them. The impact of those differences in the average computation
118 * can be tuned by changing the alpha value.
119 *
120 *
121 *  -- The algorithm --
122 *
123 * We saw the different processing above, now let's see how they are
124 * used together.
125 *
126 * For each interrupt:
127 *	For each interval:
128 *		Compute the index = ilog2(interval)
129 *		Compute a new_ema(buffer[index], interval)
130 *		Store the index in a circular buffer
131 *
132 *	Compute the suffix array of the indexes
133 *
134 *	For each suffix:
135 *		If the suffix is reverse-found 3 times
136 *			Return suffix
137 *
138 *	Return Not found
139 *
140 * However we can not have endless suffix array to be build, it won't
141 * make sense and it will add an extra overhead, so we can restrict
142 * this to a maximum suffix length of 5 and a minimum suffix length of
143 * 2. The experience showed 5 is the majority of the maximum pattern
144 * period found for different devices.
145 *
146 * The result is a pattern finding less than 1us for an interrupt.
147 *
148 * Example based on real values:
149 *
150 * Example 1 : MMC write/read interrupt interval:
151 *
152 *	223947, 1240, 1384, 1386, 1386,
153 *	217416, 1236, 1384, 1386, 1387,
154 *	214719, 1241, 1386, 1387, 1384,
155 *	213696, 1234, 1384, 1386, 1388,
156 *	219904, 1240, 1385, 1389, 1385,
157 *	212240, 1240, 1386, 1386, 1386,
158 *	214415, 1236, 1384, 1386, 1387,
159 *	214276, 1234, 1384, 1388, ?
160 *
161 * For each element, apply ilog2(value)
162 *
163 *	15, 8, 8, 8, 8,
164 *	15, 8, 8, 8, 8,
165 *	15, 8, 8, 8, 8,
166 *	15, 8, 8, 8, 8,
167 *	15, 8, 8, 8, 8,
168 *	15, 8, 8, 8, 8,
169 *	15, 8, 8, 8, 8,
170 *	15, 8, 8, 8, ?
171 *
172 * Max period of 5, we take the last (max_period * 3) 15 elements as
173 * we can be confident if the pattern repeats itself three times it is
174 * a repeating pattern.
175 *
176 *	             8,
177 *	15, 8, 8, 8, 8,
178 *	15, 8, 8, 8, 8,
179 *	15, 8, 8, 8, ?
180 *
181 * Suffixes are:
182 *
183 *  1) 8, 15, 8, 8, 8  <- max period
184 *  2) 8, 15, 8, 8
185 *  3) 8, 15, 8
186 *  4) 8, 15           <- min period
187 *
188 * From there we search the repeating pattern for each suffix.
189 *
190 * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8
191 *         |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
192 *         8, 15, 8, 8, 8  |   |  |  |  |  |   |  |  |  |
193 *                         8, 15, 8, 8, 8  |   |  |  |  |
194 *                                         8, 15, 8, 8, 8
195 *
196 * When moving the suffix, we found exactly 3 matches.
197 *
198 * The first suffix with period 5 is repeating.
