1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/sched/mm.h>
7#include <linux/proc_fs.h>
8#include <linux/smp.h>
9#include <linux/init.h>
10#include <linux/notifier.h>
11#include <linux/sched/signal.h>
12#include <linux/sched/hotplug.h>
13#include <linux/sched/isolation.h>
14#include <linux/sched/task.h>
15#include <linux/sched/smt.h>
16#include <linux/unistd.h>
17#include <linux/cpu.h>
18#include <linux/oom.h>
19#include <linux/rcupdate.h>
20#include <linux/delay.h>
21#include <linux/export.h>
22#include <linux/bug.h>
23#include <linux/kthread.h>
24#include <linux/stop_machine.h>
25#include <linux/mutex.h>
26#include <linux/gfp.h>
27#include <linux/suspend.h>
28#include <linux/lockdep.h>
29#include <linux/tick.h>
30#include <linux/irq.h>
31#include <linux/nmi.h>
32#include <linux/smpboot.h>
33#include <linux/relay.h>
34#include <linux/slab.h>
35#include <linux/scs.h>
36#include <linux/percpu-rwsem.h>
37#include <linux/cpuset.h>
38#include <linux/random.h>
39#include <linux/cc_platform.h>
40
41#include <trace/events/power.h>
42#define CREATE_TRACE_POINTS
43#include <trace/events/cpuhp.h>
44
45#include "smpboot.h"
46
47/**
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state:	The current cpu state
50 * @target:	The target state
51 * @fail:	Current CPU hotplug callback state
52 * @thread:	Pointer to the hotplug thread
53 * @should_run:	Thread should execute
54 * @rollback:	Perform a rollback
55 * @single:	Single callback invocation
56 * @bringup:	Single callback bringup or teardown selector
57 * @node:	Remote CPU node; for multi-instance, do a
58 *		single entry callback for install/remove
59 * @last:	For multi-instance rollback, remember how far we got
60 * @cb_state:	The state for a single callback (install/uninstall)
61 * @result:	Result of the operation
62 * @ap_sync_state:	State for AP synchronization
63 * @done_up:	Signal completion to the issuer of the task for cpu-up
64 * @done_down:	Signal completion to the issuer of the task for cpu-down
65 */
66struct cpuhp_cpu_state {
67	enum cpuhp_state	state;
68	enum cpuhp_state	target;
69	enum cpuhp_state	fail;
70#ifdef CONFIG_SMP
71	struct task_struct	*thread;
72	bool			should_run;
73	bool			rollback;
74	bool			single;
75	bool			bringup;
76	struct hlist_node	*node;
77	struct hlist_node	*last;
78	enum cpuhp_state	cb_state;
79	int			result;
80	atomic_t		ap_sync_state;
81	struct completion	done_up;
82	struct completion	done_down;
83#endif
84};
85
86static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87	.fail = CPUHP_INVALID,
88};
89
90#ifdef CONFIG_SMP
91cpumask_t cpus_booted_once_mask;
92#endif
93
94#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95static struct lockdep_map cpuhp_state_up_map =
96	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97static struct lockdep_map cpuhp_state_down_map =
98	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99
100
101static inline void cpuhp_lock_acquire(bool bringup)
102{
103	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104}
105
106static inline void cpuhp_lock_release(bool bringup)
107{
108	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109}
110#else
111
112static inline void cpuhp_lock_acquire(bool bringup) { }
113static inline void cpuhp_lock_release(bool bringup) { }
114
115#endif
116
117/**
118 * struct cpuhp_step - Hotplug state machine step
119 * @name:	Name of the step
120 * @startup:	Startup function of the step
121 * @teardown:	Teardown function of the step
122 * @cant_stop:	Bringup/teardown can't be stopped at this step
123 * @multi_instance:	State has multiple instances which get added afterwards
124 */
125struct cpuhp_step {
126	const char		*name;
127	union {
128		int		(*single)(unsigned int cpu);
129		int		(*multi)(unsigned int cpu,
130					 struct hlist_node *node);
131	} startup;
132	union {
133		int		(*single)(unsigned int cpu);
134		int		(*multi)(unsigned int cpu,
135					 struct hlist_node *node);
136	} teardown;
137	/* private: */
138	struct hlist_head	list;
139	/* public: */
140	bool			cant_stop;
141	bool			multi_instance;
142};
143
144static DEFINE_MUTEX(cpuhp_state_mutex);
145static struct cpuhp_step cpuhp_hp_states[];
146
147static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148{
149	return cpuhp_hp_states + state;
150}
151
152static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153{
154	return bringup ? !step->startup.single : !step->teardown.single;
155}
156
157/**
158 * cpuhp_invoke_callback - Invoke the callbacks for a given state
159 * @cpu:	The cpu for which the callback should be invoked
160 * @state:	The state to do callbacks for
161 * @bringup:	True if the bringup callback should be invoked
162 * @node:	For multi-instance, do a single entry callback for install/remove
163 * @lastp:	For multi-instance rollback, remember how far we got
164 *
165 * Called from cpu hotplug and from the state register machinery.
