1// SPDX-License-Identifier: GPL-2.0-or-later
2
3#include <linux/plist.h>
4#include <linux/sched/task.h>
5#include <linux/sched/signal.h>
6#include <linux/freezer.h>
7
8#include "futex.h"
9
10/*
11 * READ this before attempting to hack on futexes!
12 *
13 * Basic futex operation and ordering guarantees
14 * =============================================
15 *
16 * The waiter reads the futex value in user space and calls
17 * futex_wait(). This function computes the hash bucket and acquires
18 * the hash bucket lock. After that it reads the futex user space value
19 * again and verifies that the data has not changed. If it has not changed
20 * it enqueues itself into the hash bucket, releases the hash bucket lock
21 * and schedules.
22 *
23 * The waker side modifies the user space value of the futex and calls
24 * futex_wake(). This function computes the hash bucket and acquires the
25 * hash bucket lock. Then it looks for waiters on that futex in the hash
26 * bucket and wakes them.
27 *
28 * In futex wake up scenarios where no tasks are blocked on a futex, taking
29 * the hb spinlock can be avoided and simply return. In order for this
30 * optimization to work, ordering guarantees must exist so that the waiter
31 * being added to the list is acknowledged when the list is concurrently being
32 * checked by the waker, avoiding scenarios like the following:
33 *
34 * CPU 0                               CPU 1
35 * val = *futex;
36 * sys_futex(WAIT, futex, val);
37 *   futex_wait(futex, val);
38 *   uval = *futex;
39 *                                     *futex = newval;
40 *                                     sys_futex(WAKE, futex);
41 *                                       futex_wake(futex);
42 *                                       if (queue_empty())
43 *                                         return;
44 *   if (uval == val)
45 *      lock(hash_bucket(futex));
46 *      queue();
47 *     unlock(hash_bucket(futex));
48 *     schedule();
49 *
50 * This would cause the waiter on CPU 0 to wait forever because it
51 * missed the transition of the user space value from val to newval
52 * and the waker did not find the waiter in the hash bucket queue.
53 *
54 * The correct serialization ensures that a waiter either observes
55 * the changed user space value before blocking or is woken by a
56 * concurrent waker:
57 *
58 * CPU 0                                 CPU 1
59 * val = *futex;
60 * sys_futex(WAIT, futex, val);
61 *   futex_wait(futex, val);
62 *
63 *   waiters++; (a)
64 *   smp_mb(); (A) <-- paired with -.
65 *                                  |
66 *   lock(hash_bucket(futex));      |
67 *                                  |
68 *   uval = *futex;                 |
69 *                                  |        *futex = newval;
70 *                                  |        sys_futex(WAKE, futex);
71 *                                  |          futex_wake(futex);
72 *                                  |
73 *                                  `--------> smp_mb(); (B)
74 *   if (uval == val)
75 *     queue();
76 *     unlock(hash_bucket(futex));
77 *     schedule();                         if (waiters)
78 *                                           lock(hash_bucket(futex));
79 *   else                                    wake_waiters(futex);
80 *     waiters--; (b)                        unlock(hash_bucket(futex));
81 *
82 * Where (A) orders the waiters increment and the futex value read through
83 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
84 * to futex and the waiters read (see futex_hb_waiters_pending()).
85 *
86 * This yields the following case (where X:=waiters, Y:=futex):
87 *
88 *	X = Y = 0
89 *
90 *	w[X]=1		w[Y]=1
91 *	MB		MB
92 *	r[Y]=y		r[X]=x
93 *
94 * Which guarantees that x==0 && y==0 is impossible; which translates back into
95 * the guarantee that we cannot both miss the futex variable change and the
96 * enqueue.
97 *
98 * Note that a new waiter is accounted for in (a) even when it is possible that
99 * the wait call can return error, in which case we backtrack from it in (b).
100 * Refer to the comment in futex_q_lock().
101 *
102 * Similarly, in order to account for waiters being requeued on another
103 * address we always increment the waiters for the destination bucket before
104 * acquiring the lock. It then decrements them again  after releasing it -
105 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
106 * will do the additional required waiter count housekeeping. This is done for
107 * double_lock_hb() and double_unlock_hb(), respectively.
