1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9#define pr_fmt(fmt) "genirq: " fmt
10
11#include <linux/irq.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/random.h>
15#include <linux/interrupt.h>
16#include <linux/irqdomain.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/sched/rt.h>
20#include <linux/sched/task.h>
21#include <linux/sched/isolation.h>
22#include <uapi/linux/sched/types.h>
23#include <linux/task_work.h>
24
25#include "internals.h"
26
27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30static int __init setup_forced_irqthreads(char *arg)
31{
32	static_branch_enable(&force_irqthreads_key);
33	return 0;
34}
35early_param("threadirqs", setup_forced_irqthreads);
36#endif
37
38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39{
40	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41	bool inprogress;
42
43	do {
44		unsigned long flags;
45
46		/*
47		 * Wait until we're out of the critical section.  This might
48		 * give the wrong answer due to the lack of memory barriers.
49		 */
50		while (irqd_irq_inprogress(&desc->irq_data))
51			cpu_relax();
52
53		/* Ok, that indicated we're done: double-check carefully. */
54		raw_spin_lock_irqsave(&desc->lock, flags);
55		inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57		/*
58		 * If requested and supported, check at the chip whether it
59		 * is in flight at the hardware level, i.e. already pending
60		 * in a CPU and waiting for service and acknowledge.
61		 */
62		if (!inprogress && sync_chip) {
63			/*
64			 * Ignore the return code. inprogress is only updated
65			 * when the chip supports it.
66			 */
67			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68						&inprogress);
69		}
70		raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72		/* Oops, that failed? */
73	} while (inprogress);
74}
75
76/**
77 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 *	@irq: interrupt number to wait for
79 *
80 *	This function waits for any pending hard IRQ handlers for this
81 *	interrupt to complete before returning. If you use this
82 *	function while holding a resource the IRQ handler may need you
83 *	will deadlock. It does not take associated threaded handlers
84 *	into account.
85 *
86 *	Do not use this for shutdown scenarios where you must be sure
87 *	that all parts (hardirq and threaded handler) have completed.
88 *
89 *	Returns: false if a threaded handler is active.
90 *
91 *	This function may be called - with care - from IRQ context.
92 *
93 *	It does not check whether there is an interrupt in flight at the
94 *	hardware level, but not serviced yet, as this might deadlock when
95 *	called with interrupts disabled and the target CPU of the interrupt
96 *	is the current CPU.
97 */
98bool synchronize_hardirq(unsigned int irq)
99{
100	struct irq_desc *desc = irq_to_desc(irq);
101
102	if (desc) {
103		__synchronize_hardirq(desc, false);
104		return !atomic_read(&desc->threads_active);
105	}
106
107	return true;
108}
109EXPORT_SYMBOL(synchronize_hardirq);
110
111static void __synchronize_irq(struct irq_desc *desc)
112{
113	__synchronize_hardirq(desc, true);
114	/*
115	 * We made sure that no hardirq handler is running. Now verify that no
116	 * threaded handlers are active.
117	 */
118	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119}
120
121/**
122 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123 *	@irq: interrupt number to wait for
124 *
125 *	This function waits for any pending IRQ handlers for this interrupt
126 *	to complete before returning. If you use this function while
127 *	holding a resource the IRQ handler may need you will deadlock.
128 *
129 *	Can only be called from preemptible code as it might sleep when
130 *	an interrupt thread is associated to @irq.
131 *
132 *	It optionally makes sure (when the irq chip supports that method)
133 *	that the interrupt is not pending in any CPU and waiting for
134 *	service.
135 */
136void synchronize_irq(unsigned int irq)
137{
138	struct irq_desc *desc = irq_to_desc(irq);
139
140	if (desc)
141		__synchronize_irq(desc);
142}
143EXPORT_SYMBOL(synchronize_irq);
144
145#ifdef CONFIG_SMP
146cpumask_var_t irq_default_affinity;
147
148static bool __irq_can_set_affinity(struct irq_desc *desc)
149{
150	if (!desc || !irqd_can_balance(&desc->irq_data) ||
151	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152		return false;
153	return true;
154}
155
156/**
157 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
158 *	@irq:		Interrupt to check
159 *
160 */
161int irq_can_set_affinity(unsigned int irq)
162{
163	return __irq_can_set_affinity(irq_to_desc(irq));
164}
165
166/**
167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168 * @irq:	Interrupt to check
169 *
170 * Like irq_can_set_affinity() above, but additionally checks for the
171 * AFFINITY_MANAGED flag.
172 */
173bool irq_can_set_affinity_usr(unsigned int irq)
174{
175	struct irq_desc *desc = irq_to_desc(irq);
176
177	return __irq_can_set_affinity(desc) &&
178		!irqd_affinity_is_managed(&desc->irq_data);
179}
180
181/**
182 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
183 *	@desc:		irq descriptor which has affinity changed
184 *
185 *	We just set IRQTF_AFFINITY and delegate the affinity setting
186 *	to the interrupt thread itself. We can not call
187 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
188 *	code can be called from hard interrupt context.
189 */
190void irq_set_thread_affinity(struct irq_desc *desc)
191{
192	struct irqaction *action;
193
194	for_each_action_of_desc(desc, action) {
195		if (action->thread) {
196			set_bit(IRQTF_AFFINITY, &action->thread_flags);
197			wake_up_process(action->thread);
198		}
199		if (action->secondary && action->secondary->thread) {
200			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
201			wake_up_process(action->secondary->thread);
202		}
203	}
204}
205
206#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
207static void irq_validate_effective_affinity(struct irq_data *data)
208{
209	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
210	struct irq_chip *chip = irq_data_get_irq_chip(data);
211
212	if (!cpumask_empty(m))
213		return;
214	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
215		     chip->name, data->irq);
216}
217#else
218static inline void irq_validate_effective_affinity(struct irq_data *data) { }
219#endif
220
221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222			bool force)
223{
224	struct irq_desc *desc = irq_data_to_desc(data);
225	struct irq_chip *chip = irq_data_get_irq_chip(data);
226	const struct cpumask  *prog_mask;
227	int ret;
228
229	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
230	static struct cpumask tmp_mask;
231
232	if (!chip || !chip->irq_set_affinity)
233		return -EINVAL;
234
235	raw_spin_lock(&tmp_mask_lock);
236	/*
237	 * If this is a managed interrupt and housekeeping is enabled on
238	 * it check whether the requested affinity mask intersects with
239	 * a housekeeping CPU. If so, then remove the isolated CPUs from
240	 * the mask and just keep the housekeeping CPU(s). This prevents
241	 * the affinity setter from routing the interrupt to an isolated
242	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
243	 * interrupts on an isolated one.
244	 *
245	 * If the masks do not intersect or include online CPU(s) then
246	 * keep the requested mask. The isolated target CPUs are only
247	 * receiving interrupts when the I/O operation was submitted
248	 * directly from them.
249	 *
250	 * If all housekeeping CPUs in the affinity mask are offline, the
251	 * interrupt will be migrated by the CPU hotplug code once a
252	 * housekeeping CPU which belongs to the affinity mask comes
253	 * online.
254	 */
255	if (irqd_affinity_is_managed(data) &&
256	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
257		const struct cpumask *hk_mask;
258
259		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
260
261		cpumask_and(&tmp_mask, mask, hk_mask);
262		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
263			prog_mask = mask;
264		else
265			prog_mask = &tmp_mask;
266	} else {
267		prog_mask = mask;
268	}
269
270	/*
271	 * Make sure we only provide online CPUs to the irqchip,
272	 * unless we are being asked to force the affinity (in which
273	 * case we do as we are told).
274	 */
275	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
276	if (!force && !cpumask_empty(&tmp_mask))
277		ret = chip->irq_set_affinity(data, &tmp_mask, force);
278	else if (force)
279		ret = chip->irq_set_affinity(data, mask, force);
280	else
281		ret = -EINVAL;
282
283	raw_spin_unlock(&tmp_mask_lock);
284
285	switch (ret) {
286	case IRQ_SET_MASK_OK:
287	case IRQ_SET_MASK_OK_DONE:
288		cpumask_copy(desc->irq_common_data.affinity, mask);
289		fallthrough;
290	case IRQ_SET_MASK_OK_NOCOPY:
291		irq_validate_effective_affinity(data);
292		irq_set_thread_affinity(desc);
293		ret = 0;
294	}
295
296	return ret;
297}
298
299#ifdef CONFIG_GENERIC_PENDING_IRQ
300static inline int irq_set_affinity_pending(struct irq_data *data,
301					   const struct cpumask *dest)
302{
303	struct irq_desc *desc = irq_data_to_desc(data);
304
305	irqd_set_move_pending(data);
306	irq_copy_pending(desc, dest);
307	return 0;
308}
309#else
310static inline int irq_set_affinity_pending(struct irq_data *data,
311					   const struct cpumask *dest)
312{
313	return -EBUSY;
314}
315#endif
316
317static int irq_try_set_affinity(struct irq_data *data,
318				const struct cpumask *dest, bool force)
319{
320	int ret = irq_do_set_affinity(data, dest, force);
321
322	/*
323	 * In case that the underlying vector management is busy and the
324	 * architecture supports the generic pending mechanism then utilize
325	 * this to avoid returning an error to user space.
326	 */
327	if (ret == -EBUSY && !force)
328		ret = irq_set_affinity_pending(data, dest);
329	return ret;
330}
331
332static bool irq_set_affinity_deactivated(struct irq_data *data,
333					 const struct cpumask *mask)
334{
335	struct irq_desc *desc = irq_data_to_desc(data);
336
337	/*
338	 * Handle irq chips which can handle affinity only in activated
339	 * state correctly
340	 *
341	 * If the interrupt is not yet activated, just store the affinity
342	 * mask and do not call the chip driver at all. On activation the
343	 * driver has to make sure anyway that the interrupt is in a
344	 * usable state so startup works.
345	 */
346	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
347	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
348		return false;
349
350	cpumask_copy(desc->irq_common_data.affinity, mask);
351	irq_data_update_effective_affinity(data, mask);
352	irqd_set(data, IRQD_AFFINITY_SET);
353	return true;
354}
355
356int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
357			    bool force)
358{
359	struct irq_chip *chip = irq_data_get_irq_chip(data);
360	struct irq_desc *desc = irq_data_to_desc(data);
361	int ret = 0;
362
363	if (!chip || !chip->irq_set_affinity)
364		return -EINVAL;
365
366	if (irq_set_affinity_deactivated(data, mask))
367		return 0;
368
369	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
370		ret = irq_try_set_affinity(data, mask, force);
371	} else {
372		irqd_set_move_pending(data);
373		irq_copy_pending(desc, mask);
374	}
375
376	if (desc->affinity_notify) {
377		kref_get(&desc->affinity_notify->kref);
378		if (!schedule_work(&desc->affinity_notify->work)) {
379			/* Work was already scheduled, drop our extra ref */
380			kref_put(&desc->affinity_notify->kref,
381				 desc->affinity_notify->release);
382		}
383	}
384	irqd_set(data, IRQD_AFFINITY_SET);
385
386	return ret;
387}
388
389/**
390 * irq_update_affinity_desc - Update affinity management for an interrupt
391 * @irq:	The interrupt number to update
392 * @affinity:	Pointer to the affinity descriptor
393 *
394 * This interface can be used to configure the affinity management of
395 * interrupts which have been allocated already.