166 *
167 * Return: %0 on success or a negative errno code
168 */
169static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170				 bool bringup, struct hlist_node *node,
171				 struct hlist_node **lastp)
172{
173	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174	struct cpuhp_step *step = cpuhp_get_step(state);
175	int (*cbm)(unsigned int cpu, struct hlist_node *node);
176	int (*cb)(unsigned int cpu);
177	int ret, cnt;
178
179	if (st->fail == state) {
180		st->fail = CPUHP_INVALID;
181		return -EAGAIN;
182	}
183
184	if (cpuhp_step_empty(bringup, step)) {
185		WARN_ON_ONCE(1);
186		return 0;
187	}
188
189	if (!step->multi_instance) {
190		WARN_ON_ONCE(lastp && *lastp);
191		cb = bringup ? step->startup.single : step->teardown.single;
192
193		trace_cpuhp_enter(cpu, st->target, state, cb);
194		ret = cb(cpu);
195		trace_cpuhp_exit(cpu, st->state, state, ret);
196		return ret;
197	}
198	cbm = bringup ? step->startup.multi : step->teardown.multi;
199
200	/* Single invocation for instance add/remove */
201	if (node) {
202		WARN_ON_ONCE(lastp && *lastp);
203		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204		ret = cbm(cpu, node);
205		trace_cpuhp_exit(cpu, st->state, state, ret);
206		return ret;
207	}
208
209	/* State transition. Invoke on all instances */
210	cnt = 0;
211	hlist_for_each(node, &step->list) {
212		if (lastp && node == *lastp)
213			break;
214
215		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216		ret = cbm(cpu, node);
217		trace_cpuhp_exit(cpu, st->state, state, ret);
218		if (ret) {
219			if (!lastp)
220				goto err;
221
222			*lastp = node;
223			return ret;
224		}
225		cnt++;
226	}
227	if (lastp)
228		*lastp = NULL;
229	return 0;
230err:
231	/* Rollback the instances if one failed */
232	cbm = !bringup ? step->startup.multi : step->teardown.multi;
233	if (!cbm)
234		return ret;
235
236	hlist_for_each(node, &step->list) {
237		if (!cnt--)
238			break;
239
240		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241		ret = cbm(cpu, node);
242		trace_cpuhp_exit(cpu, st->state, state, ret);
243		/*
244		 * Rollback must not fail,
245		 */
246		WARN_ON_ONCE(ret);
247	}
248	return ret;
249}
250
251#ifdef CONFIG_SMP
252static bool cpuhp_is_ap_state(enum cpuhp_state state)
253{
254	/*
255	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256	 * purposes as that state is handled explicitly in cpu_down.
257	 */
258	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259}
260
261static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262{
263	struct completion *done = bringup ? &st->done_up : &st->done_down;
264	wait_for_completion(done);
265}
266
267static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268{
269	struct completion *done = bringup ? &st->done_up : &st->done_down;
270	complete(done);
271}
272
273/*
274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275 */
276static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277{
278	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279}
280
281/* Synchronization state management */
282enum cpuhp_sync_state {
283	SYNC_STATE_DEAD,
284	SYNC_STATE_KICKED,
285	SYNC_STATE_SHOULD_DIE,
286	SYNC_STATE_ALIVE,
287	SYNC_STATE_SHOULD_ONLINE,
288	SYNC_STATE_ONLINE,
289};
290
291#ifdef CONFIG_HOTPLUG_CORE_SYNC
292/**
293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294 * @state:	The synchronization state to set
295 *
296 * No synchronization point. Just update of the synchronization state, but implies
297 * a full barrier so that the AP changes are visible before the control CPU proceeds.