199 *
200 * The next event is (3 * max_period) % suffix_period
201 *
202 * In this example, the result 0, so the next event is suffix[0] => 8
203 *
204 * However, 8 is the index in the array of exponential moving average
205 * which was calculated on the fly when storing the values, so the
206 * interval is ema[8] = 1366
207 *
208 *
209 * Example 2:
210 *
211 *	4, 3, 5, 100,
212 *	3, 3, 5, 117,
213 *	4, 4, 5, 112,
214 *	4, 3, 4, 110,
215 *	3, 5, 3, 117,
216 *	4, 4, 5, 112,
217 *	4, 3, 4, 110,
218 *	3, 4, 5, 112,
219 *	4, 3, 4, 110
220 *
221 * ilog2
222 *
223 *	0, 0, 0, 4,
224 *	0, 0, 0, 4,
225 *	0, 0, 0, 4,
226 *	0, 0, 0, 4,
227 *	0, 0, 0, 4,
228 *	0, 0, 0, 4,
229 *	0, 0, 0, 4,
230 *	0, 0, 0, 4,
231 *	0, 0, 0, 4
232 *
233 * Max period 5:
234 *	   0, 0, 4,
235 *	0, 0, 0, 4,
236 *	0, 0, 0, 4,
237 *	0, 0, 0, 4
238 *
239 * Suffixes:
240 *
241 *  1) 0, 0, 4, 0, 0
242 *  2) 0, 0, 4, 0
243 *  3) 0, 0, 4
244 *  4) 0, 0
245 *
246 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
247 *         |  |  |  |  |  |  X
248 *         0, 0, 4, 0, 0, |  X
249 *                        0, 0
250 *
251 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
252 *         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
253 *         0, 0, 4, 0, |  |  |  |  |  |  |  |  |  |  |
254 *                     0, 0, 4, 0, |  |  |  |  |  |  |
255 *                                 0, 0, 4, 0, |  |  |
256 *                                             0  0  4
257 *
258 * Pattern is found 3 times, the remaining is 1 which results from
259 * (max_period * 3) % suffix_period. This value is the index in the
260 * suffix arrays. The suffix array for a period 4 has the value 4
261 * at index 1.
262 */
263#define EMA_ALPHA_VAL		64
264#define EMA_ALPHA_SHIFT		7
265
266#define PREDICTION_PERIOD_MIN	3
267#define PREDICTION_PERIOD_MAX	5
268#define PREDICTION_FACTOR	4
269#define PREDICTION_MAX		10 /* 2 ^ PREDICTION_MAX useconds */
270#define PREDICTION_BUFFER_SIZE	16 /* slots for EMAs, hardly more than 16 */
271
272/*
273 * Number of elements in the circular buffer: If it happens it was
274 * flushed before, then the number of elements could be smaller than
275 * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is
276 * used as we wrapped. The index begins from zero when we did not
277 * wrap. That could be done in a nicer way with the proper circular
278 * array structure type but with the cost of extra computation in the
279 * interrupt handler hot path. We choose efficiency.
280 */
281#define for_each_irqts(i, irqts)					\
282	for (i = irqts->count < IRQ_TIMINGS_SIZE ?			\
283		     0 : irqts->count & IRQ_TIMINGS_MASK,		\
284		     irqts->count = min(IRQ_TIMINGS_SIZE,		\
285					irqts->count);			\
286	     irqts->count > 0; irqts->count--,				\
287		     i = (i + 1) & IRQ_TIMINGS_MASK)
288
289struct irqt_stat {
290	u64	last_ts;
291	u64	ema_time[PREDICTION_BUFFER_SIZE];
292	int	timings[IRQ_TIMINGS_SIZE];
293	int	circ_timings[IRQ_TIMINGS_SIZE];
294	int	count;
295};
296
297/*
298 * Exponential moving average computation
299 */
300static u64 irq_timings_ema_new(u64 value, u64 ema_old)
301{
302	s64 diff;
303
304	if (unlikely(!ema_old))
305		return value;
306
307	diff = (value - ema_old) * EMA_ALPHA_VAL;
308	/*
309	 * We can use a s64 type variable to be added with the u64
310	 * ema_old variable as this one will never have its topmost
311	 * bit set, it will be always smaller than 2^63 nanosec
312	 * interrupt interval (292 years).
313	 */
314	return ema_old + (diff >> EMA_ALPHA_SHIFT);
315}
316
317static int irq_timings_next_event_index(int *buffer, size_t len, int period_max)
318{
319	int period;
320
321	/*
322	 * Move the beginning pointer to the end minus the max period x 3.
