1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/kernel/fork.c
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 */
7
8/*
9 *  'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15#include <linux/anon_inodes.h>
16#include <linux/slab.h>
17#include <linux/sched/autogroup.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/coredump.h>
20#include <linux/sched/user.h>
21#include <linux/sched/numa_balancing.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/task.h>
24#include <linux/sched/task_stack.h>
25#include <linux/sched/cputime.h>
26#include <linux/seq_file.h>
27#include <linux/rtmutex.h>
28#include <linux/init.h>
29#include <linux/unistd.h>
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
37#include <linux/fdtable.h>
38#include <linux/iocontext.h>
39#include <linux/key.h>
40#include <linux/kmsan.h>
41#include <linux/binfmts.h>
42#include <linux/mman.h>
43#include <linux/mmu_notifier.h>
44#include <linux/fs.h>
45#include <linux/mm.h>
46#include <linux/mm_inline.h>
47#include <linux/nsproxy.h>
48#include <linux/capability.h>
49#include <linux/cpu.h>
50#include <linux/cgroup.h>
51#include <linux/security.h>
52#include <linux/hugetlb.h>
53#include <linux/seccomp.h>
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/syscall_user_dispatch.h>
57#include <linux/jiffies.h>
58#include <linux/futex.h>
59#include <linux/compat.h>
60#include <linux/kthread.h>
61#include <linux/task_io_accounting_ops.h>
62#include <linux/rcupdate.h>
63#include <linux/ptrace.h>
64#include <linux/mount.h>
65#include <linux/audit.h>
66#include <linux/memcontrol.h>
67#include <linux/ftrace.h>
68#include <linux/proc_fs.h>
69#include <linux/profile.h>
70#include <linux/rmap.h>
71#include <linux/ksm.h>
72#include <linux/acct.h>
73#include <linux/userfaultfd_k.h>
74#include <linux/tsacct_kern.h>
75#include <linux/cn_proc.h>
76#include <linux/freezer.h>
77#include <linux/delayacct.h>
78#include <linux/taskstats_kern.h>
79#include <linux/tty.h>
80#include <linux/fs_struct.h>
81#include <linux/magic.h>
82#include <linux/perf_event.h>
83#include <linux/posix-timers.h>
84#include <linux/user-return-notifier.h>
85#include <linux/oom.h>
86#include <linux/khugepaged.h>
87#include <linux/signalfd.h>
88#include <linux/uprobes.h>
89#include <linux/aio.h>
90#include <linux/compiler.h>
91#include <linux/sysctl.h>
92#include <linux/kcov.h>
93#include <linux/livepatch.h>
94#include <linux/thread_info.h>
95#include <linux/stackleak.h>
96#include <linux/kasan.h>
97#include <linux/scs.h>
98#include <linux/io_uring.h>
99#include <linux/bpf.h>
100#include <linux/stackprotector.h>
101#include <linux/user_events.h>
102#include <linux/iommu.h>
103#include <linux/rseq.h>
104#include <uapi/linux/pidfd.h>
105#include <linux/pidfs.h>
106
107#include <asm/pgalloc.h>
108#include <linux/uaccess.h>
109#include <asm/mmu_context.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112
113#include <trace/events/sched.h>
114
115#define CREATE_TRACE_POINTS
116#include <trace/events/task.h>
117
118/*
119 * Minimum number of threads to boot the kernel
120 */
121#define MIN_THREADS 20
122
123/*
124 * Maximum number of threads
125 */
126#define MAX_THREADS FUTEX_TID_MASK
127
128/*
129 * Protected counters by write_lock_irq(&tasklist_lock)
130 */
131unsigned long total_forks;	/* Handle normal Linux uptimes. */
132int nr_threads;			/* The idle threads do not count.. */
133
134static int max_threads;		/* tunable limit on nr_threads */
135
136#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
137
138static const char * const resident_page_types[] = {
139	NAMED_ARRAY_INDEX(MM_FILEPAGES),
140	NAMED_ARRAY_INDEX(MM_ANONPAGES),
141	NAMED_ARRAY_INDEX(MM_SWAPENTS),
142	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
143};
144
145DEFINE_PER_CPU(unsigned long, process_counts) = 0;
146
147__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
148
149#ifdef CONFIG_PROVE_RCU
150int lockdep_tasklist_lock_is_held(void)
151{
152	return lockdep_is_held(&tasklist_lock);
153}
154EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
155#endif /* #ifdef CONFIG_PROVE_RCU */
156
157int nr_processes(void)
158{
159	int cpu;
160	int total = 0;
161
162	for_each_possible_cpu(cpu)
163		total += per_cpu(process_counts, cpu);
164
165	return total;
166}
167
168void __weak arch_release_task_struct(struct task_struct *tsk)
169{
170}
171
172static struct kmem_cache *task_struct_cachep;
173
174static inline struct task_struct *alloc_task_struct_node(int node)
175{
176	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177}
178
179static inline void free_task_struct(struct task_struct *tsk)
180{
181	kmem_cache_free(task_struct_cachep, tsk);
182}
183
184/*
185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186 * kmemcache based allocator.
187 */
188# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189
190#  ifdef CONFIG_VMAP_STACK
191/*
192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193 * flush.  Try to minimize the number of calls by caching stacks.
194 */
195#define NR_CACHED_STACKS 2
196static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197
198struct vm_stack {
199	struct rcu_head rcu;
200	struct vm_struct *stack_vm_area;
201};
202
203static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204{
205	unsigned int i;
206
207	for (i = 0; i < NR_CACHED_STACKS; i++) {
208		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209			continue;
210		return true;
211	}
212	return false;
213}
214
215static void thread_stack_free_rcu(struct rcu_head *rh)
216{
217	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218
219	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220		return;
221
222	vfree(vm_stack);
223}
224
225static void thread_stack_delayed_free(struct task_struct *tsk)
226{
227	struct vm_stack *vm_stack = tsk->stack;
228
229	vm_stack->stack_vm_area = tsk->stack_vm_area;
230	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231}
232
233static int free_vm_stack_cache(unsigned int cpu)
234{
235	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236	int i;
237
238	for (i = 0; i < NR_CACHED_STACKS; i++) {
239		struct vm_struct *vm_stack = cached_vm_stacks[i];
240
241		if (!vm_stack)
242			continue;
243
244		vfree(vm_stack->addr);
245		cached_vm_stacks[i] = NULL;
246	}
247
248	return 0;
249}
250
251static int memcg_charge_kernel_stack(struct vm_struct *vm)
252{
253	int i;
254	int ret;
255	int nr_charged = 0;
256
257	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258
259	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261		if (ret)
262			goto err;
263		nr_charged++;
264	}
265	return 0;
266err:
267	for (i = 0; i < nr_charged; i++)
268		memcg_kmem_uncharge_page(vm->pages[i], 0);
269	return ret;
270}
271
272static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273{
274	struct vm_struct *vm;
275	void *stack;
276	int i;
277
278	for (i = 0; i < NR_CACHED_STACKS; i++) {
279		struct vm_struct *s;
280
281		s = this_cpu_xchg(cached_stacks[i], NULL);
282
283		if (!s)
284			continue;
285
286		/* Reset stack metadata. */
287		kasan_unpoison_range(s->addr, THREAD_SIZE);
288
289		stack = kasan_reset_tag(s->addr);
290
291		/* Clear stale pointers from reused stack. */
292		memset(stack, 0, THREAD_SIZE);
293
294		if (memcg_charge_kernel_stack(s)) {
295			vfree(s->addr);
296			return -ENOMEM;
297		}
298
299		tsk->stack_vm_area = s;
300		tsk->stack = stack;
301		return 0;
302	}
303
304	/*
305	 * Allocated stacks are cached and later reused by new threads,
306	 * so memcg accounting is performed manually on assigning/releasing
307	 * stacks to tasks. Drop __GFP_ACCOUNT.
308	 */
309	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310				     VMALLOC_START, VMALLOC_END,
311				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312				     PAGE_KERNEL,
313				     0, node, __builtin_return_address(0));
314	if (!stack)
315		return -ENOMEM;
316
317	vm = find_vm_area(stack);
318	if (memcg_charge_kernel_stack(vm)) {
319		vfree(stack);
320		return -ENOMEM;
321	}
322	/*
323	 * We can't call find_vm_area() in interrupt context, and
324	 * free_thread_stack() can be called in interrupt context,
325	 * so cache the vm_struct.
326	 */
327	tsk->stack_vm_area = vm;
328	stack = kasan_reset_tag(stack);
329	tsk->stack = stack;
330	return 0;
331}
332
333static void free_thread_stack(struct task_struct *tsk)
334{
335	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336		thread_stack_delayed_free(tsk);
337
338	tsk->stack = NULL;
339	tsk->stack_vm_area = NULL;
340}
341
342#  else /* !CONFIG_VMAP_STACK */
343
344static void thread_stack_free_rcu(struct rcu_head *rh)
345{
346	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347}
348
349static void thread_stack_delayed_free(struct task_struct *tsk)
350{
351	struct rcu_head *rh = tsk->stack;
352
353	call_rcu(rh, thread_stack_free_rcu);
354}
355
356static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357{
358	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359					     THREAD_SIZE_ORDER);
360
361	if (likely(page)) {
362		tsk->stack = kasan_reset_tag(page_address(page));
363		return 0;
364	}
365	return -ENOMEM;
366}
367
368static void free_thread_stack(struct task_struct *tsk)
369{
370	thread_stack_delayed_free(tsk);
371	tsk->stack = NULL;
372}
373
374#  endif /* CONFIG_VMAP_STACK */
375# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376
377static struct kmem_cache *thread_stack_cache;
378
379static void thread_stack_free_rcu(struct rcu_head *rh)
380{
381	kmem_cache_free(thread_stack_cache, rh);
382}
383
384static void thread_stack_delayed_free(struct task_struct *tsk)
385{
386	struct rcu_head *rh = tsk->stack;
387
388	call_rcu(rh, thread_stack_free_rcu);
389}
390
391static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392{
393	unsigned long *stack;
394	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395	stack = kasan_reset_tag(stack);
396	tsk->stack = stack;
397	return stack ? 0 : -ENOMEM;
398}
399
400static void free_thread_stack(struct task_struct *tsk)
401{
402	thread_stack_delayed_free(tsk);
403	tsk->stack = NULL;
404}
405
406void thread_stack_cache_init(void)
407{
408	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409					THREAD_SIZE, THREAD_SIZE, 0, 0,
410					THREAD_SIZE, NULL);
411	BUG_ON(thread_stack_cache == NULL);
412}
413
414# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415
416/* SLAB cache for signal_struct structures (tsk->signal) */
417static struct kmem_cache *signal_cachep;
418
419/* SLAB cache for sighand_struct structures (tsk->sighand) */
420struct kmem_cache *sighand_cachep;
421
422/* SLAB cache for files_struct structures (tsk->files) */
423struct kmem_cache *files_cachep;
424
425/* SLAB cache for fs_struct structures (tsk->fs) */
426struct kmem_cache *fs_cachep;
427
428/* SLAB cache for vm_area_struct structures */
429static struct kmem_cache *vm_area_cachep;
430
431/* SLAB cache for mm_struct structures (tsk->mm) */
432static struct kmem_cache *mm_cachep;
433
434#ifdef CONFIG_PER_VMA_LOCK
435
436/* SLAB cache for vm_area_struct.lock */
437static struct kmem_cache *vma_lock_cachep;
438
439static bool vma_lock_alloc(struct vm_area_struct *vma)
440{
441	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
442	if (!vma->vm_lock)
443		return false;
444
445	init_rwsem(&vma->vm_lock->lock);
446	vma->vm_lock_seq = -1;
447
448	return true;
449}
450
451static inline void vma_lock_free(struct vm_area_struct *vma)
452{
453	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
454}
455
456#else /* CONFIG_PER_VMA_LOCK */
457
458static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
459static inline void vma_lock_free(struct vm_area_struct *vma) {}
460
461#endif /* CONFIG_PER_VMA_LOCK */
462
463struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
464{
465	struct vm_area_struct *vma;
466
467	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468	if (!vma)
469		return NULL;
470
471	vma_init(vma, mm);
472	if (!vma_lock_alloc(vma)) {
473		kmem_cache_free(vm_area_cachep, vma);
474		return NULL;
475	}
476
477	return vma;
478}
479
480struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
481{
482	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
483
484	if (!new)
485		return NULL;
486
487	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
488	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
489	/*
490	 * orig->shared.rb may be modified concurrently, but the clone
491	 * will be reinitialized.
