1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/kernel/exit.c
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/sched/autogroup.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/stat.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/sched/cputime.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/capability.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
22#include <linux/iocontext.h>
23#include <linux/key.h>
24#include <linux/cpu.h>
25#include <linux/acct.h>
26#include <linux/tsacct_kern.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/freezer.h>
30#include <linux/binfmts.h>
31#include <linux/nsproxy.h>
32#include <linux/pid_namespace.h>
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
37#include <linux/kthread.h>
38#include <linux/mempolicy.h>
39#include <linux/taskstats_kern.h>
40#include <linux/delayacct.h>
41#include <linux/cgroup.h>
42#include <linux/syscalls.h>
43#include <linux/signal.h>
44#include <linux/posix-timers.h>
45#include <linux/cn_proc.h>
46#include <linux/mutex.h>
47#include <linux/futex.h>
48#include <linux/pipe_fs_i.h>
49#include <linux/audit.h> /* for audit_free() */
50#include <linux/resource.h>
51#include <linux/task_io_accounting_ops.h>
52#include <linux/blkdev.h>
53#include <linux/task_work.h>
54#include <linux/fs_struct.h>
55#include <linux/init_task.h>
56#include <linux/perf_event.h>
57#include <trace/events/sched.h>
58#include <linux/hw_breakpoint.h>
59#include <linux/oom.h>
60#include <linux/writeback.h>
61#include <linux/shm.h>
62#include <linux/kcov.h>
63#include <linux/kmsan.h>
64#include <linux/random.h>
65#include <linux/rcuwait.h>
66#include <linux/compat.h>
67#include <linux/io_uring.h>
68#include <linux/kprobes.h>
69#include <linux/rethook.h>
70#include <linux/sysfs.h>
71#include <linux/user_events.h>
72#include <linux/uaccess.h>
73
74#include <uapi/linux/wait.h>
75
76#include <asm/unistd.h>
77#include <asm/mmu_context.h>
78
79#include "exit.h"
80
81/*
82 * The default value should be high enough to not crash a system that randomly
83 * crashes its kernel from time to time, but low enough to at least not permit
84 * overflowing 32-bit refcounts or the ldsem writer count.
85 */
86static unsigned int oops_limit = 10000;
87
88#ifdef CONFIG_SYSCTL
89static struct ctl_table kern_exit_table[] = {
90	{
91		.procname       = "oops_limit",
92		.data           = &oops_limit,
93		.maxlen         = sizeof(oops_limit),
94		.mode           = 0644,
95		.proc_handler   = proc_douintvec,
96	},
97	{ }
98};
99
100static __init int kernel_exit_sysctls_init(void)
101{
102	register_sysctl_init("kernel", kern_exit_table);
103	return 0;
104}
105late_initcall(kernel_exit_sysctls_init);
106#endif
107
108static atomic_t oops_count = ATOMIC_INIT(0);
109
110#ifdef CONFIG_SYSFS
111static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112			       char *page)
113{
114	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115}
116
117static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118
119static __init int kernel_exit_sysfs_init(void)
120{
121	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122	return 0;
123}
124late_initcall(kernel_exit_sysfs_init);
125#endif
126
127static void __unhash_process(struct task_struct *p, bool group_dead)
128{
129	nr_threads--;
130	detach_pid(p, PIDTYPE_PID);
131	if (group_dead) {
132		detach_pid(p, PIDTYPE_TGID);
133		detach_pid(p, PIDTYPE_PGID);
134		detach_pid(p, PIDTYPE_SID);
135
136		list_del_rcu(&p->tasks);
137		list_del_init(&p->sibling);
138		__this_cpu_dec(process_counts);
139	}
140	list_del_rcu(&p->thread_node);
141}
142
143/*
144 * This function expects the tasklist_lock write-locked.
145 */
146static void __exit_signal(struct task_struct *tsk)
147{
148	struct signal_struct *sig = tsk->signal;
149	bool group_dead = thread_group_leader(tsk);
150	struct sighand_struct *sighand;
151	struct tty_struct *tty;
152	u64 utime, stime;
153
154	sighand = rcu_dereference_check(tsk->sighand,
155					lockdep_tasklist_lock_is_held());
156	spin_lock(&sighand->siglock);
157
158#ifdef CONFIG_POSIX_TIMERS
159	posix_cpu_timers_exit(tsk);
160	if (group_dead)
161		posix_cpu_timers_exit_group(tsk);
162#endif
163
164	if (group_dead) {
165		tty = sig->tty;
166		sig->tty = NULL;
167	} else {
168		/*
169		 * If there is any task waiting for the group exit
170		 * then notify it:
171		 */
172		if (sig->notify_count > 0 && !--sig->notify_count)
173			wake_up_process(sig->group_exec_task);
174
175		if (tsk == sig->curr_target)
176			sig->curr_target = next_thread(tsk);
177	}
178
179	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
180			      sizeof(unsigned long long));
181
182	/*
183	 * Accumulate here the counters for all threads as they die. We could
184	 * skip the group leader because it is the last user of signal_struct,
185	 * but we want to avoid the race with thread_group_cputime() which can
186	 * see the empty ->thread_head list.
187	 */
188	task_cputime(tsk, &utime, &stime);
189	write_seqlock(&sig->stats_lock);
190	sig->utime += utime;
191	sig->stime += stime;
192	sig->gtime += task_gtime(tsk);
193	sig->min_flt += tsk->min_flt;
194	sig->maj_flt += tsk->maj_flt;
195	sig->nvcsw += tsk->nvcsw;
196	sig->nivcsw += tsk->nivcsw;
197	sig->inblock += task_io_get_inblock(tsk);
198	sig->oublock += task_io_get_oublock(tsk);
199	task_io_accounting_add(&sig->ioac, &tsk->ioac);
200	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
201	sig->nr_threads--;
202	__unhash_process(tsk, group_dead);
203	write_sequnlock(&sig->stats_lock);
204
205	/*
206	 * Do this under ->siglock, we can race with another thread
207	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
208	 */
209	flush_sigqueue(&tsk->pending);
210	tsk->sighand = NULL;
211	spin_unlock(&sighand->siglock);
212
213	__cleanup_sighand(sighand);
214	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
215	if (group_dead) {
216		flush_sigqueue(&sig->shared_pending);
217		tty_kref_put(tty);
218	}
219}
220
221static void delayed_put_task_struct(struct rcu_head *rhp)
222{
223	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
224
225	kprobe_flush_task(tsk);
226	rethook_flush_task(tsk);
227	perf_event_delayed_put(tsk);
228	trace_sched_process_free(tsk);
229	put_task_struct(tsk);
230}
231
232void put_task_struct_rcu_user(struct task_struct *task)
233{
234	if (refcount_dec_and_test(&task->rcu_users))
235		call_rcu(&task->rcu, delayed_put_task_struct);
236}
237
238void __weak release_thread(struct task_struct *dead_task)
239{
240}
241
242void release_task(struct task_struct *p)
243{
244	struct task_struct *leader;
245	struct pid *thread_pid;
246	int zap_leader;
247repeat:
248	/* don't need to get the RCU readlock here - the process is dead and
249	 * can't be modifying its own credentials. But shut RCU-lockdep up */
250	rcu_read_lock();
251	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
252	rcu_read_unlock();
253
254	cgroup_release(p);
255
256	write_lock_irq(&tasklist_lock);
257	ptrace_release_task(p);
258	thread_pid = get_pid(p->thread_pid);
259	__exit_signal(p);
260
261	/*
262	 * If we are the last non-leader member of the thread
263	 * group, and the leader is zombie, then notify the
264	 * group leader's parent process. (if it wants notification.)