108 */
109
110bool __futex_wake_mark(struct futex_q *q)
111{
112	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
113		return false;
114
115	__futex_unqueue(q);
116	/*
117	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
118	 * is written, without taking any locks. This is possible in the event
119	 * of a spurious wakeup, for example. A memory barrier is required here
120	 * to prevent the following store to lock_ptr from getting ahead of the
121	 * plist_del in __futex_unqueue().
122	 */
123	smp_store_release(&q->lock_ptr, NULL);
124
125	return true;
126}
127
128/*
129 * The hash bucket lock must be held when this is called.
130 * Afterwards, the futex_q must not be accessed. Callers
131 * must ensure to later call wake_up_q() for the actual
132 * wakeups to occur.
133 */
134void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
135{
136	struct task_struct *p = q->task;
137
138	get_task_struct(p);
139
140	if (!__futex_wake_mark(q)) {
141		put_task_struct(p);
142		return;
143	}
144
145	/*
146	 * Queue the task for later wakeup for after we've released
147	 * the hb->lock.
148	 */
149	wake_q_add_safe(wake_q, p);
150}
151
152/*
153 * Wake up waiters matching bitset queued on this futex (uaddr).
154 */
155int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
156{
157	struct futex_hash_bucket *hb;
158	struct futex_q *this, *next;
159	union futex_key key = FUTEX_KEY_INIT;
160	DEFINE_WAKE_Q(wake_q);
161	int ret;
162
163	if (!bitset)
164		return -EINVAL;
165
166	ret = get_futex_key(uaddr, flags, &key, FUTEX_READ);
167	if (unlikely(ret != 0))
168		return ret;
169
170	if ((flags & FLAGS_STRICT) && !nr_wake)
171		return 0;
172
173	hb = futex_hash(&key);
174
175	/* Make sure we really have tasks to wakeup */
176	if (!futex_hb_waiters_pending(hb))
177		return ret;
178
179	spin_lock(&hb->lock);
180
181	plist_for_each_entry_safe(this, next, &hb->chain, list) {
182		if (futex_match (&this->key, &key)) {
183			if (this->pi_state || this->rt_waiter) {
184				ret = -EINVAL;
185				break;
186			}
187
188			/* Check if one of the bits is set in both bitsets */
189			if (!(this->bitset & bitset))
190				continue;
191
192			this->wake(&wake_q, this);
193			if (++ret >= nr_wake)
194				break;
195		}
196	}
197
198	spin_unlock(&hb->lock);
199	wake_up_q(&wake_q);
200	return ret;
201}
202
203static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
204{
205	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
206	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
207	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
208	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
209	int oldval, ret;
210
211	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
212		if (oparg < 0 || oparg > 31) {
213			char comm[sizeof(current->comm)];
214			/*
215			 * kill this print and return -EINVAL when userspace
216			 * is sane again
217			 */
218			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
219					get_task_comm(comm, current), oparg);
220			oparg &= 31;
221		}
222		oparg = 1 << oparg;
223	}
224
225	pagefault_disable();
226	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
227	pagefault_enable();
228	if (ret)
229		return ret;
230
231	switch (cmp) {
232	case FUTEX_OP_CMP_EQ:
233		return oldval == cmparg;
234	case FUTEX_OP_CMP_NE:
235		return oldval != cmparg;
236	case FUTEX_OP_CMP_LT:
237		return oldval < cmparg;
238	case FUTEX_OP_CMP_GE:
239		return oldval >= cmparg;
240	case FUTEX_OP_CMP_LE:
241		return oldval <= cmparg;
242	case FUTEX_OP_CMP_GT:
243		return oldval > cmparg;
244	default:
245		return -ENOSYS;
246	}
247}
248
249/*
250 * Wake up all waiters hashed on the physical page that is mapped
251 * to this virtual address:
252 */
253int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
254		  int nr_wake, int nr_wake2, int op)
255{
256	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
257	struct futex_hash_bucket *hb1, *hb2;
258	struct futex_q *this, *next;
259	int ret, op_ret;
260	DEFINE_WAKE_Q(wake_q);
261
262retry:
263	ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ);
264	if (unlikely(ret != 0))
265		return ret;
266	ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
267	if (unlikely(ret != 0))
268		return ret;
269
270	hb1 = futex_hash(&key1);
271	hb2 = futex_hash(&key2);
272
273retry_private:
274	double_lock_hb(hb1, hb2);
275	op_ret = futex_atomic_op_inuser(op, uaddr2);
276	if (unlikely(op_ret < 0)) {
277		double_unlock_hb(hb1, hb2);
278
279		if (!IS_ENABLED(CONFIG_MMU) ||