323	 * We are at the point we can begin searching the pattern
324	 */
325	buffer = &buffer[len - (period_max * 3)];
326
327	/* Adjust the length to the maximum allowed period x 3 */
328	len = period_max * 3;
329
330	/*
331	 * The buffer contains the suite of intervals, in a ilog2
332	 * basis, we are looking for a repetition. We point the
333	 * beginning of the search three times the length of the
334	 * period beginning at the end of the buffer. We do that for
335	 * each suffix.
336	 */
337	for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) {
338
339		/*
340		 * The first comparison always succeed because the
341		 * suffix is deduced from the first n-period bytes of
342		 * the buffer and we compare the initial suffix with
343		 * itself, so we can skip the first iteration.
344		 */
345		int idx = period;
346		size_t size = period;
347
348		/*
349		 * We look if the suite with period 'i' repeat
350		 * itself. If it is truncated at the end, as it
351		 * repeats we can use the period to find out the next
352		 * element with the modulo.
353		 */
354		while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) {
355
356			/*
357			 * Move the index in a period basis
358			 */
359			idx += size;
360
361			/*
362			 * If this condition is reached, all previous
363			 * memcmp were successful, so the period is
364			 * found.
365			 */
366			if (idx == len)
367				return buffer[len % period];
368
369			/*
370			 * If the remaining elements to compare are
371			 * smaller than the period, readjust the size
372			 * of the comparison for the last iteration.
373			 */
374			if (len - idx < period)
375				size = len - idx;
376		}
377	}
378
379	return -1;
380}
381
382static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now)
383{
384	int index, i, period_max, count, start, min = INT_MAX;
385
386	if ((now - irqs->last_ts) >= NSEC_PER_SEC) {
387		irqs->count = irqs->last_ts = 0;
388		return U64_MAX;
389	}
390
391	/*
392	 * As we want to find three times the repetition, we need a
393	 * number of intervals greater or equal to three times the
394	 * maximum period, otherwise we truncate the max period.
395	 */
396	period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ?
397		PREDICTION_PERIOD_MAX : irqs->count / 3;
398
399	/*
400	 * If we don't have enough irq timings for this prediction,
401	 * just bail out.
402	 */
403	if (period_max <= PREDICTION_PERIOD_MIN)
404		return U64_MAX;
405
406	/*
407	 * 'count' will depends if the circular buffer wrapped or not
408	 */
409	count = irqs->count < IRQ_TIMINGS_SIZE ?
410		irqs->count : IRQ_TIMINGS_SIZE;
411
412	start = irqs->count < IRQ_TIMINGS_SIZE ?
413		0 : (irqs->count & IRQ_TIMINGS_MASK);
414
415	/*
416	 * Copy the content of the circular buffer into another buffer
417	 * in order to linearize the buffer instead of dealing with
418	 * wrapping indexes and shifted array which will be prone to
419	 * error and extremely difficult to debug.
420	 */
421	for (i = 0; i < count; i++) {
422		int index = (start + i) & IRQ_TIMINGS_MASK;
423
424		irqs->timings[i] = irqs->circ_timings[index];
425		min = min_t(int, irqs->timings[i], min);
426	}
427
428	index = irq_timings_next_event_index(irqs->timings, count, period_max);
429	if (index < 0)
430		return irqs->last_ts + irqs->ema_time[min];
431
432	return irqs->last_ts + irqs->ema_time[index];
433}
434
435static __always_inline int irq_timings_interval_index(u64 interval)
436{
437	/*
438	 * The PREDICTION_FACTOR increase the interval size for the
439	 * array of exponential average.
440	 */
441	u64 interval_us = (interval >> 10) / PREDICTION_FACTOR;
442
443	return likely(interval_us) ? ilog2(interval_us) : 0;
444}
445
446static __always_inline void __irq_timings_store(int irq, struct irqt_stat *irqs,
447						u64 interval)
448{
449	int index;
450
451	/*
452	 * Get the index in the ema table for this interrupt.
453	 */
454	index = irq_timings_interval_index(interval);
455
456	if (index > PREDICTION_BUFFER_SIZE - 1) {
457		irqs->count = 0;
458		return;
459	}
460
461	/*
462	 * Store the index as an element of the pattern in another
463	 * circular array.