396 *
397 * There are certain limitations on when it may be used - attempts to use it
398 * for when the kernel is configured for generic IRQ reservation mode (in
399 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
400 * managed/non-managed interrupt accounting. In addition, attempts to use it on
401 * an interrupt which is already started or which has already been configured
402 * as managed will also fail, as these mean invalid init state or double init.
403 */
404int irq_update_affinity_desc(unsigned int irq,
405			     struct irq_affinity_desc *affinity)
406{
407	struct irq_desc *desc;
408	unsigned long flags;
409	bool activated;
410	int ret = 0;
411
412	/*
413	 * Supporting this with the reservation scheme used by x86 needs
414	 * some more thought. Fail it for now.
415	 */
416	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
417		return -EOPNOTSUPP;
418
419	desc = irq_get_desc_buslock(irq, &flags, 0);
420	if (!desc)
421		return -EINVAL;
422
423	/* Requires the interrupt to be shut down */
424	if (irqd_is_started(&desc->irq_data)) {
425		ret = -EBUSY;
426		goto out_unlock;
427	}
428
429	/* Interrupts which are already managed cannot be modified */
430	if (irqd_affinity_is_managed(&desc->irq_data)) {
431		ret = -EBUSY;
432		goto out_unlock;
433	}
434
435	/*
436	 * Deactivate the interrupt. That's required to undo
437	 * anything an earlier activation has established.
438	 */
439	activated = irqd_is_activated(&desc->irq_data);
440	if (activated)
441		irq_domain_deactivate_irq(&desc->irq_data);
442
443	if (affinity->is_managed) {
444		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
445		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
446	}
447
448	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
449
450	/* Restore the activation state */
451	if (activated)
452		irq_domain_activate_irq(&desc->irq_data, false);
453
454out_unlock:
455	irq_put_desc_busunlock(desc, flags);
456	return ret;
457}
458
459static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
460			      bool force)
461{
462	struct irq_desc *desc = irq_to_desc(irq);
463	unsigned long flags;
464	int ret;
465
466	if (!desc)
467		return -EINVAL;
468
469	raw_spin_lock_irqsave(&desc->lock, flags);
470	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
471	raw_spin_unlock_irqrestore(&desc->lock, flags);
472	return ret;
473}
474
475/**
476 * irq_set_affinity - Set the irq affinity of a given irq
477 * @irq:	Interrupt to set affinity
478 * @cpumask:	cpumask
479 *
480 * Fails if cpumask does not contain an online CPU
481 */
482int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
483{
484	return __irq_set_affinity(irq, cpumask, false);
485}
486EXPORT_SYMBOL_GPL(irq_set_affinity);
487
488/**
489 * irq_force_affinity - Force the irq affinity of a given irq
490 * @irq:	Interrupt to set affinity
491 * @cpumask:	cpumask
492 *
493 * Same as irq_set_affinity, but without checking the mask against
494 * online cpus.
495 *
496 * Solely for low level cpu hotplug code, where we need to make per
497 * cpu interrupts affine before the cpu becomes online.
498 */
499int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
500{
501	return __irq_set_affinity(irq, cpumask, true);
502}
503EXPORT_SYMBOL_GPL(irq_force_affinity);
504
505int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
506			      bool setaffinity)
507{
508	unsigned long flags;
509	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
510
511	if (!desc)
512		return -EINVAL;
513	desc->affinity_hint = m;
514	irq_put_desc_unlock(desc, flags);
515	if (m && setaffinity)
516		__irq_set_affinity(irq, m, false);
517	return 0;
518}
519EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
520
521static void irq_affinity_notify(struct work_struct *work)
522{
523	struct irq_affinity_notify *notify =
524		container_of(work, struct irq_affinity_notify, work);
525	struct irq_desc *desc = irq_to_desc(notify->irq);
526	cpumask_var_t cpumask;
527	unsigned long flags;
528
529	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
530		goto out;
531
532	raw_spin_lock_irqsave(&desc->lock, flags);
533	if (irq_move_pending(&desc->irq_data))
534		irq_get_pending(cpumask, desc);
535	else
536		cpumask_copy(cpumask, desc->irq_common_data.affinity);
537	raw_spin_unlock_irqrestore(&desc->lock, flags);
538
539	notify->notify(notify, cpumask);
540
541	free_cpumask_var(cpumask);
542out:
543	kref_put(&notify->kref, notify->release);
544}
545
546/**
547 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
548 *	@irq:		Interrupt for which to enable/disable notification
549 *	@notify:	Context for notification, or %NULL to disable
550 *			notification.  Function pointers must be initialised;
551 *			the other fields will be initialised by this function.
552 *
553 *	Must be called in process context.  Notification may only be enabled
554 *	after the IRQ is allocated and must be disabled before the IRQ is
555 *	freed using free_irq().
556 */
557int
558irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
559{
560	struct irq_desc *desc = irq_to_desc(irq);
561	struct irq_affinity_notify *old_notify;
562	unsigned long flags;
563
564	/* The release function is promised process context */
565	might_sleep();
566
567	if (!desc || desc->istate & IRQS_NMI)
568		return -EINVAL;
569
570	/* Complete initialisation of *notify */
571	if (notify) {
572		notify->irq = irq;
573		kref_init(&notify->kref);
574		INIT_WORK(&notify->work, irq_affinity_notify);
575	}
576
577	raw_spin_lock_irqsave(&desc->lock, flags);
578	old_notify = desc->affinity_notify;
579	desc->affinity_notify = notify;
580	raw_spin_unlock_irqrestore(&desc->lock, flags);
581
582	if (old_notify) {
583		if (cancel_work_sync(&old_notify->work)) {
584			/* Pending work had a ref, put that one too */
585			kref_put(&old_notify->kref, old_notify->release);
586		}
587		kref_put(&old_notify->kref, old_notify->release);
588	}
589
590	return 0;
591}
592EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
593
594#ifndef CONFIG_AUTO_IRQ_AFFINITY
595/*
596 * Generic version of the affinity autoselector.
597 */
598int irq_setup_affinity(struct irq_desc *desc)
599{
600	struct cpumask *set = irq_default_affinity;
601	int ret, node = irq_desc_get_node(desc);
602	static DEFINE_RAW_SPINLOCK(mask_lock);
603	static struct cpumask mask;
604
605	/* Excludes PER_CPU and NO_BALANCE interrupts */
606	if (!__irq_can_set_affinity(desc))
607		return 0;
608
609	raw_spin_lock(&mask_lock);
610	/*
611	 * Preserve the managed affinity setting and a userspace affinity
612	 * setup, but make sure that one of the targets is online.
613	 */
614	if (irqd_affinity_is_managed(&desc->irq_data) ||
615	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
616		if (cpumask_intersects(desc->irq_common_data.affinity,
617				       cpu_online_mask))
618			set = desc->irq_common_data.affinity;
619		else
620			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
621	}
622
623	cpumask_and(&mask, cpu_online_mask, set);
624	if (cpumask_empty(&mask))
625		cpumask_copy(&mask, cpu_online_mask);
626
627	if (node != NUMA_NO_NODE) {
628		const struct cpumask *nodemask = cpumask_of_node(node);
629
630		/* make sure at least one of the cpus in nodemask is online */
631		if (cpumask_intersects(&mask, nodemask))
632			cpumask_and(&mask, &mask, nodemask);
633	}
634	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
635	raw_spin_unlock(&mask_lock);
636	return ret;
637}
638#else
639/* Wrapper for ALPHA specific affinity selector magic */
640int irq_setup_affinity(struct irq_desc *desc)
641{
642	return irq_select_affinity(irq_desc_get_irq(desc));
643}
644#endif /* CONFIG_AUTO_IRQ_AFFINITY */
645#endif /* CONFIG_SMP */
646
647
648/**
649 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
650 *	@irq: interrupt number to set affinity
651 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
652 *	            specific data for percpu_devid interrupts
653 *
654 *	This function uses the vCPU specific data to set the vCPU
655 *	affinity for an irq. The vCPU specific data is passed from
656 *	outside, such as KVM. One example code path is as below:
657 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
658 */
659int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
660{
661	unsigned long flags;
662	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
663	struct irq_data *data;
664	struct irq_chip *chip;
665	int ret = -ENOSYS;
666
667	if (!desc)
668		return -EINVAL;
669
670	data = irq_desc_get_irq_data(desc);
671	do {
672		chip = irq_data_get_irq_chip(data);
673		if (chip && chip->irq_set_vcpu_affinity)
674			break;
675#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
676		data = data->parent_data;
677#else
678		data = NULL;
679#endif
680	} while (data);
681
682	if (data)
683		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
684	irq_put_desc_unlock(desc, flags);
685
686	return ret;
687}
688EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
689
690void __disable_irq(struct irq_desc *desc)
691{
692	if (!desc->depth++)
693		irq_disable(desc);
694}
695
696static int __disable_irq_nosync(unsigned int irq)
697{
698	unsigned long flags;
699	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700
701	if (!desc)
702		return -EINVAL;
703	__disable_irq(desc);
704	irq_put_desc_busunlock(desc, flags);
705	return 0;
706}
707
708/**
709 *	disable_irq_nosync - disable an irq without waiting
710 *	@irq: Interrupt to disable
711 *
712 *	Disable the selected interrupt line.  Disables and Enables are
713 *	nested.
714 *	Unlike disable_irq(), this function does not ensure existing
715 *	instances of the IRQ handler have completed before returning.
716 *
717 *	This function may be called from IRQ context.
718 */
719void disable_irq_nosync(unsigned int irq)
720{
721	__disable_irq_nosync(irq);
722}
723EXPORT_SYMBOL(disable_irq_nosync);
724
725/**
726 *	disable_irq - disable an irq and wait for completion
727 *	@irq: Interrupt to disable
728 *
729 *	Disable the selected interrupt line.  Enables and Disables are
730 *	nested.
731 *	This function waits for any pending IRQ handlers for this interrupt
732 *	to complete before returning. If you use this function while
733 *	holding a resource the IRQ handler may need you will deadlock.
734 *
735 *	Can only be called from preemptible code as it might sleep when
736 *	an interrupt thread is associated to @irq.
737 *
738 */
739void disable_irq(unsigned int irq)
740{
741	might_sleep();
742	if (!__disable_irq_nosync(irq))
743		synchronize_irq(irq);
744}
745EXPORT_SYMBOL(disable_irq);
746
747/**
748 *	disable_hardirq - disables an irq and waits for hardirq completion
749 *	@irq: Interrupt to disable
750 *
751 *	Disable the selected interrupt line.  Enables and Disables are
752 *	nested.
753 *	This function waits for any pending hard IRQ handlers for this
754 *	interrupt to complete before returning. If you use this function while
755 *	holding a resource the hard IRQ handler may need you will deadlock.
756 *
757 *	When used to optimistically disable an interrupt from atomic context
758 *	the return value must be checked.
759 *
760 *	Returns: false if a threaded handler is active.
761 *
762 *	This function may be called - with care - from IRQ context.
