1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 *	Srikar Dronamraju
8 *	Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/pagemap.h>	/* read_mapping_page */
15#include <linux/slab.h>
16#include <linux/sched.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/coredump.h>
19#include <linux/export.h>
20#include <linux/rmap.h>		/* anon_vma_prepare */
21#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22#include <linux/swap.h>		/* folio_free_swap */
23#include <linux/ptrace.h>	/* user_enable_single_step */
24#include <linux/kdebug.h>	/* notifier mechanism */
25#include <linux/percpu-rwsem.h>
26#include <linux/task_work.h>
27#include <linux/shmem_fs.h>
28#include <linux/khugepaged.h>
29
30#include <linux/uprobes.h>
31
32#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
34
35static struct rb_root uprobes_tree = RB_ROOT;
36/*
37 * allows us to skip the uprobe_mmap if there are no uprobe events active
38 * at this time.  Probably a fine grained per inode count is better?
39 */
40#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
41
42static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
43
44#define UPROBES_HASH_SZ	13
45/* serialize uprobe->pending_list */
46static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48
49DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50
51/* Have a copy of original instruction */
52#define UPROBE_COPY_INSN	0
53
54struct uprobe {
55	struct rb_node		rb_node;	/* node in the rb tree */
56	refcount_t		ref;
57	struct rw_semaphore	register_rwsem;
58	struct rw_semaphore	consumer_rwsem;
59	struct list_head	pending_list;
60	struct uprobe_consumer	*consumers;
61	struct inode		*inode;		/* Also hold a ref to inode */
62	loff_t			offset;
63	loff_t			ref_ctr_offset;
64	unsigned long		flags;
65
66	/*
67	 * The generic code assumes that it has two members of unknown type
68	 * owned by the arch-specific code:
69	 *
70	 * 	insn -	copy_insn() saves the original instruction here for
71	 *		arch_uprobe_analyze_insn().
72	 *
73	 *	ixol -	potentially modified instruction to execute out of
74	 *		line, copied to xol_area by xol_get_insn_slot().
75	 */
76	struct arch_uprobe	arch;
77};
78
79struct delayed_uprobe {
80	struct list_head list;
81	struct uprobe *uprobe;
82	struct mm_struct *mm;
83};
84
85static DEFINE_MUTEX(delayed_uprobe_lock);
86static LIST_HEAD(delayed_uprobe_list);
87
88/*
89 * Execute out of line area: anonymous executable mapping installed
90 * by the probed task to execute the copy of the original instruction
91 * mangled by set_swbp().
92 *
93 * On a breakpoint hit, thread contests for a slot.  It frees the
94 * slot after singlestep. Currently a fixed number of slots are
95 * allocated.
96 */
97struct xol_area {
98	wait_queue_head_t 		wq;		/* if all slots are busy */
99	atomic_t 			slot_count;	/* number of in-use slots */
100	unsigned long 			*bitmap;	/* 0 = free slot */
101
102	struct vm_special_mapping	xol_mapping;
103	struct page 			*pages[2];
104	/*
105	 * We keep the vma's vm_start rather than a pointer to the vma
106	 * itself.  The probed process or a naughty kernel module could make
107	 * the vma go away, and we must handle that reasonably gracefully.
108	 */
109	unsigned long 			vaddr;		/* Page(s) of instruction slots */
110};
111
112/*
113 * valid_vma: Verify if the specified vma is an executable vma
114 * Relax restrictions while unregistering: vm_flags might have
115 * changed after breakpoint was inserted.
116 *	- is_register: indicates if we are in register context.
117 *	- Return 1 if the specified virtual address is in an
118 *	  executable vma.
119 */
120static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121{
122	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123
124	if (is_register)
125		flags |= VM_WRITE;
126
127	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128}
129
130static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131{
132	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133}
134
135static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136{
137	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138}
139
140/**
141 * __replace_page - replace page in vma by new page.
142 * based on replace_page in mm/ksm.c
143 *
144 * @vma:      vma that holds the pte pointing to page
145 * @addr:     address the old @page is mapped at
146 * @old_page: the page we are replacing by new_page
147 * @new_page: the modified page we replace page by
148 *
149 * If @new_page is NULL, only unmap @old_page.
150 *
151 * Returns 0 on success, negative error code otherwise.
152 */
153static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154				struct page *old_page, struct page *new_page)
155{
156	struct folio *old_folio = page_folio(old_page);
157	struct folio *new_folio;
158	struct mm_struct *mm = vma->vm_mm;
159	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
160	int err;
161	struct mmu_notifier_range range;
162
163	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
164				addr + PAGE_SIZE);
165
166	if (new_page) {
167		new_folio = page_folio(new_page);
168		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
169		if (err)
170			return err;
171	}
172
173	/* For folio_free_swap() below */
174	folio_lock(old_folio);
175
176	mmu_notifier_invalidate_range_start(&range);
177	err = -EAGAIN;
178	if (!page_vma_mapped_walk(&pvmw))
179		goto unlock;
180	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
181
182	if (new_page) {
183		folio_get(new_folio);
184		folio_add_new_anon_rmap(new_folio, vma, addr);
185		folio_add_lru_vma(new_folio, vma);
186	} else
187		/* no new page, just dec_mm_counter for old_page */
188		dec_mm_counter(mm, MM_ANONPAGES);
189
190	if (!folio_test_anon(old_folio)) {
191		dec_mm_counter(mm, mm_counter_file(old_folio));
192		inc_mm_counter(mm, MM_ANONPAGES);
193	}
194
195	flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
196	ptep_clear_flush(vma, addr, pvmw.pte);
197	if (new_page)
198		set_pte_at_notify(mm, addr, pvmw.pte,
199				  mk_pte(new_page, vma->vm_page_prot));
200
201	folio_remove_rmap_pte(old_folio, old_page, vma);
202	if (!folio_mapped(old_folio))
203		folio_free_swap(old_folio);
204	page_vma_mapped_walk_done(&pvmw);
205	folio_put(old_folio);
206
207	err = 0;
208 unlock:
209	mmu_notifier_invalidate_range_end(&range);
210	folio_unlock(old_folio);
211	return err;
212}
213
214/**
215 * is_swbp_insn - check if instruction is breakpoint instruction.
216 * @insn: instruction to be checked.
217 * Default implementation of is_swbp_insn
218 * Returns true if @insn is a breakpoint instruction.
219 */
220bool __weak is_swbp_insn(uprobe_opcode_t *insn)
221{
222	return *insn == UPROBE_SWBP_INSN;
223}
224
225/**
226 * is_trap_insn - check if instruction is breakpoint instruction.
227 * @insn: instruction to be checked.
228 * Default implementation of is_trap_insn
229 * Returns true if @insn is a breakpoint instruction.
230 *
231 * This function is needed for the case where an architecture has multiple
232 * trap instructions (like powerpc).
233 */
234bool __weak is_trap_insn(uprobe_opcode_t *insn)
235{
236	return is_swbp_insn(insn);
237}
238
239static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
240{
241	void *kaddr = kmap_atomic(page);
242	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
243	kunmap_atomic(kaddr);
244}
245
246static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
247{
248	void *kaddr = kmap_atomic(page);
249	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
250	kunmap_atomic(kaddr);
251}
252
253static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
254{
255	uprobe_opcode_t old_opcode;
256	bool is_swbp;
257
258	/*
259	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
260	 * We do not check if it is any other 'trap variant' which could
261	 * be conditional trap instruction such as the one powerpc supports.
262	 *
263	 * The logic is that we do not care if the underlying instruction
264	 * is a trap variant; uprobes always wins over any other (gdb)
265	 * breakpoint.