265	 */
266	zap_leader = 0;
267	leader = p->group_leader;
268	if (leader != p && thread_group_empty(leader)
269			&& leader->exit_state == EXIT_ZOMBIE) {
270		/*
271		 * If we were the last child thread and the leader has
272		 * exited already, and the leader's parent ignores SIGCHLD,
273		 * then we are the one who should release the leader.
274		 */
275		zap_leader = do_notify_parent(leader, leader->exit_signal);
276		if (zap_leader)
277			leader->exit_state = EXIT_DEAD;
278	}
279
280	write_unlock_irq(&tasklist_lock);
281	seccomp_filter_release(p);
282	proc_flush_pid(thread_pid);
283	put_pid(thread_pid);
284	release_thread(p);
285	put_task_struct_rcu_user(p);
286
287	p = leader;
288	if (unlikely(zap_leader))
289		goto repeat;
290}
291
292int rcuwait_wake_up(struct rcuwait *w)
293{
294	int ret = 0;
295	struct task_struct *task;
296
297	rcu_read_lock();
298
299	/*
300	 * Order condition vs @task, such that everything prior to the load
301	 * of @task is visible. This is the condition as to why the user called
302	 * rcuwait_wake() in the first place. Pairs with set_current_state()
303	 * barrier (A) in rcuwait_wait_event().
304	 *
305	 *    WAIT                WAKE
306	 *    [S] tsk = current	  [S] cond = true
307	 *        MB (A)	      MB (B)
308	 *    [L] cond		  [L] tsk
309	 */
310	smp_mb(); /* (B) */
311
312	task = rcu_dereference(w->task);
313	if (task)
314		ret = wake_up_process(task);
315	rcu_read_unlock();
316
317	return ret;
318}
319EXPORT_SYMBOL_GPL(rcuwait_wake_up);
320
321/*
322 * Determine if a process group is "orphaned", according to the POSIX
323 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
324 * by terminal-generated stop signals.  Newly orphaned process groups are
325 * to receive a SIGHUP and a SIGCONT.
326 *
327 * "I ask you, have you ever known what it is to be an orphan?"
328 */
329static int will_become_orphaned_pgrp(struct pid *pgrp,
330					struct task_struct *ignored_task)
331{
332	struct task_struct *p;
333
334	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335		if ((p == ignored_task) ||
336		    (p->exit_state && thread_group_empty(p)) ||
337		    is_global_init(p->real_parent))
338			continue;
339
340		if (task_pgrp(p->real_parent) != pgrp &&
341		    task_session(p->real_parent) == task_session(p))
342			return 0;
343	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344
345	return 1;
346}
347
348int is_current_pgrp_orphaned(void)
349{
350	int retval;
351
352	read_lock(&tasklist_lock);
353	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354	read_unlock(&tasklist_lock);
355
356	return retval;
357}
358
359static bool has_stopped_jobs(struct pid *pgrp)
360{
361	struct task_struct *p;
362
363	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364		if (p->signal->flags & SIGNAL_STOP_STOPPED)
365			return true;
366	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367
368	return false;
369}
370
371/*
372 * Check to see if any process groups have become orphaned as
373 * a result of our exiting, and if they have any stopped jobs,
374 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375 */
376static void
377kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378{
379	struct pid *pgrp = task_pgrp(tsk);
380	struct task_struct *ignored_task = tsk;
381
382	if (!parent)
383		/* exit: our father is in a different pgrp than
384		 * we are and we were the only connection outside.
385		 */
386		parent = tsk->real_parent;
387	else
388		/* reparent: our child is in a different pgrp than
389		 * we are, and it was the only connection outside.
390		 */
391		ignored_task = NULL;
392
393	if (task_pgrp(parent) != pgrp &&
394	    task_session(parent) == task_session(tsk) &&
395	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
396	    has_stopped_jobs(pgrp)) {
397		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399	}
400}
401
402static void coredump_task_exit(struct task_struct *tsk)
403{
404	struct core_state *core_state;
405
406	/*
407	 * Serialize with any possible pending coredump.
408	 * We must hold siglock around checking core_state
409	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
410	 * will increment ->nr_threads for each thread in the
411	 * group without PF_POSTCOREDUMP set.
412	 */
413	spin_lock_irq(&tsk->sighand->siglock);
414	tsk->flags |= PF_POSTCOREDUMP;
415	core_state = tsk->signal->core_state;
416	spin_unlock_irq(&tsk->sighand->siglock);
417
418	/* The vhost_worker does not particpate in coredumps */
419	if (core_state &&
420	    ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
421		struct core_thread self;
422
423		self.task = current;
424		if (self.task->flags & PF_SIGNALED)
425			self.next = xchg(&core_state->dumper.next, &self);
426		else
427			self.task = NULL;
428		/*
429		 * Implies mb(), the result of xchg() must be visible
430		 * to core_state->dumper.
431		 */
432		if (atomic_dec_and_test(&core_state->nr_threads))
433			complete(&core_state->startup);
434
435		for (;;) {
436			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
437			if (!self.task) /* see coredump_finish() */
438				break;
439			schedule();
440		}
441		__set_current_state(TASK_RUNNING);
442	}
443}
444
445#ifdef CONFIG_MEMCG
446/*
447 * A task is exiting.   If it owned this mm, find a new owner for the mm.
448 */
449void mm_update_next_owner(struct mm_struct *mm)
450{
451	struct task_struct *c, *g, *p = current;
452
453retry:
454	/*
455	 * If the exiting or execing task is not the owner, it's
456	 * someone else's problem.
457	 */
458	if (mm->owner != p)
459		return;
460	/*
461	 * The current owner is exiting/execing and there are no other
462	 * candidates.  Do not leave the mm pointing to a possibly
463	 * freed task structure.
464	 */
465	if (atomic_read(&mm->mm_users) <= 1) {
466		WRITE_ONCE(mm->owner, NULL);
467		return;
468	}
469
470	read_lock(&tasklist_lock);
471	/*
472	 * Search in the children
473	 */
474	list_for_each_entry(c, &p->children, sibling) {
475		if (c->mm == mm)
476			goto assign_new_owner;
477	}
478
479	/*
480	 * Search in the siblings
481	 */
482	list_for_each_entry(c, &p->real_parent->children, sibling) {
483		if (c->mm == mm)
484			goto assign_new_owner;
485	}
486
487	/*
488	 * Search through everything else, we should not get here often.