492	 */
493	data_race(memcpy(new, orig, sizeof(*new)));
494	if (!vma_lock_alloc(new)) {
495		kmem_cache_free(vm_area_cachep, new);
496		return NULL;
497	}
498	INIT_LIST_HEAD(&new->anon_vma_chain);
499	vma_numab_state_init(new);
500	dup_anon_vma_name(orig, new);
501
502	return new;
503}
504
505void __vm_area_free(struct vm_area_struct *vma)
506{
507	vma_numab_state_free(vma);
508	free_anon_vma_name(vma);
509	vma_lock_free(vma);
510	kmem_cache_free(vm_area_cachep, vma);
511}
512
513#ifdef CONFIG_PER_VMA_LOCK
514static void vm_area_free_rcu_cb(struct rcu_head *head)
515{
516	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
517						  vm_rcu);
518
519	/* The vma should not be locked while being destroyed. */
520	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
521	__vm_area_free(vma);
522}
523#endif
524
525void vm_area_free(struct vm_area_struct *vma)
526{
527#ifdef CONFIG_PER_VMA_LOCK
528	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
529#else
530	__vm_area_free(vma);
531#endif
532}
533
534static void account_kernel_stack(struct task_struct *tsk, int account)
535{
536	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
537		struct vm_struct *vm = task_stack_vm_area(tsk);
538		int i;
539
540		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
541			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
542					      account * (PAGE_SIZE / 1024));
543	} else {
544		void *stack = task_stack_page(tsk);
545
546		/* All stack pages are in the same node. */
547		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
548				      account * (THREAD_SIZE / 1024));
549	}
550}
551
552void exit_task_stack_account(struct task_struct *tsk)
553{
554	account_kernel_stack(tsk, -1);
555
556	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
557		struct vm_struct *vm;
558		int i;
559
560		vm = task_stack_vm_area(tsk);
561		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
562			memcg_kmem_uncharge_page(vm->pages[i], 0);
563	}
564}
565
566static void release_task_stack(struct task_struct *tsk)
567{
568	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
569		return;  /* Better to leak the stack than to free prematurely */
570
571	free_thread_stack(tsk);
572}
573
574#ifdef CONFIG_THREAD_INFO_IN_TASK
575void put_task_stack(struct task_struct *tsk)
576{
577	if (refcount_dec_and_test(&tsk->stack_refcount))
578		release_task_stack(tsk);
579}
580#endif
581
582void free_task(struct task_struct *tsk)
583{
584#ifdef CONFIG_SECCOMP
585	WARN_ON_ONCE(tsk->seccomp.filter);
586#endif
587	release_user_cpus_ptr(tsk);
588	scs_release(tsk);
589
590#ifndef CONFIG_THREAD_INFO_IN_TASK
591	/*
592	 * The task is finally done with both the stack and thread_info,
593	 * so free both.
594	 */
595	release_task_stack(tsk);
596#else
597	/*
598	 * If the task had a separate stack allocation, it should be gone
599	 * by now.
600	 */
601	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
602#endif
603	rt_mutex_debug_task_free(tsk);
604	ftrace_graph_exit_task(tsk);
605	arch_release_task_struct(tsk);
606	if (tsk->flags & PF_KTHREAD)
607		free_kthread_struct(tsk);
608	bpf_task_storage_free(tsk);
609	free_task_struct(tsk);
610}
611EXPORT_SYMBOL(free_task);
612
613static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
614{
615	struct file *exe_file;
616
617	exe_file = get_mm_exe_file(oldmm);
618	RCU_INIT_POINTER(mm->exe_file, exe_file);
619	/*
620	 * We depend on the oldmm having properly denied write access to the
621	 * exe_file already.
622	 */
623	if (exe_file && deny_write_access(exe_file))
624		pr_warn_once("deny_write_access() failed in %s\n", __func__);
625}
626
627#ifdef CONFIG_MMU
628static __latent_entropy int dup_mmap(struct mm_struct *mm,
629					struct mm_struct *oldmm)
630{
631	struct vm_area_struct *mpnt, *tmp;
632	int retval;
633	unsigned long charge = 0;
634	LIST_HEAD(uf);
635	VMA_ITERATOR(vmi, mm, 0);
636
637	uprobe_start_dup_mmap();
638	if (mmap_write_lock_killable(oldmm)) {
639		retval = -EINTR;
640		goto fail_uprobe_end;
641	}
642	flush_cache_dup_mm(oldmm);
643	uprobe_dup_mmap(oldmm, mm);
644	/*
645	 * Not linked in yet - no deadlock potential:
646	 */
647	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
648
649	/* No ordering required: file already has been exposed. */
650	dup_mm_exe_file(mm, oldmm);
651
652	mm->total_vm = oldmm->total_vm;
653	mm->data_vm = oldmm->data_vm;
654	mm->exec_vm = oldmm->exec_vm;
655	mm->stack_vm = oldmm->stack_vm;
656
657	retval = ksm_fork(mm, oldmm);
658	if (retval)
659		goto out;
660	khugepaged_fork(mm, oldmm);
661
662	/* Use __mt_dup() to efficiently build an identical maple tree. */
663	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
664	if (unlikely(retval))
665		goto out;
666
667	mt_clear_in_rcu(vmi.mas.tree);
668	for_each_vma(vmi, mpnt) {
669		struct file *file;
670
671		vma_start_write(mpnt);
672		if (mpnt->vm_flags & VM_DONTCOPY) {
673			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
674						    mpnt->vm_end, GFP_KERNEL);
675			if (retval)
676				goto loop_out;
677
678			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
679			continue;
680		}
681		charge = 0;
682		/*
683		 * Don't duplicate many vmas if we've been oom-killed (for
684		 * example)
685		 */
686		if (fatal_signal_pending(current)) {
687			retval = -EINTR;
688			goto loop_out;
689		}
690		if (mpnt->vm_flags & VM_ACCOUNT) {
691			unsigned long len = vma_pages(mpnt);
692
693			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
694				goto fail_nomem;
695			charge = len;
696		}
697		tmp = vm_area_dup(mpnt);
698		if (!tmp)
699			goto fail_nomem;
700		retval = vma_dup_policy(mpnt, tmp);
701		if (retval)
702			goto fail_nomem_policy;
703		tmp->vm_mm = mm;
704		retval = dup_userfaultfd(tmp, &uf);
705		if (retval)
706			goto fail_nomem_anon_vma_fork;
707		if (tmp->vm_flags & VM_WIPEONFORK) {
708			/*
709			 * VM_WIPEONFORK gets a clean slate in the child.
710			 * Don't prepare anon_vma until fault since we don't
711			 * copy page for current vma.
712			 */
713			tmp->anon_vma = NULL;
714		} else if (anon_vma_fork(tmp, mpnt))
715			goto fail_nomem_anon_vma_fork;
716		vm_flags_clear(tmp, VM_LOCKED_MASK);
717		/*
718		 * Copy/update hugetlb private vma information.
719		 */
720		if (is_vm_hugetlb_page(tmp))
721			hugetlb_dup_vma_private(tmp);
722
723		/*
724		 * Link the vma into the MT. After using __mt_dup(), memory
725		 * allocation is not necessary here, so it cannot fail.
726		 */
727		vma_iter_bulk_store(&vmi, tmp);
728
729		mm->map_count++;
730
731		if (tmp->vm_ops && tmp->vm_ops->open)
732			tmp->vm_ops->open(tmp);
733
734		file = tmp->vm_file;
735		if (file) {
736			struct address_space *mapping = file->f_mapping;
737
738			get_file(file);
739			i_mmap_lock_write(mapping);
740			if (vma_is_shared_maywrite(tmp))
741				mapping_allow_writable(mapping);
742			flush_dcache_mmap_lock(mapping);
743			/* insert tmp into the share list, just after mpnt */
744			vma_interval_tree_insert_after(tmp, mpnt,
745					&mapping->i_mmap);
746			flush_dcache_mmap_unlock(mapping);
747			i_mmap_unlock_write(mapping);
748		}
749
750		if (!(tmp->vm_flags & VM_WIPEONFORK))
751			retval = copy_page_range(tmp, mpnt);
752
753		if (retval) {
754			mpnt = vma_next(&vmi);
755			goto loop_out;
756		}
757	}
758	/* a new mm has just been created */
759	retval = arch_dup_mmap(oldmm, mm);
760loop_out:
761	vma_iter_free(&vmi);
762	if (!retval) {
763		mt_set_in_rcu(vmi.mas.tree);
764	} else if (mpnt) {
765		/*
766		 * The entire maple tree has already been duplicated. If the
767		 * mmap duplication fails, mark the failure point with
768		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
769		 * stop releasing VMAs that have not been duplicated after this
770		 * point.
771		 */
772		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
773		mas_store(&vmi.mas, XA_ZERO_ENTRY);
774	}
775out:
776	mmap_write_unlock(mm);
777	flush_tlb_mm(oldmm);
778	mmap_write_unlock(oldmm);
779	dup_userfaultfd_complete(&uf);
780fail_uprobe_end:
781	uprobe_end_dup_mmap();
782	return retval;
783
784fail_nomem_anon_vma_fork:
785	mpol_put(vma_policy(tmp));
786fail_nomem_policy:
787	vm_area_free(tmp);
788fail_nomem:
789	retval = -ENOMEM;
790	vm_unacct_memory(charge);
791	goto loop_out;
792}
793
794static inline int mm_alloc_pgd(struct mm_struct *mm)
795{
796	mm->pgd = pgd_alloc(mm);
797	if (unlikely(!mm->pgd))
798		return -ENOMEM;
799	return 0;
800}
801
802static inline void mm_free_pgd(struct mm_struct *mm)
803{
804	pgd_free(mm, mm->pgd);
805}
806#else
807static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808{
809	mmap_write_lock(oldmm);
810	dup_mm_exe_file(mm, oldmm);
811	mmap_write_unlock(oldmm);
812	return 0;
813}
814#define mm_alloc_pgd(mm)	(0)
815#define mm_free_pgd(mm)
816#endif /* CONFIG_MMU */
817
818static void check_mm(struct mm_struct *mm)
819{
820	int i;
821
822	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823			 "Please make sure 'struct resident_page_types[]' is updated as well");
824
825	for (i = 0; i < NR_MM_COUNTERS; i++) {
826		long x = percpu_counter_sum(&mm->rss_stat[i]);
827
828		if (unlikely(x))
829			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830				 mm, resident_page_types[i], x);
831	}
832
833	if (mm_pgtables_bytes(mm))
834		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835				mm_pgtables_bytes(mm));
836
837#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
838	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839#endif
840}
841
842#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
844
845static void do_check_lazy_tlb(void *arg)
846{
847	struct mm_struct *mm = arg;
848
849	WARN_ON_ONCE(current->active_mm == mm);
850}
851
852static void do_shoot_lazy_tlb(void *arg)
853{
854	struct mm_struct *mm = arg;
855
856	if (current->active_mm == mm) {
857		WARN_ON_ONCE(current->mm);
858		current->active_mm = &init_mm;
859		switch_mm(mm, &init_mm, current);
860	}
861}
862
863static void cleanup_lazy_tlbs(struct mm_struct *mm)
864{
865	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866		/*
867		 * In this case, lazy tlb mms are refounted and would not reach
868		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
869		 */
870		return;
871	}
872
873	/*
874	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875	 * requires lazy mm users to switch to another mm when the refcount
876	 * drops to zero, before the mm is freed. This requires IPIs here to
877	 * switch kernel threads to init_mm.
878	 *
879	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880	 * switch with the final userspace teardown TLB flush which leaves the
881	 * mm lazy on this CPU but no others, reducing the need for additional
882	 * IPIs here. There are cases where a final IPI is still required here,
883	 * such as the final mmdrop being performed on a different CPU than the
884	 * one exiting, or kernel threads using the mm when userspace exits.
885	 *
886	 * IPI overheads have not found to be expensive, but they could be
887	 * reduced in a number of possible ways, for example (roughly
888	 * increasing order of complexity):
889	 * - The last lazy reference created by exit_mm() could instead switch
890	 *   to init_mm, however it's probable this will run on the same CPU
891	 *   immediately afterwards, so this may not reduce IPIs much.
892	 * - A batch of mms requiring IPIs could be gathered and freed at once.
893	 * - CPUs store active_mm where it can be remotely checked without a
894	 *   lock, to filter out false-positives in the cpumask.
895	 * - After mm_users or mm_count reaches zero, switching away from the
896	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
897	 *   with some batching or delaying of the final IPIs.
898	 * - A delayed freeing and RCU-like quiescing sequence based on mm
899	 *   switching to avoid IPIs completely.
900	 */
901	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904}
905
906/*
907 * Called when the last reference to the mm
908 * is dropped: either by a lazy thread or by
909 * mmput. Free the page directory and the mm.