266	 */
267	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
268	is_swbp = is_swbp_insn(&old_opcode);
269
270	if (is_swbp_insn(new_opcode)) {
271		if (is_swbp)		/* register: already installed? */
272			return 0;
273	} else {
274		if (!is_swbp)		/* unregister: was it changed by us? */
275			return 0;
276	}
277
278	return 1;
279}
280
281static struct delayed_uprobe *
282delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
283{
284	struct delayed_uprobe *du;
285
286	list_for_each_entry(du, &delayed_uprobe_list, list)
287		if (du->uprobe == uprobe && du->mm == mm)
288			return du;
289	return NULL;
290}
291
292static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
293{
294	struct delayed_uprobe *du;
295
296	if (delayed_uprobe_check(uprobe, mm))
297		return 0;
298
299	du  = kzalloc(sizeof(*du), GFP_KERNEL);
300	if (!du)
301		return -ENOMEM;
302
303	du->uprobe = uprobe;
304	du->mm = mm;
305	list_add(&du->list, &delayed_uprobe_list);
306	return 0;
307}
308
309static void delayed_uprobe_delete(struct delayed_uprobe *du)
310{
311	if (WARN_ON(!du))
312		return;
313	list_del(&du->list);
314	kfree(du);
315}
316
317static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
318{
319	struct list_head *pos, *q;
320	struct delayed_uprobe *du;
321
322	if (!uprobe && !mm)
323		return;
324
325	list_for_each_safe(pos, q, &delayed_uprobe_list) {
326		du = list_entry(pos, struct delayed_uprobe, list);
327
328		if (uprobe && du->uprobe != uprobe)
329			continue;
330		if (mm && du->mm != mm)
331			continue;
332
333		delayed_uprobe_delete(du);
334	}
335}
336
337static bool valid_ref_ctr_vma(struct uprobe *uprobe,
338			      struct vm_area_struct *vma)
339{
340	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
341
342	return uprobe->ref_ctr_offset &&
343		vma->vm_file &&
344		file_inode(vma->vm_file) == uprobe->inode &&
345		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
346		vma->vm_start <= vaddr &&
347		vma->vm_end > vaddr;
348}
349
350static struct vm_area_struct *
351find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
352{
353	VMA_ITERATOR(vmi, mm, 0);
354	struct vm_area_struct *tmp;
355
356	for_each_vma(vmi, tmp)
357		if (valid_ref_ctr_vma(uprobe, tmp))
358			return tmp;
359
360	return NULL;
361}
362
363static int
364__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365{
366	void *kaddr;
367	struct page *page;
368	int ret;
369	short *ptr;
370
371	if (!vaddr || !d)
372		return -EINVAL;
373
374	ret = get_user_pages_remote(mm, vaddr, 1,
375				    FOLL_WRITE, &page, NULL);
376	if (unlikely(ret <= 0)) {
377		/*
378		 * We are asking for 1 page. If get_user_pages_remote() fails,
379		 * it may return 0, in that case we have to return error.
380		 */
381		return ret == 0 ? -EBUSY : ret;
382	}
383
384	kaddr = kmap_atomic(page);
385	ptr = kaddr + (vaddr & ~PAGE_MASK);
386
387	if (unlikely(*ptr + d < 0)) {
388		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
389			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
390		ret = -EINVAL;
391		goto out;
392	}
393
394	*ptr += d;
395	ret = 0;
396out:
397	kunmap_atomic(kaddr);
398	put_page(page);
399	return ret;
400}
401
402static void update_ref_ctr_warn(struct uprobe *uprobe,
403				struct mm_struct *mm, short d)
404{
405	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
406		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
407		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
408		(unsigned long long) uprobe->offset,
409		(unsigned long long) uprobe->ref_ctr_offset, mm);
410}
411
412static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
413			  short d)
414{
415	struct vm_area_struct *rc_vma;
416	unsigned long rc_vaddr;
417	int ret = 0;
418
419	rc_vma = find_ref_ctr_vma(uprobe, mm);
420
421	if (rc_vma) {
422		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
423		ret = __update_ref_ctr(mm, rc_vaddr, d);
424		if (ret)
425			update_ref_ctr_warn(uprobe, mm, d);
426
427		if (d > 0)
428			return ret;
429	}
430
431	mutex_lock(&delayed_uprobe_lock);
432	if (d > 0)
433		ret = delayed_uprobe_add(uprobe, mm);
434	else
435		delayed_uprobe_remove(uprobe, mm);
436	mutex_unlock(&delayed_uprobe_lock);
437
438	return ret;
439}
440
441/*
442 * NOTE:
443 * Expect the breakpoint instruction to be the smallest size instruction for
444 * the architecture. If an arch has variable length instruction and the
445 * breakpoint instruction is not of the smallest length instruction
446 * supported by that architecture then we need to modify is_trap_at_addr and
447 * uprobe_write_opcode accordingly. This would never be a problem for archs
448 * that have fixed length instructions.
449 *
450 * uprobe_write_opcode - write the opcode at a given virtual address.
451 * @auprobe: arch specific probepoint information.
452 * @mm: the probed process address space.
453 * @vaddr: the virtual address to store the opcode.
454 * @opcode: opcode to be written at @vaddr.
455 *
456 * Called with mm->mmap_lock held for write.
457 * Return 0 (success) or a negative errno.
458 */
459int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460			unsigned long vaddr, uprobe_opcode_t opcode)
461{
462	struct uprobe *uprobe;
463	struct page *old_page, *new_page;
464	struct vm_area_struct *vma;
465	int ret, is_register, ref_ctr_updated = 0;
466	bool orig_page_huge = false;
467	unsigned int gup_flags = FOLL_FORCE;
468
469	is_register = is_swbp_insn(&opcode);
470	uprobe = container_of(auprobe, struct uprobe, arch);
471
472retry:
473	if (is_register)
474		gup_flags |= FOLL_SPLIT_PMD;
475	/* Read the page with vaddr into memory */
476	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
477	if (IS_ERR(old_page))
478		return PTR_ERR(old_page);
479
480	ret = verify_opcode(old_page, vaddr, &opcode);
481	if (ret <= 0)
482		goto put_old;
483
484	if (WARN(!is_register && PageCompound(old_page),
485		 "uprobe unregister should never work on compound page\n")) {
486		ret = -EINVAL;
487		goto put_old;
488	}
489
490	/* We are going to replace instruction, update ref_ctr. */
491	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
492		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
493		if (ret)
494			goto put_old;
495
496		ref_ctr_updated = 1;
497	}
498
499	ret = 0;
500	if (!is_register && !PageAnon(old_page))
501		goto put_old;
502
503	ret = anon_vma_prepare(vma);
504	if (ret)
505		goto put_old;
506
507	ret = -ENOMEM;
508	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509	if (!new_page)
510		goto put_old;
511
512	__SetPageUptodate(new_page);
513	copy_highpage(new_page, old_page);
514	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
515
516	if (!is_register) {
517		struct page *orig_page;
518		pgoff_t index;
519
520		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
521
522		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
523		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
524					  index);
525
526		if (orig_page) {
527			if (PageUptodate(orig_page) &&
528			    pages_identical(new_page, orig_page)) {
529				/* let go new_page */
530				put_page(new_page);
531				new_page = NULL;
532
533				if (PageCompound(orig_page))
534					orig_page_huge = true;
535			}
536			put_page(orig_page);
537		}
538	}
539
540	ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
541	if (new_page)
542		put_page(new_page);
543put_old:
544	put_page(old_page);
545
546	if (unlikely(ret == -EAGAIN))
547		goto retry;
548
549	/* Revert back reference counter if instruction update failed. */
550	if (ret && is_register && ref_ctr_updated)
551		update_ref_ctr(uprobe, mm, -1);
552
553	/* try collapse pmd for compound page */
554	if (!ret && orig_page_huge)
555		collapse_pte_mapped_thp(mm, vaddr, false);
556
557	return ret;
558}
559
560/**
561 * set_swbp - store breakpoint at a given address.
562 * @auprobe: arch specific probepoint information.
563 * @mm: the probed process address space.
564 * @vaddr: the virtual address to insert the opcode.
565 *
566 * For mm @mm, store the breakpoint instruction at @vaddr.
567 * Return 0 (success) or a negative errno.
568 */
569int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
570{
571	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
572}
573
574/**
575 * set_orig_insn - Restore the original instruction.
576 * @mm: the probed process address space.
577 * @auprobe: arch specific probepoint information.
578 * @vaddr: the virtual address to insert the opcode.