763 */
764bool disable_hardirq(unsigned int irq)
765{
766	if (!__disable_irq_nosync(irq))
767		return synchronize_hardirq(irq);
768
769	return false;
770}
771EXPORT_SYMBOL_GPL(disable_hardirq);
772
773/**
774 *	disable_nmi_nosync - disable an nmi without waiting
775 *	@irq: Interrupt to disable
776 *
777 *	Disable the selected interrupt line. Disables and enables are
778 *	nested.
779 *	The interrupt to disable must have been requested through request_nmi.
780 *	Unlike disable_nmi(), this function does not ensure existing
781 *	instances of the IRQ handler have completed before returning.
782 */
783void disable_nmi_nosync(unsigned int irq)
784{
785	disable_irq_nosync(irq);
786}
787
788void __enable_irq(struct irq_desc *desc)
789{
790	switch (desc->depth) {
791	case 0:
792 err_out:
793		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
794		     irq_desc_get_irq(desc));
795		break;
796	case 1: {
797		if (desc->istate & IRQS_SUSPENDED)
798			goto err_out;
799		/* Prevent probing on this irq: */
800		irq_settings_set_noprobe(desc);
801		/*
802		 * Call irq_startup() not irq_enable() here because the
803		 * interrupt might be marked NOAUTOEN. So irq_startup()
804		 * needs to be invoked when it gets enabled the first
805		 * time. If it was already started up, then irq_startup()
806		 * will invoke irq_enable() under the hood.
807		 */
808		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
809		break;
810	}
811	default:
812		desc->depth--;
813	}
814}
815
816/**
817 *	enable_irq - enable handling of an irq
818 *	@irq: Interrupt to enable
819 *
820 *	Undoes the effect of one call to disable_irq().  If this
821 *	matches the last disable, processing of interrupts on this
822 *	IRQ line is re-enabled.
823 *
824 *	This function may be called from IRQ context only when
825 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
826 */
827void enable_irq(unsigned int irq)
828{
829	unsigned long flags;
830	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
831
832	if (!desc)
833		return;
834	if (WARN(!desc->irq_data.chip,
835		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
836		goto out;
837
838	__enable_irq(desc);
839out:
840	irq_put_desc_busunlock(desc, flags);
841}
842EXPORT_SYMBOL(enable_irq);
843
844/**
845 *	enable_nmi - enable handling of an nmi
846 *	@irq: Interrupt to enable
847 *
848 *	The interrupt to enable must have been requested through request_nmi.
849 *	Undoes the effect of one call to disable_nmi(). If this
850 *	matches the last disable, processing of interrupts on this
851 *	IRQ line is re-enabled.
852 */
853void enable_nmi(unsigned int irq)
854{
855	enable_irq(irq);
856}
857
858static int set_irq_wake_real(unsigned int irq, unsigned int on)
859{
860	struct irq_desc *desc = irq_to_desc(irq);
861	int ret = -ENXIO;
862
863	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
864		return 0;
865
866	if (desc->irq_data.chip->irq_set_wake)
867		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
868
869	return ret;
870}
871
872/**
873 *	irq_set_irq_wake - control irq power management wakeup
874 *	@irq:	interrupt to control
875 *	@on:	enable/disable power management wakeup
876 *
877 *	Enable/disable power management wakeup mode, which is
878 *	disabled by default.  Enables and disables must match,
879 *	just as they match for non-wakeup mode support.
880 *
881 *	Wakeup mode lets this IRQ wake the system from sleep
882 *	states like "suspend to RAM".
883 *
884 *	Note: irq enable/disable state is completely orthogonal
885 *	to the enable/disable state of irq wake. An irq can be
886 *	disabled with disable_irq() and still wake the system as
887 *	long as the irq has wake enabled. If this does not hold,
888 *	then the underlying irq chip and the related driver need
889 *	to be investigated.
890 */
891int irq_set_irq_wake(unsigned int irq, unsigned int on)
892{
893	unsigned long flags;
894	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
895	int ret = 0;
896
897	if (!desc)
898		return -EINVAL;
899
900	/* Don't use NMIs as wake up interrupts please */
901	if (desc->istate & IRQS_NMI) {
902		ret = -EINVAL;
903		goto out_unlock;
904	}
905
906	/* wakeup-capable irqs can be shared between drivers that
907	 * don't need to have the same sleep mode behaviors.
908	 */
909	if (on) {
910		if (desc->wake_depth++ == 0) {
911			ret = set_irq_wake_real(irq, on);
912			if (ret)
913				desc->wake_depth = 0;
914			else
915				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
916		}
917	} else {
918		if (desc->wake_depth == 0) {
919			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
920		} else if (--desc->wake_depth == 0) {
921			ret = set_irq_wake_real(irq, on);
922			if (ret)
923				desc->wake_depth = 1;
924			else
925				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
926		}
927	}
928
929out_unlock:
930	irq_put_desc_busunlock(desc, flags);
931	return ret;
932}
933EXPORT_SYMBOL(irq_set_irq_wake);
934
935/*
936 * Internal function that tells the architecture code whether a
937 * particular irq has been exclusively allocated or is available
938 * for driver use.
939 */
940int can_request_irq(unsigned int irq, unsigned long irqflags)
941{
942	unsigned long flags;
943	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
944	int canrequest = 0;
945
946	if (!desc)
947		return 0;
948
949	if (irq_settings_can_request(desc)) {
950		if (!desc->action ||
951		    irqflags & desc->action->flags & IRQF_SHARED)
952			canrequest = 1;
953	}
954	irq_put_desc_unlock(desc, flags);
955	return canrequest;
956}
957
958int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
959{
960	struct irq_chip *chip = desc->irq_data.chip;
961	int ret, unmask = 0;
962
963	if (!chip || !chip->irq_set_type) {
964		/*
965		 * IRQF_TRIGGER_* but the PIC does not support multiple
966		 * flow-types?
967		 */
968		pr_debug("No set_type function for IRQ %d (%s)\n",
969			 irq_desc_get_irq(desc),
970			 chip ? (chip->name ? : "unknown") : "unknown");
971		return 0;
972	}
973
974	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
975		if (!irqd_irq_masked(&desc->irq_data))
976			mask_irq(desc);
977		if (!irqd_irq_disabled(&desc->irq_data))
978			unmask = 1;
979	}
980
981	/* Mask all flags except trigger mode */
982	flags &= IRQ_TYPE_SENSE_MASK;
983	ret = chip->irq_set_type(&desc->irq_data, flags);
984
985	switch (ret) {
986	case IRQ_SET_MASK_OK:
987	case IRQ_SET_MASK_OK_DONE:
988		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
989		irqd_set(&desc->irq_data, flags);
990		fallthrough;
991
992	case IRQ_SET_MASK_OK_NOCOPY:
993		flags = irqd_get_trigger_type(&desc->irq_data);
994		irq_settings_set_trigger_mask(desc, flags);
995		irqd_clear(&desc->irq_data, IRQD_LEVEL);
996		irq_settings_clr_level(desc);
997		if (flags & IRQ_TYPE_LEVEL_MASK) {
998			irq_settings_set_level(desc);
999			irqd_set(&desc->irq_data, IRQD_LEVEL);
1000		}
1001
1002		ret = 0;
1003		break;
1004	default:
1005		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1006		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
1007	}
1008	if (unmask)
1009		unmask_irq(desc);
1010	return ret;
1011}
1012
1013#ifdef CONFIG_HARDIRQS_SW_RESEND
1014int irq_set_parent(int irq, int parent_irq)
1015{
1016	unsigned long flags;
1017	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1018
1019	if (!desc)
1020		return -EINVAL;
1021
1022	desc->parent_irq = parent_irq;
1023
1024	irq_put_desc_unlock(desc, flags);
1025	return 0;
1026}
1027EXPORT_SYMBOL_GPL(irq_set_parent);
1028#endif
1029
1030/*
1031 * Default primary interrupt handler for threaded interrupts. Is
1032 * assigned as primary handler when request_threaded_irq is called
1033 * with handler == NULL. Useful for oneshot interrupts.
1034 */
1035static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1036{
1037	return IRQ_WAKE_THREAD;
1038}
1039
1040/*
1041 * Primary handler for nested threaded interrupts. Should never be
1042 * called.
1043 */
1044static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1045{
1046	WARN(1, "Primary handler called for nested irq %d\n", irq);
1047	return IRQ_NONE;
1048}
1049
1050static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1051{
1052	WARN(1, "Secondary action handler called for irq %d\n", irq);
1053	return IRQ_NONE;
1054}
1055
1056#ifdef CONFIG_SMP
1057/*
1058 * Check whether we need to change the affinity of the interrupt thread.
1059 */
1060static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1061{
1062	cpumask_var_t mask;
1063	bool valid = false;
1064
1065	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1066		return;
1067
1068	__set_current_state(TASK_RUNNING);
1069
1070	/*
1071	 * In case we are out of memory we set IRQTF_AFFINITY again and
1072	 * try again next time
1073	 */
1074	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1075		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1076		return;
1077	}
1078
1079	raw_spin_lock_irq(&desc->lock);
1080	/*
1081	 * This code is triggered unconditionally. Check the affinity
1082	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1083	 */
1084	if (cpumask_available(desc->irq_common_data.affinity)) {
1085		const struct cpumask *m;
1086
1087		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1088		cpumask_copy(mask, m);
1089		valid = true;
1090	}
1091	raw_spin_unlock_irq(&desc->lock);
1092
1093	if (valid)
1094		set_cpus_allowed_ptr(current, mask);
1095	free_cpumask_var(mask);
1096}
1097#else
1098static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1099#endif
1100
1101static int irq_wait_for_interrupt(struct irq_desc *desc,
1102				  struct irqaction *action)
1103{
1104	for (;;) {
1105		set_current_state(TASK_INTERRUPTIBLE);
1106		irq_thread_check_affinity(desc, action);
1107
1108		if (kthread_should_stop()) {
1109			/* may need to run one last time */
1110			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1111					       &action->thread_flags)) {
1112				__set_current_state(TASK_RUNNING);
1113				return 0;
1114			}
1115			__set_current_state(TASK_RUNNING);
1116			return -1;
1117		}
1118
1119		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1120				       &action->thread_flags)) {
1121			__set_current_state(TASK_RUNNING);
1122			return 0;
1123		}
1124		schedule();
1125	}
1126}
1127
1128/*
1129 * Oneshot interrupts keep the irq line masked until the threaded
1130 * handler finished. unmask if the interrupt has not been disabled and
1131 * is marked MASKED.
1132 */
1133static void irq_finalize_oneshot(struct irq_desc *desc,
1134				 struct irqaction *action)
1135{
1136	if (!(desc->istate & IRQS_ONESHOT) ||
1137	    action->handler == irq_forced_secondary_handler)
1138		return;
1139again:
1140	chip_bus_lock(desc);
1141	raw_spin_lock_irq(&desc->lock);
1142
1143	/*
1144	 * Implausible though it may be we need to protect us against
1145	 * the following scenario:
1146	 *
1147	 * The thread is faster done than the hard interrupt handler
1148	 * on the other CPU. If we unmask the irq line then the
1149	 * interrupt can come in again and masks the line, leaves due
1150	 * to IRQS_INPROGRESS and the irq line is masked forever.