910 */
911void __mmdrop(struct mm_struct *mm)
912{
913	BUG_ON(mm == &init_mm);
914	WARN_ON_ONCE(mm == current->mm);
915
916	/* Ensure no CPUs are using this as their lazy tlb mm */
917	cleanup_lazy_tlbs(mm);
918
919	WARN_ON_ONCE(mm == current->active_mm);
920	mm_free_pgd(mm);
921	destroy_context(mm);
922	mmu_notifier_subscriptions_destroy(mm);
923	check_mm(mm);
924	put_user_ns(mm->user_ns);
925	mm_pasid_drop(mm);
926	mm_destroy_cid(mm);
927	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928
929	free_mm(mm);
930}
931EXPORT_SYMBOL_GPL(__mmdrop);
932
933static void mmdrop_async_fn(struct work_struct *work)
934{
935	struct mm_struct *mm;
936
937	mm = container_of(work, struct mm_struct, async_put_work);
938	__mmdrop(mm);
939}
940
941static void mmdrop_async(struct mm_struct *mm)
942{
943	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945		schedule_work(&mm->async_put_work);
946	}
947}
948
949static inline void free_signal_struct(struct signal_struct *sig)
950{
951	taskstats_tgid_free(sig);
952	sched_autogroup_exit(sig);
953	/*
954	 * __mmdrop is not safe to call from softirq context on x86 due to
955	 * pgd_dtor so postpone it to the async context
956	 */
957	if (sig->oom_mm)
958		mmdrop_async(sig->oom_mm);
959	kmem_cache_free(signal_cachep, sig);
960}
961
962static inline void put_signal_struct(struct signal_struct *sig)
963{
964	if (refcount_dec_and_test(&sig->sigcnt))
965		free_signal_struct(sig);
966}
967
968void __put_task_struct(struct task_struct *tsk)
969{
970	WARN_ON(!tsk->exit_state);
971	WARN_ON(refcount_read(&tsk->usage));
972	WARN_ON(tsk == current);
973
974	io_uring_free(tsk);
975	cgroup_free(tsk);
976	task_numa_free(tsk, true);
977	security_task_free(tsk);
978	exit_creds(tsk);
979	delayacct_tsk_free(tsk);
980	put_signal_struct(tsk->signal);
981	sched_core_free(tsk);
982	free_task(tsk);
983}
984EXPORT_SYMBOL_GPL(__put_task_struct);
985
986void __put_task_struct_rcu_cb(struct rcu_head *rhp)
987{
988	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
989
990	__put_task_struct(task);
991}
992EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
993
994void __init __weak arch_task_cache_init(void) { }
995
996/*
997 * set_max_threads
998 */
999static void set_max_threads(unsigned int max_threads_suggested)
1000{
1001	u64 threads;
1002	unsigned long nr_pages = totalram_pages();
1003
1004	/*
1005	 * The number of threads shall be limited such that the thread
1006	 * structures may only consume a small part of the available memory.
1007	 */
1008	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1009		threads = MAX_THREADS;
1010	else
1011		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1012				    (u64) THREAD_SIZE * 8UL);
1013
1014	if (threads > max_threads_suggested)
1015		threads = max_threads_suggested;
1016
1017	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1018}
1019
1020#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1021/* Initialized by the architecture: */
1022int arch_task_struct_size __read_mostly;
1023#endif
1024
1025static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1026{
1027	/* Fetch thread_struct whitelist for the architecture. */
1028	arch_thread_struct_whitelist(offset, size);
1029
1030	/*
1031	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1032	 * adjust offset to position of thread_struct in task_struct.
1033	 */
1034	if (unlikely(*size == 0))
1035		*offset = 0;
1036	else
1037		*offset += offsetof(struct task_struct, thread);
1038}
1039
1040void __init fork_init(void)
1041{
1042	int i;
1043#ifndef ARCH_MIN_TASKALIGN
1044#define ARCH_MIN_TASKALIGN	0
1045#endif
1046	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1047	unsigned long useroffset, usersize;
1048
1049	/* create a slab on which task_structs can be allocated */
1050	task_struct_whitelist(&useroffset, &usersize);
1051	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1052			arch_task_struct_size, align,
1053			SLAB_PANIC|SLAB_ACCOUNT,
1054			useroffset, usersize, NULL);
1055
1056	/* do the arch specific task caches init */
1057	arch_task_cache_init();
1058
1059	set_max_threads(MAX_THREADS);
1060
1061	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1062	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1063	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1064		init_task.signal->rlim[RLIMIT_NPROC];
1065
1066	for (i = 0; i < UCOUNT_COUNTS; i++)
1067		init_user_ns.ucount_max[i] = max_threads/2;
1068
1069	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1070	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1071	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1072	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1073
1074#ifdef CONFIG_VMAP_STACK
1075	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1076			  NULL, free_vm_stack_cache);
1077#endif
1078
1079	scs_init();
1080
1081	lockdep_init_task(&init_task);
1082	uprobes_init();
1083}
1084
1085int __weak arch_dup_task_struct(struct task_struct *dst,
1086					       struct task_struct *src)
1087{
1088	*dst = *src;
1089	return 0;
1090}
1091
1092void set_task_stack_end_magic(struct task_struct *tsk)
1093{
1094	unsigned long *stackend;
1095
1096	stackend = end_of_stack(tsk);
1097	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1098}
1099
1100static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1101{
1102	struct task_struct *tsk;
1103	int err;
1104
1105	if (node == NUMA_NO_NODE)
1106		node = tsk_fork_get_node(orig);
1107	tsk = alloc_task_struct_node(node);
1108	if (!tsk)
1109		return NULL;
1110
1111	err = arch_dup_task_struct(tsk, orig);
1112	if (err)
1113		goto free_tsk;
1114
1115	err = alloc_thread_stack_node(tsk, node);
1116	if (err)
1117		goto free_tsk;
1118
1119#ifdef CONFIG_THREAD_INFO_IN_TASK
1120	refcount_set(&tsk->stack_refcount, 1);
1121#endif
1122	account_kernel_stack(tsk, 1);
1123
1124	err = scs_prepare(tsk, node);
1125	if (err)
1126		goto free_stack;
1127
1128#ifdef CONFIG_SECCOMP
1129	/*
1130	 * We must handle setting up seccomp filters once we're under
1131	 * the sighand lock in case orig has changed between now and
1132	 * then. Until then, filter must be NULL to avoid messing up
1133	 * the usage counts on the error path calling free_task.
1134	 */
1135	tsk->seccomp.filter = NULL;
1136#endif
1137
1138	setup_thread_stack(tsk, orig);
1139	clear_user_return_notifier(tsk);
1140	clear_tsk_need_resched(tsk);
1141	set_task_stack_end_magic(tsk);
1142	clear_syscall_work_syscall_user_dispatch(tsk);
1143
1144#ifdef CONFIG_STACKPROTECTOR
1145	tsk->stack_canary = get_random_canary();
1146#endif
1147	if (orig->cpus_ptr == &orig->cpus_mask)
1148		tsk->cpus_ptr = &tsk->cpus_mask;
1149	dup_user_cpus_ptr(tsk, orig, node);
1150
1151	/*
1152	 * One for the user space visible state that goes away when reaped.
1153	 * One for the scheduler.
1154	 */
1155	refcount_set(&tsk->rcu_users, 2);
1156	/* One for the rcu users */
1157	refcount_set(&tsk->usage, 1);
1158#ifdef CONFIG_BLK_DEV_IO_TRACE
1159	tsk->btrace_seq = 0;
1160#endif
1161	tsk->splice_pipe = NULL;
1162	tsk->task_frag.page = NULL;
1163	tsk->wake_q.next = NULL;
1164	tsk->worker_private = NULL;
1165
1166	kcov_task_init(tsk);
1167	kmsan_task_create(tsk);
1168	kmap_local_fork(tsk);
1169
1170#ifdef CONFIG_FAULT_INJECTION
1171	tsk->fail_nth = 0;
1172#endif
1173
1174#ifdef CONFIG_BLK_CGROUP
1175	tsk->throttle_disk = NULL;
1176	tsk->use_memdelay = 0;
1177#endif
1178
1179#ifdef CONFIG_ARCH_HAS_CPU_PASID
1180	tsk->pasid_activated = 0;
1181#endif
1182
1183#ifdef CONFIG_MEMCG
1184	tsk->active_memcg = NULL;
1185#endif
1186
1187#ifdef CONFIG_CPU_SUP_INTEL
1188	tsk->reported_split_lock = 0;
1189#endif
1190
1191#ifdef CONFIG_SCHED_MM_CID
1192	tsk->mm_cid = -1;
1193	tsk->last_mm_cid = -1;
1194	tsk->mm_cid_active = 0;
1195	tsk->migrate_from_cpu = -1;
1196#endif
1197	return tsk;
1198
1199free_stack:
1200	exit_task_stack_account(tsk);
1201	free_thread_stack(tsk);
1202free_tsk:
1203	free_task_struct(tsk);
1204	return NULL;
1205}
1206
1207__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1208
1209static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1210
1211static int __init coredump_filter_setup(char *s)
1212{
1213	default_dump_filter =
1214		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1215		MMF_DUMP_FILTER_MASK;
1216	return 1;
1217}
1218
1219__setup("coredump_filter=", coredump_filter_setup);
1220
1221#include <linux/init_task.h>
1222
1223static void mm_init_aio(struct mm_struct *mm)
1224{
1225#ifdef CONFIG_AIO
1226	spin_lock_init(&mm->ioctx_lock);
1227	mm->ioctx_table = NULL;
1228#endif
1229}
1230
1231static __always_inline void mm_clear_owner(struct mm_struct *mm,
1232					   struct task_struct *p)
1233{
1234#ifdef CONFIG_MEMCG
1235	if (mm->owner == p)
1236		WRITE_ONCE(mm->owner, NULL);
1237#endif
1238}
1239
1240static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1241{
1242#ifdef CONFIG_MEMCG
1243	mm->owner = p;
1244#endif
1245}
1246
1247static void mm_init_uprobes_state(struct mm_struct *mm)
1248{
1249#ifdef CONFIG_UPROBES
1250	mm->uprobes_state.xol_area = NULL;
1251#endif
1252}
1253
1254static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1255	struct user_namespace *user_ns)
1256{
1257	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1258	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1259	atomic_set(&mm->mm_users, 1);
1260	atomic_set(&mm->mm_count, 1);
1261	seqcount_init(&mm->write_protect_seq);
1262	mmap_init_lock(mm);
1263	INIT_LIST_HEAD(&mm->mmlist);
1264#ifdef CONFIG_PER_VMA_LOCK
1265	mm->mm_lock_seq = 0;
1266#endif
1267	mm_pgtables_bytes_init(mm);
1268	mm->map_count = 0;
1269	mm->locked_vm = 0;
1270	atomic64_set(&mm->pinned_vm, 0);
1271	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1272	spin_lock_init(&mm->page_table_lock);
1273	spin_lock_init(&mm->arg_lock);
1274	mm_init_cpumask(mm);
1275	mm_init_aio(mm);
1276	mm_init_owner(mm, p);
1277	mm_pasid_init(mm);
1278	RCU_INIT_POINTER(mm->exe_file, NULL);
1279	mmu_notifier_subscriptions_init(mm);
1280	init_tlb_flush_pending(mm);
1281#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1282	mm->pmd_huge_pte = NULL;
1283#endif
1284	mm_init_uprobes_state(mm);
1285	hugetlb_count_init(mm);
1286
1287	if (current->mm) {
1288		mm->flags = mmf_init_flags(current->mm->flags);
1289		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1290	} else {
1291		mm->flags = default_dump_filter;
1292		mm->def_flags = 0;
1293	}
1294
1295	if (mm_alloc_pgd(mm))
1296		goto fail_nopgd;
1297
1298	if (init_new_context(p, mm))
1299		goto fail_nocontext;
1300
1301	if (mm_alloc_cid(mm))
1302		goto fail_cid;
1303
1304	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1305				     NR_MM_COUNTERS))
1306		goto fail_pcpu;
1307
1308	mm->user_ns = get_user_ns(user_ns);
1309	lru_gen_init_mm(mm);
1310	return mm;
1311
1312fail_pcpu:
1313	mm_destroy_cid(mm);
1314fail_cid:
1315	destroy_context(mm);
1316fail_nocontext:
1317	mm_free_pgd(mm);
1318fail_nopgd:
1319	free_mm(mm);
1320	return NULL;
1321}
1322
1323/*
1324 * Allocate and initialize an mm_struct.