579 *
580 * For mm @mm, restore the original opcode (opcode) at @vaddr.
581 * Return 0 (success) or a negative errno.
582 */
583int __weak
584set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
585{
586	return uprobe_write_opcode(auprobe, mm, vaddr,
587			*(uprobe_opcode_t *)&auprobe->insn);
588}
589
590static struct uprobe *get_uprobe(struct uprobe *uprobe)
591{
592	refcount_inc(&uprobe->ref);
593	return uprobe;
594}
595
596static void put_uprobe(struct uprobe *uprobe)
597{
598	if (refcount_dec_and_test(&uprobe->ref)) {
599		/*
600		 * If application munmap(exec_vma) before uprobe_unregister()
601		 * gets called, we don't get a chance to remove uprobe from
602		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
603		 */
604		mutex_lock(&delayed_uprobe_lock);
605		delayed_uprobe_remove(uprobe, NULL);
606		mutex_unlock(&delayed_uprobe_lock);
607		kfree(uprobe);
608	}
609}
610
611static __always_inline
612int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
613	       const struct uprobe *r)
614{
615	if (l_inode < r->inode)
616		return -1;
617
618	if (l_inode > r->inode)
619		return 1;
620
621	if (l_offset < r->offset)
622		return -1;
623
624	if (l_offset > r->offset)
625		return 1;
626
627	return 0;
628}
629
630#define __node_2_uprobe(node) \
631	rb_entry((node), struct uprobe, rb_node)
632
633struct __uprobe_key {
634	struct inode *inode;
635	loff_t offset;
636};
637
638static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
639{
640	const struct __uprobe_key *a = key;
641	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
642}
643
644static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
645{
646	struct uprobe *u = __node_2_uprobe(a);
647	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
648}
649
650static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
651{
652	struct __uprobe_key key = {
653		.inode = inode,
654		.offset = offset,
655	};
656	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
657
658	if (node)
659		return get_uprobe(__node_2_uprobe(node));
660
661	return NULL;
662}
663
664/*
665 * Find a uprobe corresponding to a given inode:offset
666 * Acquires uprobes_treelock
667 */
668static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
669{
670	struct uprobe *uprobe;
671
672	spin_lock(&uprobes_treelock);
673	uprobe = __find_uprobe(inode, offset);
674	spin_unlock(&uprobes_treelock);
675
676	return uprobe;
677}
678
679static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
680{
681	struct rb_node *node;
682
683	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
684	if (node)
685		return get_uprobe(__node_2_uprobe(node));
686
687	/* get access + creation ref */
688	refcount_set(&uprobe->ref, 2);
689	return NULL;
690}
691
692/*
693 * Acquire uprobes_treelock.
694 * Matching uprobe already exists in rbtree;
695 *	increment (access refcount) and return the matching uprobe.
696 *
697 * No matching uprobe; insert the uprobe in rb_tree;
698 *	get a double refcount (access + creation) and return NULL.
699 */
700static struct uprobe *insert_uprobe(struct uprobe *uprobe)
701{
702	struct uprobe *u;
703
704	spin_lock(&uprobes_treelock);
705	u = __insert_uprobe(uprobe);
706	spin_unlock(&uprobes_treelock);
707
708	return u;
709}
710
711static void
712ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
713{
714	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
715		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
716		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
717		(unsigned long long) cur_uprobe->ref_ctr_offset,
718		(unsigned long long) uprobe->ref_ctr_offset);
719}
720
721static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
722				   loff_t ref_ctr_offset)
723{
724	struct uprobe *uprobe, *cur_uprobe;
725
726	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
727	if (!uprobe)
728		return NULL;
729
730	uprobe->inode = inode;
731	uprobe->offset = offset;
732	uprobe->ref_ctr_offset = ref_ctr_offset;
733	init_rwsem(&uprobe->register_rwsem);
734	init_rwsem(&uprobe->consumer_rwsem);
735
736	/* add to uprobes_tree, sorted on inode:offset */
737	cur_uprobe = insert_uprobe(uprobe);
738	/* a uprobe exists for this inode:offset combination */
739	if (cur_uprobe) {
740		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
741			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
742			put_uprobe(cur_uprobe);
743			kfree(uprobe);
744			return ERR_PTR(-EINVAL);
745		}
746		kfree(uprobe);
747		uprobe = cur_uprobe;
748	}
749
750	return uprobe;
751}
752
753static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
754{
755	down_write(&uprobe->consumer_rwsem);
756	uc->next = uprobe->consumers;
757	uprobe->consumers = uc;
758	up_write(&uprobe->consumer_rwsem);
759}
760
761/*
762 * For uprobe @uprobe, delete the consumer @uc.
763 * Return true if the @uc is deleted successfully
764 * or return false.
765 */
766static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
767{
768	struct uprobe_consumer **con;
769	bool ret = false;
770
771	down_write(&uprobe->consumer_rwsem);
772	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
773		if (*con == uc) {
774			*con = uc->next;
775			ret = true;
776			break;
777		}
778	}
779	up_write(&uprobe->consumer_rwsem);
780
781	return ret;
782}
783
784static int __copy_insn(struct address_space *mapping, struct file *filp,
785			void *insn, int nbytes, loff_t offset)
786{
787	struct page *page;
788	/*
789	 * Ensure that the page that has the original instruction is populated
790	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
791	 * see uprobe_register().
792	 */
793	if (mapping->a_ops->read_folio)
794		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
795	else
796		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
797	if (IS_ERR(page))
798		return PTR_ERR(page);
799
800	copy_from_page(page, offset, insn, nbytes);
801	put_page(page);
802
803	return 0;
804}
805
806static int copy_insn(struct uprobe *uprobe, struct file *filp)
807{
808	struct address_space *mapping = uprobe->inode->i_mapping;
809	loff_t offs = uprobe->offset;
810	void *insn = &uprobe->arch.insn;
811	int size = sizeof(uprobe->arch.insn);
812	int len, err = -EIO;
813
814	/* Copy only available bytes, -EIO if nothing was read */
815	do {
816		if (offs >= i_size_read(uprobe->inode))
817			break;
818
819		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
820		err = __copy_insn(mapping, filp, insn, len, offs);
821		if (err)
822			break;
823
824		insn += len;
825		offs += len;
826		size -= len;
827	} while (size);
828
829	return err;
830}
831
832static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
833				struct mm_struct *mm, unsigned long vaddr)
834{
835	int ret = 0;
836
837	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
838		return ret;
839
840	/* TODO: move this into _register, until then we abuse this sem. */
841	down_write(&uprobe->consumer_rwsem);
842	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843		goto out;
844
845	ret = copy_insn(uprobe, file);
846	if (ret)
847		goto out;
848
849	ret = -ENOTSUPP;
850	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
851		goto out;
852
853	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
854	if (ret)
855		goto out;
856
857	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
858	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
859
860 out:
861	up_write(&uprobe->consumer_rwsem);
862
863	return ret;
864}
865
866static inline bool consumer_filter(struct uprobe_consumer *uc,
867				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
868{
869	return !uc->filter || uc->filter(uc, ctx, mm);
870}
871
872static bool filter_chain(struct uprobe *uprobe,
873			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
874{
875	struct uprobe_consumer *uc;
876	bool ret = false;
877
878	down_read(&uprobe->consumer_rwsem);
879	for (uc = uprobe->consumers; uc; uc = uc->next) {
880		ret = consumer_filter(uc, ctx, mm);
881		if (ret)
882			break;
883	}
884	up_read(&uprobe->consumer_rwsem);
885
886	return ret;
887}
888
889static int
890install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
891			struct vm_area_struct *vma, unsigned long vaddr)
892{
893	bool first_uprobe;
894	int ret;
895
896	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
897	if (ret)
898		return ret;
899
900	/*
901	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
902	 * the task can hit this breakpoint right after __replace_page().