280		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
281			/*
282			 * we don't get EFAULT from MMU faults if we don't have
283			 * an MMU, but we might get them from range checking
284			 */
285			ret = op_ret;
286			return ret;
287		}
288
289		if (op_ret == -EFAULT) {
290			ret = fault_in_user_writeable(uaddr2);
291			if (ret)
292				return ret;
293		}
294
295		cond_resched();
296		if (!(flags & FLAGS_SHARED))
297			goto retry_private;
298		goto retry;
299	}
300
301	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
302		if (futex_match (&this->key, &key1)) {
303			if (this->pi_state || this->rt_waiter) {
304				ret = -EINVAL;
305				goto out_unlock;
306			}
307			this->wake(&wake_q, this);
308			if (++ret >= nr_wake)
309				break;
310		}
311	}
312
313	if (op_ret > 0) {
314		op_ret = 0;
315		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
316			if (futex_match (&this->key, &key2)) {
317				if (this->pi_state || this->rt_waiter) {
318					ret = -EINVAL;
319					goto out_unlock;
320				}
321				this->wake(&wake_q, this);
322				if (++op_ret >= nr_wake2)
323					break;
324			}
325		}
326		ret += op_ret;
327	}
328
329out_unlock:
330	double_unlock_hb(hb1, hb2);
331	wake_up_q(&wake_q);
332	return ret;
333}
334
335static long futex_wait_restart(struct restart_block *restart);
336
337/**
338 * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
339 * @hb:		the futex hash bucket, must be locked by the caller
340 * @q:		the futex_q to queue up on
341 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
342 */
343void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
344			    struct hrtimer_sleeper *timeout)
345{
346	/*
347	 * The task state is guaranteed to be set before another task can
348	 * wake it. set_current_state() is implemented using smp_store_mb() and
349	 * futex_queue() calls spin_unlock() upon completion, both serializing
350	 * access to the hash list and forcing another memory barrier.
351	 */
352	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
353	futex_queue(q, hb);
354
355	/* Arm the timer */
356	if (timeout)
357		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
358
359	/*
360	 * If we have been removed from the hash list, then another task
361	 * has tried to wake us, and we can skip the call to schedule().
362	 */
363	if (likely(!plist_node_empty(&q->list))) {
364		/*
365		 * If the timer has already expired, current will already be
366		 * flagged for rescheduling. Only call schedule if there
367		 * is no timeout, or if it has yet to expire.
368		 */
369		if (!timeout || timeout->task)
370			schedule();
371	}
372	__set_current_state(TASK_RUNNING);
373}
374
375/**
376 * futex_unqueue_multiple - Remove various futexes from their hash bucket
377 * @v:	   The list of futexes to unqueue
378 * @count: Number of futexes in the list
379 *
380 * Helper to unqueue a list of futexes. This can't fail.
381 *
382 * Return:
383 *  - >=0 - Index of the last futex that was awoken;
384 *  - -1  - No futex was awoken
385 */
386int futex_unqueue_multiple(struct futex_vector *v, int count)
387{
388	int ret = -1, i;
389
390	for (i = 0; i < count; i++) {
391		if (!futex_unqueue(&v[i].q))
392			ret = i;
393	}
394
395	return ret;
396}
397
398/**
399 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
400 * @vs:		The futex list to wait on
401 * @count:	The size of the list
402 * @woken:	Index of the last woken futex, if any. Used to notify the
403 *		caller that it can return this index to userspace (return parameter)
404 *
405 * Prepare multiple futexes in a single step and enqueue them. This may fail if
406 * the futex list is invalid or if any futex was already awoken. On success the
407 * task is ready to interruptible sleep.
408 *
409 * Return:
410 *  -  1 - One of the futexes was woken by another thread
411 *  -  0 - Success
412 *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
413 */
414int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
415{
416	struct futex_hash_bucket *hb;
417	bool retry = false;
418	int ret, i;
419	u32 uval;
420
421	/*
422	 * Enqueuing multiple futexes is tricky, because we need to enqueue
423	 * each futex on the list before dealing with the next one to avoid
424	 * deadlocking on the hash bucket. But, before enqueuing, we need to
425	 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
426	 * lose any wake events, which cannot be done before the get_futex_key
427	 * of the next key, because it calls get_user_pages, which can sleep.