1325 */
1326struct mm_struct *mm_alloc(void)
1327{
1328	struct mm_struct *mm;
1329
1330	mm = allocate_mm();
1331	if (!mm)
1332		return NULL;
1333
1334	memset(mm, 0, sizeof(*mm));
1335	return mm_init(mm, current, current_user_ns());
1336}
1337
1338static inline void __mmput(struct mm_struct *mm)
1339{
1340	VM_BUG_ON(atomic_read(&mm->mm_users));
1341
1342	uprobe_clear_state(mm);
1343	exit_aio(mm);
1344	ksm_exit(mm);
1345	khugepaged_exit(mm); /* must run before exit_mmap */
1346	exit_mmap(mm);
1347	mm_put_huge_zero_page(mm);
1348	set_mm_exe_file(mm, NULL);
1349	if (!list_empty(&mm->mmlist)) {
1350		spin_lock(&mmlist_lock);
1351		list_del(&mm->mmlist);
1352		spin_unlock(&mmlist_lock);
1353	}
1354	if (mm->binfmt)
1355		module_put(mm->binfmt->module);
1356	lru_gen_del_mm(mm);
1357	mmdrop(mm);
1358}
1359
1360/*
1361 * Decrement the use count and release all resources for an mm.
1362 */
1363void mmput(struct mm_struct *mm)
1364{
1365	might_sleep();
1366
1367	if (atomic_dec_and_test(&mm->mm_users))
1368		__mmput(mm);
1369}
1370EXPORT_SYMBOL_GPL(mmput);
1371
1372#ifdef CONFIG_MMU
1373static void mmput_async_fn(struct work_struct *work)
1374{
1375	struct mm_struct *mm = container_of(work, struct mm_struct,
1376					    async_put_work);
1377
1378	__mmput(mm);
1379}
1380
1381void mmput_async(struct mm_struct *mm)
1382{
1383	if (atomic_dec_and_test(&mm->mm_users)) {
1384		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1385		schedule_work(&mm->async_put_work);
1386	}
1387}
1388EXPORT_SYMBOL_GPL(mmput_async);
1389#endif
1390
1391/**
1392 * set_mm_exe_file - change a reference to the mm's executable file
1393 * @mm: The mm to change.
1394 * @new_exe_file: The new file to use.
1395 *
1396 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1397 *
1398 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1399 * invocations: in mmput() nobody alive left, in execve it happens before
1400 * the new mm is made visible to anyone.
1401 *
1402 * Can only fail if new_exe_file != NULL.
1403 */
1404int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1405{
1406	struct file *old_exe_file;
1407
1408	/*
1409	 * It is safe to dereference the exe_file without RCU as
1410	 * this function is only called if nobody else can access
1411	 * this mm -- see comment above for justification.
1412	 */
1413	old_exe_file = rcu_dereference_raw(mm->exe_file);
1414
1415	if (new_exe_file) {
1416		/*
1417		 * We expect the caller (i.e., sys_execve) to already denied
1418		 * write access, so this is unlikely to fail.
1419		 */
1420		if (unlikely(deny_write_access(new_exe_file)))
1421			return -EACCES;
1422		get_file(new_exe_file);
1423	}
1424	rcu_assign_pointer(mm->exe_file, new_exe_file);
1425	if (old_exe_file) {
1426		allow_write_access(old_exe_file);
1427		fput(old_exe_file);
1428	}
1429	return 0;
1430}
1431
1432/**
1433 * replace_mm_exe_file - replace a reference to the mm's executable file
1434 * @mm: The mm to change.
1435 * @new_exe_file: The new file to use.
1436 *
1437 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1438 *
1439 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1440 */
1441int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1442{
1443	struct vm_area_struct *vma;
1444	struct file *old_exe_file;
1445	int ret = 0;
1446
1447	/* Forbid mm->exe_file change if old file still mapped. */
1448	old_exe_file = get_mm_exe_file(mm);
1449	if (old_exe_file) {
1450		VMA_ITERATOR(vmi, mm, 0);
1451		mmap_read_lock(mm);
1452		for_each_vma(vmi, vma) {
1453			if (!vma->vm_file)
1454				continue;
1455			if (path_equal(&vma->vm_file->f_path,
1456				       &old_exe_file->f_path)) {
1457				ret = -EBUSY;
1458				break;
1459			}
1460		}
1461		mmap_read_unlock(mm);
1462		fput(old_exe_file);
1463		if (ret)
1464			return ret;
1465	}
1466
1467	ret = deny_write_access(new_exe_file);
1468	if (ret)
1469		return -EACCES;
1470	get_file(new_exe_file);
1471
1472	/* set the new file */
1473	mmap_write_lock(mm);
1474	old_exe_file = rcu_dereference_raw(mm->exe_file);
1475	rcu_assign_pointer(mm->exe_file, new_exe_file);
1476	mmap_write_unlock(mm);
1477
1478	if (old_exe_file) {
1479		allow_write_access(old_exe_file);
1480		fput(old_exe_file);
1481	}
1482	return 0;
1483}
1484
1485/**
1486 * get_mm_exe_file - acquire a reference to the mm's executable file
1487 * @mm: The mm of interest.
1488 *
1489 * Returns %NULL if mm has no associated executable file.
1490 * User must release file via fput().
1491 */
1492struct file *get_mm_exe_file(struct mm_struct *mm)
1493{
1494	struct file *exe_file;
1495
1496	rcu_read_lock();
1497	exe_file = get_file_rcu(&mm->exe_file);
1498	rcu_read_unlock();
1499	return exe_file;
1500}
1501
1502/**
1503 * get_task_exe_file - acquire a reference to the task's executable file
1504 * @task: The task.
1505 *
1506 * Returns %NULL if task's mm (if any) has no associated executable file or
1507 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1508 * User must release file via fput().
1509 */
1510struct file *get_task_exe_file(struct task_struct *task)
1511{
1512	struct file *exe_file = NULL;
1513	struct mm_struct *mm;
1514
1515	task_lock(task);
1516	mm = task->mm;
1517	if (mm) {
1518		if (!(task->flags & PF_KTHREAD))
1519			exe_file = get_mm_exe_file(mm);
1520	}
1521	task_unlock(task);
1522	return exe_file;
1523}
1524
1525/**
1526 * get_task_mm - acquire a reference to the task's mm
1527 * @task: The task.
1528 *
1529 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1530 * this kernel workthread has transiently adopted a user mm with use_mm,
1531 * to do its AIO) is not set and if so returns a reference to it, after
1532 * bumping up the use count.  User must release the mm via mmput()
1533 * after use.  Typically used by /proc and ptrace.
1534 */
1535struct mm_struct *get_task_mm(struct task_struct *task)
1536{
1537	struct mm_struct *mm;
1538
1539	task_lock(task);
1540	mm = task->mm;
1541	if (mm) {
1542		if (task->flags & PF_KTHREAD)
1543			mm = NULL;
1544		else
1545			mmget(mm);
1546	}
1547	task_unlock(task);
1548	return mm;
1549}
1550EXPORT_SYMBOL_GPL(get_task_mm);
1551
1552struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1553{
1554	struct mm_struct *mm;
1555	int err;
1556
1557	err =  down_read_killable(&task->signal->exec_update_lock);
1558	if (err)
1559		return ERR_PTR(err);
1560
1561	mm = get_task_mm(task);
1562	if (mm && mm != current->mm &&
1563			!ptrace_may_access(task, mode)) {
1564		mmput(mm);
1565		mm = ERR_PTR(-EACCES);
1566	}
1567	up_read(&task->signal->exec_update_lock);
1568
1569	return mm;
1570}
1571
1572static void complete_vfork_done(struct task_struct *tsk)
1573{
1574	struct completion *vfork;
1575
1576	task_lock(tsk);
1577	vfork = tsk->vfork_done;
1578	if (likely(vfork)) {
1579		tsk->vfork_done = NULL;
1580		complete(vfork);
1581	}
1582	task_unlock(tsk);
1583}
1584
1585static int wait_for_vfork_done(struct task_struct *child,
1586				struct completion *vfork)
1587{
1588	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1589	int killed;
1590
1591	cgroup_enter_frozen();
1592	killed = wait_for_completion_state(vfork, state);
1593	cgroup_leave_frozen(false);
1594
1595	if (killed) {
1596		task_lock(child);
1597		child->vfork_done = NULL;
1598		task_unlock(child);
1599	}
1600
1601	put_task_struct(child);
1602	return killed;
1603}
1604
1605/* Please note the differences between mmput and mm_release.
1606 * mmput is called whenever we stop holding onto a mm_struct,
1607 * error success whatever.
1608 *
1609 * mm_release is called after a mm_struct has been removed
1610 * from the current process.
1611 *
1612 * This difference is important for error handling, when we
1613 * only half set up a mm_struct for a new process and need to restore
1614 * the old one.  Because we mmput the new mm_struct before
1615 * restoring the old one. . .
1616 * Eric Biederman 10 January 1998
1617 */
1618static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1619{
1620	uprobe_free_utask(tsk);
1621
1622	/* Get rid of any cached register state */
1623	deactivate_mm(tsk, mm);
1624
1625	/*
1626	 * Signal userspace if we're not exiting with a core dump
1627	 * because we want to leave the value intact for debugging
1628	 * purposes.
1629	 */
1630	if (tsk->clear_child_tid) {
1631		if (atomic_read(&mm->mm_users) > 1) {
1632			/*
1633			 * We don't check the error code - if userspace has
1634			 * not set up a proper pointer then tough luck.
1635			 */
1636			put_user(0, tsk->clear_child_tid);
1637			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1638					1, NULL, NULL, 0, 0);
1639		}
1640		tsk->clear_child_tid = NULL;
1641	}
1642
1643	/*
1644	 * All done, finally we can wake up parent and return this mm to him.
1645	 * Also kthread_stop() uses this completion for synchronization.
1646	 */
1647	if (tsk->vfork_done)
1648		complete_vfork_done(tsk);
1649}
1650
1651void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1652{
1653	futex_exit_release(tsk);
1654	mm_release(tsk, mm);
1655}
1656
1657void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1658{
1659	futex_exec_release(tsk);
1660	mm_release(tsk, mm);
1661}
1662
1663/**
1664 * dup_mm() - duplicates an existing mm structure
1665 * @tsk: the task_struct with which the new mm will be associated.
1666 * @oldmm: the mm to duplicate.
1667 *
1668 * Allocates a new mm structure and duplicates the provided @oldmm structure
1669 * content into it.
1670 *
1671 * Return: the duplicated mm or NULL on failure.
1672 */
1673static struct mm_struct *dup_mm(struct task_struct *tsk,
1674				struct mm_struct *oldmm)
1675{
1676	struct mm_struct *mm;
1677	int err;
1678
1679	mm = allocate_mm();
1680	if (!mm)
1681		goto fail_nomem;
1682
1683	memcpy(mm, oldmm, sizeof(*mm));
1684
1685	if (!mm_init(mm, tsk, mm->user_ns))
1686		goto fail_nomem;
1687
1688	err = dup_mmap(mm, oldmm);
1689	if (err)
1690		goto free_pt;
1691
1692	mm->hiwater_rss = get_mm_rss(mm);
1693	mm->hiwater_vm = mm->total_vm;
1694
1695	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1696		goto free_pt;
1697
1698	return mm;
1699
1700free_pt:
1701	/* don't put binfmt in mmput, we haven't got module yet */
1702	mm->binfmt = NULL;
1703	mm_init_owner(mm, NULL);
1704	mmput(mm);
1705
1706fail_nomem:
1707	return NULL;
1708}
1709
1710static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1711{
1712	struct mm_struct *mm, *oldmm;
1713
1714	tsk->min_flt = tsk->maj_flt = 0;
1715	tsk->nvcsw = tsk->nivcsw = 0;
1716#ifdef CONFIG_DETECT_HUNG_TASK
1717	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1718	tsk->last_switch_time = 0;
1719#endif
1720
1721	tsk->mm = NULL;
1722	tsk->active_mm = NULL;
1723
1724	/*
1725	 * Are we cloning a kernel thread?
1726	 *
1727	 * We need to steal a active VM for that..
1728	 */
1729	oldmm = current->mm;
1730	if (!oldmm)
1731		return 0;
1732
1733	if (clone_flags & CLONE_VM) {
1734		mmget(oldmm);
1735		mm = oldmm;
1736	} else {
1737		mm = dup_mm(tsk, current->mm);
1738		if (!mm)
1739			return -ENOMEM;
1740	}
1741
1742	tsk->mm = mm;
1743	tsk->active_mm = mm;
1744	sched_mm_cid_fork(tsk);
1745	return 0;
1746}
1747
1748static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1749{
1750	struct fs_struct *fs = current->fs;
1751	if (clone_flags & CLONE_FS) {
1752		/* tsk->fs is already what we want */
1753		spin_lock(&fs->lock);
1754		/* "users" and "in_exec" locked for check_unsafe_exec() */
1755		if (fs->in_exec) {
1756			spin_unlock(&fs->lock);
1757			return -EAGAIN;
1758		}
1759		fs->users++;
1760		spin_unlock(&fs->lock);
1761		return 0;
1762	}
1763	tsk->fs = copy_fs_struct(fs);
1764	if (!tsk->fs)
1765		return -ENOMEM;
1766	return 0;
1767}
1768
1769static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1770		      int no_files)
1771{
1772	struct files_struct *oldf, *newf;
1773	int error = 0;
1774
1775	/*
1776	 * A background process may not have any files ...