903	 */
904	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
905	if (first_uprobe)
906		set_bit(MMF_HAS_UPROBES, &mm->flags);
907
908	ret = set_swbp(&uprobe->arch, mm, vaddr);
909	if (!ret)
910		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
911	else if (first_uprobe)
912		clear_bit(MMF_HAS_UPROBES, &mm->flags);
913
914	return ret;
915}
916
917static int
918remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
919{
920	set_bit(MMF_RECALC_UPROBES, &mm->flags);
921	return set_orig_insn(&uprobe->arch, mm, vaddr);
922}
923
924static inline bool uprobe_is_active(struct uprobe *uprobe)
925{
926	return !RB_EMPTY_NODE(&uprobe->rb_node);
927}
928/*
929 * There could be threads that have already hit the breakpoint. They
930 * will recheck the current insn and restart if find_uprobe() fails.
931 * See find_active_uprobe().
932 */
933static void delete_uprobe(struct uprobe *uprobe)
934{
935	if (WARN_ON(!uprobe_is_active(uprobe)))
936		return;
937
938	spin_lock(&uprobes_treelock);
939	rb_erase(&uprobe->rb_node, &uprobes_tree);
940	spin_unlock(&uprobes_treelock);
941	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
942	put_uprobe(uprobe);
943}
944
945struct map_info {
946	struct map_info *next;
947	struct mm_struct *mm;
948	unsigned long vaddr;
949};
950
951static inline struct map_info *free_map_info(struct map_info *info)
952{
953	struct map_info *next = info->next;
954	kfree(info);
955	return next;
956}
957
958static struct map_info *
959build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
960{
961	unsigned long pgoff = offset >> PAGE_SHIFT;
962	struct vm_area_struct *vma;
963	struct map_info *curr = NULL;
964	struct map_info *prev = NULL;
965	struct map_info *info;
966	int more = 0;
967
968 again:
969	i_mmap_lock_read(mapping);
970	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
971		if (!valid_vma(vma, is_register))
972			continue;
973
974		if (!prev && !more) {
975			/*
976			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
977			 * reclaim. This is optimistic, no harm done if it fails.
978			 */
979			prev = kmalloc(sizeof(struct map_info),
980					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
981			if (prev)
982				prev->next = NULL;
983		}
984		if (!prev) {
985			more++;
986			continue;
987		}
988
989		if (!mmget_not_zero(vma->vm_mm))
990			continue;
991
992		info = prev;
993		prev = prev->next;
994		info->next = curr;
995		curr = info;
996
997		info->mm = vma->vm_mm;
998		info->vaddr = offset_to_vaddr(vma, offset);
999	}
1000	i_mmap_unlock_read(mapping);
1001
1002	if (!more)
1003		goto out;
1004
1005	prev = curr;
1006	while (curr) {
1007		mmput(curr->mm);
1008		curr = curr->next;
1009	}
1010
1011	do {
1012		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1013		if (!info) {
1014			curr = ERR_PTR(-ENOMEM);
1015			goto out;
1016		}
1017		info->next = prev;
1018		prev = info;
1019	} while (--more);
1020
1021	goto again;
1022 out:
1023	while (prev)
1024		prev = free_map_info(prev);
1025	return curr;
1026}
1027
1028static int
1029register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1030{
1031	bool is_register = !!new;
1032	struct map_info *info;
1033	int err = 0;
1034
1035	percpu_down_write(&dup_mmap_sem);
1036	info = build_map_info(uprobe->inode->i_mapping,
1037					uprobe->offset, is_register);
1038	if (IS_ERR(info)) {
1039		err = PTR_ERR(info);
1040		goto out;
1041	}
1042
1043	while (info) {
1044		struct mm_struct *mm = info->mm;
1045		struct vm_area_struct *vma;
1046
1047		if (err && is_register)
1048			goto free;
1049
1050		mmap_write_lock(mm);
1051		vma = find_vma(mm, info->vaddr);
1052		if (!vma || !valid_vma(vma, is_register) ||
1053		    file_inode(vma->vm_file) != uprobe->inode)
1054			goto unlock;
1055
1056		if (vma->vm_start > info->vaddr ||
1057		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1058			goto unlock;
1059
1060		if (is_register) {
1061			/* consult only the "caller", new consumer. */
1062			if (consumer_filter(new,
1063					UPROBE_FILTER_REGISTER, mm))
1064				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1065		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1066			if (!filter_chain(uprobe,
1067					UPROBE_FILTER_UNREGISTER, mm))
1068				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1069		}
1070
1071 unlock:
1072		mmap_write_unlock(mm);
1073 free:
1074		mmput(mm);
1075		info = free_map_info(info);
1076	}
1077 out:
1078	percpu_up_write(&dup_mmap_sem);
1079	return err;
1080}
1081
1082static void
1083__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1084{
1085	int err;
1086
1087	if (WARN_ON(!consumer_del(uprobe, uc)))
1088		return;
1089
1090	err = register_for_each_vma(uprobe, NULL);
1091	/* TODO : cant unregister? schedule a worker thread */
1092	if (!uprobe->consumers && !err)
1093		delete_uprobe(uprobe);
1094}
1095
1096/*
1097 * uprobe_unregister - unregister an already registered probe.
1098 * @inode: the file in which the probe has to be removed.
1099 * @offset: offset from the start of the file.
1100 * @uc: identify which probe if multiple probes are colocated.
1101 */
1102void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1103{
1104	struct uprobe *uprobe;
1105
1106	uprobe = find_uprobe(inode, offset);
1107	if (WARN_ON(!uprobe))
1108		return;
1109
1110	down_write(&uprobe->register_rwsem);
1111	__uprobe_unregister(uprobe, uc);
1112	up_write(&uprobe->register_rwsem);
1113	put_uprobe(uprobe);
1114}
1115EXPORT_SYMBOL_GPL(uprobe_unregister);
1116
1117/*
1118 * __uprobe_register - register a probe
1119 * @inode: the file in which the probe has to be placed.
1120 * @offset: offset from the start of the file.
1121 * @uc: information on howto handle the probe..
1122 *
1123 * Apart from the access refcount, __uprobe_register() takes a creation
1124 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1125 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1126 * tuple).  Creation refcount stops uprobe_unregister from freeing the
1127 * @uprobe even before the register operation is complete. Creation
1128 * refcount is released when the last @uc for the @uprobe
1129 * unregisters. Caller of __uprobe_register() is required to keep @inode
1130 * (and the containing mount) referenced.
1131 *
1132 * Return errno if it cannot successully install probes
1133 * else return 0 (success)
1134 */
1135static int __uprobe_register(struct inode *inode, loff_t offset,
1136			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1137{
1138	struct uprobe *uprobe;
1139	int ret;
1140
1141	/* Uprobe must have at least one set consumer */
1142	if (!uc->handler && !uc->ret_handler)
1143		return -EINVAL;
1144
1145	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1146	if (!inode->i_mapping->a_ops->read_folio &&
1147	    !shmem_mapping(inode->i_mapping))
1148		return -EIO;
1149	/* Racy, just to catch the obvious mistakes */
1150	if (offset > i_size_read(inode))
1151		return -EINVAL;
1152
1153	/*
1154	 * This ensures that copy_from_page(), copy_to_page() and
1155	 * __update_ref_ctr() can't cross page boundary.
1156	 */
1157	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1158		return -EINVAL;
1159	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1160		return -EINVAL;
1161
1162 retry:
1163	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1164	if (!uprobe)
1165		return -ENOMEM;
1166	if (IS_ERR(uprobe))
1167		return PTR_ERR(uprobe);
1168
1169	/*
1170	 * We can race with uprobe_unregister()->delete_uprobe().
1171	 * Check uprobe_is_active() and retry if it is false.
1172	 */
1173	down_write(&uprobe->register_rwsem);
1174	ret = -EAGAIN;
1175	if (likely(uprobe_is_active(uprobe))) {
1176		consumer_add(uprobe, uc);
1177		ret = register_for_each_vma(uprobe, uc);
1178		if (ret)
1179			__uprobe_unregister(uprobe, uc);
1180	}
1181	up_write(&uprobe->register_rwsem);
1182	put_uprobe(uprobe);
1183
1184	if (unlikely(ret == -EAGAIN))
1185		goto retry;
1186	return ret;
1187}
1188
1189int uprobe_register(struct inode *inode, loff_t offset,
1190		    struct uprobe_consumer *uc)
1191{
1192	return __uprobe_register(inode, offset, 0, uc);
1193}
1194EXPORT_SYMBOL_GPL(uprobe_register);
1195
1196int uprobe_register_refctr(struct inode *inode, loff_t offset,
1197			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1198{
1199	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1200}
1201EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1202
1203/*
1204 * uprobe_apply - unregister an already registered probe.