1151	 *
1152	 * This also serializes the state of shared oneshot handlers
1153	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1154	 * irq_wake_thread(). See the comment there which explains the
1155	 * serialization.
1156	 */
1157	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1158		raw_spin_unlock_irq(&desc->lock);
1159		chip_bus_sync_unlock(desc);
1160		cpu_relax();
1161		goto again;
1162	}
1163
1164	/*
1165	 * Now check again, whether the thread should run. Otherwise
1166	 * we would clear the threads_oneshot bit of this thread which
1167	 * was just set.
1168	 */
1169	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1170		goto out_unlock;
1171
1172	desc->threads_oneshot &= ~action->thread_mask;
1173
1174	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1175	    irqd_irq_masked(&desc->irq_data))
1176		unmask_threaded_irq(desc);
1177
1178out_unlock:
1179	raw_spin_unlock_irq(&desc->lock);
1180	chip_bus_sync_unlock(desc);
1181}
1182
1183/*
1184 * Interrupts which are not explicitly requested as threaded
1185 * interrupts rely on the implicit bh/preempt disable of the hard irq
1186 * context. So we need to disable bh here to avoid deadlocks and other
1187 * side effects.
1188 */
1189static irqreturn_t
1190irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1191{
1192	irqreturn_t ret;
1193
1194	local_bh_disable();
1195	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196		local_irq_disable();
1197	ret = action->thread_fn(action->irq, action->dev_id);
1198	if (ret == IRQ_HANDLED)
1199		atomic_inc(&desc->threads_handled);
1200
1201	irq_finalize_oneshot(desc, action);
1202	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1203		local_irq_enable();
1204	local_bh_enable();
1205	return ret;
1206}
1207
1208/*
1209 * Interrupts explicitly requested as threaded interrupts want to be
1210 * preemptible - many of them need to sleep and wait for slow busses to
1211 * complete.
1212 */
1213static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1214		struct irqaction *action)
1215{
1216	irqreturn_t ret;
1217
1218	ret = action->thread_fn(action->irq, action->dev_id);
1219	if (ret == IRQ_HANDLED)
1220		atomic_inc(&desc->threads_handled);
1221
1222	irq_finalize_oneshot(desc, action);
1223	return ret;
1224}
1225
1226void wake_threads_waitq(struct irq_desc *desc)
1227{
1228	if (atomic_dec_and_test(&desc->threads_active))
1229		wake_up(&desc->wait_for_threads);
1230}
1231
1232static void irq_thread_dtor(struct callback_head *unused)
1233{
1234	struct task_struct *tsk = current;
1235	struct irq_desc *desc;
1236	struct irqaction *action;
1237
1238	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1239		return;
1240
1241	action = kthread_data(tsk);
1242
1243	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1244	       tsk->comm, tsk->pid, action->irq);
1245
1246
1247	desc = irq_to_desc(action->irq);
1248	/*
1249	 * If IRQTF_RUNTHREAD is set, we need to decrement
1250	 * desc->threads_active and wake possible waiters.
1251	 */
1252	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1253		wake_threads_waitq(desc);
1254
1255	/* Prevent a stale desc->threads_oneshot */
1256	irq_finalize_oneshot(desc, action);
1257}
1258
1259static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1260{
1261	struct irqaction *secondary = action->secondary;
1262
1263	if (WARN_ON_ONCE(!secondary))
1264		return;
1265
1266	raw_spin_lock_irq(&desc->lock);
1267	__irq_wake_thread(desc, secondary);
1268	raw_spin_unlock_irq(&desc->lock);
1269}
1270
1271/*
1272 * Internal function to notify that a interrupt thread is ready.
1273 */
1274static void irq_thread_set_ready(struct irq_desc *desc,
1275				 struct irqaction *action)
1276{
1277	set_bit(IRQTF_READY, &action->thread_flags);
1278	wake_up(&desc->wait_for_threads);
1279}
1280
1281/*
1282 * Internal function to wake up a interrupt thread and wait until it is
1283 * ready.
1284 */
1285static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1286						  struct irqaction *action)
1287{
1288	if (!action || !action->thread)
1289		return;
1290
1291	wake_up_process(action->thread);
1292	wait_event(desc->wait_for_threads,
1293		   test_bit(IRQTF_READY, &action->thread_flags));
1294}
1295
1296/*
1297 * Interrupt handler thread
1298 */
1299static int irq_thread(void *data)
1300{
1301	struct callback_head on_exit_work;
1302	struct irqaction *action = data;
1303	struct irq_desc *desc = irq_to_desc(action->irq);
1304	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1305			struct irqaction *action);
1306
1307	irq_thread_set_ready(desc, action);
1308
1309	sched_set_fifo(current);
1310
1311	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1312					   &action->thread_flags))
1313		handler_fn = irq_forced_thread_fn;
1314	else
1315		handler_fn = irq_thread_fn;
1316
1317	init_task_work(&on_exit_work, irq_thread_dtor);
1318	task_work_add(current, &on_exit_work, TWA_NONE);
1319
1320	while (!irq_wait_for_interrupt(desc, action)) {
1321		irqreturn_t action_ret;
1322
1323		action_ret = handler_fn(desc, action);
1324		if (action_ret == IRQ_WAKE_THREAD)
1325			irq_wake_secondary(desc, action);
1326
1327		wake_threads_waitq(desc);
1328	}
1329
1330	/*
1331	 * This is the regular exit path. __free_irq() is stopping the
1332	 * thread via kthread_stop() after calling
1333	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1334	 * oneshot mask bit can be set.
1335	 */
1336	task_work_cancel(current, irq_thread_dtor);
1337	return 0;
1338}
1339
1340/**
1341 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1342 *	@irq:		Interrupt line
1343 *	@dev_id:	Device identity for which the thread should be woken
1344 *
1345 */
1346void irq_wake_thread(unsigned int irq, void *dev_id)
1347{
1348	struct irq_desc *desc = irq_to_desc(irq);
1349	struct irqaction *action;
1350	unsigned long flags;
1351
1352	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1353		return;
1354
1355	raw_spin_lock_irqsave(&desc->lock, flags);
1356	for_each_action_of_desc(desc, action) {
1357		if (action->dev_id == dev_id) {
1358			if (action->thread)
1359				__irq_wake_thread(desc, action);
1360			break;
1361		}
1362	}
1363	raw_spin_unlock_irqrestore(&desc->lock, flags);
1364}
1365EXPORT_SYMBOL_GPL(irq_wake_thread);
1366
1367static int irq_setup_forced_threading(struct irqaction *new)
1368{
1369	if (!force_irqthreads())
1370		return 0;
1371	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1372		return 0;
1373
1374	/*
1375	 * No further action required for interrupts which are requested as
1376	 * threaded interrupts already
1377	 */
1378	if (new->handler == irq_default_primary_handler)
1379		return 0;
1380
1381	new->flags |= IRQF_ONESHOT;
1382
1383	/*
1384	 * Handle the case where we have a real primary handler and a
1385	 * thread handler. We force thread them as well by creating a
1386	 * secondary action.
1387	 */
1388	if (new->handler && new->thread_fn) {
1389		/* Allocate the secondary action */
1390		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1391		if (!new->secondary)
1392			return -ENOMEM;
1393		new->secondary->handler = irq_forced_secondary_handler;
1394		new->secondary->thread_fn = new->thread_fn;
1395		new->secondary->dev_id = new->dev_id;
1396		new->secondary->irq = new->irq;
1397		new->secondary->name = new->name;
1398	}
1399	/* Deal with the primary handler */
1400	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1401	new->thread_fn = new->handler;
1402	new->handler = irq_default_primary_handler;
1403	return 0;
1404}
1405
1406static int irq_request_resources(struct irq_desc *desc)
1407{
1408	struct irq_data *d = &desc->irq_data;
1409	struct irq_chip *c = d->chip;
1410
1411	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1412}
1413
1414static void irq_release_resources(struct irq_desc *desc)
1415{
1416	struct irq_data *d = &desc->irq_data;
1417	struct irq_chip *c = d->chip;
1418
1419	if (c->irq_release_resources)
1420		c->irq_release_resources(d);
1421}
1422
1423static bool irq_supports_nmi(struct irq_desc *desc)
1424{
1425	struct irq_data *d = irq_desc_get_irq_data(desc);
1426
1427#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1428	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1429	if (d->parent_data)
1430		return false;
1431#endif
1432	/* Don't support NMIs for chips behind a slow bus */
1433	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1434		return false;
1435
1436	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1437}
1438
1439static int irq_nmi_setup(struct irq_desc *desc)
1440{
1441	struct irq_data *d = irq_desc_get_irq_data(desc);
1442	struct irq_chip *c = d->chip;
1443
1444	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1445}
1446
1447static void irq_nmi_teardown(struct irq_desc *desc)
1448{
1449	struct irq_data *d = irq_desc_get_irq_data(desc);
1450	struct irq_chip *c = d->chip;
1451
1452	if (c->irq_nmi_teardown)
1453		c->irq_nmi_teardown(d);
1454}
1455
1456static int
1457setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1458{
1459	struct task_struct *t;
1460
1461	if (!secondary) {
1462		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1463				   new->name);
1464	} else {
1465		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1466				   new->name);
1467	}
1468
1469	if (IS_ERR(t))
1470		return PTR_ERR(t);
1471
1472	/*
1473	 * We keep the reference to the task struct even if
1474	 * the thread dies to avoid that the interrupt code
1475	 * references an already freed task_struct.
1476	 */
1477	new->thread = get_task_struct(t);
1478	/*
1479	 * Tell the thread to set its affinity. This is
1480	 * important for shared interrupt handlers as we do
1481	 * not invoke setup_affinity() for the secondary
1482	 * handlers as everything is already set up. Even for
1483	 * interrupts marked with IRQF_NO_BALANCE this is
1484	 * correct as we want the thread to move to the cpu(s)
1485	 * on which the requesting code placed the interrupt.
1486	 */
1487	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1488	return 0;
1489}
1490
1491/*
1492 * Internal function to register an irqaction - typically used to
1493 * allocate special interrupts that are part of the architecture.
1494 *
1495 * Locking rules:
1496 *
1497 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1498 *   chip_bus_lock	Provides serialization for slow bus operations
1499 *     desc->lock	Provides serialization against hard interrupts
1500 *
1501 * chip_bus_lock and desc->lock are sufficient for all other management and
1502 * interrupt related functions. desc->request_mutex solely serializes
1503 * request/free_irq().
1504 */
1505static int
1506__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1507{
1508	struct irqaction *old, **old_ptr;
1509	unsigned long flags, thread_mask = 0;
1510	int ret, nested, shared = 0;
1511
1512	if (!desc)
1513		return -EINVAL;
1514
1515	if (desc->irq_data.chip == &no_irq_chip)
1516		return -ENOSYS;
1517	if (!try_module_get(desc->owner))
1518		return -ENODEV;
1519
1520	new->irq = irq;
1521
1522	/*
1523	 * If the trigger type is not specified by the caller,
1524	 * then use the default for this interrupt.
1525	 */
1526	if (!(new->flags & IRQF_TRIGGER_MASK))
1527		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1528
1529	/*
1530	 * Check whether the interrupt nests into another interrupt
1531	 * thread.