1777	 */
1778	oldf = current->files;
1779	if (!oldf)
1780		goto out;
1781
1782	if (no_files) {
1783		tsk->files = NULL;
1784		goto out;
1785	}
1786
1787	if (clone_flags & CLONE_FILES) {
1788		atomic_inc(&oldf->count);
1789		goto out;
1790	}
1791
1792	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1793	if (!newf)
1794		goto out;
1795
1796	tsk->files = newf;
1797	error = 0;
1798out:
1799	return error;
1800}
1801
1802static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1803{
1804	struct sighand_struct *sig;
1805
1806	if (clone_flags & CLONE_SIGHAND) {
1807		refcount_inc(&current->sighand->count);
1808		return 0;
1809	}
1810	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1811	RCU_INIT_POINTER(tsk->sighand, sig);
1812	if (!sig)
1813		return -ENOMEM;
1814
1815	refcount_set(&sig->count, 1);
1816	spin_lock_irq(&current->sighand->siglock);
1817	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1818	spin_unlock_irq(&current->sighand->siglock);
1819
1820	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1821	if (clone_flags & CLONE_CLEAR_SIGHAND)
1822		flush_signal_handlers(tsk, 0);
1823
1824	return 0;
1825}
1826
1827void __cleanup_sighand(struct sighand_struct *sighand)
1828{
1829	if (refcount_dec_and_test(&sighand->count)) {
1830		signalfd_cleanup(sighand);
1831		/*
1832		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1833		 * without an RCU grace period, see __lock_task_sighand().
1834		 */
1835		kmem_cache_free(sighand_cachep, sighand);
1836	}
1837}
1838
1839/*
1840 * Initialize POSIX timer handling for a thread group.
1841 */
1842static void posix_cpu_timers_init_group(struct signal_struct *sig)
1843{
1844	struct posix_cputimers *pct = &sig->posix_cputimers;
1845	unsigned long cpu_limit;
1846
1847	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1848	posix_cputimers_group_init(pct, cpu_limit);
1849}
1850
1851static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1852{
1853	struct signal_struct *sig;
1854
1855	if (clone_flags & CLONE_THREAD)
1856		return 0;
1857
1858	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1859	tsk->signal = sig;
1860	if (!sig)
1861		return -ENOMEM;
1862
1863	sig->nr_threads = 1;
1864	sig->quick_threads = 1;
1865	atomic_set(&sig->live, 1);
1866	refcount_set(&sig->sigcnt, 1);
1867
1868	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1869	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1870	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1871
1872	init_waitqueue_head(&sig->wait_chldexit);
1873	sig->curr_target = tsk;
1874	init_sigpending(&sig->shared_pending);
1875	INIT_HLIST_HEAD(&sig->multiprocess);
1876	seqlock_init(&sig->stats_lock);
1877	prev_cputime_init(&sig->prev_cputime);
1878
1879#ifdef CONFIG_POSIX_TIMERS
1880	INIT_LIST_HEAD(&sig->posix_timers);
1881	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1882	sig->real_timer.function = it_real_fn;
1883#endif
1884
1885	task_lock(current->group_leader);
1886	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1887	task_unlock(current->group_leader);
1888
1889	posix_cpu_timers_init_group(sig);
1890
1891	tty_audit_fork(sig);
1892	sched_autogroup_fork(sig);
1893
1894	sig->oom_score_adj = current->signal->oom_score_adj;
1895	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1896
1897	mutex_init(&sig->cred_guard_mutex);
1898	init_rwsem(&sig->exec_update_lock);
1899
1900	return 0;
1901}
1902
1903static void copy_seccomp(struct task_struct *p)
1904{
1905#ifdef CONFIG_SECCOMP
1906	/*
1907	 * Must be called with sighand->lock held, which is common to
1908	 * all threads in the group. Holding cred_guard_mutex is not
1909	 * needed because this new task is not yet running and cannot
1910	 * be racing exec.
1911	 */
1912	assert_spin_locked(&current->sighand->siglock);
1913
1914	/* Ref-count the new filter user, and assign it. */
1915	get_seccomp_filter(current);
1916	p->seccomp = current->seccomp;
1917
1918	/*
1919	 * Explicitly enable no_new_privs here in case it got set
1920	 * between the task_struct being duplicated and holding the
1921	 * sighand lock. The seccomp state and nnp must be in sync.
1922	 */
1923	if (task_no_new_privs(current))
1924		task_set_no_new_privs(p);
1925
1926	/*
1927	 * If the parent gained a seccomp mode after copying thread
1928	 * flags and between before we held the sighand lock, we have
1929	 * to manually enable the seccomp thread flag here.
1930	 */
1931	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1932		set_task_syscall_work(p, SECCOMP);
1933#endif
1934}
1935
1936SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1937{
1938	current->clear_child_tid = tidptr;
1939
1940	return task_pid_vnr(current);
1941}
1942
1943static void rt_mutex_init_task(struct task_struct *p)
1944{
1945	raw_spin_lock_init(&p->pi_lock);
1946#ifdef CONFIG_RT_MUTEXES
1947	p->pi_waiters = RB_ROOT_CACHED;
1948	p->pi_top_task = NULL;
1949	p->pi_blocked_on = NULL;
1950#endif
1951}
1952
1953static inline void init_task_pid_links(struct task_struct *task)
1954{
1955	enum pid_type type;
1956
1957	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1958		INIT_HLIST_NODE(&task->pid_links[type]);
1959}
1960
1961static inline void
1962init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1963{
1964	if (type == PIDTYPE_PID)
1965		task->thread_pid = pid;
1966	else
1967		task->signal->pids[type] = pid;
1968}
1969
1970static inline void rcu_copy_process(struct task_struct *p)
1971{
1972#ifdef CONFIG_PREEMPT_RCU
1973	p->rcu_read_lock_nesting = 0;
1974	p->rcu_read_unlock_special.s = 0;
1975	p->rcu_blocked_node = NULL;
1976	INIT_LIST_HEAD(&p->rcu_node_entry);
1977#endif /* #ifdef CONFIG_PREEMPT_RCU */
1978#ifdef CONFIG_TASKS_RCU
1979	p->rcu_tasks_holdout = false;
1980	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1981	p->rcu_tasks_idle_cpu = -1;
1982	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1983#endif /* #ifdef CONFIG_TASKS_RCU */
1984#ifdef CONFIG_TASKS_TRACE_RCU
1985	p->trc_reader_nesting = 0;
1986	p->trc_reader_special.s = 0;
1987	INIT_LIST_HEAD(&p->trc_holdout_list);
1988	INIT_LIST_HEAD(&p->trc_blkd_node);
1989#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1990}
1991
1992/**
1993 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1994 * @pid:   the struct pid for which to create a pidfd
1995 * @flags: flags of the new @pidfd
1996 * @ret: Where to return the file for the pidfd.
1997 *
1998 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1999 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2000 *
2001 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2002 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2003 * pidfd file are prepared.
2004 *
2005 * If this function returns successfully the caller is responsible to either
2006 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2007 * order to install the pidfd into its file descriptor table or they must use
2008 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2009 * respectively.
2010 *
2011 * This function is useful when a pidfd must already be reserved but there
2012 * might still be points of failure afterwards and the caller wants to ensure
2013 * that no pidfd is leaked into its file descriptor table.
2014 *
2015 * Return: On success, a reserved pidfd is returned from the function and a new
2016 *         pidfd file is returned in the last argument to the function. On
2017 *         error, a negative error code is returned from the function and the
2018 *         last argument remains unchanged.
2019 */
2020static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2021{
2022	int pidfd;
2023	struct file *pidfd_file;
2024
2025	pidfd = get_unused_fd_flags(O_CLOEXEC);
2026	if (pidfd < 0)
2027		return pidfd;
2028
2029	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2030	if (IS_ERR(pidfd_file)) {
2031		put_unused_fd(pidfd);
2032		return PTR_ERR(pidfd_file);
2033	}
2034	/*
2035	 * anon_inode_getfile() ignores everything outside of the
2036	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2037	 */
2038	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2039	*ret = pidfd_file;
2040	return pidfd;
2041}
2042
2043/**
2044 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2045 * @pid:   the struct pid for which to create a pidfd
2046 * @flags: flags of the new @pidfd
2047 * @ret: Where to return the pidfd.
2048 *
2049 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2050 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2051 *
2052 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2053 * task identified by @pid must be a thread-group leader.
2054 *
2055 * If this function returns successfully the caller is responsible to either
2056 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2057 * order to install the pidfd into its file descriptor table or they must use
2058 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2059 * respectively.
2060 *
2061 * This function is useful when a pidfd must already be reserved but there
2062 * might still be points of failure afterwards and the caller wants to ensure
2063 * that no pidfd is leaked into its file descriptor table.
2064 *
2065 * Return: On success, a reserved pidfd is returned from the function and a new
2066 *         pidfd file is returned in the last argument to the function. On
2067 *         error, a negative error code is returned from the function and the
2068 *         last argument remains unchanged.
2069 */
2070int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2071{
2072	bool thread = flags & PIDFD_THREAD;
2073
2074	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2075		return -EINVAL;
2076
2077	return __pidfd_prepare(pid, flags, ret);
2078}
2079
2080static void __delayed_free_task(struct rcu_head *rhp)
2081{
2082	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2083
2084	free_task(tsk);
2085}
2086
2087static __always_inline void delayed_free_task(struct task_struct *tsk)
2088{
2089	if (IS_ENABLED(CONFIG_MEMCG))
2090		call_rcu(&tsk->rcu, __delayed_free_task);
2091	else
2092		free_task(tsk);
2093}
2094
2095static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2096{
2097	/* Skip if kernel thread */
2098	if (!tsk->mm)
2099		return;
2100
2101	/* Skip if spawning a thread or using vfork */
2102	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2103		return;
2104
2105	/* We need to synchronize with __set_oom_adj */
2106	mutex_lock(&oom_adj_mutex);
2107	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2108	/* Update the values in case they were changed after copy_signal */
2109	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2110	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2111	mutex_unlock(&oom_adj_mutex);
2112}
2113
2114#ifdef CONFIG_RV
2115static void rv_task_fork(struct task_struct *p)
2116{
2117	int i;
2118
2119	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2120		p->rv[i].da_mon.monitoring = false;
2121}
2122#else
2123#define rv_task_fork(p) do {} while (0)
2124#endif
2125
2126/*
2127 * This creates a new process as a copy of the old one,
2128 * but does not actually start it yet.
2129 *
2130 * It copies the registers, and all the appropriate
2131 * parts of the process environment (as per the clone
2132 * flags). The actual kick-off is left to the caller.
2133 */
2134__latent_entropy struct task_struct *copy_process(
2135					struct pid *pid,
2136					int trace,
2137					int node,
2138					struct kernel_clone_args *args)
2139{
2140	int pidfd = -1, retval;
2141	struct task_struct *p;
2142	struct multiprocess_signals delayed;
2143	struct file *pidfile = NULL;
2144	const u64 clone_flags = args->flags;
2145	struct nsproxy *nsp = current->nsproxy;
2146
2147	/*
2148	 * Don't allow sharing the root directory with processes in a different
2149	 * namespace
2150	 */
2151	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2152		return ERR_PTR(-EINVAL);
2153
2154	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2155		return ERR_PTR(-EINVAL);
2156
2157	/*
2158	 * Thread groups must share signals as well, and detached threads
2159	 * can only be started up within the thread group.
2160	 */
2161	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2162		return ERR_PTR(-EINVAL);
2163
2164	/*
2165	 * Shared signal handlers imply shared VM. By way of the above,
2166	 * thread groups also imply shared VM. Blocking this case allows
2167	 * for various simplifications in other code.
2168	 */
2169	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2170		return ERR_PTR(-EINVAL);
2171
2172	/*
2173	 * Siblings of global init remain as zombies on exit since they are
2174	 * not reaped by their parent (swapper). To solve this and to avoid
2175	 * multi-rooted process trees, prevent global and container-inits
2176	 * from creating siblings.
2177	 */
2178	if ((clone_flags & CLONE_PARENT) &&
2179				current->signal->flags & SIGNAL_UNKILLABLE)
2180		return ERR_PTR(-EINVAL);
2181
2182	/*
2183	 * If the new process will be in a different pid or user namespace
2184	 * do not allow it to share a thread group with the forking task.
2185	 */
2186	if (clone_flags & CLONE_THREAD) {
2187		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2188		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2189			return ERR_PTR(-EINVAL);
2190	}
2191
2192	if (clone_flags & CLONE_PIDFD) {
2193		/*
2194		 * - CLONE_DETACHED is blocked so that we can potentially
2195		 *   reuse it later for CLONE_PIDFD.