1205 * @inode: the file in which the probe has to be removed.
1206 * @offset: offset from the start of the file.
1207 * @uc: consumer which wants to add more or remove some breakpoints
1208 * @add: add or remove the breakpoints
1209 */
1210int uprobe_apply(struct inode *inode, loff_t offset,
1211			struct uprobe_consumer *uc, bool add)
1212{
1213	struct uprobe *uprobe;
1214	struct uprobe_consumer *con;
1215	int ret = -ENOENT;
1216
1217	uprobe = find_uprobe(inode, offset);
1218	if (WARN_ON(!uprobe))
1219		return ret;
1220
1221	down_write(&uprobe->register_rwsem);
1222	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1223		;
1224	if (con)
1225		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1226	up_write(&uprobe->register_rwsem);
1227	put_uprobe(uprobe);
1228
1229	return ret;
1230}
1231
1232static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1233{
1234	VMA_ITERATOR(vmi, mm, 0);
1235	struct vm_area_struct *vma;
1236	int err = 0;
1237
1238	mmap_read_lock(mm);
1239	for_each_vma(vmi, vma) {
1240		unsigned long vaddr;
1241		loff_t offset;
1242
1243		if (!valid_vma(vma, false) ||
1244		    file_inode(vma->vm_file) != uprobe->inode)
1245			continue;
1246
1247		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1248		if (uprobe->offset <  offset ||
1249		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1250			continue;
1251
1252		vaddr = offset_to_vaddr(vma, uprobe->offset);
1253		err |= remove_breakpoint(uprobe, mm, vaddr);
1254	}
1255	mmap_read_unlock(mm);
1256
1257	return err;
1258}
1259
1260static struct rb_node *
1261find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1262{
1263	struct rb_node *n = uprobes_tree.rb_node;
1264
1265	while (n) {
1266		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1267
1268		if (inode < u->inode) {
1269			n = n->rb_left;
1270		} else if (inode > u->inode) {
1271			n = n->rb_right;
1272		} else {
1273			if (max < u->offset)
1274				n = n->rb_left;
1275			else if (min > u->offset)
1276				n = n->rb_right;
1277			else
1278				break;
1279		}
1280	}
1281
1282	return n;
1283}
1284
1285/*
1286 * For a given range in vma, build a list of probes that need to be inserted.
1287 */
1288static void build_probe_list(struct inode *inode,
1289				struct vm_area_struct *vma,
1290				unsigned long start, unsigned long end,
1291				struct list_head *head)
1292{
1293	loff_t min, max;
1294	struct rb_node *n, *t;
1295	struct uprobe *u;
1296
1297	INIT_LIST_HEAD(head);
1298	min = vaddr_to_offset(vma, start);
1299	max = min + (end - start) - 1;
1300
1301	spin_lock(&uprobes_treelock);
1302	n = find_node_in_range(inode, min, max);
1303	if (n) {
1304		for (t = n; t; t = rb_prev(t)) {
1305			u = rb_entry(t, struct uprobe, rb_node);
1306			if (u->inode != inode || u->offset < min)
1307				break;
1308			list_add(&u->pending_list, head);
1309			get_uprobe(u);
1310		}
1311		for (t = n; (t = rb_next(t)); ) {
1312			u = rb_entry(t, struct uprobe, rb_node);
1313			if (u->inode != inode || u->offset > max)
1314				break;
1315			list_add(&u->pending_list, head);
1316			get_uprobe(u);
1317		}
1318	}
1319	spin_unlock(&uprobes_treelock);
1320}
1321
1322/* @vma contains reference counter, not the probed instruction. */
1323static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1324{
1325	struct list_head *pos, *q;
1326	struct delayed_uprobe *du;
1327	unsigned long vaddr;
1328	int ret = 0, err = 0;
1329
1330	mutex_lock(&delayed_uprobe_lock);
1331	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1332		du = list_entry(pos, struct delayed_uprobe, list);
1333
1334		if (du->mm != vma->vm_mm ||
1335		    !valid_ref_ctr_vma(du->uprobe, vma))
1336			continue;
1337
1338		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1339		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1340		if (ret) {
1341			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1342			if (!err)
1343				err = ret;
1344		}
1345		delayed_uprobe_delete(du);
1346	}
1347	mutex_unlock(&delayed_uprobe_lock);
1348	return err;
1349}
1350
1351/*
1352 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1353 *
1354 * Currently we ignore all errors and always return 0, the callers
1355 * can't handle the failure anyway.
1356 */
1357int uprobe_mmap(struct vm_area_struct *vma)
1358{
1359	struct list_head tmp_list;
1360	struct uprobe *uprobe, *u;
1361	struct inode *inode;
1362
1363	if (no_uprobe_events())
1364		return 0;
1365
1366	if (vma->vm_file &&
1367	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1368	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1369		delayed_ref_ctr_inc(vma);
1370
1371	if (!valid_vma(vma, true))
1372		return 0;
1373
1374	inode = file_inode(vma->vm_file);
1375	if (!inode)
1376		return 0;
1377
1378	mutex_lock(uprobes_mmap_hash(inode));
1379	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1380	/*
1381	 * We can race with uprobe_unregister(), this uprobe can be already
1382	 * removed. But in this case filter_chain() must return false, all
1383	 * consumers have gone away.
1384	 */
1385	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1386		if (!fatal_signal_pending(current) &&
1387		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1388			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1389			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1390		}
1391		put_uprobe(uprobe);
1392	}
1393	mutex_unlock(uprobes_mmap_hash(inode));
1394
1395	return 0;
1396}
1397
1398static bool
1399vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1400{
1401	loff_t min, max;
1402	struct inode *inode;
1403	struct rb_node *n;
1404
1405	inode = file_inode(vma->vm_file);
1406
1407	min = vaddr_to_offset(vma, start);
1408	max = min + (end - start) - 1;
1409
1410	spin_lock(&uprobes_treelock);
1411	n = find_node_in_range(inode, min, max);
1412	spin_unlock(&uprobes_treelock);
1413
1414	return !!n;
1415}
1416
1417/*
1418 * Called in context of a munmap of a vma.
1419 */
1420void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1421{
1422	if (no_uprobe_events() || !valid_vma(vma, false))
1423		return;
1424
1425	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1426		return;
1427
1428	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1429	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1430		return;
1431
1432	if (vma_has_uprobes(vma, start, end))
1433		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1434}
1435
1436/* Slot allocation for XOL */
1437static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1438{
1439	struct vm_area_struct *vma;
1440	int ret;
1441
1442	if (mmap_write_lock_killable(mm))
1443		return -EINTR;
1444
1445	if (mm->uprobes_state.xol_area) {
1446		ret = -EALREADY;
1447		goto fail;
1448	}
1449
1450	if (!area->vaddr) {
1451		/* Try to map as high as possible, this is only a hint. */
1452		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1453						PAGE_SIZE, 0, 0);
1454		if (IS_ERR_VALUE(area->vaddr)) {
1455			ret = area->vaddr;
1456			goto fail;
1457		}
1458	}
1459
1460	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1461				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1462				&area->xol_mapping);
1463	if (IS_ERR(vma)) {
1464		ret = PTR_ERR(vma);
1465		goto fail;
1466	}
1467
1468	ret = 0;
1469	/* pairs with get_xol_area() */
1470	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1471 fail:
1472	mmap_write_unlock(mm);
1473
1474	return ret;
1475}
1476
1477static struct xol_area *__create_xol_area(unsigned long vaddr)
1478{
1479	struct mm_struct *mm = current->mm;
1480	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1481	struct xol_area *area;
1482
1483	area = kmalloc(sizeof(*area), GFP_KERNEL);
1484	if (unlikely(!area))
1485		goto out;
1486
1487	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1488			       GFP_KERNEL);
1489	if (!area->bitmap)
1490		goto free_area;
1491
1492	area->xol_mapping.name = "[uprobes]";
1493	area->xol_mapping.fault = NULL;
1494	area->xol_mapping.pages = area->pages;
1495	area->pages[0] = alloc_page(GFP_HIGHUSER);
1496	if (!area->pages[0])
1497		goto free_bitmap;
1498	area->pages[1] = NULL;
1499
1500	area->vaddr = vaddr;
1501	init_waitqueue_head(&area->wq);
1502	/* Reserve the 1st slot for get_trampoline_vaddr() */
1503	set_bit(0, area->bitmap);
1504	atomic_set(&area->slot_count, 1);
1505	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1506
1507	if (!xol_add_vma(mm, area))
1508		return area;
1509
1510	__free_page(area->pages[0]);
1511 free_bitmap:
1512	kfree(area->bitmap);
1513 free_area:
1514	kfree(area);
1515 out:
1516	return NULL;
1517}
1518
1519/*
1520 * get_xol_area - Allocate process's xol_area if necessary.