1532	 */
1533	nested = irq_settings_is_nested_thread(desc);
1534	if (nested) {
1535		if (!new->thread_fn) {
1536			ret = -EINVAL;
1537			goto out_mput;
1538		}
1539		/*
1540		 * Replace the primary handler which was provided from
1541		 * the driver for non nested interrupt handling by the
1542		 * dummy function which warns when called.
1543		 */
1544		new->handler = irq_nested_primary_handler;
1545	} else {
1546		if (irq_settings_can_thread(desc)) {
1547			ret = irq_setup_forced_threading(new);
1548			if (ret)
1549				goto out_mput;
1550		}
1551	}
1552
1553	/*
1554	 * Create a handler thread when a thread function is supplied
1555	 * and the interrupt does not nest into another interrupt
1556	 * thread.
1557	 */
1558	if (new->thread_fn && !nested) {
1559		ret = setup_irq_thread(new, irq, false);
1560		if (ret)
1561			goto out_mput;
1562		if (new->secondary) {
1563			ret = setup_irq_thread(new->secondary, irq, true);
1564			if (ret)
1565				goto out_thread;
1566		}
1567	}
1568
1569	/*
1570	 * Drivers are often written to work w/o knowledge about the
1571	 * underlying irq chip implementation, so a request for a
1572	 * threaded irq without a primary hard irq context handler
1573	 * requires the ONESHOT flag to be set. Some irq chips like
1574	 * MSI based interrupts are per se one shot safe. Check the
1575	 * chip flags, so we can avoid the unmask dance at the end of
1576	 * the threaded handler for those.
1577	 */
1578	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1579		new->flags &= ~IRQF_ONESHOT;
1580
1581	/*
1582	 * Protects against a concurrent __free_irq() call which might wait
1583	 * for synchronize_hardirq() to complete without holding the optional
1584	 * chip bus lock and desc->lock. Also protects against handing out
1585	 * a recycled oneshot thread_mask bit while it's still in use by
1586	 * its previous owner.
1587	 */
1588	mutex_lock(&desc->request_mutex);
1589
1590	/*
1591	 * Acquire bus lock as the irq_request_resources() callback below
1592	 * might rely on the serialization or the magic power management
1593	 * functions which are abusing the irq_bus_lock() callback,
1594	 */
1595	chip_bus_lock(desc);
1596
1597	/* First installed action requests resources. */
1598	if (!desc->action) {
1599		ret = irq_request_resources(desc);
1600		if (ret) {
1601			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1602			       new->name, irq, desc->irq_data.chip->name);
1603			goto out_bus_unlock;
1604		}
1605	}
1606
1607	/*
1608	 * The following block of code has to be executed atomically
1609	 * protected against a concurrent interrupt and any of the other
1610	 * management calls which are not serialized via
1611	 * desc->request_mutex or the optional bus lock.
1612	 */
1613	raw_spin_lock_irqsave(&desc->lock, flags);
1614	old_ptr = &desc->action;
1615	old = *old_ptr;
1616	if (old) {
1617		/*
1618		 * Can't share interrupts unless both agree to and are
1619		 * the same type (level, edge, polarity). So both flag
1620		 * fields must have IRQF_SHARED set and the bits which
1621		 * set the trigger type must match. Also all must
1622		 * agree on ONESHOT.
1623		 * Interrupt lines used for NMIs cannot be shared.
1624		 */
1625		unsigned int oldtype;
1626
1627		if (desc->istate & IRQS_NMI) {
1628			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1629				new->name, irq, desc->irq_data.chip->name);
1630			ret = -EINVAL;
1631			goto out_unlock;
1632		}
1633
1634		/*
1635		 * If nobody did set the configuration before, inherit
1636		 * the one provided by the requester.
1637		 */
1638		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1639			oldtype = irqd_get_trigger_type(&desc->irq_data);
1640		} else {
1641			oldtype = new->flags & IRQF_TRIGGER_MASK;
1642			irqd_set_trigger_type(&desc->irq_data, oldtype);
1643		}
1644
1645		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1646		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1647			goto mismatch;
1648
1649		if ((old->flags & IRQF_ONESHOT) &&
1650		    (new->flags & IRQF_COND_ONESHOT))
1651			new->flags |= IRQF_ONESHOT;
1652		else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1653			goto mismatch;
1654
1655		/* All handlers must agree on per-cpuness */
1656		if ((old->flags & IRQF_PERCPU) !=
1657		    (new->flags & IRQF_PERCPU))
1658			goto mismatch;
1659
1660		/* add new interrupt at end of irq queue */
1661		do {
1662			/*
1663			 * Or all existing action->thread_mask bits,
1664			 * so we can find the next zero bit for this
1665			 * new action.
1666			 */
1667			thread_mask |= old->thread_mask;
1668			old_ptr = &old->next;
1669			old = *old_ptr;
1670		} while (old);
1671		shared = 1;
1672	}
1673
1674	/*
1675	 * Setup the thread mask for this irqaction for ONESHOT. For
1676	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1677	 * conditional in irq_wake_thread().
1678	 */
1679	if (new->flags & IRQF_ONESHOT) {
1680		/*
1681		 * Unlikely to have 32 resp 64 irqs sharing one line,
1682		 * but who knows.
1683		 */
1684		if (thread_mask == ~0UL) {
1685			ret = -EBUSY;
1686			goto out_unlock;
1687		}
1688		/*
1689		 * The thread_mask for the action is or'ed to
1690		 * desc->thread_active to indicate that the
1691		 * IRQF_ONESHOT thread handler has been woken, but not
1692		 * yet finished. The bit is cleared when a thread
1693		 * completes. When all threads of a shared interrupt
1694		 * line have completed desc->threads_active becomes
1695		 * zero and the interrupt line is unmasked. See
1696		 * handle.c:irq_wake_thread() for further information.
1697		 *
1698		 * If no thread is woken by primary (hard irq context)
1699		 * interrupt handlers, then desc->threads_active is
1700		 * also checked for zero to unmask the irq line in the
1701		 * affected hard irq flow handlers
1702		 * (handle_[fasteoi|level]_irq).
1703		 *
1704		 * The new action gets the first zero bit of
1705		 * thread_mask assigned. See the loop above which or's
1706		 * all existing action->thread_mask bits.
1707		 */
1708		new->thread_mask = 1UL << ffz(thread_mask);
1709
1710	} else if (new->handler == irq_default_primary_handler &&
1711		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1712		/*
1713		 * The interrupt was requested with handler = NULL, so
1714		 * we use the default primary handler for it. But it
1715		 * does not have the oneshot flag set. In combination
1716		 * with level interrupts this is deadly, because the
1717		 * default primary handler just wakes the thread, then
1718		 * the irq lines is reenabled, but the device still
1719		 * has the level irq asserted. Rinse and repeat....
1720		 *
1721		 * While this works for edge type interrupts, we play
1722		 * it safe and reject unconditionally because we can't
1723		 * say for sure which type this interrupt really
1724		 * has. The type flags are unreliable as the
1725		 * underlying chip implementation can override them.
1726		 */
1727		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1728		       new->name, irq);
1729		ret = -EINVAL;
1730		goto out_unlock;
1731	}
1732
1733	if (!shared) {
1734		/* Setup the type (level, edge polarity) if configured: */
1735		if (new->flags & IRQF_TRIGGER_MASK) {
1736			ret = __irq_set_trigger(desc,
1737						new->flags & IRQF_TRIGGER_MASK);
1738
1739			if (ret)
1740				goto out_unlock;
1741		}
1742
1743		/*
1744		 * Activate the interrupt. That activation must happen
1745		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1746		 * and the callers are supposed to handle
1747		 * that. enable_irq() of an interrupt requested with
1748		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1749		 * keeps it in shutdown mode, it merily associates
1750		 * resources if necessary and if that's not possible it
1751		 * fails. Interrupts which are in managed shutdown mode
1752		 * will simply ignore that activation request.
1753		 */
1754		ret = irq_activate(desc);
1755		if (ret)
1756			goto out_unlock;
1757
1758		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1759				  IRQS_ONESHOT | IRQS_WAITING);
1760		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1761
1762		if (new->flags & IRQF_PERCPU) {
1763			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1764			irq_settings_set_per_cpu(desc);
1765			if (new->flags & IRQF_NO_DEBUG)
1766				irq_settings_set_no_debug(desc);
1767		}
1768
1769		if (noirqdebug)
1770			irq_settings_set_no_debug(desc);
1771
1772		if (new->flags & IRQF_ONESHOT)
1773			desc->istate |= IRQS_ONESHOT;
1774
1775		/* Exclude IRQ from balancing if requested */
1776		if (new->flags & IRQF_NOBALANCING) {
1777			irq_settings_set_no_balancing(desc);
1778			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1779		}
1780
1781		if (!(new->flags & IRQF_NO_AUTOEN) &&
1782		    irq_settings_can_autoenable(desc)) {
1783			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1784		} else {
1785			/*
1786			 * Shared interrupts do not go well with disabling
1787			 * auto enable. The sharing interrupt might request
1788			 * it while it's still disabled and then wait for
1789			 * interrupts forever.
1790			 */
1791			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1792			/* Undo nested disables: */
1793			desc->depth = 1;
1794		}
1795
1796	} else if (new->flags & IRQF_TRIGGER_MASK) {
1797		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1798		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1799
1800		if (nmsk != omsk)
1801			/* hope the handler works with current  trigger mode */
1802			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1803				irq, omsk, nmsk);
1804	}
1805
1806	*old_ptr = new;
1807
1808	irq_pm_install_action(desc, new);
1809
1810	/* Reset broken irq detection when installing new handler */
1811	desc->irq_count = 0;
1812	desc->irqs_unhandled = 0;
1813
1814	/*
1815	 * Check whether we disabled the irq via the spurious handler
1816	 * before. Reenable it and give it another chance.
1817	 */
1818	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1819		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1820		__enable_irq(desc);
1821	}
1822
1823	raw_spin_unlock_irqrestore(&desc->lock, flags);
1824	chip_bus_sync_unlock(desc);
1825	mutex_unlock(&desc->request_mutex);
1826
1827	irq_setup_timings(desc, new);
1828
1829	wake_up_and_wait_for_irq_thread_ready(desc, new);
1830	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1831
1832	register_irq_proc(irq, desc);
1833	new->dir = NULL;
1834	register_handler_proc(irq, new);
1835	return 0;
1836
1837mismatch:
1838	if (!(new->flags & IRQF_PROBE_SHARED)) {
1839		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1840		       irq, new->flags, new->name, old->flags, old->name);
1841#ifdef CONFIG_DEBUG_SHIRQ
1842		dump_stack();
1843#endif
1844	}
1845	ret = -EBUSY;
1846
1847out_unlock:
1848	raw_spin_unlock_irqrestore(&desc->lock, flags);
1849
1850	if (!desc->action)
1851		irq_release_resources(desc);
1852out_bus_unlock:
1853	chip_bus_sync_unlock(desc);
1854	mutex_unlock(&desc->request_mutex);
1855
1856out_thread:
1857	if (new->thread) {
1858		struct task_struct *t = new->thread;
1859
1860		new->thread = NULL;
1861		kthread_stop_put(t);
1862	}
1863	if (new->secondary && new->secondary->thread) {
1864		struct task_struct *t = new->secondary->thread;
1865
1866		new->secondary->thread = NULL;
1867		kthread_stop_put(t);
1868	}
1869out_mput:
1870	module_put(desc->owner);
1871	return ret;
1872}
1873
1874/*
1875 * Internal function to unregister an irqaction - used to free
1876 * regular and special interrupts that are part of the architecture.