298 */
299static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300{
301	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302
303	(void)atomic_xchg(st, state);
304}
305
306void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307
308static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309				      enum cpuhp_sync_state next_state)
310{
311	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312	ktime_t now, end, start = ktime_get();
313	int sync;
314
315	end = start + 10ULL * NSEC_PER_SEC;
316
317	sync = atomic_read(st);
318	while (1) {
319		if (sync == state) {
320			if (!atomic_try_cmpxchg(st, &sync, next_state))
321				continue;
322			return true;
323		}
324
325		now = ktime_get();
326		if (now > end) {
327			/* Timeout. Leave the state unchanged */
328			return false;
329		} else if (now - start < NSEC_PER_MSEC) {
330			/* Poll for one millisecond */
331			arch_cpuhp_sync_state_poll();
332		} else {
333			usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
334		}
335		sync = atomic_read(st);
336	}
337	return true;
338}
339#else  /* CONFIG_HOTPLUG_CORE_SYNC */
340static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341#endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342
343#ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344/**
345 * cpuhp_ap_report_dead - Update synchronization state to DEAD
346 *
347 * No synchronization point. Just update of the synchronization state.
348 */
349void cpuhp_ap_report_dead(void)
350{
351	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352}
353
354void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355
356/*
357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358 * because the AP cannot issue complete() at this stage.
359 */
360static void cpuhp_bp_sync_dead(unsigned int cpu)
361{
362	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363	int sync = atomic_read(st);
364
365	do {
366		/* CPU can have reported dead already. Don't overwrite that! */
367		if (sync == SYNC_STATE_DEAD)
368			break;
369	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370
371	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372		/* CPU reached dead state. Invoke the cleanup function */
373		arch_cpuhp_cleanup_dead_cpu(cpu);
374		return;
375	}
376
377	/* No further action possible. Emit message and give up. */
378	pr_err("CPU%u failed to report dead state\n", cpu);
379}
380#else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382#endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383
384#ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385/**
386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387 *
388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389 * for the BP to release it.
390 */
391void cpuhp_ap_sync_alive(void)
392{
393	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394
395	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396
397	/* Wait for the control CPU to release it. */
398	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399		cpu_relax();
400}
401
402static bool cpuhp_can_boot_ap(unsigned int cpu)
403{
404	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405	int sync = atomic_read(st);
406
407again:
408	switch (sync) {
409	case SYNC_STATE_DEAD:
410		/* CPU is properly dead */
411		break;
412	case SYNC_STATE_KICKED:
413		/* CPU did not come up in previous attempt */
414		break;
415	case SYNC_STATE_ALIVE:
416		/* CPU is stuck cpuhp_ap_sync_alive(). */
417		break;
418	default:
419		/* CPU failed to report online or dead and is in limbo state. */
420		return false;
421	}
422
423	/* Prepare for booting */
424	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425		goto again;
426
427	return true;
428}
429
430void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431
432/*
433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434 * because the AP cannot issue complete() so early in the bringup.
435 */
436static int cpuhp_bp_sync_alive(unsigned int cpu)
437{
438	int ret = 0;
439
440	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441		return 0;
442
443	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444		pr_err("CPU%u failed to report alive state\n", cpu);
445		ret = -EIO;
446	}
447
448	/* Let the architecture cleanup the kick alive mechanics. */
449	arch_cpuhp_cleanup_kick_cpu(cpu);
450	return ret;
451}
452#else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455#endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456
457/* Serializes the updates to cpu_online_mask, cpu_present_mask */
458static DEFINE_MUTEX(cpu_add_remove_lock);
459bool cpuhp_tasks_frozen;
460EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461
462/*
463 * The following two APIs (cpu_maps_update_begin/done) must be used when
464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465 */
466void cpu_maps_update_begin(void)
467{
468	mutex_lock(&cpu_add_remove_lock);
469}
470
471void cpu_maps_update_done(void)
472{
473	mutex_unlock(&cpu_add_remove_lock);
474}
475
476/*
477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478 * Should always be manipulated under cpu_add_remove_lock
479 */
480static int cpu_hotplug_disabled;
481
482#ifdef CONFIG_HOTPLUG_CPU
483
484DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485
486void cpus_read_lock(void)
487{
488	percpu_down_read(&cpu_hotplug_lock);
489}
490EXPORT_SYMBOL_GPL(cpus_read_lock);
491
492int cpus_read_trylock(void)
493{
494	return percpu_down_read_trylock(&cpu_hotplug_lock);
495}
496EXPORT_SYMBOL_GPL(cpus_read_trylock);
497
498void cpus_read_unlock(void)
499{
500	percpu_up_read(&cpu_hotplug_lock);
501}
502EXPORT_SYMBOL_GPL(cpus_read_unlock);
503
504void cpus_write_lock(void)
505{
506	percpu_down_write(&cpu_hotplug_lock);
507}
508
509void cpus_write_unlock(void)
510{
511	percpu_up_write(&cpu_hotplug_lock);
512}
513
514void lockdep_assert_cpus_held(void)
515{
516	/*
517	 * We can't have hotplug operations before userspace starts running,
518	 * and some init codepaths will knowingly not take the hotplug lock.