489	 */
490	for_each_process(g) {
491		if (g->flags & PF_KTHREAD)
492			continue;
493		for_each_thread(g, c) {
494			if (c->mm == mm)
495				goto assign_new_owner;
496			if (c->mm)
497				break;
498		}
499	}
500	read_unlock(&tasklist_lock);
501	/*
502	 * We found no owner yet mm_users > 1: this implies that we are
503	 * most likely racing with swapoff (try_to_unuse()) or /proc or
504	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
505	 */
506	WRITE_ONCE(mm->owner, NULL);
507	return;
508
509assign_new_owner:
510	BUG_ON(c == p);
511	get_task_struct(c);
512	/*
513	 * The task_lock protects c->mm from changing.
514	 * We always want mm->owner->mm == mm
515	 */
516	task_lock(c);
517	/*
518	 * Delay read_unlock() till we have the task_lock()
519	 * to ensure that c does not slip away underneath us
520	 */
521	read_unlock(&tasklist_lock);
522	if (c->mm != mm) {
523		task_unlock(c);
524		put_task_struct(c);
525		goto retry;
526	}
527	WRITE_ONCE(mm->owner, c);
528	lru_gen_migrate_mm(mm);
529	task_unlock(c);
530	put_task_struct(c);
531}
532#endif /* CONFIG_MEMCG */
533
534/*
535 * Turn us into a lazy TLB process if we
536 * aren't already..
537 */
538static void exit_mm(void)
539{
540	struct mm_struct *mm = current->mm;
541
542	exit_mm_release(current, mm);
543	if (!mm)
544		return;
545	mmap_read_lock(mm);
546	mmgrab_lazy_tlb(mm);
547	BUG_ON(mm != current->active_mm);
548	/* more a memory barrier than a real lock */
549	task_lock(current);
550	/*
551	 * When a thread stops operating on an address space, the loop
552	 * in membarrier_private_expedited() may not observe that
553	 * tsk->mm, and the loop in membarrier_global_expedited() may
554	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
555	 * rq->membarrier_state, so those would not issue an IPI.
556	 * Membarrier requires a memory barrier after accessing
557	 * user-space memory, before clearing tsk->mm or the
558	 * rq->membarrier_state.
559	 */
560	smp_mb__after_spinlock();
561	local_irq_disable();
562	current->mm = NULL;
563	membarrier_update_current_mm(NULL);
564	enter_lazy_tlb(mm, current);
565	local_irq_enable();
566	task_unlock(current);
567	mmap_read_unlock(mm);
568	mm_update_next_owner(mm);
569	mmput(mm);
570	if (test_thread_flag(TIF_MEMDIE))
571		exit_oom_victim();
572}
573
574static struct task_struct *find_alive_thread(struct task_struct *p)
575{
576	struct task_struct *t;
577
578	for_each_thread(p, t) {
579		if (!(t->flags & PF_EXITING))
580			return t;
581	}
582	return NULL;
583}
584
585static struct task_struct *find_child_reaper(struct task_struct *father,
586						struct list_head *dead)
587	__releases(&tasklist_lock)
588	__acquires(&tasklist_lock)
589{
590	struct pid_namespace *pid_ns = task_active_pid_ns(father);
591	struct task_struct *reaper = pid_ns->child_reaper;
592	struct task_struct *p, *n;
593
594	if (likely(reaper != father))
595		return reaper;
596
597	reaper = find_alive_thread(father);
598	if (reaper) {
599		pid_ns->child_reaper = reaper;
600		return reaper;
601	}
602
603	write_unlock_irq(&tasklist_lock);
604
605	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
606		list_del_init(&p->ptrace_entry);
607		release_task(p);
608	}
609
610	zap_pid_ns_processes(pid_ns);
611	write_lock_irq(&tasklist_lock);
612
613	return father;
614}
615
616/*
617 * When we die, we re-parent all our children, and try to:
618 * 1. give them to another thread in our thread group, if such a member exists
619 * 2. give it to the first ancestor process which prctl'd itself as a
620 *    child_subreaper for its children (like a service manager)
621 * 3. give it to the init process (PID 1) in our pid namespace
622 */
623static struct task_struct *find_new_reaper(struct task_struct *father,
624					   struct task_struct *child_reaper)
625{
626	struct task_struct *thread, *reaper;
627
628	thread = find_alive_thread(father);
629	if (thread)
630		return thread;
631
632	if (father->signal->has_child_subreaper) {
633		unsigned int ns_level = task_pid(father)->level;
634		/*
635		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
636		 * We can't check reaper != child_reaper to ensure we do not
637		 * cross the namespaces, the exiting parent could be injected
638		 * by setns() + fork().
639		 * We check pid->level, this is slightly more efficient than
640		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
641		 */
642		for (reaper = father->real_parent;
643		     task_pid(reaper)->level == ns_level;
644		     reaper = reaper->real_parent) {
645			if (reaper == &init_task)
646				break;
647			if (!reaper->signal->is_child_subreaper)
648				continue;
649			thread = find_alive_thread(reaper);
650			if (thread)
651				return thread;
652		}
653	}
654
655	return child_reaper;
656}
657
658/*
659* Any that need to be release_task'd are put on the @dead list.
660 */
661static void reparent_leader(struct task_struct *father, struct task_struct *p,
662				struct list_head *dead)
663{
664	if (unlikely(p->exit_state == EXIT_DEAD))
665		return;
666
667	/* We don't want people slaying init. */
668	p->exit_signal = SIGCHLD;
669
670	/* If it has exited notify the new parent about this child's death. */
671	if (!p->ptrace &&
672	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
673		if (do_notify_parent(p, p->exit_signal)) {
674			p->exit_state = EXIT_DEAD;
675			list_add(&p->ptrace_entry, dead);
676		}
677	}
678
679	kill_orphaned_pgrp(p, father);
680}
681
682/*
683 * This does two things:
684 *
685 * A.  Make init inherit all the child processes
686 * B.  Check to see if any process groups have become orphaned
687 *	as a result of our exiting, and if they have any stopped
688 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
689 */
690static void forget_original_parent(struct task_struct *father,
691					struct list_head *dead)
692{
693	struct task_struct *p, *t, *reaper;
694
695	if (unlikely(!list_empty(&father->ptraced)))
696		exit_ptrace(father, dead);
697
698	/* Can drop and reacquire tasklist_lock */
699	reaper = find_child_reaper(father, dead);
700	if (list_empty(&father->children))
701		return;
702
703	reaper = find_new_reaper(father, reaper);
704	list_for_each_entry(p, &father->children, sibling) {
705		for_each_thread(p, t) {
706			RCU_INIT_POINTER(t->real_parent, reaper);
707			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
708			if (likely(!t->ptrace))
709				t->parent = t->real_parent;
710			if (t->pdeath_signal)
711				group_send_sig_info(t->pdeath_signal,
712						    SEND_SIG_NOINFO, t,
713						    PIDTYPE_TGID);
714		}
715		/*
716		 * If this is a threaded reparent there is no need to
717		 * notify anyone anything has happened.
718		 */
719		if (!same_thread_group(reaper, father))
720			reparent_leader(father, p, dead);
721	}
722	list_splice_tail_init(&father->children, &reaper->children);
723}
724
725/*
726 * Send signals to all our closest relatives so that they know
727 * to properly mourn us..