1521 * This area will be used for storing instructions for execution out of line.
1522 *
1523 * Returns the allocated area or NULL.
1524 */
1525static struct xol_area *get_xol_area(void)
1526{
1527	struct mm_struct *mm = current->mm;
1528	struct xol_area *area;
1529
1530	if (!mm->uprobes_state.xol_area)
1531		__create_xol_area(0);
1532
1533	/* Pairs with xol_add_vma() smp_store_release() */
1534	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1535	return area;
1536}
1537
1538/*
1539 * uprobe_clear_state - Free the area allocated for slots.
1540 */
1541void uprobe_clear_state(struct mm_struct *mm)
1542{
1543	struct xol_area *area = mm->uprobes_state.xol_area;
1544
1545	mutex_lock(&delayed_uprobe_lock);
1546	delayed_uprobe_remove(NULL, mm);
1547	mutex_unlock(&delayed_uprobe_lock);
1548
1549	if (!area)
1550		return;
1551
1552	put_page(area->pages[0]);
1553	kfree(area->bitmap);
1554	kfree(area);
1555}
1556
1557void uprobe_start_dup_mmap(void)
1558{
1559	percpu_down_read(&dup_mmap_sem);
1560}
1561
1562void uprobe_end_dup_mmap(void)
1563{
1564	percpu_up_read(&dup_mmap_sem);
1565}
1566
1567void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1568{
1569	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1570		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1571		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1572		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1573	}
1574}
1575
1576/*
1577 *  - search for a free slot.
1578 */
1579static unsigned long xol_take_insn_slot(struct xol_area *area)
1580{
1581	unsigned long slot_addr;
1582	int slot_nr;
1583
1584	do {
1585		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1586		if (slot_nr < UINSNS_PER_PAGE) {
1587			if (!test_and_set_bit(slot_nr, area->bitmap))
1588				break;
1589
1590			slot_nr = UINSNS_PER_PAGE;
1591			continue;
1592		}
1593		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1594	} while (slot_nr >= UINSNS_PER_PAGE);
1595
1596	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1597	atomic_inc(&area->slot_count);
1598
1599	return slot_addr;
1600}
1601
1602/*
1603 * xol_get_insn_slot - allocate a slot for xol.
1604 * Returns the allocated slot address or 0.
1605 */
1606static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1607{
1608	struct xol_area *area;
1609	unsigned long xol_vaddr;
1610
1611	area = get_xol_area();
1612	if (!area)
1613		return 0;
1614
1615	xol_vaddr = xol_take_insn_slot(area);
1616	if (unlikely(!xol_vaddr))
1617		return 0;
1618
1619	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1620			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1621
1622	return xol_vaddr;
1623}
1624
1625/*
1626 * xol_free_insn_slot - If slot was earlier allocated by
1627 * @xol_get_insn_slot(), make the slot available for
1628 * subsequent requests.
1629 */
1630static void xol_free_insn_slot(struct task_struct *tsk)
1631{
1632	struct xol_area *area;
1633	unsigned long vma_end;
1634	unsigned long slot_addr;
1635
1636	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1637		return;
1638
1639	slot_addr = tsk->utask->xol_vaddr;
1640	if (unlikely(!slot_addr))
1641		return;
1642
1643	area = tsk->mm->uprobes_state.xol_area;
1644	vma_end = area->vaddr + PAGE_SIZE;
1645	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1646		unsigned long offset;
1647		int slot_nr;
1648
1649		offset = slot_addr - area->vaddr;
1650		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1651		if (slot_nr >= UINSNS_PER_PAGE)
1652			return;
1653
1654		clear_bit(slot_nr, area->bitmap);
1655		atomic_dec(&area->slot_count);
1656		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1657		if (waitqueue_active(&area->wq))
1658			wake_up(&area->wq);
1659
1660		tsk->utask->xol_vaddr = 0;
1661	}
1662}
1663
1664void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1665				  void *src, unsigned long len)
1666{
1667	/* Initialize the slot */
1668	copy_to_page(page, vaddr, src, len);
1669
1670	/*
1671	 * We probably need flush_icache_user_page() but it needs vma.
1672	 * This should work on most of architectures by default. If
1673	 * architecture needs to do something different it can define
1674	 * its own version of the function.
1675	 */
1676	flush_dcache_page(page);
1677}
1678
1679/**
1680 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1681 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1682 * instruction.
1683 * Return the address of the breakpoint instruction.
1684 */
1685unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1686{
1687	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1688}
1689
1690unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1691{
1692	struct uprobe_task *utask = current->utask;
1693
1694	if (unlikely(utask && utask->active_uprobe))
1695		return utask->vaddr;
1696
1697	return instruction_pointer(regs);
1698}
1699
1700static struct return_instance *free_ret_instance(struct return_instance *ri)
1701{
1702	struct return_instance *next = ri->next;
1703	put_uprobe(ri->uprobe);
1704	kfree(ri);
1705	return next;
1706}
1707
1708/*
1709 * Called with no locks held.
1710 * Called in context of an exiting or an exec-ing thread.
1711 */
1712void uprobe_free_utask(struct task_struct *t)
1713{
1714	struct uprobe_task *utask = t->utask;
1715	struct return_instance *ri;
1716
1717	if (!utask)
1718		return;
1719
1720	if (utask->active_uprobe)
1721		put_uprobe(utask->active_uprobe);
1722
1723	ri = utask->return_instances;
1724	while (ri)
1725		ri = free_ret_instance(ri);
1726
1727	xol_free_insn_slot(t);
1728	kfree(utask);
1729	t->utask = NULL;
1730}
1731
1732/*
1733 * Allocate a uprobe_task object for the task if necessary.
1734 * Called when the thread hits a breakpoint.
1735 *
1736 * Returns:
1737 * - pointer to new uprobe_task on success
1738 * - NULL otherwise
1739 */
1740static struct uprobe_task *get_utask(void)
1741{
1742	if (!current->utask)
1743		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1744	return current->utask;
1745}
1746
1747static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1748{
1749	struct uprobe_task *n_utask;
1750	struct return_instance **p, *o, *n;
1751
1752	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1753	if (!n_utask)
1754		return -ENOMEM;
1755	t->utask = n_utask;
1756
1757	p = &n_utask->return_instances;
1758	for (o = o_utask->return_instances; o; o = o->next) {
1759		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1760		if (!n)
1761			return -ENOMEM;
1762
1763		*n = *o;
1764		get_uprobe(n->uprobe);
1765		n->next = NULL;
1766
1767		*p = n;
1768		p = &n->next;
1769		n_utask->depth++;
1770	}
1771
1772	return 0;
1773}
1774
1775static void uprobe_warn(struct task_struct *t, const char *msg)
1776{
1777	pr_warn("uprobe: %s:%d failed to %s\n",
1778			current->comm, current->pid, msg);
1779}
1780
1781static void dup_xol_work(struct callback_head *work)
1782{
1783	if (current->flags & PF_EXITING)
1784		return;
1785
1786	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1787			!fatal_signal_pending(current))
1788		uprobe_warn(current, "dup xol area");
1789}
1790
1791/*
1792 * Called in context of a new clone/fork from copy_process.