464	 */
465	irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index;
466
467	irqs->ema_time[index] = irq_timings_ema_new(interval,
468						    irqs->ema_time[index]);
469
470	irqs->count++;
471}
472
473static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts)
474{
475	u64 old_ts = irqs->last_ts;
476	u64 interval;
477
478	/*
479	 * The timestamps are absolute time values, we need to compute
480	 * the timing interval between two interrupts.
481	 */
482	irqs->last_ts = ts;
483
484	/*
485	 * The interval type is u64 in order to deal with the same
486	 * type in our computation, that prevent mindfuck issues with
487	 * overflow, sign and division.
488	 */
489	interval = ts - old_ts;
490
491	/*
492	 * The interrupt triggered more than one second apart, that
493	 * ends the sequence as predictable for our purpose. In this
494	 * case, assume we have the beginning of a sequence and the
495	 * timestamp is the first value. As it is impossible to
496	 * predict anything at this point, return.
497	 *
498	 * Note the first timestamp of the sequence will always fall
499	 * in this test because the old_ts is zero. That is what we
500	 * want as we need another timestamp to compute an interval.
501	 */
502	if (interval >= NSEC_PER_SEC) {
503		irqs->count = 0;
504		return;
505	}
506
507	__irq_timings_store(irq, irqs, interval);
508}
509
510/**
511 * irq_timings_next_event - Return when the next event is supposed to arrive
512 *
513 * During the last busy cycle, the number of interrupts is incremented
514 * and stored in the irq_timings structure. This information is
515 * necessary to:
516 *
517 * - know if the index in the table wrapped up:
518 *
519 *      If more than the array size interrupts happened during the
520 *      last busy/idle cycle, the index wrapped up and we have to
521 *      begin with the next element in the array which is the last one
522 *      in the sequence, otherwise it is at the index 0.
523 *
524 * - have an indication of the interrupts activity on this CPU
525 *   (eg. irq/sec)
526 *
527 * The values are 'consumed' after inserting in the statistical model,
528 * thus the count is reinitialized.
529 *
530 * The array of values **must** be browsed in the time direction, the
531 * timestamp must increase between an element and the next one.
532 *
533 * Returns a nanosec time based estimation of the earliest interrupt,
534 * U64_MAX otherwise.
535 */
536u64 irq_timings_next_event(u64 now)
537{
538	struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
539	struct irqt_stat *irqs;
540	struct irqt_stat __percpu *s;
541	u64 ts, next_evt = U64_MAX;
542	int i, irq = 0;
543
544	/*
545	 * This function must be called with the local irq disabled in
546	 * order to prevent the timings circular buffer to be updated
547	 * while we are reading it.
548	 */
549	lockdep_assert_irqs_disabled();
550
551	if (!irqts->count)
552		return next_evt;
553
554	/*
555	 * Number of elements in the circular buffer: If it happens it
556	 * was flushed before, then the number of elements could be
557	 * smaller than IRQ_TIMINGS_SIZE, so the count is used,
558	 * otherwise the array size is used as we wrapped. The index
559	 * begins from zero when we did not wrap. That could be done
560	 * in a nicer way with the proper circular array structure
561	 * type but with the cost of extra computation in the
562	 * interrupt handler hot path. We choose efficiency.
563	 *
564	 * Inject measured irq/timestamp to the pattern prediction
565	 * model while decrementing the counter because we consume the
566	 * data from our circular buffer.
567	 */
568	for_each_irqts(i, irqts) {
569		irq = irq_timing_decode(irqts->values[i], &ts);
570		s = idr_find(&irqt_stats, irq);
571		if (s)
572			irq_timings_store(irq, this_cpu_ptr(s), ts);
573	}
574
575	/*
576	 * Look in the list of interrupts' statistics, the earliest
577	 * next event.