728 */
729static void exit_notify(struct task_struct *tsk, int group_dead)
730{
731	bool autoreap;
732	struct task_struct *p, *n;
733	LIST_HEAD(dead);
734
735	write_lock_irq(&tasklist_lock);
736	forget_original_parent(tsk, &dead);
737
738	if (group_dead)
739		kill_orphaned_pgrp(tsk->group_leader, NULL);
740
741	tsk->exit_state = EXIT_ZOMBIE;
742	/*
743	 * sub-thread or delay_group_leader(), wake up the
744	 * PIDFD_THREAD waiters.
745	 */
746	if (!thread_group_empty(tsk))
747		do_notify_pidfd(tsk);
748
749	if (unlikely(tsk->ptrace)) {
750		int sig = thread_group_leader(tsk) &&
751				thread_group_empty(tsk) &&
752				!ptrace_reparented(tsk) ?
753			tsk->exit_signal : SIGCHLD;
754		autoreap = do_notify_parent(tsk, sig);
755	} else if (thread_group_leader(tsk)) {
756		autoreap = thread_group_empty(tsk) &&
757			do_notify_parent(tsk, tsk->exit_signal);
758	} else {
759		autoreap = true;
760	}
761
762	if (autoreap) {
763		tsk->exit_state = EXIT_DEAD;
764		list_add(&tsk->ptrace_entry, &dead);
765	}
766
767	/* mt-exec, de_thread() is waiting for group leader */
768	if (unlikely(tsk->signal->notify_count < 0))
769		wake_up_process(tsk->signal->group_exec_task);
770	write_unlock_irq(&tasklist_lock);
771
772	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
773		list_del_init(&p->ptrace_entry);
774		release_task(p);
775	}
776}
777
778#ifdef CONFIG_DEBUG_STACK_USAGE
779static void check_stack_usage(void)
780{
781	static DEFINE_SPINLOCK(low_water_lock);
782	static int lowest_to_date = THREAD_SIZE;
783	unsigned long free;
784
785	free = stack_not_used(current);
786
787	if (free >= lowest_to_date)
788		return;
789
790	spin_lock(&low_water_lock);
791	if (free < lowest_to_date) {
792		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
793			current->comm, task_pid_nr(current), free);
794		lowest_to_date = free;
795	}
796	spin_unlock(&low_water_lock);
797}
798#else
799static inline void check_stack_usage(void) {}
800#endif
801
802static void synchronize_group_exit(struct task_struct *tsk, long code)
803{
804	struct sighand_struct *sighand = tsk->sighand;
805	struct signal_struct *signal = tsk->signal;
806
807	spin_lock_irq(&sighand->siglock);
808	signal->quick_threads--;
809	if ((signal->quick_threads == 0) &&
810	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
811		signal->flags = SIGNAL_GROUP_EXIT;
812		signal->group_exit_code = code;
813		signal->group_stop_count = 0;
814	}
815	spin_unlock_irq(&sighand->siglock);
816}
817
818void __noreturn do_exit(long code)
819{
820	struct task_struct *tsk = current;
821	int group_dead;
822
823	WARN_ON(irqs_disabled());
824
825	synchronize_group_exit(tsk, code);
826
827	WARN_ON(tsk->plug);
828
829	kcov_task_exit(tsk);
830	kmsan_task_exit(tsk);
831
832	coredump_task_exit(tsk);
833	ptrace_event(PTRACE_EVENT_EXIT, code);
834	user_events_exit(tsk);
835
836	io_uring_files_cancel();
837	exit_signals(tsk);  /* sets PF_EXITING */
838
839	acct_update_integrals(tsk);
840	group_dead = atomic_dec_and_test(&tsk->signal->live);
841	if (group_dead) {
842		/*
843		 * If the last thread of global init has exited, panic
844		 * immediately to get a useable coredump.
845		 */
846		if (unlikely(is_global_init(tsk)))
847			panic("Attempted to kill init! exitcode=0x%08x\n",
848				tsk->signal->group_exit_code ?: (int)code);
849
850#ifdef CONFIG_POSIX_TIMERS
851		hrtimer_cancel(&tsk->signal->real_timer);
852		exit_itimers(tsk);
853#endif
854		if (tsk->mm)
855			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
856	}
857	acct_collect(code, group_dead);
858	if (group_dead)
859		tty_audit_exit();
860	audit_free(tsk);
861
862	tsk->exit_code = code;
863	taskstats_exit(tsk, group_dead);
864
865	exit_mm();
866
867	if (group_dead)
868		acct_process();
869	trace_sched_process_exit(tsk);
870
871	exit_sem(tsk);
872	exit_shm(tsk);
873	exit_files(tsk);
874	exit_fs(tsk);
875	if (group_dead)
876		disassociate_ctty(1);
877	exit_task_namespaces(tsk);
878	exit_task_work(tsk);
879	exit_thread(tsk);
880
881	/*
882	 * Flush inherited counters to the parent - before the parent
883	 * gets woken up by child-exit notifications.
884	 *
885	 * because of cgroup mode, must be called before cgroup_exit()
886	 */
887	perf_event_exit_task(tsk);
888
889	sched_autogroup_exit_task(tsk);
890	cgroup_exit(tsk);
891
892	/*
893	 * FIXME: do that only when needed, using sched_exit tracepoint
894	 */
895	flush_ptrace_hw_breakpoint(tsk);
896
897	exit_tasks_rcu_start();
898	exit_notify(tsk, group_dead);
899	proc_exit_connector(tsk);
900	mpol_put_task_policy(tsk);
901#ifdef CONFIG_FUTEX
902	if (unlikely(current->pi_state_cache))
903		kfree(current->pi_state_cache);
904#endif
905	/*
906	 * Make sure we are holding no locks:
907	 */
908	debug_check_no_locks_held();
909
910	if (tsk->io_context)
911		exit_io_context(tsk);
912
913	if (tsk->splice_pipe)
914		free_pipe_info(tsk->splice_pipe);
915
916	if (tsk->task_frag.page)
917		put_page(tsk->task_frag.page);
918
919	exit_task_stack_account(tsk);
920
921	check_stack_usage();
922	preempt_disable();
923	if (tsk->nr_dirtied)
924		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
925	exit_rcu();
926	exit_tasks_rcu_finish();
927
928	lockdep_free_task(tsk);
929	do_task_dead();
930}
931
932void __noreturn make_task_dead(int signr)
933{
934	/*
935	 * Take the task off the cpu after something catastrophic has
936	 * happened.
937	 *
938	 * We can get here from a kernel oops, sometimes with preemption off.
939	 * Start by checking for critical errors.
940	 * Then fix up important state like USER_DS and preemption.
941	 * Then do everything else.
942	 */
943	struct task_struct *tsk = current;
944	unsigned int limit;
945
946	if (unlikely(in_interrupt()))
947		panic("Aiee, killing interrupt handler!");
948	if (unlikely(!tsk->pid))
949		panic("Attempted to kill the idle task!");
950
951	if (unlikely(irqs_disabled())) {
952		pr_info("note: %s[%d] exited with irqs disabled\n",
953			current->comm, task_pid_nr(current));
954		local_irq_enable();
955	}
956	if (unlikely(in_atomic())) {
957		pr_info("note: %s[%d] exited with preempt_count %d\n",
958			current->comm, task_pid_nr(current),
959			preempt_count());
960		preempt_count_set(PREEMPT_ENABLED);
961	}
962
963	/*
964	 * Every time the system oopses, if the oops happens while a reference
965	 * to an object was held, the reference leaks.