1793 */
1794void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1795{
1796	struct uprobe_task *utask = current->utask;
1797	struct mm_struct *mm = current->mm;
1798	struct xol_area *area;
1799
1800	t->utask = NULL;
1801
1802	if (!utask || !utask->return_instances)
1803		return;
1804
1805	if (mm == t->mm && !(flags & CLONE_VFORK))
1806		return;
1807
1808	if (dup_utask(t, utask))
1809		return uprobe_warn(t, "dup ret instances");
1810
1811	/* The task can fork() after dup_xol_work() fails */
1812	area = mm->uprobes_state.xol_area;
1813	if (!area)
1814		return uprobe_warn(t, "dup xol area");
1815
1816	if (mm == t->mm)
1817		return;
1818
1819	t->utask->dup_xol_addr = area->vaddr;
1820	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1821	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1822}
1823
1824/*
1825 * Current area->vaddr notion assume the trampoline address is always
1826 * equal area->vaddr.
1827 *
1828 * Returns -1 in case the xol_area is not allocated.
1829 */
1830static unsigned long get_trampoline_vaddr(void)
1831{
1832	struct xol_area *area;
1833	unsigned long trampoline_vaddr = -1;
1834
1835	/* Pairs with xol_add_vma() smp_store_release() */
1836	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1837	if (area)
1838		trampoline_vaddr = area->vaddr;
1839
1840	return trampoline_vaddr;
1841}
1842
1843static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1844					struct pt_regs *regs)
1845{
1846	struct return_instance *ri = utask->return_instances;
1847	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1848
1849	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1850		ri = free_ret_instance(ri);
1851		utask->depth--;
1852	}
1853	utask->return_instances = ri;
1854}
1855
1856static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1857{
1858	struct return_instance *ri;
1859	struct uprobe_task *utask;
1860	unsigned long orig_ret_vaddr, trampoline_vaddr;
1861	bool chained;
1862
1863	if (!get_xol_area())
1864		return;
1865
1866	utask = get_utask();
1867	if (!utask)
1868		return;
1869
1870	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1871		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1872				" nestedness limit pid/tgid=%d/%d\n",
1873				current->pid, current->tgid);
1874		return;
1875	}
1876
1877	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1878	if (!ri)
1879		return;
1880
1881	trampoline_vaddr = get_trampoline_vaddr();
1882	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1883	if (orig_ret_vaddr == -1)
1884		goto fail;
1885
1886	/* drop the entries invalidated by longjmp() */
1887	chained = (orig_ret_vaddr == trampoline_vaddr);
1888	cleanup_return_instances(utask, chained, regs);
1889
1890	/*
1891	 * We don't want to keep trampoline address in stack, rather keep the
1892	 * original return address of first caller thru all the consequent
1893	 * instances. This also makes breakpoint unwrapping easier.
1894	 */
1895	if (chained) {
1896		if (!utask->return_instances) {
1897			/*
1898			 * This situation is not possible. Likely we have an
1899			 * attack from user-space.
1900			 */
1901			uprobe_warn(current, "handle tail call");
1902			goto fail;
1903		}
1904		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1905	}
1906
1907	ri->uprobe = get_uprobe(uprobe);
1908	ri->func = instruction_pointer(regs);
1909	ri->stack = user_stack_pointer(regs);
1910	ri->orig_ret_vaddr = orig_ret_vaddr;
1911	ri->chained = chained;
1912
1913	utask->depth++;
1914	ri->next = utask->return_instances;
1915	utask->return_instances = ri;
1916
1917	return;
1918 fail:
1919	kfree(ri);
1920}
1921
1922/* Prepare to single-step probed instruction out of line. */
1923static int
1924pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1925{
1926	struct uprobe_task *utask;
1927	unsigned long xol_vaddr;
1928	int err;
1929
1930	utask = get_utask();
1931	if (!utask)
1932		return -ENOMEM;
1933
1934	xol_vaddr = xol_get_insn_slot(uprobe);
1935	if (!xol_vaddr)
1936		return -ENOMEM;
1937
1938	utask->xol_vaddr = xol_vaddr;
1939	utask->vaddr = bp_vaddr;
1940
1941	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1942	if (unlikely(err)) {
1943		xol_free_insn_slot(current);
1944		return err;
1945	}
1946
1947	utask->active_uprobe = uprobe;
1948	utask->state = UTASK_SSTEP;
1949	return 0;
1950}
1951
1952/*
1953 * If we are singlestepping, then ensure this thread is not connected to
1954 * non-fatal signals until completion of singlestep.  When xol insn itself
1955 * triggers the signal,  restart the original insn even if the task is
1956 * already SIGKILL'ed (since coredump should report the correct ip).  This
1957 * is even more important if the task has a handler for SIGSEGV/etc, The
1958 * _same_ instruction should be repeated again after return from the signal
1959 * handler, and SSTEP can never finish in this case.
1960 */
1961bool uprobe_deny_signal(void)
1962{
1963	struct task_struct *t = current;
1964	struct uprobe_task *utask = t->utask;
1965
1966	if (likely(!utask || !utask->active_uprobe))
1967		return false;
1968
1969	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1970
1971	if (task_sigpending(t)) {
1972		spin_lock_irq(&t->sighand->siglock);
1973		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1974		spin_unlock_irq(&t->sighand->siglock);
1975
1976		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1977			utask->state = UTASK_SSTEP_TRAPPED;
1978			set_tsk_thread_flag(t, TIF_UPROBE);
1979		}
1980	}
1981
1982	return true;
1983}
1984
1985static void mmf_recalc_uprobes(struct mm_struct *mm)
1986{
1987	VMA_ITERATOR(vmi, mm, 0);
1988	struct vm_area_struct *vma;
1989
1990	for_each_vma(vmi, vma) {
1991		if (!valid_vma(vma, false))
1992			continue;
1993		/*
1994		 * This is not strictly accurate, we can race with
1995		 * uprobe_unregister() and see the already removed
1996		 * uprobe if delete_uprobe() was not yet called.
1997		 * Or this uprobe can be filtered out.
1998		 */
1999		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2000			return;
2001	}
2002
2003	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2004}
2005
2006static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2007{
2008	struct page *page;
2009	uprobe_opcode_t opcode;
2010	int result;
2011
2012	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2013		return -EINVAL;
2014
2015	pagefault_disable();
2016	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2017	pagefault_enable();
2018
2019	if (likely(result == 0))
2020		goto out;
2021
2022	/*
2023	 * The NULL 'tsk' here ensures that any faults that occur here
2024	 * will not be accounted to the task.  'mm' *is* current->mm,
2025	 * but we treat this as a 'remote' access since it is
2026	 * essentially a kernel access to the memory.