519	 * This is all valid, so mute lockdep until it makes sense to report
520	 * unheld locks.
521	 */
522	if (system_state < SYSTEM_RUNNING)
523		return;
524
525	percpu_rwsem_assert_held(&cpu_hotplug_lock);
526}
527
528#ifdef CONFIG_LOCKDEP
529int lockdep_is_cpus_held(void)
530{
531	return percpu_rwsem_is_held(&cpu_hotplug_lock);
532}
533#endif
534
535static void lockdep_acquire_cpus_lock(void)
536{
537	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
538}
539
540static void lockdep_release_cpus_lock(void)
541{
542	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
543}
544
545/*
546 * Wait for currently running CPU hotplug operations to complete (if any) and
547 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
548 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
549 * hotplug path before performing hotplug operations. So acquiring that lock
550 * guarantees mutual exclusion from any currently running hotplug operations.
551 */
552void cpu_hotplug_disable(void)
553{
554	cpu_maps_update_begin();
555	cpu_hotplug_disabled++;
556	cpu_maps_update_done();
557}
558EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
559
560static void __cpu_hotplug_enable(void)
561{
562	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
563		return;
564	cpu_hotplug_disabled--;
565}
566
567void cpu_hotplug_enable(void)
568{
569	cpu_maps_update_begin();
570	__cpu_hotplug_enable();
571	cpu_maps_update_done();
572}
573EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
574
575#else
576
577static void lockdep_acquire_cpus_lock(void)
578{
579}
580
581static void lockdep_release_cpus_lock(void)
582{
583}
584
585#endif	/* CONFIG_HOTPLUG_CPU */
586
587/*
588 * Architectures that need SMT-specific errata handling during SMT hotplug
589 * should override this.
590 */
591void __weak arch_smt_update(void) { }
592
593#ifdef CONFIG_HOTPLUG_SMT
594
595enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
596static unsigned int cpu_smt_max_threads __ro_after_init;
597unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
598
599void __init cpu_smt_disable(bool force)
600{
601	if (!cpu_smt_possible())
602		return;
603
604	if (force) {
605		pr_info("SMT: Force disabled\n");
606		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
607	} else {
608		pr_info("SMT: disabled\n");
609		cpu_smt_control = CPU_SMT_DISABLED;
610	}
611	cpu_smt_num_threads = 1;
612}
613
614/*
615 * The decision whether SMT is supported can only be done after the full
616 * CPU identification. Called from architecture code.
617 */
618void __init cpu_smt_set_num_threads(unsigned int num_threads,
619				    unsigned int max_threads)
620{
621	WARN_ON(!num_threads || (num_threads > max_threads));
622
623	if (max_threads == 1)
624		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
625
626	cpu_smt_max_threads = max_threads;
627
628	/*
629	 * If SMT has been disabled via the kernel command line or SMT is
630	 * not supported, set cpu_smt_num_threads to 1 for consistency.
631	 * If enabled, take the architecture requested number of threads
632	 * to bring up into account.
633	 */
634	if (cpu_smt_control != CPU_SMT_ENABLED)
635		cpu_smt_num_threads = 1;
636	else if (num_threads < cpu_smt_num_threads)
637		cpu_smt_num_threads = num_threads;
638}
639
640static int __init smt_cmdline_disable(char *str)
641{
642	cpu_smt_disable(str && !strcmp(str, "force"));
643	return 0;
644}
645early_param("nosmt", smt_cmdline_disable);
646
647/*
648 * For Archicture supporting partial SMT states check if the thread is allowed.
649 * Otherwise this has already been checked through cpu_smt_max_threads when
650 * setting the SMT level.
651 */
652static inline bool cpu_smt_thread_allowed(unsigned int cpu)
653{
654#ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
655	return topology_smt_thread_allowed(cpu);
656#else
657	return true;
658#endif
659}
660
661static inline bool cpu_bootable(unsigned int cpu)
662{
663	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
664		return true;
665
666	/* All CPUs are bootable if controls are not configured */
667	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
668		return true;
669
670	/* All CPUs are bootable if CPU is not SMT capable */
671	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
672		return true;
673
674	if (topology_is_primary_thread(cpu))
675		return true;
676
677	/*
678	 * On x86 it's required to boot all logical CPUs at least once so
679	 * that the init code can get a chance to set CR4.MCE on each
680	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
681	 * core will shutdown the machine.