578	 */
579	idr_for_each_entry(&irqt_stats, s, i) {
580
581		irqs = this_cpu_ptr(s);
582
583		ts = __irq_timings_next_event(irqs, i, now);
584		if (ts <= now)
585			return now;
586
587		if (ts < next_evt)
588			next_evt = ts;
589	}
590
591	return next_evt;
592}
593
594void irq_timings_free(int irq)
595{
596	struct irqt_stat __percpu *s;
597
598	s = idr_find(&irqt_stats, irq);
599	if (s) {
600		free_percpu(s);
601		idr_remove(&irqt_stats, irq);
602	}
603}
604
605int irq_timings_alloc(int irq)
606{
607	struct irqt_stat __percpu *s;
608	int id;
609
610	/*
611	 * Some platforms can have the same private interrupt per cpu,
612	 * so this function may be called several times with the
613	 * same interrupt number. Just bail out in case the per cpu
614	 * stat structure is already allocated.
615	 */
616	s = idr_find(&irqt_stats, irq);
617	if (s)
618		return 0;
619
620	s = alloc_percpu(*s);
621	if (!s)
622		return -ENOMEM;
623
624	idr_preload(GFP_KERNEL);
625	id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT);
626	idr_preload_end();
627
628	if (id < 0) {
629		free_percpu(s);
630		return id;
631	}
632
633	return 0;
634}
635
636#ifdef CONFIG_TEST_IRQ_TIMINGS
637struct timings_intervals {
638	u64 *intervals;
639	size_t count;
640};
641
642/*
643 * Intervals are given in nanosecond base
644 */
645static u64 intervals0[] __initdata = {
646	10000, 50000, 200000, 500000,
647	10000, 50000, 200000, 500000,
648	10000, 50000, 200000, 500000,
649	10000, 50000, 200000, 500000,
650	10000, 50000, 200000, 500000,
651	10000, 50000, 200000, 500000,
652	10000, 50000, 200000, 500000,
653	10000, 50000, 200000, 500000,
654	10000, 50000, 200000,
655};
656
657static u64 intervals1[] __initdata = {
658	223947000, 1240000, 1384000, 1386000, 1386000,
659	217416000, 1236000, 1384000, 1386000, 1387000,
660	214719000, 1241000, 1386000, 1387000, 1384000,
661	213696000, 1234000, 1384000, 1386000, 1388000,
662	219904000, 1240000, 1385000, 1389000, 1385000,
663	212240000, 1240000, 1386000, 1386000, 1386000,
664	214415000, 1236000, 1384000, 1386000, 1387000,
665	214276000, 1234000,
666};
667
668static u64 intervals2[] __initdata = {
669	4000, 3000, 5000, 100000,
670	3000, 3000, 5000, 117000,
671	4000, 4000, 5000, 112000,
672	4000, 3000, 4000, 110000,
673	3000, 5000, 3000, 117000,
674	4000, 4000, 5000, 112000,
675	4000, 3000, 4000, 110000,
676	3000, 4000, 5000, 112000,
677	4000,
678};
679
680static u64 intervals3[] __initdata = {
681	1385000, 212240000, 1240000,
682	1386000, 214415000, 1236000,
683	1384000, 214276000, 1234000,
684	1386000, 214415000, 1236000,
685	1385000, 212240000, 1240000,
686	1386000, 214415000, 1236000,
687	1384000, 214276000, 1234000,
688	1386000, 214415000, 1236000,
689	1385000, 212240000, 1240000,
690};
691
692static u64 intervals4[] __initdata = {
693	10000, 50000, 10000, 50000,
694	10000, 50000, 10000, 50000,
695	10000, 50000, 10000, 50000,
696	10000, 50000, 10000, 50000,
697	10000, 50000, 10000, 50000,
698	10000, 50000, 10000, 50000,
699	10000, 50000, 10000, 50000,
700	10000, 50000, 10000, 50000,
701	10000,
702};
703
704static struct timings_intervals tis[] __initdata = {
705	{ intervals0, ARRAY_SIZE(intervals0) },
706	{ intervals1, ARRAY_SIZE(intervals1) },
707	{ intervals2, ARRAY_SIZE(intervals2) },
708	{ intervals3, ARRAY_SIZE(intervals3) },
709	{ intervals4, ARRAY_SIZE(intervals4) },
710};
711
712static int __init irq_timings_test_next_index(struct timings_intervals *ti)
713{
714	int _buffer[IRQ_TIMINGS_SIZE];
715	int buffer[IRQ_TIMINGS_SIZE];
716	int index, start, i, count, period_max;
717
718	count = ti->count - 1;
719
720	period_max = count > (3 * PREDICTION_PERIOD_MAX) ?