966	 * If the oops doesn't also leak memory, repeated oopsing can cause
967	 * reference counters to wrap around (if they're not using refcount_t).
968	 * This means that repeated oopsing can make unexploitable-looking bugs
969	 * exploitable through repeated oopsing.
970	 * To make sure this can't happen, place an upper bound on how often the
971	 * kernel may oops without panic().
972	 */
973	limit = READ_ONCE(oops_limit);
974	if (atomic_inc_return(&oops_count) >= limit && limit)
975		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
976
977	/*
978	 * We're taking recursive faults here in make_task_dead. Safest is to just
979	 * leave this task alone and wait for reboot.
980	 */
981	if (unlikely(tsk->flags & PF_EXITING)) {
982		pr_alert("Fixing recursive fault but reboot is needed!\n");
983		futex_exit_recursive(tsk);
984		tsk->exit_state = EXIT_DEAD;
985		refcount_inc(&tsk->rcu_users);
986		do_task_dead();
987	}
988
989	do_exit(signr);
990}
991
992SYSCALL_DEFINE1(exit, int, error_code)
993{
994	do_exit((error_code&0xff)<<8);
995}
996
997/*
998 * Take down every thread in the group.  This is called by fatal signals
999 * as well as by sys_exit_group (below).
1000 */
1001void __noreturn
1002do_group_exit(int exit_code)
1003{
1004	struct signal_struct *sig = current->signal;
1005
1006	if (sig->flags & SIGNAL_GROUP_EXIT)
1007		exit_code = sig->group_exit_code;
1008	else if (sig->group_exec_task)
1009		exit_code = 0;
1010	else {
1011		struct sighand_struct *const sighand = current->sighand;
1012
1013		spin_lock_irq(&sighand->siglock);
1014		if (sig->flags & SIGNAL_GROUP_EXIT)
1015			/* Another thread got here before we took the lock.  */
1016			exit_code = sig->group_exit_code;
1017		else if (sig->group_exec_task)
1018			exit_code = 0;
1019		else {
1020			sig->group_exit_code = exit_code;
1021			sig->flags = SIGNAL_GROUP_EXIT;
1022			zap_other_threads(current);
1023		}
1024		spin_unlock_irq(&sighand->siglock);
1025	}
1026
1027	do_exit(exit_code);
1028	/* NOTREACHED */
1029}
1030
1031/*
1032 * this kills every thread in the thread group. Note that any externally
1033 * wait4()-ing process will get the correct exit code - even if this
1034 * thread is not the thread group leader.
1035 */
1036SYSCALL_DEFINE1(exit_group, int, error_code)
1037{
1038	do_group_exit((error_code & 0xff) << 8);
1039	/* NOTREACHED */
1040	return 0;
1041}
1042
1043static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1044{
1045	return	wo->wo_type == PIDTYPE_MAX ||
1046		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1047}
1048
1049static int
1050eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1051{
1052	if (!eligible_pid(wo, p))
1053		return 0;
1054
1055	/*
1056	 * Wait for all children (clone and not) if __WALL is set or
1057	 * if it is traced by us.
1058	 */
1059	if (ptrace || (wo->wo_flags & __WALL))
1060		return 1;
1061
1062	/*
1063	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1064	 * otherwise, wait for non-clone children *only*.
1065	 *
1066	 * Note: a "clone" child here is one that reports to its parent
1067	 * using a signal other than SIGCHLD, or a non-leader thread which
1068	 * we can only see if it is traced by us.
1069	 */
1070	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1071		return 0;
1072
1073	return 1;
1074}
1075
1076/*
1077 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1078 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1079 * the lock and this task is uninteresting.  If we return nonzero, we have
1080 * released the lock and the system call should return.
1081 */
1082static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1083{
1084	int state, status;
1085	pid_t pid = task_pid_vnr(p);
1086	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1087	struct waitid_info *infop;
1088
1089	if (!likely(wo->wo_flags & WEXITED))
1090		return 0;
1091
1092	if (unlikely(wo->wo_flags & WNOWAIT)) {
1093		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1094			? p->signal->group_exit_code : p->exit_code;
1095		get_task_struct(p);
1096		read_unlock(&tasklist_lock);
1097		sched_annotate_sleep();
1098		if (wo->wo_rusage)
1099			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1100		put_task_struct(p);
1101		goto out_info;
1102	}
1103	/*
1104	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1105	 */
1106	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1107		EXIT_TRACE : EXIT_DEAD;
1108	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1109		return 0;
1110	/*
1111	 * We own this thread, nobody else can reap it.
1112	 */
1113	read_unlock(&tasklist_lock);
1114	sched_annotate_sleep();
1115
1116	/*
1117	 * Check thread_group_leader() to exclude the traced sub-threads.
1118	 */
1119	if (state == EXIT_DEAD && thread_group_leader(p)) {
1120		struct signal_struct *sig = p->signal;
1121		struct signal_struct *psig = current->signal;
1122		unsigned long maxrss;
1123		u64 tgutime, tgstime;
1124
1125		/*
1126		 * The resource counters for the group leader are in its
1127		 * own task_struct.  Those for dead threads in the group
1128		 * are in its signal_struct, as are those for the child
1129		 * processes it has previously reaped.  All these
1130		 * accumulate in the parent's signal_struct c* fields.
1131		 *
1132		 * We don't bother to take a lock here to protect these
1133		 * p->signal fields because the whole thread group is dead
1134		 * and nobody can change them.
1135		 *
1136		 * psig->stats_lock also protects us from our sub-threads
1137		 * which can reap other children at the same time.
1138		 *
1139		 * We use thread_group_cputime_adjusted() to get times for
1140		 * the thread group, which consolidates times for all threads
1141		 * in the group including the group leader.