682	 */
683	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
684}
685
686/* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
687bool cpu_smt_possible(void)
688{
689	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
690		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
691}
692EXPORT_SYMBOL_GPL(cpu_smt_possible);
693
694#else
695static inline bool cpu_bootable(unsigned int cpu) { return true; }
696#endif
697
698static inline enum cpuhp_state
699cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
700{
701	enum cpuhp_state prev_state = st->state;
702	bool bringup = st->state < target;
703
704	st->rollback = false;
705	st->last = NULL;
706
707	st->target = target;
708	st->single = false;
709	st->bringup = bringup;
710	if (cpu_dying(cpu) != !bringup)
711		set_cpu_dying(cpu, !bringup);
712
713	return prev_state;
714}
715
716static inline void
717cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
718		  enum cpuhp_state prev_state)
719{
720	bool bringup = !st->bringup;
721
722	st->target = prev_state;
723
724	/*
725	 * Already rolling back. No need invert the bringup value or to change
726	 * the current state.
727	 */
728	if (st->rollback)
729		return;
730
731	st->rollback = true;
732
733	/*
734	 * If we have st->last we need to undo partial multi_instance of this
735	 * state first. Otherwise start undo at the previous state.
736	 */
737	if (!st->last) {
738		if (st->bringup)
739			st->state--;
740		else
741			st->state++;
742	}
743
744	st->bringup = bringup;
745	if (cpu_dying(cpu) != !bringup)
746		set_cpu_dying(cpu, !bringup);
747}
748
749/* Regular hotplug invocation of the AP hotplug thread */
750static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
751{
752	if (!st->single && st->state == st->target)
753		return;
754
755	st->result = 0;
756	/*
757	 * Make sure the above stores are visible before should_run becomes
758	 * true. Paired with the mb() above in cpuhp_thread_fun()
759	 */
760	smp_mb();
761	st->should_run = true;
762	wake_up_process(st->thread);
763	wait_for_ap_thread(st, st->bringup);
764}
765
766static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
767			 enum cpuhp_state target)
768{
769	enum cpuhp_state prev_state;
770	int ret;
771
772	prev_state = cpuhp_set_state(cpu, st, target);
773	__cpuhp_kick_ap(st);
774	if ((ret = st->result)) {
775		cpuhp_reset_state(cpu, st, prev_state);
776		__cpuhp_kick_ap(st);
777	}
778
779	return ret;
780}
781
782static int bringup_wait_for_ap_online(unsigned int cpu)
783{
784	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
785
786	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
787	wait_for_ap_thread(st, true);
788	if (WARN_ON_ONCE((!cpu_online(cpu))))
789		return -ECANCELED;
790
791	/* Unpark the hotplug thread of the target cpu */
792	kthread_unpark(st->thread);
793
794	/*
795	 * SMT soft disabling on X86 requires to bring the CPU out of the
796	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
797	 * CPU marked itself as booted_once in notify_cpu_starting() so the
798	 * cpu_bootable() check will now return false if this is not the
799	 * primary sibling.
800	 */
801	if (!cpu_bootable(cpu))
802		return -ECANCELED;
803	return 0;
804}
805
806#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
807static int cpuhp_kick_ap_alive(unsigned int cpu)
808{
809	if (!cpuhp_can_boot_ap(cpu))
810		return -EAGAIN;
811
812	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
813}
814
815static int cpuhp_bringup_ap(unsigned int cpu)
816{
817	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
818	int ret;
819
820	/*
821	 * Some architectures have to walk the irq descriptors to
822	 * setup the vector space for the cpu which comes online.
823	 * Prevent irq alloc/free across the bringup.
824	 */
825	irq_lock_sparse();
826
827	ret = cpuhp_bp_sync_alive(cpu);
828	if (ret)
829		goto out_unlock;
830
831	ret = bringup_wait_for_ap_online(cpu);
832	if (ret)
833		goto out_unlock;
834
835	irq_unlock_sparse();
836
837	if (st->target <= CPUHP_AP_ONLINE_IDLE)
838		return 0;
839
840	return cpuhp_kick_ap(cpu, st, st->target);
841
842out_unlock:
843	irq_unlock_sparse();
844	return ret;
845}
846#else
847static int bringup_cpu(unsigned int cpu)
848{
849	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
850	struct task_struct *idle = idle_thread_get(cpu);
851	int ret;
852
853	if (!cpuhp_can_boot_ap(cpu))
854		return -EAGAIN;
855
856	/*
857	 * Some architectures have to walk the irq descriptors to
858	 * setup the vector space for the cpu which comes online.