721		PREDICTION_PERIOD_MAX : count / 3;
722
723	/*
724	 * Inject all values except the last one which will be used
725	 * to compare with the next index result.
726	 */
727	pr_debug("index suite: ");
728
729	for (i = 0; i < count; i++) {
730		index = irq_timings_interval_index(ti->intervals[i]);
731		_buffer[i & IRQ_TIMINGS_MASK] = index;
732		pr_cont("%d ", index);
733	}
734
735	start = count < IRQ_TIMINGS_SIZE ? 0 :
736		count & IRQ_TIMINGS_MASK;
737
738	count = min_t(int, count, IRQ_TIMINGS_SIZE);
739
740	for (i = 0; i < count; i++) {
741		int index = (start + i) & IRQ_TIMINGS_MASK;
742		buffer[i] = _buffer[index];
743	}
744
745	index = irq_timings_next_event_index(buffer, count, period_max);
746	i = irq_timings_interval_index(ti->intervals[ti->count - 1]);
747
748	if (index != i) {
749		pr_err("Expected (%d) and computed (%d) next indexes differ\n",
750		       i, index);
751		return -EINVAL;
752	}
753
754	return 0;
755}
756
757static int __init irq_timings_next_index_selftest(void)
758{
759	int i, ret;
760
761	for (i = 0; i < ARRAY_SIZE(tis); i++) {
762
763		pr_info("---> Injecting intervals number #%d (count=%zd)\n",
764			i, tis[i].count);
765
766		ret = irq_timings_test_next_index(&tis[i]);
767		if (ret)
768			break;
769	}
770
771	return ret;
772}
773
774static int __init irq_timings_test_irqs(struct timings_intervals *ti)
775{
776	struct irqt_stat __percpu *s;
777	struct irqt_stat *irqs;
778	int i, index, ret, irq = 0xACE5;
779
780	ret = irq_timings_alloc(irq);
781	if (ret) {
782		pr_err("Failed to allocate irq timings\n");
783		return ret;
784	}
785
786	s = idr_find(&irqt_stats, irq);
787	if (!s) {
788		ret = -EIDRM;
789		goto out;
790	}
791
792	irqs = this_cpu_ptr(s);
793
794	for (i = 0; i < ti->count; i++) {
795
796		index = irq_timings_interval_index(ti->intervals[i]);
797		pr_debug("%d: interval=%llu ema_index=%d\n",
798			 i, ti->intervals[i], index);
799
800		__irq_timings_store(irq, irqs, ti->intervals[i]);
801		if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) {
802			ret = -EBADSLT;
803			pr_err("Failed to store in the circular buffer\n");
804			goto out;
805		}
806	}
807
808	if (irqs->count != ti->count) {
809		ret = -ERANGE;
810		pr_err("Count differs\n");
811		goto out;
812	}
813
814	ret = 0;
815out:
816	irq_timings_free(irq);
817
818	return ret;
819}
820
821static int __init irq_timings_irqs_selftest(void)
822{
823	int i, ret;
824
825	for (i = 0; i < ARRAY_SIZE(tis); i++) {
826		pr_info("---> Injecting intervals number #%d (count=%zd)\n",
827			i, tis[i].count);
828		ret = irq_timings_test_irqs(&tis[i]);
829		if (ret)
830			break;
831	}
832
833	return ret;
834}
835
836static int __init irq_timings_test_irqts(struct irq_timings *irqts,
837					 unsigned count)
838{
839	int start = count >= IRQ_TIMINGS_SIZE ? count - IRQ_TIMINGS_SIZE : 0;
840	int i, irq, oirq = 0xBEEF;
841	u64 ots = 0xDEAD, ts;
842
843	/*
844	 * Fill the circular buffer by using the dedicated function.