2196		 */
2197		if (clone_flags & CLONE_DETACHED)
2198			return ERR_PTR(-EINVAL);
2199	}
2200
2201	/*
2202	 * Force any signals received before this point to be delivered
2203	 * before the fork happens.  Collect up signals sent to multiple
2204	 * processes that happen during the fork and delay them so that
2205	 * they appear to happen after the fork.
2206	 */
2207	sigemptyset(&delayed.signal);
2208	INIT_HLIST_NODE(&delayed.node);
2209
2210	spin_lock_irq(&current->sighand->siglock);
2211	if (!(clone_flags & CLONE_THREAD))
2212		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2213	recalc_sigpending();
2214	spin_unlock_irq(&current->sighand->siglock);
2215	retval = -ERESTARTNOINTR;
2216	if (task_sigpending(current))
2217		goto fork_out;
2218
2219	retval = -ENOMEM;
2220	p = dup_task_struct(current, node);
2221	if (!p)
2222		goto fork_out;
2223	p->flags &= ~PF_KTHREAD;
2224	if (args->kthread)
2225		p->flags |= PF_KTHREAD;
2226	if (args->user_worker) {
2227		/*
2228		 * Mark us a user worker, and block any signal that isn't
2229		 * fatal or STOP
2230		 */
2231		p->flags |= PF_USER_WORKER;
2232		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2233	}
2234	if (args->io_thread)
2235		p->flags |= PF_IO_WORKER;
2236
2237	if (args->name)
2238		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2239
2240	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2241	/*
2242	 * Clear TID on mm_release()?
2243	 */
2244	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2245
2246	ftrace_graph_init_task(p);
2247
2248	rt_mutex_init_task(p);
2249
2250	lockdep_assert_irqs_enabled();
2251#ifdef CONFIG_PROVE_LOCKING
2252	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2253#endif
2254	retval = copy_creds(p, clone_flags);
2255	if (retval < 0)
2256		goto bad_fork_free;
2257
2258	retval = -EAGAIN;
2259	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2260		if (p->real_cred->user != INIT_USER &&
2261		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2262			goto bad_fork_cleanup_count;
2263	}
2264	current->flags &= ~PF_NPROC_EXCEEDED;
2265
2266	/*
2267	 * If multiple threads are within copy_process(), then this check
2268	 * triggers too late. This doesn't hurt, the check is only there
2269	 * to stop root fork bombs.
2270	 */
2271	retval = -EAGAIN;
2272	if (data_race(nr_threads >= max_threads))
2273		goto bad_fork_cleanup_count;
2274
2275	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2276	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2277	p->flags |= PF_FORKNOEXEC;
2278	INIT_LIST_HEAD(&p->children);
2279	INIT_LIST_HEAD(&p->sibling);
2280	rcu_copy_process(p);
2281	p->vfork_done = NULL;
2282	spin_lock_init(&p->alloc_lock);
2283
2284	init_sigpending(&p->pending);
2285
2286	p->utime = p->stime = p->gtime = 0;
2287#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2288	p->utimescaled = p->stimescaled = 0;
2289#endif
2290	prev_cputime_init(&p->prev_cputime);
2291
2292#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2293	seqcount_init(&p->vtime.seqcount);
2294	p->vtime.starttime = 0;
2295	p->vtime.state = VTIME_INACTIVE;
2296#endif
2297
2298#ifdef CONFIG_IO_URING
2299	p->io_uring = NULL;
2300#endif
2301
2302	p->default_timer_slack_ns = current->timer_slack_ns;
2303
2304#ifdef CONFIG_PSI
2305	p->psi_flags = 0;
2306#endif
2307
2308	task_io_accounting_init(&p->ioac);
2309	acct_clear_integrals(p);
2310
2311	posix_cputimers_init(&p->posix_cputimers);
2312
2313	p->io_context = NULL;
2314	audit_set_context(p, NULL);
2315	cgroup_fork(p);
2316	if (args->kthread) {
2317		if (!set_kthread_struct(p))
2318			goto bad_fork_cleanup_delayacct;
2319	}
2320#ifdef CONFIG_NUMA
2321	p->mempolicy = mpol_dup(p->mempolicy);
2322	if (IS_ERR(p->mempolicy)) {
2323		retval = PTR_ERR(p->mempolicy);
2324		p->mempolicy = NULL;
2325		goto bad_fork_cleanup_delayacct;
2326	}
2327#endif
2328#ifdef CONFIG_CPUSETS
2329	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2330	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2331	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2332#endif
2333#ifdef CONFIG_TRACE_IRQFLAGS
2334	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2335	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2336	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2337	p->softirqs_enabled		= 1;
2338	p->softirq_context		= 0;
2339#endif
2340
2341	p->pagefault_disabled = 0;
2342
2343#ifdef CONFIG_LOCKDEP
2344	lockdep_init_task(p);
2345#endif
2346
2347#ifdef CONFIG_DEBUG_MUTEXES
2348	p->blocked_on = NULL; /* not blocked yet */
2349#endif
2350#ifdef CONFIG_BCACHE
2351	p->sequential_io	= 0;
2352	p->sequential_io_avg	= 0;
2353#endif
2354#ifdef CONFIG_BPF_SYSCALL
2355	RCU_INIT_POINTER(p->bpf_storage, NULL);
2356	p->bpf_ctx = NULL;
2357#endif
2358
2359	/* Perform scheduler related setup. Assign this task to a CPU. */
2360	retval = sched_fork(clone_flags, p);
2361	if (retval)
2362		goto bad_fork_cleanup_policy;
2363
2364	retval = perf_event_init_task(p, clone_flags);
2365	if (retval)
2366		goto bad_fork_cleanup_policy;
2367	retval = audit_alloc(p);
2368	if (retval)
2369		goto bad_fork_cleanup_perf;
2370	/* copy all the process information */
2371	shm_init_task(p);
2372	retval = security_task_alloc(p, clone_flags);
2373	if (retval)
2374		goto bad_fork_cleanup_audit;
2375	retval = copy_semundo(clone_flags, p);
2376	if (retval)
2377		goto bad_fork_cleanup_security;
2378	retval = copy_files(clone_flags, p, args->no_files);
2379	if (retval)
2380		goto bad_fork_cleanup_semundo;
2381	retval = copy_fs(clone_flags, p);
2382	if (retval)
2383		goto bad_fork_cleanup_files;
2384	retval = copy_sighand(clone_flags, p);
2385	if (retval)
2386		goto bad_fork_cleanup_fs;
2387	retval = copy_signal(clone_flags, p);
2388	if (retval)
2389		goto bad_fork_cleanup_sighand;
2390	retval = copy_mm(clone_flags, p);
2391	if (retval)
2392		goto bad_fork_cleanup_signal;
2393	retval = copy_namespaces(clone_flags, p);
2394	if (retval)
2395		goto bad_fork_cleanup_mm;
2396	retval = copy_io(clone_flags, p);
2397	if (retval)
2398		goto bad_fork_cleanup_namespaces;
2399	retval = copy_thread(p, args);
2400	if (retval)
2401		goto bad_fork_cleanup_io;
2402
2403	stackleak_task_init(p);
2404
2405	if (pid != &init_struct_pid) {
2406		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2407				args->set_tid_size);
2408		if (IS_ERR(pid)) {
2409			retval = PTR_ERR(pid);
2410			goto bad_fork_cleanup_thread;
2411		}
2412	}
2413
2414	/*
2415	 * This has to happen after we've potentially unshared the file
2416	 * descriptor table (so that the pidfd doesn't leak into the child
2417	 * if the fd table isn't shared).
2418	 */
2419	if (clone_flags & CLONE_PIDFD) {
2420		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2421
2422		/* Note that no task has been attached to @pid yet. */
2423		retval = __pidfd_prepare(pid, flags, &pidfile);
2424		if (retval < 0)
2425			goto bad_fork_free_pid;
2426		pidfd = retval;
2427
2428		retval = put_user(pidfd, args->pidfd);
2429		if (retval)
2430			goto bad_fork_put_pidfd;
2431	}
2432
2433#ifdef CONFIG_BLOCK
2434	p->plug = NULL;
2435#endif
2436	futex_init_task(p);
2437
2438	/*
2439	 * sigaltstack should be cleared when sharing the same VM
2440	 */
2441	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2442		sas_ss_reset(p);
2443
2444	/*
2445	 * Syscall tracing and stepping should be turned off in the
2446	 * child regardless of CLONE_PTRACE.
2447	 */
2448	user_disable_single_step(p);
2449	clear_task_syscall_work(p, SYSCALL_TRACE);
2450#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2451	clear_task_syscall_work(p, SYSCALL_EMU);
2452#endif
2453	clear_tsk_latency_tracing(p);
2454
2455	/* ok, now we should be set up.. */
2456	p->pid = pid_nr(pid);
2457	if (clone_flags & CLONE_THREAD) {
2458		p->group_leader = current->group_leader;
2459		p->tgid = current->tgid;
2460	} else {
2461		p->group_leader = p;
2462		p->tgid = p->pid;
2463	}
2464
2465	p->nr_dirtied = 0;
2466	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2467	p->dirty_paused_when = 0;
2468
2469	p->pdeath_signal = 0;
2470	p->task_works = NULL;
2471	clear_posix_cputimers_work(p);
2472
2473#ifdef CONFIG_KRETPROBES
2474	p->kretprobe_instances.first = NULL;
2475#endif
2476#ifdef CONFIG_RETHOOK
2477	p->rethooks.first = NULL;
2478#endif
2479
2480	/*
2481	 * Ensure that the cgroup subsystem policies allow the new process to be
2482	 * forked. It should be noted that the new process's css_set can be changed
2483	 * between here and cgroup_post_fork() if an organisation operation is in
2484	 * progress.
2485	 */
2486	retval = cgroup_can_fork(p, args);
2487	if (retval)
2488		goto bad_fork_put_pidfd;
2489
2490	/*
2491	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2492	 * the new task on the correct runqueue. All this *before* the task
2493	 * becomes visible.
2494	 *
2495	 * This isn't part of ->can_fork() because while the re-cloning is
2496	 * cgroup specific, it unconditionally needs to place the task on a
2497	 * runqueue.
2498	 */
2499	sched_cgroup_fork(p, args);
2500
2501	/*
2502	 * From this point on we must avoid any synchronous user-space
2503	 * communication until we take the tasklist-lock. In particular, we do
2504	 * not want user-space to be able to predict the process start-time by
2505	 * stalling fork(2) after we recorded the start_time but before it is
2506	 * visible to the system.
2507	 */
2508
2509	p->start_time = ktime_get_ns();
2510	p->start_boottime = ktime_get_boottime_ns();
2511
2512	/*
2513	 * Make it visible to the rest of the system, but dont wake it up yet.
2514	 * Need tasklist lock for parent etc handling!
2515	 */
2516	write_lock_irq(&tasklist_lock);
2517
2518	/* CLONE_PARENT re-uses the old parent */
2519	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2520		p->real_parent = current->real_parent;
2521		p->parent_exec_id = current->parent_exec_id;
2522		if (clone_flags & CLONE_THREAD)
2523			p->exit_signal = -1;
2524		else
2525			p->exit_signal = current->group_leader->exit_signal;
2526	} else {
2527		p->real_parent = current;
2528		p->parent_exec_id = current->self_exec_id;
2529		p->exit_signal = args->exit_signal;
2530	}
2531
2532	klp_copy_process(p);
2533
2534	sched_core_fork(p);
2535
2536	spin_lock(&current->sighand->siglock);
2537
2538	rv_task_fork(p);
2539
2540	rseq_fork(p, clone_flags);
2541
2542	/* Don't start children in a dying pid namespace */
2543	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2544		retval = -ENOMEM;
2545		goto bad_fork_cancel_cgroup;
2546	}
2547
2548	/* Let kill terminate clone/fork in the middle */
2549	if (fatal_signal_pending(current)) {
2550		retval = -EINTR;
2551		goto bad_fork_cancel_cgroup;
2552	}
2553
2554	/* No more failure paths after this point. */
2555
2556	/*
2557	 * Copy seccomp details explicitly here, in case they were changed
2558	 * before holding sighand lock.
2559	 */
2560	copy_seccomp(p);
2561
2562	init_task_pid_links(p);
2563	if (likely(p->pid)) {
2564		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2565
2566		init_task_pid(p, PIDTYPE_PID, pid);
2567		if (thread_group_leader(p)) {
2568			init_task_pid(p, PIDTYPE_TGID, pid);
2569			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2570			init_task_pid(p, PIDTYPE_SID, task_session(current));
2571
2572			if (is_child_reaper(pid)) {
2573				ns_of_pid(pid)->child_reaper = p;
2574				p->signal->flags |= SIGNAL_UNKILLABLE;
2575			}
2576			p->signal->shared_pending.signal = delayed.signal;
2577			p->signal->tty = tty_kref_get(current->signal->tty);
2578			/*
2579			 * Inherit has_child_subreaper flag under the same
2580			 * tasklist_lock with adding child to the process tree
2581			 * for propagate_has_child_subreaper optimization.