859	 *
860	 * Prevent irq alloc/free across the bringup by acquiring the
861	 * sparse irq lock. Hold it until the upcoming CPU completes the
862	 * startup in cpuhp_online_idle() which allows to avoid
863	 * intermediate synchronization points in the architecture code.
864	 */
865	irq_lock_sparse();
866
867	ret = __cpu_up(cpu, idle);
868	if (ret)
869		goto out_unlock;
870
871	ret = cpuhp_bp_sync_alive(cpu);
872	if (ret)
873		goto out_unlock;
874
875	ret = bringup_wait_for_ap_online(cpu);
876	if (ret)
877		goto out_unlock;
878
879	irq_unlock_sparse();
880
881	if (st->target <= CPUHP_AP_ONLINE_IDLE)
882		return 0;
883
884	return cpuhp_kick_ap(cpu, st, st->target);
885
886out_unlock:
887	irq_unlock_sparse();
888	return ret;
889}
890#endif
891
892static int finish_cpu(unsigned int cpu)
893{
894	struct task_struct *idle = idle_thread_get(cpu);
895	struct mm_struct *mm = idle->active_mm;
896
897	/*
898	 * idle_task_exit() will have switched to &init_mm, now
899	 * clean up any remaining active_mm state.
900	 */
901	if (mm != &init_mm)
902		idle->active_mm = &init_mm;
903	mmdrop_lazy_tlb(mm);
904	return 0;
905}
906
907/*
908 * Hotplug state machine related functions
909 */
910
911/*
912 * Get the next state to run. Empty ones will be skipped. Returns true if a
913 * state must be run.
914 *
915 * st->state will be modified ahead of time, to match state_to_run, as if it
916 * has already ran.
917 */
918static bool cpuhp_next_state(bool bringup,
919			     enum cpuhp_state *state_to_run,
920			     struct cpuhp_cpu_state *st,
921			     enum cpuhp_state target)
922{
923	do {
924		if (bringup) {
925			if (st->state >= target)
926				return false;
927
928			*state_to_run = ++st->state;
929		} else {
930			if (st->state <= target)
931				return false;
932
933			*state_to_run = st->state--;
934		}
935
936		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
937			break;
938	} while (true);
939
940	return true;
941}
942
943static int __cpuhp_invoke_callback_range(bool bringup,
944					 unsigned int cpu,
945					 struct cpuhp_cpu_state *st,
946					 enum cpuhp_state target,
947					 bool nofail)
948{
949	enum cpuhp_state state;
950	int ret = 0;
951
952	while (cpuhp_next_state(bringup, &state, st, target)) {
953		int err;
954
955		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
956		if (!err)
957			continue;
958
959		if (nofail) {
960			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
961				cpu, bringup ? "UP" : "DOWN",
962				cpuhp_get_step(st->state)->name,
963				st->state, err);
964			ret = -1;
965		} else {
966			ret = err;
967			break;
968		}
969	}
970
971	return ret;
972}
973
974static inline int cpuhp_invoke_callback_range(bool bringup,
975					      unsigned int cpu,
976					      struct cpuhp_cpu_state *st,
977					      enum cpuhp_state target)
978{
979	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
980}
981
982static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
983						      unsigned int cpu,
984						      struct cpuhp_cpu_state *st,
985						      enum cpuhp_state target)
986{
987	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
988}
989
990static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
991{
992	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
993		return true;
994	/*
995	 * When CPU hotplug is disabled, then taking the CPU down is not
996	 * possible because takedown_cpu() and the architecture and
997	 * subsystem specific mechanisms are not available. So the CPU
998	 * which would be completely unplugged again needs to stay around
999	 * in the current state.
1000	 */
1001	return st->state <= CPUHP_BRINGUP_CPU;
1002}
1003
1004static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1005			      enum cpuhp_state target)
1006{
1007	enum cpuhp_state prev_state = st->state;
1008	int ret = 0;
1009
1010	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1011	if (ret) {
1012		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1013			 ret, cpu, cpuhp_get_step(st->state)->name,
1014			 st->state);
1015
1016		cpuhp_reset_state(cpu, st, prev_state);
1017		if (can_rollback_cpu(st))
1018			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1019							    prev_state));
1020	}
1021	return ret;
1022}
1023
1024/*
1025 * The cpu hotplug threads manage the bringup and teardown of the cpus
1026 */
1027static int cpuhp_should_run(unsigned int cpu)
1028{
1029	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1030
1031	return st->should_run;
1032}
1033
1034/*
1035 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1036 * callbacks when a state gets [un]installed at runtime.