428	 * Thus, we fetch the list of futexes keys in two steps, by first
429	 * pinning all the memory keys in the futex key, and only then we read
430	 * each key and queue the corresponding futex.
431	 *
432	 * Private futexes doesn't need to recalculate hash in retry, so skip
433	 * get_futex_key() when retrying.
434	 */
435retry:
436	for (i = 0; i < count; i++) {
437		if (!(vs[i].w.flags & FLAGS_SHARED) && retry)
438			continue;
439
440		ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
441				    vs[i].w.flags,
442				    &vs[i].q.key, FUTEX_READ);
443
444		if (unlikely(ret))
445			return ret;
446	}
447
448	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
449
450	for (i = 0; i < count; i++) {
451		u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
452		struct futex_q *q = &vs[i].q;
453		u32 val = vs[i].w.val;
454
455		hb = futex_q_lock(q);
456		ret = futex_get_value_locked(&uval, uaddr);
457
458		if (!ret && uval == val) {
459			/*
460			 * The bucket lock can't be held while dealing with the
461			 * next futex. Queue each futex at this moment so hb can
462			 * be unlocked.
463			 */
464			futex_queue(q, hb);
465			continue;
466		}
467
468		futex_q_unlock(hb);
469		__set_current_state(TASK_RUNNING);
470
471		/*
472		 * Even if something went wrong, if we find out that a futex
473		 * was woken, we don't return error and return this index to
474		 * userspace
475		 */
476		*woken = futex_unqueue_multiple(vs, i);
477		if (*woken >= 0)
478			return 1;
479
480		if (ret) {
481			/*
482			 * If we need to handle a page fault, we need to do so
483			 * without any lock and any enqueued futex (otherwise
484			 * we could lose some wakeup). So we do it here, after
485			 * undoing all the work done so far. In success, we
486			 * retry all the work.
487			 */
488			if (get_user(uval, uaddr))
489				return -EFAULT;
490
491			retry = true;
492			goto retry;
493		}
494
495		if (uval != val)
496			return -EWOULDBLOCK;
497	}
498
499	return 0;
500}
501
502/**
503 * futex_sleep_multiple - Check sleeping conditions and sleep
504 * @vs:    List of futexes to wait for
505 * @count: Length of vs
506 * @to:    Timeout
507 *
508 * Sleep if and only if the timeout hasn't expired and no futex on the list has
509 * been woken up.
510 */
511static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
512				 struct hrtimer_sleeper *to)
513{
514	if (to && !to->task)
515		return;
516
517	for (; count; count--, vs++) {
518		if (!READ_ONCE(vs->q.lock_ptr))
519			return;
520	}
521
522	schedule();
523}
524
525/**
526 * futex_wait_multiple - Prepare to wait on and enqueue several futexes
527 * @vs:		The list of futexes to wait on
528 * @count:	The number of objects
529 * @to:		Timeout before giving up and returning to userspace
530 *
531 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
532 * sleeps on a group of futexes and returns on the first futex that is
533 * wake, or after the timeout has elapsed.
534 *
535 * Return:
536 *  - >=0 - Hint to the futex that was awoken
537 *  - <0  - On error
538 */
539int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
540			struct hrtimer_sleeper *to)
541{
542	int ret, hint = 0;
543
544	if (to)
545		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
546
547	while (1) {
548		ret = futex_wait_multiple_setup(vs, count, &hint);
549		if (ret) {
550			if (ret > 0) {
551				/* A futex was woken during setup */
552				ret = hint;
553			}
554			return ret;
555		}
556
557		futex_sleep_multiple(vs, count, to);
558
559		__set_current_state(TASK_RUNNING);
560
561		ret = futex_unqueue_multiple(vs, count);
562		if (ret >= 0)
563			return ret;
564
565		if (to && !to->task)
566			return -ETIMEDOUT;
567		else if (signal_pending(current))
568			return -ERESTARTSYS;
569		/*
570		 * The final case is a spurious wakeup, for
571		 * which just retry.