2582			 */
2583			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2584							 p->real_parent->signal->is_child_subreaper;
2585			list_add_tail(&p->sibling, &p->real_parent->children);
2586			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2587			attach_pid(p, PIDTYPE_TGID);
2588			attach_pid(p, PIDTYPE_PGID);
2589			attach_pid(p, PIDTYPE_SID);
2590			__this_cpu_inc(process_counts);
2591		} else {
2592			current->signal->nr_threads++;
2593			current->signal->quick_threads++;
2594			atomic_inc(&current->signal->live);
2595			refcount_inc(&current->signal->sigcnt);
2596			task_join_group_stop(p);
2597			list_add_tail_rcu(&p->thread_node,
2598					  &p->signal->thread_head);
2599		}
2600		attach_pid(p, PIDTYPE_PID);
2601		nr_threads++;
2602	}
2603	total_forks++;
2604	hlist_del_init(&delayed.node);
2605	spin_unlock(&current->sighand->siglock);
2606	syscall_tracepoint_update(p);
2607	write_unlock_irq(&tasklist_lock);
2608
2609	if (pidfile)
2610		fd_install(pidfd, pidfile);
2611
2612	proc_fork_connector(p);
2613	sched_post_fork(p);
2614	cgroup_post_fork(p, args);
2615	perf_event_fork(p);
2616
2617	trace_task_newtask(p, clone_flags);
2618	uprobe_copy_process(p, clone_flags);
2619	user_events_fork(p, clone_flags);
2620
2621	copy_oom_score_adj(clone_flags, p);
2622
2623	return p;
2624
2625bad_fork_cancel_cgroup:
2626	sched_core_free(p);
2627	spin_unlock(&current->sighand->siglock);
2628	write_unlock_irq(&tasklist_lock);
2629	cgroup_cancel_fork(p, args);
2630bad_fork_put_pidfd:
2631	if (clone_flags & CLONE_PIDFD) {
2632		fput(pidfile);
2633		put_unused_fd(pidfd);
2634	}
2635bad_fork_free_pid:
2636	if (pid != &init_struct_pid)
2637		free_pid(pid);
2638bad_fork_cleanup_thread:
2639	exit_thread(p);
2640bad_fork_cleanup_io:
2641	if (p->io_context)
2642		exit_io_context(p);
2643bad_fork_cleanup_namespaces:
2644	exit_task_namespaces(p);
2645bad_fork_cleanup_mm:
2646	if (p->mm) {
2647		mm_clear_owner(p->mm, p);
2648		mmput(p->mm);
2649	}
2650bad_fork_cleanup_signal:
2651	if (!(clone_flags & CLONE_THREAD))
2652		free_signal_struct(p->signal);
2653bad_fork_cleanup_sighand:
2654	__cleanup_sighand(p->sighand);
2655bad_fork_cleanup_fs:
2656	exit_fs(p); /* blocking */
2657bad_fork_cleanup_files:
2658	exit_files(p); /* blocking */
2659bad_fork_cleanup_semundo:
2660	exit_sem(p);
2661bad_fork_cleanup_security:
2662	security_task_free(p);
2663bad_fork_cleanup_audit:
2664	audit_free(p);
2665bad_fork_cleanup_perf:
2666	perf_event_free_task(p);
2667bad_fork_cleanup_policy:
2668	lockdep_free_task(p);
2669#ifdef CONFIG_NUMA
2670	mpol_put(p->mempolicy);
2671#endif
2672bad_fork_cleanup_delayacct:
2673	delayacct_tsk_free(p);
2674bad_fork_cleanup_count:
2675	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2676	exit_creds(p);
2677bad_fork_free:
2678	WRITE_ONCE(p->__state, TASK_DEAD);
2679	exit_task_stack_account(p);
2680	put_task_stack(p);
2681	delayed_free_task(p);
2682fork_out:
2683	spin_lock_irq(&current->sighand->siglock);
2684	hlist_del_init(&delayed.node);
2685	spin_unlock_irq(&current->sighand->siglock);
2686	return ERR_PTR(retval);
2687}
2688
2689static inline void init_idle_pids(struct task_struct *idle)
2690{
2691	enum pid_type type;
2692
2693	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2694		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2695		init_task_pid(idle, type, &init_struct_pid);
2696	}
2697}
2698
2699static int idle_dummy(void *dummy)
2700{
2701	/* This function is never called */
2702	return 0;
2703}
2704
2705struct task_struct * __init fork_idle(int cpu)
2706{
2707	struct task_struct *task;
2708	struct kernel_clone_args args = {
2709		.flags		= CLONE_VM,
2710		.fn		= &idle_dummy,
2711		.fn_arg		= NULL,
2712		.kthread	= 1,
2713		.idle		= 1,
2714	};
2715
2716	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2717	if (!IS_ERR(task)) {
2718		init_idle_pids(task);
2719		init_idle(task, cpu);
2720	}
2721
2722	return task;
2723}
2724
2725/*
2726 * This is like kernel_clone(), but shaved down and tailored to just
2727 * creating io_uring workers. It returns a created task, or an error pointer.
2728 * The returned task is inactive, and the caller must fire it up through
2729 * wake_up_new_task(p). All signals are blocked in the created task.
2730 */
2731struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2732{
2733	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2734				CLONE_IO;
2735	struct kernel_clone_args args = {
2736		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2737				    CLONE_UNTRACED) & ~CSIGNAL),
2738		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2739		.fn		= fn,
2740		.fn_arg		= arg,
2741		.io_thread	= 1,
2742		.user_worker	= 1,
2743	};
2744
2745	return copy_process(NULL, 0, node, &args);
2746}
2747
2748/*
2749 *  Ok, this is the main fork-routine.
2750 *
2751 * It copies the process, and if successful kick-starts
2752 * it and waits for it to finish using the VM if required.
2753 *
2754 * args->exit_signal is expected to be checked for sanity by the caller.
2755 */
2756pid_t kernel_clone(struct kernel_clone_args *args)
2757{
2758	u64 clone_flags = args->flags;
2759	struct completion vfork;
2760	struct pid *pid;
2761	struct task_struct *p;
2762	int trace = 0;
2763	pid_t nr;
2764
2765	/*
2766	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2767	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2768	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2769	 * field in struct clone_args and it still doesn't make sense to have
2770	 * them both point at the same memory location. Performing this check
2771	 * here has the advantage that we don't need to have a separate helper
2772	 * to check for legacy clone().
2773	 */
2774	if ((clone_flags & CLONE_PIDFD) &&
2775	    (clone_flags & CLONE_PARENT_SETTID) &&
2776	    (args->pidfd == args->parent_tid))
2777		return -EINVAL;
2778
2779	/*
2780	 * Determine whether and which event to report to ptracer.  When
2781	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2782	 * requested, no event is reported; otherwise, report if the event
2783	 * for the type of forking is enabled.
2784	 */
2785	if (!(clone_flags & CLONE_UNTRACED)) {
2786		if (clone_flags & CLONE_VFORK)
2787			trace = PTRACE_EVENT_VFORK;
2788		else if (args->exit_signal != SIGCHLD)
2789			trace = PTRACE_EVENT_CLONE;
2790		else
2791			trace = PTRACE_EVENT_FORK;
2792
2793		if (likely(!ptrace_event_enabled(current, trace)))
2794			trace = 0;
2795	}
2796
2797	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2798	add_latent_entropy();
2799
2800	if (IS_ERR(p))
2801		return PTR_ERR(p);
2802
2803	/*
2804	 * Do this prior waking up the new thread - the thread pointer
2805	 * might get invalid after that point, if the thread exits quickly.
2806	 */
2807	trace_sched_process_fork(current, p);
2808
2809	pid = get_task_pid(p, PIDTYPE_PID);
2810	nr = pid_vnr(pid);
2811
2812	if (clone_flags & CLONE_PARENT_SETTID)
2813		put_user(nr, args->parent_tid);
2814
2815	if (clone_flags & CLONE_VFORK) {
2816		p->vfork_done = &vfork;
2817		init_completion(&vfork);
2818		get_task_struct(p);
2819	}
2820
2821	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2822		/* lock the task to synchronize with memcg migration */
2823		task_lock(p);
2824		lru_gen_add_mm(p->mm);
2825		task_unlock(p);
2826	}
2827
2828	wake_up_new_task(p);
2829
2830	/* forking complete and child started to run, tell ptracer */
2831	if (unlikely(trace))
2832		ptrace_event_pid(trace, pid);
2833
2834	if (clone_flags & CLONE_VFORK) {
2835		if (!wait_for_vfork_done(p, &vfork))
2836			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2837	}
2838
2839	put_pid(pid);
2840	return nr;
2841}
2842
2843/*
2844 * Create a kernel thread.
2845 */
2846pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2847		    unsigned long flags)
2848{
2849	struct kernel_clone_args args = {
2850		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2851				    CLONE_UNTRACED) & ~CSIGNAL),
2852		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2853		.fn		= fn,
2854		.fn_arg		= arg,
2855		.name		= name,
2856		.kthread	= 1,
2857	};
2858
2859	return kernel_clone(&args);
2860}
2861
2862/*
2863 * Create a user mode thread.
2864 */
2865pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2866{
2867	struct kernel_clone_args args = {
2868		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2869				    CLONE_UNTRACED) & ~CSIGNAL),
2870		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2871		.fn		= fn,
2872		.fn_arg		= arg,
2873	};
2874
2875	return kernel_clone(&args);
2876}
2877
2878#ifdef __ARCH_WANT_SYS_FORK
2879SYSCALL_DEFINE0(fork)
2880{
2881#ifdef CONFIG_MMU
2882	struct kernel_clone_args args = {
2883		.exit_signal = SIGCHLD,
2884	};
2885
2886	return kernel_clone(&args);
2887#else
2888	/* can not support in nommu mode */
2889	return -EINVAL;
2890#endif
2891}
2892#endif
2893
2894#ifdef __ARCH_WANT_SYS_VFORK
2895SYSCALL_DEFINE0(vfork)
2896{
2897	struct kernel_clone_args args = {
2898		.flags		= CLONE_VFORK | CLONE_VM,
2899		.exit_signal	= SIGCHLD,
2900	};
2901
2902	return kernel_clone(&args);
2903}
2904#endif
2905
2906#ifdef __ARCH_WANT_SYS_CLONE
2907#ifdef CONFIG_CLONE_BACKWARDS
2908SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2909		 int __user *, parent_tidptr,
2910		 unsigned long, tls,
2911		 int __user *, child_tidptr)
2912#elif defined(CONFIG_CLONE_BACKWARDS2)
2913SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2914		 int __user *, parent_tidptr,
2915		 int __user *, child_tidptr,
2916		 unsigned long, tls)
2917#elif defined(CONFIG_CLONE_BACKWARDS3)
2918SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2919		int, stack_size,
2920		int __user *, parent_tidptr,
2921		int __user *, child_tidptr,
2922		unsigned long, tls)
2923#else
2924SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2925		 int __user *, parent_tidptr,
2926		 int __user *, child_tidptr,
2927		 unsigned long, tls)
2928#endif
2929{
2930	struct kernel_clone_args args = {
2931		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2932		.pidfd		= parent_tidptr,
2933		.child_tid	= child_tidptr,
2934		.parent_tid	= parent_tidptr,
2935		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2936		.stack		= newsp,
2937		.tls		= tls,
2938	};
2939
2940	return kernel_clone(&args);
2941}
2942#endif
2943
2944#ifdef __ARCH_WANT_SYS_CLONE3
2945
2946noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2947					      struct clone_args __user *uargs,
2948					      size_t usize)
2949{
2950	int err;
2951	struct clone_args args;
2952	pid_t *kset_tid = kargs->set_tid;
2953
2954	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2955		     CLONE_ARGS_SIZE_VER0);
2956	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2957		     CLONE_ARGS_SIZE_VER1);
2958	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2959		     CLONE_ARGS_SIZE_VER2);
2960	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2961
2962	if (unlikely(usize > PAGE_SIZE))
2963		return -E2BIG;
2964	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2965		return -EINVAL;
2966
2967	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2968	if (err)
2969		return err;
2970
2971	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2972		return -EINVAL;
2973
2974	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2975		return -EINVAL;
2976
2977	if (unlikely(args.set_tid && args.set_tid_size == 0))
2978		return -EINVAL;
2979
2980	/*
2981	 * Verify that higher 32bits of exit_signal are unset and that
2982	 * it is a valid signal
2983	 */
2984	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2985		     !valid_signal(args.exit_signal)))
2986		return -EINVAL;
2987
2988	if ((args.flags & CLONE_INTO_CGROUP) &&
2989	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2990		return -EINVAL;
2991
2992	*kargs = (struct kernel_clone_args){
2993		.flags		= args.flags,
2994		.pidfd		= u64_to_user_ptr(args.pidfd),
2995		.child_tid	= u64_to_user_ptr(args.child_tid),
2996		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2997		.exit_signal	= args.exit_signal,
2998		.stack		= args.stack,
2999		.stack_size	= args.stack_size,
3000		.tls		= args.tls,
3001		.set_tid_size	= args.set_tid_size,
3002		.cgroup		= args.cgroup,
3003	};
3004
3005	if (args.set_tid &&
3006		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3007			(kargs->set_tid_size * sizeof(pid_t))))
3008		return -EFAULT;
3009
3010	kargs->set_tid = kset_tid;
3011
3012	return 0;
3013}
3014
3015/**
3016 * clone3_stack_valid - check and prepare stack
3017 * @kargs: kernel clone args
3018 *
3019 * Verify that the stack arguments userspace gave us are sane.