1142		 */
1143		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1144		write_seqlock_irq(&psig->stats_lock);
1145		psig->cutime += tgutime + sig->cutime;
1146		psig->cstime += tgstime + sig->cstime;
1147		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1148		psig->cmin_flt +=
1149			p->min_flt + sig->min_flt + sig->cmin_flt;
1150		psig->cmaj_flt +=
1151			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1152		psig->cnvcsw +=
1153			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1154		psig->cnivcsw +=
1155			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1156		psig->cinblock +=
1157			task_io_get_inblock(p) +
1158			sig->inblock + sig->cinblock;
1159		psig->coublock +=
1160			task_io_get_oublock(p) +
1161			sig->oublock + sig->coublock;
1162		maxrss = max(sig->maxrss, sig->cmaxrss);
1163		if (psig->cmaxrss < maxrss)
1164			psig->cmaxrss = maxrss;
1165		task_io_accounting_add(&psig->ioac, &p->ioac);
1166		task_io_accounting_add(&psig->ioac, &sig->ioac);
1167		write_sequnlock_irq(&psig->stats_lock);
1168	}
1169
1170	if (wo->wo_rusage)
1171		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1172	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1173		? p->signal->group_exit_code : p->exit_code;
1174	wo->wo_stat = status;
1175
1176	if (state == EXIT_TRACE) {
1177		write_lock_irq(&tasklist_lock);
1178		/* We dropped tasklist, ptracer could die and untrace */
1179		ptrace_unlink(p);
1180
1181		/* If parent wants a zombie, don't release it now */
1182		state = EXIT_ZOMBIE;
1183		if (do_notify_parent(p, p->exit_signal))
1184			state = EXIT_DEAD;
1185		p->exit_state = state;
1186		write_unlock_irq(&tasklist_lock);
1187	}
1188	if (state == EXIT_DEAD)
1189		release_task(p);
1190
1191out_info:
1192	infop = wo->wo_info;
1193	if (infop) {
1194		if ((status & 0x7f) == 0) {
1195			infop->cause = CLD_EXITED;
1196			infop->status = status >> 8;
1197		} else {
1198			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1199			infop->status = status & 0x7f;
1200		}
1201		infop->pid = pid;
1202		infop->uid = uid;
1203	}
1204
1205	return pid;
1206}
1207
1208static int *task_stopped_code(struct task_struct *p, bool ptrace)
1209{
1210	if (ptrace) {
1211		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1212			return &p->exit_code;
1213	} else {
1214		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1215			return &p->signal->group_exit_code;
1216	}
1217	return NULL;
1218}
1219
1220/**
1221 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1222 * @wo: wait options
1223 * @ptrace: is the wait for ptrace
1224 * @p: task to wait for
1225 *
1226 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1227 *
1228 * CONTEXT:
1229 * read_lock(&tasklist_lock), which is released if return value is
1230 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1231 *
1232 * RETURNS:
1233 * 0 if wait condition didn't exist and search for other wait conditions
1234 * should continue.  Non-zero return, -errno on failure and @p's pid on
1235 * success, implies that tasklist_lock is released and wait condition
1236 * search should terminate.
1237 */
1238static int wait_task_stopped(struct wait_opts *wo,
1239				int ptrace, struct task_struct *p)
1240{
1241	struct waitid_info *infop;
1242	int exit_code, *p_code, why;
1243	uid_t uid = 0; /* unneeded, required by compiler */
1244	pid_t pid;
1245
1246	/*
1247	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1248	 */
1249	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1250		return 0;
1251
1252	if (!task_stopped_code(p, ptrace))
1253		return 0;
1254
1255	exit_code = 0;
1256	spin_lock_irq(&p->sighand->siglock);
1257
1258	p_code = task_stopped_code(p, ptrace);
1259	if (unlikely(!p_code))
1260		goto unlock_sig;
1261
1262	exit_code = *p_code;
1263	if (!exit_code)
1264		goto unlock_sig;
1265
1266	if (!unlikely(wo->wo_flags & WNOWAIT))
1267		*p_code = 0;
1268
1269	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1270unlock_sig:
1271	spin_unlock_irq(&p->sighand->siglock);
1272	if (!exit_code)
1273		return 0;
1274
1275	/*
1276	 * Now we are pretty sure this task is interesting.
1277	 * Make sure it doesn't get reaped out from under us while we
1278	 * give up the lock and then examine it below.  We don't want to
1279	 * keep holding onto the tasklist_lock while we call getrusage and
1280	 * possibly take page faults for user memory.
1281	 */
1282	get_task_struct(p);
1283	pid = task_pid_vnr(p);
1284	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1285	read_unlock(&tasklist_lock);
1286	sched_annotate_sleep();
1287	if (wo->wo_rusage)
1288		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1289	put_task_struct(p);
1290
1291	if (likely(!(wo->wo_flags & WNOWAIT)))
1292		wo->wo_stat = (exit_code << 8) | 0x7f;
1293
1294	infop = wo->wo_info;
1295	if (infop) {
1296		infop->cause = why;
1297		infop->status = exit_code;
1298		infop->pid = pid;
1299		infop->uid = uid;
1300	}
1301	return pid;
1302}
1303
1304/*
1305 * Handle do_wait work for one task in a live, non-stopped state.
1306 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1307 * the lock and this task is uninteresting.  If we return nonzero, we have
1308 * released the lock and the system call should return.
1309 */
1310static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1311{
1312	struct waitid_info *infop;
1313	pid_t pid;
1314	uid_t uid;
1315
1316	if (!unlikely(wo->wo_flags & WCONTINUED))
1317		return 0;
1318
1319	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1320		return 0;
1321
1322	spin_lock_irq(&p->sighand->siglock);
1323	/* Re-check with the lock held.  */
1324	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1325		spin_unlock_irq(&p->sighand->siglock);
1326		return 0;
1327	}
1328	if (!unlikely(wo->wo_flags & WNOWAIT))
1329		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1330	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1331	spin_unlock_irq(&p->sighand->siglock);
1332
1333	pid = task_pid_vnr(p);
1334	get_task_struct(p);
1335	read_unlock(&tasklist_lock);
1336	sched_annotate_sleep();
1337	if (wo->wo_rusage)
1338		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1339	put_task_struct(p);
1340
1341	infop = wo->wo_info;
1342	if (!infop) {
1343		wo->wo_stat = 0xffff;
1344	} else {
1345		infop->cause = CLD_CONTINUED;
1346		infop->pid = pid;
1347		infop->uid = uid;
1348		infop->status = SIGCONT;
1349	}
1350	return pid;
1351}
1352
1353/*
1354 * Consider @p for a wait by @parent.
1355 *
1356 * -ECHILD should be in ->notask_error before the first call.
1357 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1358 * Returns zero if the search for a child should continue;
1359 * then ->notask_error is 0 if @p is an eligible child,
1360 * or still -ECHILD.
1361 */
1362static int wait_consider_task(struct wait_opts *wo, int ptrace,
1363				struct task_struct *p)
1364{
1365	/*
1366	 * We can race with wait_task_zombie() from another thread.
1367	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1368	 * can't confuse the checks below.
1369	 */
1370	int exit_state = READ_ONCE(p->exit_state);
1371	int ret;
1372
1373	if (unlikely(exit_state == EXIT_DEAD))
1374		return 0;
1375
1376	ret = eligible_child(wo, ptrace, p);
1377	if (!ret)
1378		return ret;
1379
1380	if (unlikely(exit_state == EXIT_TRACE)) {
1381		/*
1382		 * ptrace == 0 means we are the natural parent. In this case
1383		 * we should clear notask_error, debugger will notify us.
1384		 */
1385		if (likely(!ptrace))
1386			wo->notask_error = 0;
1387		return 0;
1388	}
1389
1390	if (likely(!ptrace) && unlikely(p->ptrace)) {
1391		/*
1392		 * If it is traced by its real parent's group, just pretend
1393		 * the caller is ptrace_do_wait() and reap this child if it
1394		 * is zombie.
1395		 *
1396		 * This also hides group stop state from real parent; otherwise
1397		 * a single stop can be reported twice as group and ptrace stop.
1398		 * If a ptracer wants to distinguish these two events for its
1399		 * own children it should create a separate process which takes
1400		 * the role of real parent.
1401		 */
1402		if (!ptrace_reparented(p))
1403			ptrace = 1;
1404	}
1405
1406	/* slay zombie? */
1407	if (exit_state == EXIT_ZOMBIE) {
1408		/* we don't reap group leaders with subthreads */
1409		if (!delay_group_leader(p)) {
1410			/*
1411			 * A zombie ptracee is only visible to its ptracer.