1037 *
1038 * Each invocation of this function by the smpboot thread does a single AP
1039 * state callback.
1040 *
1041 * It has 3 modes of operation:
1042 *  - single: runs st->cb_state
1043 *  - up:     runs ++st->state, while st->state < st->target
1044 *  - down:   runs st->state--, while st->state > st->target
1045 *
1046 * When complete or on error, should_run is cleared and the completion is fired.
1047 */
1048static void cpuhp_thread_fun(unsigned int cpu)
1049{
1050	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1051	bool bringup = st->bringup;
1052	enum cpuhp_state state;
1053
1054	if (WARN_ON_ONCE(!st->should_run))
1055		return;
1056
1057	/*
1058	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1059	 * that if we see ->should_run we also see the rest of the state.
1060	 */
1061	smp_mb();
1062
1063	/*
1064	 * The BP holds the hotplug lock, but we're now running on the AP,
1065	 * ensure that anybody asserting the lock is held, will actually find
1066	 * it so.
1067	 */
1068	lockdep_acquire_cpus_lock();
1069	cpuhp_lock_acquire(bringup);
1070
1071	if (st->single) {
1072		state = st->cb_state;
1073		st->should_run = false;
1074	} else {
1075		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1076		if (!st->should_run)
1077			goto end;
1078	}
1079
1080	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1081
1082	if (cpuhp_is_atomic_state(state)) {
1083		local_irq_disable();
1084		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1085		local_irq_enable();
1086
1087		/*
1088		 * STARTING/DYING must not fail!
1089		 */
1090		WARN_ON_ONCE(st->result);
1091	} else {
1092		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1093	}
1094
1095	if (st->result) {
1096		/*
1097		 * If we fail on a rollback, we're up a creek without no
1098		 * paddle, no way forward, no way back. We loose, thanks for
1099		 * playing.
1100		 */
1101		WARN_ON_ONCE(st->rollback);
1102		st->should_run = false;
1103	}
1104
1105end:
1106	cpuhp_lock_release(bringup);
1107	lockdep_release_cpus_lock();
1108
1109	if (!st->should_run)
1110		complete_ap_thread(st, bringup);
1111}
1112
1113/* Invoke a single callback on a remote cpu */
1114static int
1115cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1116			 struct hlist_node *node)
1117{
1118	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1119	int ret;
1120
1121	if (!cpu_online(cpu))
1122		return 0;
1123
1124	cpuhp_lock_acquire(false);
1125	cpuhp_lock_release(false);
1126
1127	cpuhp_lock_acquire(true);
1128	cpuhp_lock_release(true);
1129
1130	/*
1131	 * If we are up and running, use the hotplug thread. For early calls
1132	 * we invoke the thread function directly.
1133	 */
1134	if (!st->thread)
1135		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1136
1137	st->rollback = false;
1138	st->last = NULL;
1139
1140	st->node = node;
1141	st->bringup = bringup;
1142	st->cb_state = state;
1143	st->single = true;
1144
1145	__cpuhp_kick_ap(st);
1146
1147	/*
1148	 * If we failed and did a partial, do a rollback.
1149	 */
1150	if ((ret = st->result) && st->last) {
1151		st->rollback = true;
1152		st->bringup = !bringup;
1153
1154		__cpuhp_kick_ap(st);
1155	}
1156
1157	/*
1158	 * Clean up the leftovers so the next hotplug operation wont use stale
1159	 * data.
1160	 */
1161	st->node = st->last = NULL;
1162	return ret;
1163}
1164
1165static int cpuhp_kick_ap_work(unsigned int cpu)
1166{
1167	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1168	enum cpuhp_state prev_state = st->state;
1169	int ret;
1170
1171	cpuhp_lock_acquire(false);
1172	cpuhp_lock_release(false);
1173
1174	cpuhp_lock_acquire(true);
1175	cpuhp_lock_release(true);
1176
1177	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1178	ret = cpuhp_kick_ap(cpu, st, st->target);
1179	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1180
1181	return ret;
1182}
1183
1184static struct smp_hotplug_thread cpuhp_threads = {
1185	.store			= &cpuhp_state.thread,
1186	.thread_should_run	= cpuhp_should_run,
1187	.thread_fn		= cpuhp_thread_fun,
1188	.thread_comm		= "cpuhp/%u",
1189	.selfparking		= true,
1190};
1191
1192static __init void cpuhp_init_state(void)
1193{
1194	struct cpuhp_cpu_state *st;
1195	int cpu;
1196
1197	for_each_possible_cpu(cpu) {
1198		st = per_cpu_ptr(&cpuhp_state, cpu);
1199		init_completion(&st->done_up);
1200		init_completion(&st->done_down);
1201	}
1202}
1203
1204void __init cpuhp_threads_init(void)
1205{
1206	cpuhp_init_state();
1207	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1208	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1209}
1210
1211/*
1212 *
1213 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1214 * protected region.