3020 * In addition, set the stack direction for userspace since it's easy for us to
3021 * determine.
3022 */
3023static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3024{
3025	if (kargs->stack == 0) {
3026		if (kargs->stack_size > 0)
3027			return false;
3028	} else {
3029		if (kargs->stack_size == 0)
3030			return false;
3031
3032		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3033			return false;
3034
3035#if !defined(CONFIG_STACK_GROWSUP)
3036		kargs->stack += kargs->stack_size;
3037#endif
3038	}
3039
3040	return true;
3041}
3042
3043static bool clone3_args_valid(struct kernel_clone_args *kargs)
3044{
3045	/* Verify that no unknown flags are passed along. */
3046	if (kargs->flags &
3047	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3048		return false;
3049
3050	/*
3051	 * - make the CLONE_DETACHED bit reusable for clone3
3052	 * - make the CSIGNAL bits reusable for clone3
3053	 */
3054	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3055		return false;
3056
3057	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3058	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3059		return false;
3060
3061	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3062	    kargs->exit_signal)
3063		return false;
3064
3065	if (!clone3_stack_valid(kargs))
3066		return false;
3067
3068	return true;
3069}
3070
3071/**
3072 * sys_clone3 - create a new process with specific properties
3073 * @uargs: argument structure
3074 * @size:  size of @uargs
3075 *
3076 * clone3() is the extensible successor to clone()/clone2().
3077 * It takes a struct as argument that is versioned by its size.
3078 *
3079 * Return: On success, a positive PID for the child process.
3080 *         On error, a negative errno number.
3081 */
3082SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3083{
3084	int err;
3085
3086	struct kernel_clone_args kargs;
3087	pid_t set_tid[MAX_PID_NS_LEVEL];
3088
3089	kargs.set_tid = set_tid;
3090
3091	err = copy_clone_args_from_user(&kargs, uargs, size);
3092	if (err)
3093		return err;
3094
3095	if (!clone3_args_valid(&kargs))
3096		return -EINVAL;
3097
3098	return kernel_clone(&kargs);
3099}
3100#endif
3101
3102void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3103{
3104	struct task_struct *leader, *parent, *child;
3105	int res;
3106
3107	read_lock(&tasklist_lock);
3108	leader = top = top->group_leader;
3109down:
3110	for_each_thread(leader, parent) {
3111		list_for_each_entry(child, &parent->children, sibling) {
3112			res = visitor(child, data);
3113			if (res) {
3114				if (res < 0)
3115					goto out;
3116				leader = child;
3117				goto down;
3118			}
3119up:
3120			;
3121		}
3122	}
3123
3124	if (leader != top) {
3125		child = leader;
3126		parent = child->real_parent;
3127		leader = parent->group_leader;
3128		goto up;
3129	}
3130out:
3131	read_unlock(&tasklist_lock);
3132}
3133
3134#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3135#define ARCH_MIN_MMSTRUCT_ALIGN 0
3136#endif
3137
3138static void sighand_ctor(void *data)
3139{
3140	struct sighand_struct *sighand = data;
3141
3142	spin_lock_init(&sighand->siglock);
3143	init_waitqueue_head(&sighand->signalfd_wqh);
3144}
3145
3146void __init mm_cache_init(void)
3147{
3148	unsigned int mm_size;
3149
3150	/*
3151	 * The mm_cpumask is located at the end of mm_struct, and is
3152	 * dynamically sized based on the maximum CPU number this system
3153	 * can have, taking hotplug into account (nr_cpu_ids).
3154	 */
3155	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3156
3157	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3158			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3159			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3160			offsetof(struct mm_struct, saved_auxv),
3161			sizeof_field(struct mm_struct, saved_auxv),
3162			NULL);
3163}
3164
3165void __init proc_caches_init(void)
3166{
3167	sighand_cachep = kmem_cache_create("sighand_cache",
3168			sizeof(struct sighand_struct), 0,
3169			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3170			SLAB_ACCOUNT, sighand_ctor);
3171	signal_cachep = kmem_cache_create("signal_cache",
3172			sizeof(struct signal_struct), 0,
3173			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3174			NULL);
3175	files_cachep = kmem_cache_create("files_cache",
3176			sizeof(struct files_struct), 0,
3177			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3178			NULL);
3179	fs_cachep = kmem_cache_create("fs_cache",
3180			sizeof(struct fs_struct), 0,
3181			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3182			NULL);
3183
3184	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3185#ifdef CONFIG_PER_VMA_LOCK
3186	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3187#endif
3188	mmap_init();
3189	nsproxy_cache_init();
3190}
3191
3192/*
3193 * Check constraints on flags passed to the unshare system call.
3194 */
3195static int check_unshare_flags(unsigned long unshare_flags)
3196{
3197	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3198				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3199				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3200				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3201				CLONE_NEWTIME))
3202		return -EINVAL;
3203	/*
3204	 * Not implemented, but pretend it works if there is nothing
3205	 * to unshare.  Note that unsharing the address space or the
3206	 * signal handlers also need to unshare the signal queues (aka
3207	 * CLONE_THREAD).
3208	 */
3209	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3210		if (!thread_group_empty(current))
3211			return -EINVAL;
3212	}
3213	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3214		if (refcount_read(&current->sighand->count) > 1)
3215			return -EINVAL;
3216	}
3217	if (unshare_flags & CLONE_VM) {
3218		if (!current_is_single_threaded())
3219			return -EINVAL;
3220	}
3221
3222	return 0;
3223}
3224
3225/*
3226 * Unshare the filesystem structure if it is being shared
3227 */
3228static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3229{
3230	struct fs_struct *fs = current->fs;
3231
3232	if (!(unshare_flags & CLONE_FS) || !fs)
3233		return 0;
3234
3235	/* don't need lock here; in the worst case we'll do useless copy */
3236	if (fs->users == 1)
3237		return 0;
3238
3239	*new_fsp = copy_fs_struct(fs);
3240	if (!*new_fsp)
3241		return -ENOMEM;
3242
3243	return 0;
3244}
3245
3246/*
3247 * Unshare file descriptor table if it is being shared
3248 */
3249int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3250	       struct files_struct **new_fdp)
3251{
3252	struct files_struct *fd = current->files;
3253	int error = 0;
3254
3255	if ((unshare_flags & CLONE_FILES) &&
3256	    (fd && atomic_read(&fd->count) > 1)) {
3257		*new_fdp = dup_fd(fd, max_fds, &error);
3258		if (!*new_fdp)
3259			return error;
3260	}
3261
3262	return 0;
3263}
3264
3265/*
3266 * unshare allows a process to 'unshare' part of the process
3267 * context which was originally shared using clone.  copy_*
3268 * functions used by kernel_clone() cannot be used here directly
3269 * because they modify an inactive task_struct that is being
3270 * constructed. Here we are modifying the current, active,
3271 * task_struct.
3272 */
3273int ksys_unshare(unsigned long unshare_flags)
3274{
3275	struct fs_struct *fs, *new_fs = NULL;
3276	struct files_struct *new_fd = NULL;
3277	struct cred *new_cred = NULL;
3278	struct nsproxy *new_nsproxy = NULL;
3279	int do_sysvsem = 0;
3280	int err;
3281
3282	/*
3283	 * If unsharing a user namespace must also unshare the thread group
3284	 * and unshare the filesystem root and working directories.
3285	 */
3286	if (unshare_flags & CLONE_NEWUSER)
3287		unshare_flags |= CLONE_THREAD | CLONE_FS;
3288	/*
3289	 * If unsharing vm, must also unshare signal handlers.
3290	 */
3291	if (unshare_flags & CLONE_VM)
3292		unshare_flags |= CLONE_SIGHAND;
3293	/*
3294	 * If unsharing a signal handlers, must also unshare the signal queues.
3295	 */
3296	if (unshare_flags & CLONE_SIGHAND)
3297		unshare_flags |= CLONE_THREAD;
3298	/*
3299	 * If unsharing namespace, must also unshare filesystem information.
3300	 */
3301	if (unshare_flags & CLONE_NEWNS)
3302		unshare_flags |= CLONE_FS;
3303
3304	err = check_unshare_flags(unshare_flags);
3305	if (err)
3306		goto bad_unshare_out;
3307	/*
3308	 * CLONE_NEWIPC must also detach from the undolist: after switching
3309	 * to a new ipc namespace, the semaphore arrays from the old
3310	 * namespace are unreachable.
3311	 */
3312	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3313		do_sysvsem = 1;
3314	err = unshare_fs(unshare_flags, &new_fs);
3315	if (err)
3316		goto bad_unshare_out;
3317	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3318	if (err)
3319		goto bad_unshare_cleanup_fs;
3320	err = unshare_userns(unshare_flags, &new_cred);
3321	if (err)
3322		goto bad_unshare_cleanup_fd;
3323	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3324					 new_cred, new_fs);
3325	if (err)
3326		goto bad_unshare_cleanup_cred;
3327
3328	if (new_cred) {
3329		err = set_cred_ucounts(new_cred);
3330		if (err)
3331			goto bad_unshare_cleanup_cred;
3332	}
3333
3334	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3335		if (do_sysvsem) {
3336			/*
3337			 * CLONE_SYSVSEM is equivalent to sys_exit().
3338			 */
3339			exit_sem(current);
3340		}
3341		if (unshare_flags & CLONE_NEWIPC) {
3342			/* Orphan segments in old ns (see sem above). */
3343			exit_shm(current);
3344			shm_init_task(current);
3345		}
3346
3347		if (new_nsproxy)
3348			switch_task_namespaces(current, new_nsproxy);
3349
3350		task_lock(current);
3351
3352		if (new_fs) {
3353			fs = current->fs;
3354			spin_lock(&fs->lock);
3355			current->fs = new_fs;
3356			if (--fs->users)
3357				new_fs = NULL;
3358			else
3359				new_fs = fs;
3360			spin_unlock(&fs->lock);
3361		}
3362
3363		if (new_fd)
3364			swap(current->files, new_fd);
3365
3366		task_unlock(current);
3367
3368		if (new_cred) {
3369			/* Install the new user namespace */
3370			commit_creds(new_cred);
3371			new_cred = NULL;
3372		}
3373	}
3374
3375	perf_event_namespaces(current);
3376
3377bad_unshare_cleanup_cred:
3378	if (new_cred)
3379		put_cred(new_cred);
3380bad_unshare_cleanup_fd:
3381	if (new_fd)
3382		put_files_struct(new_fd);
3383
3384bad_unshare_cleanup_fs:
3385	if (new_fs)
3386		free_fs_struct(new_fs);
3387
3388bad_unshare_out:
3389	return err;
3390}
3391
3392SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3393{
3394	return ksys_unshare(unshare_flags);
3395}
3396
3397/*
3398 *	Helper to unshare the files of the current task.
3399 *	We don't want to expose copy_files internals to
3400 *	the exec layer of the kernel.
3401 */
3402
3403int unshare_files(void)
3404{
3405	struct task_struct *task = current;
3406	struct files_struct *old, *copy = NULL;
3407	int error;
3408
3409	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3410	if (error || !copy)
3411		return error;
3412
3413	old = task->files;
3414	task_lock(task);
3415	task->files = copy;
3416	task_unlock(task);
3417	put_files_struct(old);
3418	return 0;
3419}
3420
3421int sysctl_max_threads(struct ctl_table *table, int write,
3422		       void *buffer, size_t *lenp, loff_t *ppos)
3423{
3424	struct ctl_table t;
3425	int ret;
3426	int threads = max_threads;
3427	int min = 1;
3428	int max = MAX_THREADS;
3429
3430	t = *table;
3431	t.data = &threads;
3432	t.extra1 = &min;
3433	t.extra2 = &max;
3434
3435	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3436	if (ret || !write)
3437		return ret;
3438
3439	max_threads = threads;
3440
3441	return 0;
3442}
3443