1412			 * Notification and reaping will be cascaded to the
1413			 * real parent when the ptracer detaches.
1414			 */
1415			if (unlikely(ptrace) || likely(!p->ptrace))
1416				return wait_task_zombie(wo, p);
1417		}
1418
1419		/*
1420		 * Allow access to stopped/continued state via zombie by
1421		 * falling through.  Clearing of notask_error is complex.
1422		 *
1423		 * When !@ptrace:
1424		 *
1425		 * If WEXITED is set, notask_error should naturally be
1426		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1427		 * so, if there are live subthreads, there are events to
1428		 * wait for.  If all subthreads are dead, it's still safe
1429		 * to clear - this function will be called again in finite
1430		 * amount time once all the subthreads are released and
1431		 * will then return without clearing.
1432		 *
1433		 * When @ptrace:
1434		 *
1435		 * Stopped state is per-task and thus can't change once the
1436		 * target task dies.  Only continued and exited can happen.
1437		 * Clear notask_error if WCONTINUED | WEXITED.
1438		 */
1439		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1440			wo->notask_error = 0;
1441	} else {
1442		/*
1443		 * @p is alive and it's gonna stop, continue or exit, so
1444		 * there always is something to wait for.
1445		 */
1446		wo->notask_error = 0;
1447	}
1448
1449	/*
1450	 * Wait for stopped.  Depending on @ptrace, different stopped state
1451	 * is used and the two don't interact with each other.
1452	 */
1453	ret = wait_task_stopped(wo, ptrace, p);
1454	if (ret)
1455		return ret;
1456
1457	/*
1458	 * Wait for continued.  There's only one continued state and the
1459	 * ptracer can consume it which can confuse the real parent.  Don't
1460	 * use WCONTINUED from ptracer.  You don't need or want it.
1461	 */
1462	return wait_task_continued(wo, p);
1463}
1464
1465/*
1466 * Do the work of do_wait() for one thread in the group, @tsk.
1467 *
1468 * -ECHILD should be in ->notask_error before the first call.
1469 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1470 * Returns zero if the search for a child should continue; then
1471 * ->notask_error is 0 if there were any eligible children,
1472 * or still -ECHILD.
1473 */
1474static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1475{
1476	struct task_struct *p;
1477
1478	list_for_each_entry(p, &tsk->children, sibling) {
1479		int ret = wait_consider_task(wo, 0, p);
1480
1481		if (ret)
1482			return ret;
1483	}
1484
1485	return 0;
1486}
1487
1488static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1489{
1490	struct task_struct *p;
1491
1492	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1493		int ret = wait_consider_task(wo, 1, p);
1494
1495		if (ret)
1496			return ret;
1497	}
1498
1499	return 0;
1500}
1501
1502bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1503{
1504	if (!eligible_pid(wo, p))
1505		return false;
1506
1507	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1508		return false;
1509
1510	return true;
1511}
1512
1513static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1514				int sync, void *key)
1515{
1516	struct wait_opts *wo = container_of(wait, struct wait_opts,
1517						child_wait);
1518	struct task_struct *p = key;
1519
1520	if (pid_child_should_wake(wo, p))
1521		return default_wake_function(wait, mode, sync, key);
1522
1523	return 0;
1524}
1525
1526void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1527{
1528	__wake_up_sync_key(&parent->signal->wait_chldexit,
1529			   TASK_INTERRUPTIBLE, p);
1530}
1531
1532static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1533				 struct task_struct *target)
1534{
1535	struct task_struct *parent =
1536		!ptrace ? target->real_parent : target->parent;
1537
1538	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1539				     same_thread_group(current, parent));
1540}
1541
1542/*
1543 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1544 * and tracee lists to find the target task.
1545 */
1546static int do_wait_pid(struct wait_opts *wo)
1547{
1548	bool ptrace;
1549	struct task_struct *target;
1550	int retval;
1551
1552	ptrace = false;
1553	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1554	if (target && is_effectively_child(wo, ptrace, target)) {
1555		retval = wait_consider_task(wo, ptrace, target);
1556		if (retval)
1557			return retval;
1558	}
1559
1560	ptrace = true;
1561	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1562	if (target && target->ptrace &&
1563	    is_effectively_child(wo, ptrace, target)) {
1564		retval = wait_consider_task(wo, ptrace, target);
1565		if (retval)
1566			return retval;
1567	}
1568
1569	return 0;
1570}
1571
1572long __do_wait(struct wait_opts *wo)
1573{
1574	long retval;
1575
1576	/*
1577	 * If there is nothing that can match our criteria, just get out.
1578	 * We will clear ->notask_error to zero if we see any child that
1579	 * might later match our criteria, even if we are not able to reap
1580	 * it yet.
1581	 */
1582	wo->notask_error = -ECHILD;
1583	if ((wo->wo_type < PIDTYPE_MAX) &&
1584	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1585		goto notask;
1586
1587	read_lock(&tasklist_lock);
1588
1589	if (wo->wo_type == PIDTYPE_PID) {
1590		retval = do_wait_pid(wo);
1591		if (retval)
1592			return retval;
1593	} else {
1594		struct task_struct *tsk = current;
1595
1596		do {
1597			retval = do_wait_thread(wo, tsk);
1598			if (retval)
1599				return retval;
1600
1601			retval = ptrace_do_wait(wo, tsk);
1602			if (retval)
1603				return retval;
1604
1605			if (wo->wo_flags & __WNOTHREAD)
1606				break;
1607		} while_each_thread(current, tsk);
1608	}
1609	read_unlock(&tasklist_lock);
1610
1611notask:
1612	retval = wo->notask_error;
1613	if (!retval && !(wo->wo_flags & WNOHANG))
1614		return -ERESTARTSYS;
1615
1616	return retval;
1617}
1618
1619static long do_wait(struct wait_opts *wo)
1620{
1621	int retval;
1622
1623	trace_sched_process_wait(wo->wo_pid);
1624
1625	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1626	wo->child_wait.private = current;
1627	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1628
1629	do {
1630		set_current_state(TASK_INTERRUPTIBLE);
1631		retval = __do_wait(wo);
1632		if (retval != -ERESTARTSYS)
1633			break;
1634		if (signal_pending(current))
1635			break;
1636		schedule();
1637	} while (1);
1638
1639	__set_current_state(TASK_RUNNING);
1640	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1641	return retval;
1642}
1643
1644int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1645			  struct waitid_info *infop, int options,
1646			  struct rusage *ru)
1647{
1648	unsigned int f_flags = 0;
1649	struct pid *pid = NULL;
1650	enum pid_type type;