845	 */
846	for (i = 0; i < count; i++) {
847		pr_debug("%d: index=%d, ts=%llX irq=%X\n",
848			 i, i & IRQ_TIMINGS_MASK, ots + i, oirq + i);
849
850		irq_timings_push(ots + i, oirq + i);
851	}
852
853	/*
854	 * Compute the first elements values after the index wrapped
855	 * up or not.
856	 */
857	ots += start;
858	oirq += start;
859
860	/*
861	 * Test the circular buffer count is correct.
862	 */
863	pr_debug("---> Checking timings array count (%d) is right\n", count);
864	if (WARN_ON(irqts->count != count))
865		return -EINVAL;
866
867	/*
868	 * Test the macro allowing to browse all the irqts.
869	 */
870	pr_debug("---> Checking the for_each_irqts() macro\n");
871	for_each_irqts(i, irqts) {
872
873		irq = irq_timing_decode(irqts->values[i], &ts);
874
875		pr_debug("index=%d, ts=%llX / %llX, irq=%X / %X\n",
876			 i, ts, ots, irq, oirq);
877
878		if (WARN_ON(ts != ots || irq != oirq))
879			return -EINVAL;
880
881		ots++; oirq++;
882	}
883
884	/*
885	 * The circular buffer should have be flushed when browsed
886	 * with for_each_irqts
887	 */
888	pr_debug("---> Checking timings array is empty after browsing it\n");
889	if (WARN_ON(irqts->count))
890		return -EINVAL;
891
892	return 0;
893}
894
895static int __init irq_timings_irqts_selftest(void)
896{
897	struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
898	int i, ret;
899
900	/*
901	 * Test the circular buffer with different number of
902	 * elements. The purpose is to test at the limits (empty, half
903	 * full, full, wrapped with the cursor at the boundaries,
904	 * wrapped several times, etc ...
905	 */
906	int count[] = { 0,
907			IRQ_TIMINGS_SIZE >> 1,
908			IRQ_TIMINGS_SIZE,
909			IRQ_TIMINGS_SIZE + (IRQ_TIMINGS_SIZE >> 1),
910			2 * IRQ_TIMINGS_SIZE,
911			(2 * IRQ_TIMINGS_SIZE) + 3,
912	};
913
914	for (i = 0; i < ARRAY_SIZE(count); i++) {
915
916		pr_info("---> Checking the timings with %d/%d values\n",
917			count[i], IRQ_TIMINGS_SIZE);
918
919		ret = irq_timings_test_irqts(irqts, count[i]);
920		if (ret)
921			break;
922	}
923
924	return ret;
925}
926
927static int __init irq_timings_selftest(void)
928{
929	int ret;
930
931	pr_info("------------------- selftest start -----------------\n");
932
933	/*
934	 * At this point, we don't except any subsystem to use the irq
935	 * timings but us, so it should not be enabled.
936	 */
937	if (static_branch_unlikely(&irq_timing_enabled)) {
938		pr_warn("irq timings already initialized, skipping selftest\n");
939		return 0;
940	}
941
942	ret = irq_timings_irqts_selftest();
943	if (ret)
944		goto out;
945
946	ret = irq_timings_irqs_selftest();
947	if (ret)
948		goto out;
949
950	ret = irq_timings_next_index_selftest();
951out:
952	pr_info("---------- selftest end with %s -----------\n",
953		ret ? "failure" : "success");
954
955	return ret;
956}
957early_initcall(irq_timings_selftest);
958#endif
959