1877 */
1878static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1879{
1880	unsigned irq = desc->irq_data.irq;
1881	struct irqaction *action, **action_ptr;
1882	unsigned long flags;
1883
1884	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1885
1886	mutex_lock(&desc->request_mutex);
1887	chip_bus_lock(desc);
1888	raw_spin_lock_irqsave(&desc->lock, flags);
1889
1890	/*
1891	 * There can be multiple actions per IRQ descriptor, find the right
1892	 * one based on the dev_id:
1893	 */
1894	action_ptr = &desc->action;
1895	for (;;) {
1896		action = *action_ptr;
1897
1898		if (!action) {
1899			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1900			raw_spin_unlock_irqrestore(&desc->lock, flags);
1901			chip_bus_sync_unlock(desc);
1902			mutex_unlock(&desc->request_mutex);
1903			return NULL;
1904		}
1905
1906		if (action->dev_id == dev_id)
1907			break;
1908		action_ptr = &action->next;
1909	}
1910
1911	/* Found it - now remove it from the list of entries: */
1912	*action_ptr = action->next;
1913
1914	irq_pm_remove_action(desc, action);
1915
1916	/* If this was the last handler, shut down the IRQ line: */
1917	if (!desc->action) {
1918		irq_settings_clr_disable_unlazy(desc);
1919		/* Only shutdown. Deactivate after synchronize_hardirq() */
1920		irq_shutdown(desc);
1921	}
1922
1923#ifdef CONFIG_SMP
1924	/* make sure affinity_hint is cleaned up */
1925	if (WARN_ON_ONCE(desc->affinity_hint))
1926		desc->affinity_hint = NULL;
1927#endif
1928
1929	raw_spin_unlock_irqrestore(&desc->lock, flags);
1930	/*
1931	 * Drop bus_lock here so the changes which were done in the chip
1932	 * callbacks above are synced out to the irq chips which hang
1933	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1934	 *
1935	 * Aside of that the bus_lock can also be taken from the threaded
1936	 * handler in irq_finalize_oneshot() which results in a deadlock
1937	 * because kthread_stop() would wait forever for the thread to
1938	 * complete, which is blocked on the bus lock.
1939	 *
1940	 * The still held desc->request_mutex() protects against a
1941	 * concurrent request_irq() of this irq so the release of resources
1942	 * and timing data is properly serialized.
1943	 */
1944	chip_bus_sync_unlock(desc);
1945
1946	unregister_handler_proc(irq, action);
1947
1948	/*
1949	 * Make sure it's not being used on another CPU and if the chip
1950	 * supports it also make sure that there is no (not yet serviced)
1951	 * interrupt in flight at the hardware level.
1952	 */
1953	__synchronize_irq(desc);
1954
1955#ifdef CONFIG_DEBUG_SHIRQ
1956	/*
1957	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1958	 * event to happen even now it's being freed, so let's make sure that
1959	 * is so by doing an extra call to the handler ....
1960	 *
1961	 * ( We do this after actually deregistering it, to make sure that a
1962	 *   'real' IRQ doesn't run in parallel with our fake. )
1963	 */
1964	if (action->flags & IRQF_SHARED) {
1965		local_irq_save(flags);
1966		action->handler(irq, dev_id);
1967		local_irq_restore(flags);
1968	}
1969#endif
1970
1971	/*
1972	 * The action has already been removed above, but the thread writes
1973	 * its oneshot mask bit when it completes. Though request_mutex is
1974	 * held across this which prevents __setup_irq() from handing out
1975	 * the same bit to a newly requested action.
1976	 */
1977	if (action->thread) {
1978		kthread_stop_put(action->thread);
1979		if (action->secondary && action->secondary->thread)
1980			kthread_stop_put(action->secondary->thread);
1981	}
1982
1983	/* Last action releases resources */
1984	if (!desc->action) {
1985		/*
1986		 * Reacquire bus lock as irq_release_resources() might
1987		 * require it to deallocate resources over the slow bus.
1988		 */
1989		chip_bus_lock(desc);
1990		/*
1991		 * There is no interrupt on the fly anymore. Deactivate it
1992		 * completely.
1993		 */
1994		raw_spin_lock_irqsave(&desc->lock, flags);
1995		irq_domain_deactivate_irq(&desc->irq_data);
1996		raw_spin_unlock_irqrestore(&desc->lock, flags);
1997
1998		irq_release_resources(desc);
1999		chip_bus_sync_unlock(desc);
2000		irq_remove_timings(desc);
2001	}
2002
2003	mutex_unlock(&desc->request_mutex);
2004
2005	irq_chip_pm_put(&desc->irq_data);
2006	module_put(desc->owner);
2007	kfree(action->secondary);
2008	return action;
2009}
2010
2011/**
2012 *	free_irq - free an interrupt allocated with request_irq
2013 *	@irq: Interrupt line to free
2014 *	@dev_id: Device identity to free
2015 *
2016 *	Remove an interrupt handler. The handler is removed and if the
2017 *	interrupt line is no longer in use by any driver it is disabled.
2018 *	On a shared IRQ the caller must ensure the interrupt is disabled
2019 *	on the card it drives before calling this function. The function
2020 *	does not return until any executing interrupts for this IRQ
2021 *	have completed.
2022 *
2023 *	This function must not be called from interrupt context.
2024 *
2025 *	Returns the devname argument passed to request_irq.
2026 */
2027const void *free_irq(unsigned int irq, void *dev_id)
2028{
2029	struct irq_desc *desc = irq_to_desc(irq);
2030	struct irqaction *action;
2031	const char *devname;
2032
2033	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2034		return NULL;
2035
2036#ifdef CONFIG_SMP
2037	if (WARN_ON(desc->affinity_notify))
2038		desc->affinity_notify = NULL;
2039#endif
2040
2041	action = __free_irq(desc, dev_id);
2042
2043	if (!action)
2044		return NULL;
2045
2046	devname = action->name;
2047	kfree(action);
2048	return devname;
2049}
2050EXPORT_SYMBOL(free_irq);
2051
2052/* This function must be called with desc->lock held */
2053static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2054{
2055	const char *devname = NULL;
2056
2057	desc->istate &= ~IRQS_NMI;
2058
2059	if (!WARN_ON(desc->action == NULL)) {
2060		irq_pm_remove_action(desc, desc->action);
2061		devname = desc->action->name;
2062		unregister_handler_proc(irq, desc->action);
2063
2064		kfree(desc->action);
2065		desc->action = NULL;
2066	}
2067
2068	irq_settings_clr_disable_unlazy(desc);
2069	irq_shutdown_and_deactivate(desc);
2070
2071	irq_release_resources(desc);
2072
2073	irq_chip_pm_put(&desc->irq_data);
2074	module_put(desc->owner);
2075
2076	return devname;
2077}
2078
2079const void *free_nmi(unsigned int irq, void *dev_id)
2080{
2081	struct irq_desc *desc = irq_to_desc(irq);
2082	unsigned long flags;
2083	const void *devname;
2084
2085	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2086		return NULL;
2087
2088	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2089		return NULL;
2090
2091	/* NMI still enabled */
2092	if (WARN_ON(desc->depth == 0))
2093		disable_nmi_nosync(irq);
2094
2095	raw_spin_lock_irqsave(&desc->lock, flags);
2096
2097	irq_nmi_teardown(desc);
2098	devname = __cleanup_nmi(irq, desc);
2099
2100	raw_spin_unlock_irqrestore(&desc->lock, flags);
2101
2102	return devname;
2103}
2104
2105/**
2106 *	request_threaded_irq - allocate an interrupt line
2107 *	@irq: Interrupt line to allocate
2108 *	@handler: Function to be called when the IRQ occurs.
2109 *		  Primary handler for threaded interrupts.
2110 *		  If handler is NULL and thread_fn != NULL
2111 *		  the default primary handler is installed.
2112 *	@thread_fn: Function called from the irq handler thread
2113 *		    If NULL, no irq thread is created
2114 *	@irqflags: Interrupt type flags
2115 *	@devname: An ascii name for the claiming device
2116 *	@dev_id: A cookie passed back to the handler function
2117 *
2118 *	This call allocates interrupt resources and enables the
2119 *	interrupt line and IRQ handling. From the point this
2120 *	call is made your handler function may be invoked. Since
2121 *	your handler function must clear any interrupt the board
2122 *	raises, you must take care both to initialise your hardware
2123 *	and to set up the interrupt handler in the right order.
2124 *
2125 *	If you want to set up a threaded irq handler for your device
2126 *	then you need to supply @handler and @thread_fn. @handler is
2127 *	still called in hard interrupt context and has to check
2128 *	whether the interrupt originates from the device. If yes it
2129 *	needs to disable the interrupt on the device and return
2130 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2131 *	@thread_fn. This split handler design is necessary to support
2132 *	shared interrupts.
2133 *
2134 *	Dev_id must be globally unique. Normally the address of the
2135 *	device data structure is used as the cookie. Since the handler
2136 *	receives this value it makes sense to use it.
2137 *
2138 *	If your interrupt is shared you must pass a non NULL dev_id
2139 *	as this is required when freeing the interrupt.
2140 *
2141 *	Flags:
2142 *
2143 *	IRQF_SHARED		Interrupt is shared
2144 *	IRQF_TRIGGER_*		Specify active edge(s) or level
2145 *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2146 */
2147int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2148			 irq_handler_t thread_fn, unsigned long irqflags,
2149			 const char *devname, void *dev_id)
2150{
2151	struct irqaction *action;
2152	struct irq_desc *desc;
2153	int retval;
2154
2155	if (irq == IRQ_NOTCONNECTED)
2156		return -ENOTCONN;
2157
2158	/*
2159	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2160	 * otherwise we'll have trouble later trying to figure out
2161	 * which interrupt is which (messes up the interrupt freeing
2162	 * logic etc).
2163	 *
2164	 * Also shared interrupts do not go well with disabling auto enable.
2165	 * The sharing interrupt might request it while it's still disabled
2166	 * and then wait for interrupts forever.
2167	 *
2168	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2169	 * it cannot be set along with IRQF_NO_SUSPEND.