1651
1652	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1653			__WNOTHREAD|__WCLONE|__WALL))
1654		return -EINVAL;
1655	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1656		return -EINVAL;
1657
1658	switch (which) {
1659	case P_ALL:
1660		type = PIDTYPE_MAX;
1661		break;
1662	case P_PID:
1663		type = PIDTYPE_PID;
1664		if (upid <= 0)
1665			return -EINVAL;
1666
1667		pid = find_get_pid(upid);
1668		break;
1669	case P_PGID:
1670		type = PIDTYPE_PGID;
1671		if (upid < 0)
1672			return -EINVAL;
1673
1674		if (upid)
1675			pid = find_get_pid(upid);
1676		else
1677			pid = get_task_pid(current, PIDTYPE_PGID);
1678		break;
1679	case P_PIDFD:
1680		type = PIDTYPE_PID;
1681		if (upid < 0)
1682			return -EINVAL;
1683
1684		pid = pidfd_get_pid(upid, &f_flags);
1685		if (IS_ERR(pid))
1686			return PTR_ERR(pid);
1687
1688		break;
1689	default:
1690		return -EINVAL;
1691	}
1692
1693	wo->wo_type	= type;
1694	wo->wo_pid	= pid;
1695	wo->wo_flags	= options;
1696	wo->wo_info	= infop;
1697	wo->wo_rusage	= ru;
1698	if (f_flags & O_NONBLOCK)
1699		wo->wo_flags |= WNOHANG;
1700
1701	return 0;
1702}
1703
1704static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1705			  int options, struct rusage *ru)
1706{
1707	struct wait_opts wo;
1708	long ret;
1709
1710	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1711	if (ret)
1712		return ret;
1713
1714	ret = do_wait(&wo);
1715	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1716		ret = -EAGAIN;
1717
1718	put_pid(wo.wo_pid);
1719	return ret;
1720}
1721
1722SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1723		infop, int, options, struct rusage __user *, ru)
1724{
1725	struct rusage r;
1726	struct waitid_info info = {.status = 0};
1727	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1728	int signo = 0;
1729
1730	if (err > 0) {
1731		signo = SIGCHLD;
1732		err = 0;
1733		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1734			return -EFAULT;
1735	}
1736	if (!infop)
1737		return err;
1738
1739	if (!user_write_access_begin(infop, sizeof(*infop)))
1740		return -EFAULT;
1741
1742	unsafe_put_user(signo, &infop->si_signo, Efault);
1743	unsafe_put_user(0, &infop->si_errno, Efault);
1744	unsafe_put_user(info.cause, &infop->si_code, Efault);
1745	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1746	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1747	unsafe_put_user(info.status, &infop->si_status, Efault);
1748	user_write_access_end();
1749	return err;
1750Efault:
1751	user_write_access_end();
1752	return -EFAULT;
1753}
1754
1755long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1756		  struct rusage *ru)
1757{
1758	struct wait_opts wo;
1759	struct pid *pid = NULL;
1760	enum pid_type type;
1761	long ret;
1762
1763	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1764			__WNOTHREAD|__WCLONE|__WALL))
1765		return -EINVAL;
1766
1767	/* -INT_MIN is not defined */
1768	if (upid == INT_MIN)
1769		return -ESRCH;
1770
1771	if (upid == -1)
1772		type = PIDTYPE_MAX;
1773	else if (upid < 0) {
1774		type = PIDTYPE_PGID;
1775		pid = find_get_pid(-upid);
1776	} else if (upid == 0) {
1777		type = PIDTYPE_PGID;
1778		pid = get_task_pid(current, PIDTYPE_PGID);
1779	} else /* upid > 0 */ {
1780		type = PIDTYPE_PID;
1781		pid = find_get_pid(upid);
1782	}
1783
1784	wo.wo_type	= type;
1785	wo.wo_pid	= pid;
1786	wo.wo_flags	= options | WEXITED;
1787	wo.wo_info	= NULL;
1788	wo.wo_stat	= 0;
1789	wo.wo_rusage	= ru;
1790	ret = do_wait(&wo);
1791	put_pid(pid);
1792	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1793		ret = -EFAULT;
1794
1795	return ret;
1796}
1797
1798int kernel_wait(pid_t pid, int *stat)
1799{
1800	struct wait_opts wo = {
1801		.wo_type	= PIDTYPE_PID,
1802		.wo_pid		= find_get_pid(pid),
1803		.wo_flags	= WEXITED,
1804	};
1805	int ret;
1806
1807	ret = do_wait(&wo);
1808	if (ret > 0 && wo.wo_stat)
1809		*stat = wo.wo_stat;
1810	put_pid(wo.wo_pid);
1811	return ret;
1812}
1813
1814SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1815		int, options, struct rusage __user *, ru)
1816{
1817	struct rusage r;
1818	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1819
1820	if (err > 0) {
1821		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1822			return -EFAULT;
1823	}
1824	return err;
1825}
1826
1827#ifdef __ARCH_WANT_SYS_WAITPID
1828
1829/*
1830 * sys_waitpid() remains for compatibility. waitpid() should be
1831 * implemented by calling sys_wait4() from libc.a.
1832 */
1833SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1834{
1835	return kernel_wait4(pid, stat_addr, options, NULL);
1836}
1837
1838#endif
1839
1840#ifdef CONFIG_COMPAT
1841COMPAT_SYSCALL_DEFINE4(wait4,
1842	compat_pid_t, pid,
1843	compat_uint_t __user *, stat_addr,
1844	int, options,
1845	struct compat_rusage __user *, ru)
1846{
1847	struct rusage r;
1848	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1849	if (err > 0) {
1850		if (ru && put_compat_rusage(&r, ru))
1851			return -EFAULT;
1852	}
1853	return err;
1854}
1855
1856COMPAT_SYSCALL_DEFINE5(waitid,
1857		int, which, compat_pid_t, pid,
1858		struct compat_siginfo __user *, infop, int, options,
1859		struct compat_rusage __user *, uru)
1860{
1861	struct rusage ru;
1862	struct waitid_info info = {.status = 0};
1863	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1864	int signo = 0;
1865	if (err > 0) {
1866		signo = SIGCHLD;
1867		err = 0;
1868		if (uru) {
1869			/* kernel_waitid() overwrites everything in ru */
1870			if (COMPAT_USE_64BIT_TIME)
1871				err = copy_to_user(uru, &ru, sizeof(ru));
1872			else
1873				err = put_compat_rusage(&ru, uru);
1874			if (err)
1875				return -EFAULT;
1876		}
1877	}
1878
1879	if (!infop)
1880		return err;
1881
1882	if (!user_write_access_begin(infop, sizeof(*infop)))
1883		return -EFAULT;
1884
1885	unsafe_put_user(signo, &infop->si_signo, Efault);
1886	unsafe_put_user(0, &infop->si_errno, Efault);
1887	unsafe_put_user(info.cause, &infop->si_code, Efault);
1888	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1889	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1890	unsafe_put_user(info.status, &infop->si_status, Efault);
1891	user_write_access_end();
1892	return err;
1893Efault:
1894	user_write_access_end();
1895	return -EFAULT;
1896}
1897#endif
1898
1899/*
1900 * This needs to be __function_aligned as GCC implicitly makes any
1901 * implementation of abort() cold and drops alignment specified by
1902 * -falign-functions=N.
1903 *
1904 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1905 */
1906__weak __function_aligned void abort(void)
1907{
1908	BUG();
1909
1910	/* if that doesn't kill us, halt */
1911	panic("Oops failed to kill thread");
1912}
1913EXPORT_SYMBOL(abort);
1914