572		 */
573	}
574}
575
576/**
577 * futex_wait_setup() - Prepare to wait on a futex
578 * @uaddr:	the futex userspace address
579 * @val:	the expected value
580 * @flags:	futex flags (FLAGS_SHARED, etc.)
581 * @q:		the associated futex_q
582 * @hb:		storage for hash_bucket pointer to be returned to caller
583 *
584 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
585 * compare it with the expected value.  Handle atomic faults internally.
586 * Return with the hb lock held on success, and unlocked on failure.
587 *
588 * Return:
589 *  -  0 - uaddr contains val and hb has been locked;
590 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
591 */
592int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
593		     struct futex_q *q, struct futex_hash_bucket **hb)
594{
595	u32 uval;
596	int ret;
597
598	/*
599	 * Access the page AFTER the hash-bucket is locked.
600	 * Order is important:
601	 *
602	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
603	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
604	 *
605	 * The basic logical guarantee of a futex is that it blocks ONLY
606	 * if cond(var) is known to be true at the time of blocking, for
607	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
608	 * would open a race condition where we could block indefinitely with
609	 * cond(var) false, which would violate the guarantee.
610	 *
611	 * On the other hand, we insert q and release the hash-bucket only
612	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
613	 * absorb a wakeup if *uaddr does not match the desired values
614	 * while the syscall executes.
615	 */
616retry:
617	ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ);
618	if (unlikely(ret != 0))
619		return ret;
620
621retry_private:
622	*hb = futex_q_lock(q);
623
624	ret = futex_get_value_locked(&uval, uaddr);
625
626	if (ret) {
627		futex_q_unlock(*hb);
628
629		ret = get_user(uval, uaddr);
630		if (ret)
631			return ret;
632
633		if (!(flags & FLAGS_SHARED))
634			goto retry_private;
635
636		goto retry;
637	}
638
639	if (uval != val) {
640		futex_q_unlock(*hb);
641		ret = -EWOULDBLOCK;
642	}
643
644	return ret;
645}
646
647int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
648		 struct hrtimer_sleeper *to, u32 bitset)
649{
650	struct futex_q q = futex_q_init;
651	struct futex_hash_bucket *hb;
652	int ret;
653
654	if (!bitset)
655		return -EINVAL;
656
657	q.bitset = bitset;
658
659retry:
660	/*
661	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
662	 * is initialized.
663	 */
664	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
665	if (ret)
666		return ret;
667
668	/* futex_queue and wait for wakeup, timeout, or a signal. */
669	futex_wait_queue(hb, &q, to);
670
671	/* If we were woken (and unqueued), we succeeded, whatever. */
672	if (!futex_unqueue(&q))
673		return 0;
674
675	if (to && !to->task)
676		return -ETIMEDOUT;
677
678	/*
679	 * We expect signal_pending(current), but we might be the
680	 * victim of a spurious wakeup as well.
681	 */
682	if (!signal_pending(current))
683		goto retry;
684
685	return -ERESTARTSYS;
686}
687
688int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
689{
690	struct hrtimer_sleeper timeout, *to;
691	struct restart_block *restart;
692	int ret;
693
694	to = futex_setup_timer(abs_time, &timeout, flags,
695			       current->timer_slack_ns);
696
697	ret = __futex_wait(uaddr, flags, val, to, bitset);
698
699	/* No timeout, nothing to clean up. */
700	if (!to)
701		return ret;
702
703	hrtimer_cancel(&to->timer);
704	destroy_hrtimer_on_stack(&to->timer);
705
706	if (ret == -ERESTARTSYS) {
707		restart = &current->restart_block;
708		restart->futex.uaddr = uaddr;
709		restart->futex.val = val;
710		restart->futex.time = *abs_time;
711		restart->futex.bitset = bitset;
712		restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
713
714		return set_restart_fn(restart, futex_wait_restart);
715	}
716
717	return ret;
718}
719
720static long futex_wait_restart(struct restart_block *restart)
721{
722	u32 __user *uaddr = restart->futex.uaddr;
723	ktime_t t, *tp = NULL;
724
725	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
726		t = restart->futex.time;
727		tp = &t;
728	}
729	restart->fn = do_no_restart_syscall;
730
731	return (long)futex_wait(uaddr, restart->futex.flags,
732				restart->futex.val, tp, restart->futex.bitset);
733}
734
735