2027	 */
2028	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL);
2029	if (result < 0)
2030		return result;
2031
2032	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2033	put_page(page);
2034 out:
2035	/* This needs to return true for any variant of the trap insn */
2036	return is_trap_insn(&opcode);
2037}
2038
2039static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2040{
2041	struct mm_struct *mm = current->mm;
2042	struct uprobe *uprobe = NULL;
2043	struct vm_area_struct *vma;
2044
2045	mmap_read_lock(mm);
2046	vma = vma_lookup(mm, bp_vaddr);
2047	if (vma) {
2048		if (valid_vma(vma, false)) {
2049			struct inode *inode = file_inode(vma->vm_file);
2050			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2051
2052			uprobe = find_uprobe(inode, offset);
2053		}
2054
2055		if (!uprobe)
2056			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2057	} else {
2058		*is_swbp = -EFAULT;
2059	}
2060
2061	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2062		mmf_recalc_uprobes(mm);
2063	mmap_read_unlock(mm);
2064
2065	return uprobe;
2066}
2067
2068static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2069{
2070	struct uprobe_consumer *uc;
2071	int remove = UPROBE_HANDLER_REMOVE;
2072	bool need_prep = false; /* prepare return uprobe, when needed */
2073
2074	down_read(&uprobe->register_rwsem);
2075	for (uc = uprobe->consumers; uc; uc = uc->next) {
2076		int rc = 0;
2077
2078		if (uc->handler) {
2079			rc = uc->handler(uc, regs);
2080			WARN(rc & ~UPROBE_HANDLER_MASK,
2081				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2082		}
2083
2084		if (uc->ret_handler)
2085			need_prep = true;
2086
2087		remove &= rc;
2088	}
2089
2090	if (need_prep && !remove)
2091		prepare_uretprobe(uprobe, regs); /* put bp at return */
2092
2093	if (remove && uprobe->consumers) {
2094		WARN_ON(!uprobe_is_active(uprobe));
2095		unapply_uprobe(uprobe, current->mm);
2096	}
2097	up_read(&uprobe->register_rwsem);
2098}
2099
2100static void
2101handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2102{
2103	struct uprobe *uprobe = ri->uprobe;
2104	struct uprobe_consumer *uc;
2105
2106	down_read(&uprobe->register_rwsem);
2107	for (uc = uprobe->consumers; uc; uc = uc->next) {
2108		if (uc->ret_handler)
2109			uc->ret_handler(uc, ri->func, regs);
2110	}
2111	up_read(&uprobe->register_rwsem);
2112}
2113
2114static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2115{
2116	bool chained;
2117
2118	do {
2119		chained = ri->chained;
2120		ri = ri->next;	/* can't be NULL if chained */
2121	} while (chained);
2122
2123	return ri;
2124}
2125
2126static void handle_trampoline(struct pt_regs *regs)
2127{
2128	struct uprobe_task *utask;
2129	struct return_instance *ri, *next;
2130	bool valid;
2131
2132	utask = current->utask;
2133	if (!utask)
2134		goto sigill;
2135
2136	ri = utask->return_instances;
2137	if (!ri)
2138		goto sigill;
2139
2140	do {
2141		/*
2142		 * We should throw out the frames invalidated by longjmp().
2143		 * If this chain is valid, then the next one should be alive
2144		 * or NULL; the latter case means that nobody but ri->func
2145		 * could hit this trampoline on return. TODO: sigaltstack().
2146		 */
2147		next = find_next_ret_chain(ri);
2148		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2149
2150		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2151		do {
2152			if (valid)
2153				handle_uretprobe_chain(ri, regs);
2154			ri = free_ret_instance(ri);
2155			utask->depth--;
2156		} while (ri != next);
2157	} while (!valid);
2158
2159	utask->return_instances = ri;
2160	return;
2161
2162 sigill:
2163	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2164	force_sig(SIGILL);
2165
2166}
2167
2168bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2169{
2170	return false;
2171}
2172
2173bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2174					struct pt_regs *regs)
2175{
2176	return true;
2177}
2178
2179/*
2180 * Run handler and ask thread to singlestep.
2181 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2182 */
2183static void handle_swbp(struct pt_regs *regs)
2184{
2185	struct uprobe *uprobe;
2186	unsigned long bp_vaddr;
2187	int is_swbp;
2188
2189	bp_vaddr = uprobe_get_swbp_addr(regs);
2190	if (bp_vaddr == get_trampoline_vaddr())
2191		return handle_trampoline(regs);
2192
2193	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2194	if (!uprobe) {
2195		if (is_swbp > 0) {
2196			/* No matching uprobe; signal SIGTRAP. */
2197			force_sig(SIGTRAP);
2198		} else {
2199			/*
2200			 * Either we raced with uprobe_unregister() or we can't
2201			 * access this memory. The latter is only possible if
2202			 * another thread plays with our ->mm. In both cases
2203			 * we can simply restart. If this vma was unmapped we
2204			 * can pretend this insn was not executed yet and get
2205			 * the (correct) SIGSEGV after restart.
2206			 */
2207			instruction_pointer_set(regs, bp_vaddr);
2208		}
2209		return;
2210	}
2211
2212	/* change it in advance for ->handler() and restart */
2213	instruction_pointer_set(regs, bp_vaddr);
2214
2215	/*
2216	 * TODO: move copy_insn/etc into _register and remove this hack.
2217	 * After we hit the bp, _unregister + _register can install the
2218	 * new and not-yet-analyzed uprobe at the same address, restart.
2219	 */
2220	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2221		goto out;
2222
2223	/*
2224	 * Pairs with the smp_wmb() in prepare_uprobe().
2225	 *
2226	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2227	 * we must also see the stores to &uprobe->arch performed by the
2228	 * prepare_uprobe() call.
2229	 */
2230	smp_rmb();
2231
2232	/* Tracing handlers use ->utask to communicate with fetch methods */
2233	if (!get_utask())
2234		goto out;
2235
2236	if (arch_uprobe_ignore(&uprobe->arch, regs))
2237		goto out;
2238
2239	handler_chain(uprobe, regs);
2240
2241	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2242		goto out;
2243
2244	if (!pre_ssout(uprobe, regs, bp_vaddr))
2245		return;
2246
2247	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2248out:
2249	put_uprobe(uprobe);
2250}
2251
2252/*
2253 * Perform required fix-ups and disable singlestep.
2254 * Allow pending signals to take effect.
2255 */
2256static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2257{
2258	struct uprobe *uprobe;
2259	int err = 0;
2260
2261	uprobe = utask->active_uprobe;
2262	if (utask->state == UTASK_SSTEP_ACK)
2263		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2264	else if (utask->state == UTASK_SSTEP_TRAPPED)
2265		arch_uprobe_abort_xol(&uprobe->arch, regs);
2266	else
2267		WARN_ON_ONCE(1);
2268
2269	put_uprobe(uprobe);
2270	utask->active_uprobe = NULL;
2271	utask->state = UTASK_RUNNING;
2272	xol_free_insn_slot(current);
2273
2274	spin_lock_irq(&current->sighand->siglock);
2275	recalc_sigpending(); /* see uprobe_deny_signal() */
2276	spin_unlock_irq(&current->sighand->siglock);
2277
2278	if (unlikely(err)) {
2279		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2280		force_sig(SIGILL);
2281	}
2282}
2283
2284/*
2285 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2286 * allows the thread to return from interrupt. After that handle_swbp()
2287 * sets utask->active_uprobe.
2288 *
2289 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2290 * and allows the thread to return from interrupt.
2291 *
2292 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2293 * uprobe_notify_resume().
2294 */
2295void uprobe_notify_resume(struct pt_regs *regs)
2296{
2297	struct uprobe_task *utask;
2298
2299	clear_thread_flag(TIF_UPROBE);
2300
2301	utask = current->utask;
2302	if (utask && utask->active_uprobe)
2303		handle_singlestep(utask, regs);
2304	else
2305		handle_swbp(regs);
2306}
2307
2308/*
2309 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2310 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2311 */
2312int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2313{
2314	if (!current->mm)
2315		return 0;
2316
2317	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2318	    (!current->utask || !current->utask->return_instances))
2319		return 0;
2320
2321	set_thread_flag(TIF_UPROBE);
2322	return 1;
2323}
2324
2325/*
2326 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2327 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2328 */
2329int uprobe_post_sstep_notifier(struct pt_regs *regs)
2330{
2331	struct uprobe_task *utask = current->utask;
2332
2333	if (!current->mm || !utask || !utask->active_uprobe)
2334		/* task is currently not uprobed */
2335		return 0;
2336
2337	utask->state = UTASK_SSTEP_ACK;
2338	set_thread_flag(TIF_UPROBE);
2339	return 1;
2340}
2341
2342static struct notifier_block uprobe_exception_nb = {
2343	.notifier_call		= arch_uprobe_exception_notify,
2344	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2345};
2346
2347void __init uprobes_init(void)
2348{
2349	int i;
2350
2351	for (i = 0; i < UPROBES_HASH_SZ; i++)
2352		mutex_init(&uprobes_mmap_mutex[i]);
2353
2354	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2355}
2356