2170	 */
2171	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2172	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2173	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2174	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2175		return -EINVAL;
2176
2177	desc = irq_to_desc(irq);
2178	if (!desc)
2179		return -EINVAL;
2180
2181	if (!irq_settings_can_request(desc) ||
2182	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2183		return -EINVAL;
2184
2185	if (!handler) {
2186		if (!thread_fn)
2187			return -EINVAL;
2188		handler = irq_default_primary_handler;
2189	}
2190
2191	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2192	if (!action)
2193		return -ENOMEM;
2194
2195	action->handler = handler;
2196	action->thread_fn = thread_fn;
2197	action->flags = irqflags;
2198	action->name = devname;
2199	action->dev_id = dev_id;
2200
2201	retval = irq_chip_pm_get(&desc->irq_data);
2202	if (retval < 0) {
2203		kfree(action);
2204		return retval;
2205	}
2206
2207	retval = __setup_irq(irq, desc, action);
2208
2209	if (retval) {
2210		irq_chip_pm_put(&desc->irq_data);
2211		kfree(action->secondary);
2212		kfree(action);
2213	}
2214
2215#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2216	if (!retval && (irqflags & IRQF_SHARED)) {
2217		/*
2218		 * It's a shared IRQ -- the driver ought to be prepared for it
2219		 * to happen immediately, so let's make sure....
2220		 * We disable the irq to make sure that a 'real' IRQ doesn't
2221		 * run in parallel with our fake.
2222		 */
2223		unsigned long flags;
2224
2225		disable_irq(irq);
2226		local_irq_save(flags);
2227
2228		handler(irq, dev_id);
2229
2230		local_irq_restore(flags);
2231		enable_irq(irq);
2232	}
2233#endif
2234	return retval;
2235}
2236EXPORT_SYMBOL(request_threaded_irq);
2237
2238/**
2239 *	request_any_context_irq - allocate an interrupt line
2240 *	@irq: Interrupt line to allocate
2241 *	@handler: Function to be called when the IRQ occurs.
2242 *		  Threaded handler for threaded interrupts.
2243 *	@flags: Interrupt type flags
2244 *	@name: An ascii name for the claiming device
2245 *	@dev_id: A cookie passed back to the handler function
2246 *
2247 *	This call allocates interrupt resources and enables the
2248 *	interrupt line and IRQ handling. It selects either a
2249 *	hardirq or threaded handling method depending on the
2250 *	context.
2251 *
2252 *	On failure, it returns a negative value. On success,
2253 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2254 */
2255int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2256			    unsigned long flags, const char *name, void *dev_id)
2257{
2258	struct irq_desc *desc;
2259	int ret;
2260
2261	if (irq == IRQ_NOTCONNECTED)
2262		return -ENOTCONN;
2263
2264	desc = irq_to_desc(irq);
2265	if (!desc)
2266		return -EINVAL;
2267
2268	if (irq_settings_is_nested_thread(desc)) {
2269		ret = request_threaded_irq(irq, NULL, handler,
2270					   flags, name, dev_id);
2271		return !ret ? IRQC_IS_NESTED : ret;
2272	}
2273
2274	ret = request_irq(irq, handler, flags, name, dev_id);
2275	return !ret ? IRQC_IS_HARDIRQ : ret;
2276}
2277EXPORT_SYMBOL_GPL(request_any_context_irq);
2278
2279/**
2280 *	request_nmi - allocate an interrupt line for NMI delivery
2281 *	@irq: Interrupt line to allocate
2282 *	@handler: Function to be called when the IRQ occurs.
2283 *		  Threaded handler for threaded interrupts.
2284 *	@irqflags: Interrupt type flags
2285 *	@name: An ascii name for the claiming device
2286 *	@dev_id: A cookie passed back to the handler function
2287 *
2288 *	This call allocates interrupt resources and enables the
2289 *	interrupt line and IRQ handling. It sets up the IRQ line
2290 *	to be handled as an NMI.
2291 *
2292 *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2293 *	cannot be threaded.
2294 *
2295 *	Interrupt lines requested for NMI delivering must produce per cpu
2296 *	interrupts and have auto enabling setting disabled.
2297 *
2298 *	Dev_id must be globally unique. Normally the address of the
2299 *	device data structure is used as the cookie. Since the handler
2300 *	receives this value it makes sense to use it.
2301 *
2302 *	If the interrupt line cannot be used to deliver NMIs, function
2303 *	will fail and return a negative value.
2304 */
2305int request_nmi(unsigned int irq, irq_handler_t handler,
2306		unsigned long irqflags, const char *name, void *dev_id)
2307{
2308	struct irqaction *action;
2309	struct irq_desc *desc;
2310	unsigned long flags;
2311	int retval;
2312
2313	if (irq == IRQ_NOTCONNECTED)
2314		return -ENOTCONN;
2315
2316	/* NMI cannot be shared, used for Polling */
2317	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2318		return -EINVAL;
2319
2320	if (!(irqflags & IRQF_PERCPU))
2321		return -EINVAL;
2322
2323	if (!handler)
2324		return -EINVAL;
2325
2326	desc = irq_to_desc(irq);
2327
2328	if (!desc || (irq_settings_can_autoenable(desc) &&
2329	    !(irqflags & IRQF_NO_AUTOEN)) ||
2330	    !irq_settings_can_request(desc) ||
2331	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2332	    !irq_supports_nmi(desc))
2333		return -EINVAL;
2334
2335	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2336	if (!action)
2337		return -ENOMEM;
2338
2339	action->handler = handler;
2340	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2341	action->name = name;
2342	action->dev_id = dev_id;
2343
2344	retval = irq_chip_pm_get(&desc->irq_data);
2345	if (retval < 0)
2346		goto err_out;
2347
2348	retval = __setup_irq(irq, desc, action);
2349	if (retval)
2350		goto err_irq_setup;
2351
2352	raw_spin_lock_irqsave(&desc->lock, flags);
2353
2354	/* Setup NMI state */
2355	desc->istate |= IRQS_NMI;
2356	retval = irq_nmi_setup(desc);
2357	if (retval) {
2358		__cleanup_nmi(irq, desc);
2359		raw_spin_unlock_irqrestore(&desc->lock, flags);
2360		return -EINVAL;
2361	}
2362
2363	raw_spin_unlock_irqrestore(&desc->lock, flags);
2364
2365	return 0;
2366
2367err_irq_setup:
2368	irq_chip_pm_put(&desc->irq_data);
2369err_out:
2370	kfree(action);
2371
2372	return retval;
2373}
2374
2375void enable_percpu_irq(unsigned int irq, unsigned int type)
2376{
2377	unsigned int cpu = smp_processor_id();
2378	unsigned long flags;
2379	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2380
2381	if (!desc)
2382		return;
2383
2384	/*
2385	 * If the trigger type is not specified by the caller, then
2386	 * use the default for this interrupt.
2387	 */
2388	type &= IRQ_TYPE_SENSE_MASK;
2389	if (type == IRQ_TYPE_NONE)
2390		type = irqd_get_trigger_type(&desc->irq_data);
2391
2392	if (type != IRQ_TYPE_NONE) {
2393		int ret;
2394
2395		ret = __irq_set_trigger(desc, type);
2396
2397		if (ret) {
2398			WARN(1, "failed to set type for IRQ%d\n", irq);
2399			goto out;
2400		}
2401	}
2402
2403	irq_percpu_enable(desc, cpu);
2404out:
2405	irq_put_desc_unlock(desc, flags);
2406}
2407EXPORT_SYMBOL_GPL(enable_percpu_irq);
2408
2409void enable_percpu_nmi(unsigned int irq, unsigned int type)
2410{
2411	enable_percpu_irq(irq, type);
2412}
2413
2414/**
2415 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2416 * @irq:	Linux irq number to check for
2417 *
2418 * Must be called from a non migratable context. Returns the enable
2419 * state of a per cpu interrupt on the current cpu.
2420 */
2421bool irq_percpu_is_enabled(unsigned int irq)
2422{
2423	unsigned int cpu = smp_processor_id();
2424	struct irq_desc *desc;
2425	unsigned long flags;
2426	bool is_enabled;
2427
2428	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2429	if (!desc)
2430		return false;
2431
2432	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2433	irq_put_desc_unlock(desc, flags);
2434
2435	return is_enabled;
2436}
2437EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2438
2439void disable_percpu_irq(unsigned int irq)
2440{
2441	unsigned int cpu = smp_processor_id();
2442	unsigned long flags;
2443	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2444
2445	if (!desc)
2446		return;
2447
2448	irq_percpu_disable(desc, cpu);
2449	irq_put_desc_unlock(desc, flags);
2450}
2451EXPORT_SYMBOL_GPL(disable_percpu_irq);
2452
2453void disable_percpu_nmi(unsigned int irq)
2454{
2455	disable_percpu_irq(irq);
2456}
2457
2458/*
2459 * Internal function to unregister a percpu irqaction.
2460 */
2461static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2462{
2463	struct irq_desc *desc = irq_to_desc(irq);
2464	struct irqaction *action;
2465	unsigned long flags;
2466
2467	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2468
2469	if (!desc)
2470		return NULL;
2471
2472	raw_spin_lock_irqsave(&desc->lock, flags);
2473
2474	action = desc->action;
2475	if (!action || action->percpu_dev_id != dev_id) {
2476		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2477		goto bad;
2478	}
2479
2480	if (!cpumask_empty(desc->percpu_enabled)) {
2481		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2482		     irq, cpumask_first(desc->percpu_enabled));
2483		goto bad;
2484	}
2485
2486	/* Found it - now remove it from the list of entries: */
2487	desc->action = NULL;
2488
2489	desc->istate &= ~IRQS_NMI;
2490
2491	raw_spin_unlock_irqrestore(&desc->lock, flags);
2492
2493	unregister_handler_proc(irq, action);
2494
2495	irq_chip_pm_put(&desc->irq_data);
2496	module_put(desc->owner);
2497	return action;
2498
2499bad:
2500	raw_spin_unlock_irqrestore(&desc->lock, flags);
2501	return NULL;
2502}
2503
2504/**
2505 *	remove_percpu_irq - free a per-cpu interrupt
2506 *	@irq: Interrupt line to free
2507 *	@act: irqaction for the interrupt
2508 *
2509 * Used to remove interrupts statically setup by the early boot process.
2510 */
2511void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2512{
2513	struct irq_desc *desc = irq_to_desc(irq);
2514
2515	if (desc && irq_settings_is_per_cpu_devid(desc))
2516	    __free_percpu_irq(irq, act->percpu_dev_id);
2517}
2518
2519/**
2520 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2521 *	@irq: Interrupt line to free
2522 *	@dev_id: Device identity to free
2523 *
2524 *	Remove a percpu interrupt handler. The handler is removed, but
2525 *	the interrupt line is not disabled. This must be done on each
2526 *	CPU before calling this function. The function does not return
2527 *	until any executing interrupts for this IRQ have completed.
2528 *
2529 *	This function must not be called from interrupt context.
2530 */
2531void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2532{
2533	struct irq_desc *desc = irq_to_desc(irq);
2534
2535	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2536		return;
2537
2538	chip_bus_lock(desc);
2539	kfree(__free_percpu_irq(irq, dev_id));
2540	chip_bus_sync_unlock(desc);
2541}
2542EXPORT_SYMBOL_GPL(free_percpu_irq);
2543
2544void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2545{
2546	struct irq_desc *desc = irq_to_desc(irq);
2547
2548	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2549		return;
2550
2551	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2552		return;
2553
2554	kfree(__free_percpu_irq(irq, dev_id));
2555}
2556
2557/**
2558 *	setup_percpu_irq - setup a per-cpu interrupt
2559 *	@irq: Interrupt line to setup
2560 *	@act: irqaction for the interrupt
2561 *
2562 * Used to statically setup per-cpu interrupts in the early boot process.
2563 */
2564int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2565{
2566	struct irq_desc *desc = irq_to_desc(irq);
2567	int retval;
2568
2569	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2570		return -EINVAL;
2571
2572	retval = irq_chip_pm_get(&desc->irq_data);
2573	if (retval < 0)
2574		return retval;
2575
2576	retval = __setup_irq(irq, desc, act);
2577
2578	if (retval)
2579		irq_chip_pm_put(&desc->irq_data);
2580
2581	return retval;
2582}
2583
2584/**
2585 *	__request_percpu_irq - allocate a percpu interrupt line
2586 *	@irq: Interrupt line to allocate
2587 *	@handler: Function to be called when the IRQ occurs.
2588 *	@flags: Interrupt type flags (IRQF_TIMER only)
2589 *	@devname: An ascii name for the claiming device
2590 *	@dev_id: A percpu cookie passed back to the handler function
2591 *
2592 *	This call allocates interrupt resources and enables the
2593 *	interrupt on the local CPU. If the interrupt is supposed to be
2594 *	enabled on other CPUs, it has to be done on each CPU using
2595 *	enable_percpu_irq().
2596 *
2597 *	Dev_id must be globally unique. It is a per-cpu variable, and
2598 *	the handler gets called with the interrupted CPU's instance of
2599 *	that variable.
2600 */
2601int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2602			 unsigned long flags, const char *devname,
2603			 void __percpu *dev_id)
2604{
2605	struct irqaction *action;
2606	struct irq_desc *desc;
2607	int retval;
2608
2609	if (!dev_id)
2610		return -EINVAL;
2611
2612	desc = irq_to_desc(irq);
2613	if (!desc || !irq_settings_can_request(desc) ||
2614	    !irq_settings_is_per_cpu_devid(desc))
2615		return -EINVAL;
2616
2617	if (flags && flags != IRQF_TIMER)
2618		return -EINVAL;
2619
2620	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2621	if (!action)
2622		return -ENOMEM;
2623
2624	action->handler = handler;
2625	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2626	action->name = devname;
2627	action->percpu_dev_id = dev_id;
2628
2629	retval = irq_chip_pm_get(&desc->irq_data);
2630	if (retval < 0) {
2631		kfree(action);
2632		return retval;
2633	}
2634
2635	retval = __setup_irq(irq, desc, action);
2636
2637	if (retval) {
2638		irq_chip_pm_put(&desc->irq_data);
2639		kfree(action);
2640	}
2641
2642	return retval;
2643}
2644EXPORT_SYMBOL_GPL(__request_percpu_irq);
2645
2646/**
2647 *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2648 *	@irq: Interrupt line to allocate
2649 *	@handler: Function to be called when the IRQ occurs.
2650 *	@name: An ascii name for the claiming device
2651 *	@dev_id: A percpu cookie passed back to the handler function
2652 *
2653 *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2654 *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2655 *	being enabled on the same CPU by using enable_percpu_nmi().
2656 *
2657 *	Dev_id must be globally unique. It is a per-cpu variable, and
2658 *	the handler gets called with the interrupted CPU's instance of
2659 *	that variable.
2660 *
2661 *	Interrupt lines requested for NMI delivering should have auto enabling
2662 *	setting disabled.
2663 *
2664 *	If the interrupt line cannot be used to deliver NMIs, function
2665 *	will fail returning a negative value.
2666 */
2667int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2668		       const char *name, void __percpu *dev_id)
2669{
2670	struct irqaction *action;
2671	struct irq_desc *desc;
2672	unsigned long flags;
2673	int retval;
2674
2675	if (!handler)
2676		return -EINVAL;
2677
2678	desc = irq_to_desc(irq);
2679
2680	if (!desc || !irq_settings_can_request(desc) ||
2681	    !irq_settings_is_per_cpu_devid(desc) ||
2682	    irq_settings_can_autoenable(desc) ||
2683	    !irq_supports_nmi(desc))
2684		return -EINVAL;
2685
2686	/* The line cannot already be NMI */
2687	if (desc->istate & IRQS_NMI)
2688		return -EINVAL;
2689
2690	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2691	if (!action)
2692		return -ENOMEM;
2693
2694	action->handler = handler;
2695	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2696		| IRQF_NOBALANCING;
2697	action->name = name;
2698	action->percpu_dev_id = dev_id;
2699
2700	retval = irq_chip_pm_get(&desc->irq_data);
2701	if (retval < 0)
2702		goto err_out;
2703
2704	retval = __setup_irq(irq, desc, action);
2705	if (retval)
2706		goto err_irq_setup;
2707
2708	raw_spin_lock_irqsave(&desc->lock, flags);
2709	desc->istate |= IRQS_NMI;
2710	raw_spin_unlock_irqrestore(&desc->lock, flags);
2711
2712	return 0;
2713
2714err_irq_setup:
2715	irq_chip_pm_put(&desc->irq_data);
2716err_out:
2717	kfree(action);
2718
2719	return retval;
2720}
2721
2722/**
2723 *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2724 *	@irq: Interrupt line to prepare for NMI delivery
2725 *
2726 *	This call prepares an interrupt line to deliver NMI on the current CPU,
2727 *	before that interrupt line gets enabled with enable_percpu_nmi().
2728 *
2729 *	As a CPU local operation, this should be called from non-preemptible
2730 *	context.
2731 *
2732 *	If the interrupt line cannot be used to deliver NMIs, function
2733 *	will fail returning a negative value.
2734 */
2735int prepare_percpu_nmi(unsigned int irq)
2736{
2737	unsigned long flags;
2738	struct irq_desc *desc;
2739	int ret = 0;
2740
2741	WARN_ON(preemptible());
2742
2743	desc = irq_get_desc_lock(irq, &flags,
2744				 IRQ_GET_DESC_CHECK_PERCPU);
2745	if (!desc)
2746		return -EINVAL;
2747
2748	if (WARN(!(desc->istate & IRQS_NMI),
2749		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2750		 irq)) {
2751		ret = -EINVAL;
2752		goto out;
2753	}
2754
2755	ret = irq_nmi_setup(desc);
2756	if (ret) {
2757		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2758		goto out;
2759	}
2760
2761out:
2762	irq_put_desc_unlock(desc, flags);
2763	return ret;
2764}
2765
2766/**
2767 *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2768 *	@irq: Interrupt line from which CPU local NMI configuration should be
2769 *	      removed
2770 *
2771 *	This call undoes the setup done by prepare_percpu_nmi().
2772 *
2773 *	IRQ line should not be enabled for the current CPU.
2774 *
2775 *	As a CPU local operation, this should be called from non-preemptible
2776 *	context.
2777 */
2778void teardown_percpu_nmi(unsigned int irq)
2779{
2780	unsigned long flags;
2781	struct irq_desc *desc;
2782
2783	WARN_ON(preemptible());
2784
2785	desc = irq_get_desc_lock(irq, &flags,
2786				 IRQ_GET_DESC_CHECK_PERCPU);
2787	if (!desc)
2788		return;
2789
2790	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2791		goto out;
2792
2793	irq_nmi_teardown(desc);
2794out:
2795	irq_put_desc_unlock(desc, flags);
2796}
2797
2798int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2799			    bool *state)
2800{
2801	struct irq_chip *chip;
2802	int err = -EINVAL;
2803
2804	do {
2805		chip = irq_data_get_irq_chip(data);
2806		if (WARN_ON_ONCE(!chip))
2807			return -ENODEV;
2808		if (chip->irq_get_irqchip_state)
2809			break;
2810#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2811		data = data->parent_data;
2812#else
2813		data = NULL;
2814#endif
2815	} while (data);
2816
2817	if (data)
2818		err = chip->irq_get_irqchip_state(data, which, state);
2819	return err;
2820}
2821
2822/**
2823 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2824 *	@irq: Interrupt line that is forwarded to a VM
2825 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2826 *	@state: a pointer to a boolean where the state is to be stored
2827 *
2828 *	This call snapshots the internal irqchip state of an
2829 *	interrupt, returning into @state the bit corresponding to
2830 *	stage @which
2831 *
2832 *	This function should be called with preemption disabled if the
2833 *	interrupt controller has per-cpu registers.
2834 */
2835int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2836			  bool *state)
2837{
2838	struct irq_desc *desc;
2839	struct irq_data *data;
2840	unsigned long flags;
2841	int err = -EINVAL;
2842
2843	desc = irq_get_desc_buslock(irq, &flags, 0);
2844	if (!desc)
2845		return err;
2846
2847	data = irq_desc_get_irq_data(desc);
2848
2849	err = __irq_get_irqchip_state(data, which, state);
2850
2851	irq_put_desc_busunlock(desc, flags);
2852	return err;
2853}
2854EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2855
2856/**
2857 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2858 *	@irq: Interrupt line that is forwarded to a VM
2859 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2860 *	@val: Value corresponding to @which
2861 *
2862 *	This call sets the internal irqchip state of an interrupt,
2863 *	depending on the value of @which.
2864 *
2865 *	This function should be called with migration disabled if the
2866 *	interrupt controller has per-cpu registers.
2867 */
2868int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2869			  bool val)
2870{
2871	struct irq_desc *desc;
2872	struct irq_data *data;
2873	struct irq_chip *chip;
2874	unsigned long flags;
2875	int err = -EINVAL;
2876
2877	desc = irq_get_desc_buslock(irq, &flags, 0);
2878	if (!desc)
2879		return err;
2880
2881	data = irq_desc_get_irq_data(desc);
2882
2883	do {
2884		chip = irq_data_get_irq_chip(data);
2885		if (WARN_ON_ONCE(!chip)) {
2886			err = -ENODEV;
2887			goto out_unlock;
2888		}
2889		if (chip->irq_set_irqchip_state)
2890			break;
2891#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2892		data = data->parent_data;
2893#else
2894		data = NULL;
2895#endif
2896	} while (data);
2897
2898	if (data)
2899		err = chip->irq_set_irqchip_state(data, which, val);
2900
2901out_unlock:
2902	irq_put_desc_busunlock(desc, flags);
2903	return err;
2904}
2905EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2906
2907/**
2908 * irq_has_action - Check whether an interrupt is requested
2909 * @irq:	The linux irq number
2910 *
2911 * Returns: A snapshot of the current state
2912 */
2913bool irq_has_action(unsigned int irq)
2914{
2915	bool res;
2916
2917	rcu_read_lock();
2918	res = irq_desc_has_action(irq_to_desc(irq));
2919	rcu_read_unlock();
2920	return res;
2921}
2922EXPORT_SYMBOL_GPL(irq_has_action);
2923
2924/**
2925 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2926 * @irq:	The linux irq number
2927 * @bitmask:	The bitmask to evaluate
2928 *
2929 * Returns: True if one of the bits in @bitmask is set
2930 */
2931bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2932{
2933	struct irq_desc *desc;
2934	bool res = false;
2935
2936	rcu_read_lock();
2937	desc = irq_to_desc(irq);
2938	if (desc)
2939		res = !!(desc->status_use_accessors & bitmask);
2940	rcu_read_unlock();
2941	return res;
2942}
2943EXPORT_SYMBOL_GPL(irq_check_status_bit);
2944