1215 *
1216 * The operation is still serialized against concurrent CPU hotplug via
1217 * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1218 * serialized against other hotplug related activity like adding or
1219 * removing of state callbacks and state instances, which invoke either the
1220 * startup or the teardown callback of the affected state.
1221 *
1222 * This is required for subsystems which are unfixable vs. CPU hotplug and
1223 * evade lock inversion problems by scheduling work which has to be
1224 * completed _before_ cpu_up()/_cpu_down() returns.
1225 *
1226 * Don't even think about adding anything to this for any new code or even
1227 * drivers. It's only purpose is to keep existing lock order trainwrecks
1228 * working.
1229 *
1230 * For cpu_down() there might be valid reasons to finish cleanups which are
1231 * not required to be done under cpu_hotplug_lock, but that's a different
1232 * story and would be not invoked via this.
1233 */
1234static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1235{
1236	/*
1237	 * cpusets delegate hotplug operations to a worker to "solve" the
1238	 * lock order problems. Wait for the worker, but only if tasks are
1239	 * _not_ frozen (suspend, hibernate) as that would wait forever.
1240	 *
1241	 * The wait is required because otherwise the hotplug operation
1242	 * returns with inconsistent state, which could even be observed in
1243	 * user space when a new CPU is brought up. The CPU plug uevent
1244	 * would be delivered and user space reacting on it would fail to
1245	 * move tasks to the newly plugged CPU up to the point where the
1246	 * work has finished because up to that point the newly plugged CPU
1247	 * is not assignable in cpusets/cgroups. On unplug that's not
1248	 * necessarily a visible issue, but it is still inconsistent state,
1249	 * which is the real problem which needs to be "fixed". This can't
1250	 * prevent the transient state between scheduling the work and
1251	 * returning from waiting for it.
1252	 */
1253	if (!tasks_frozen)
1254		cpuset_wait_for_hotplug();
1255}
1256
1257#ifdef CONFIG_HOTPLUG_CPU
1258#ifndef arch_clear_mm_cpumask_cpu
1259#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1260#endif
1261
1262/**
1263 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1264 * @cpu: a CPU id
1265 *
1266 * This function walks all processes, finds a valid mm struct for each one and
1267 * then clears a corresponding bit in mm's cpumask.  While this all sounds
1268 * trivial, there are various non-obvious corner cases, which this function
1269 * tries to solve in a safe manner.
1270 *
1271 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1272 * be called only for an already offlined CPU.
1273 */
1274void clear_tasks_mm_cpumask(int cpu)
1275{
1276	struct task_struct *p;
1277
1278	/*
1279	 * This function is called after the cpu is taken down and marked
1280	 * offline, so its not like new tasks will ever get this cpu set in
1281	 * their mm mask. -- Peter Zijlstra
1282	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1283	 * full-fledged tasklist_lock.
1284	 */
1285	WARN_ON(cpu_online(cpu));
1286	rcu_read_lock();
1287	for_each_process(p) {
1288		struct task_struct *t;
1289
1290		/*
1291		 * Main thread might exit, but other threads may still have
1292		 * a valid mm. Find one.
1293		 */
1294		t = find_lock_task_mm(p);
1295		if (!t)
1296			continue;
1297		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1298		task_unlock(t);
1299	}
1300	rcu_read_unlock();
1301}
1302
1303/* Take this CPU down. */
1304static int take_cpu_down(void *_param)
1305{
1306	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1307	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1308	int err, cpu = smp_processor_id();
1309
1310	/* Ensure this CPU doesn't handle any more interrupts. */
1311	err = __cpu_disable();
1312	if (err < 0)
1313		return err;
1314
1315	/*
1316	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1317	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1318	 */
1319	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1320
1321	/*
1322	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1323	 */
1324	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1325
1326	/* Park the stopper thread */
1327	stop_machine_park(cpu);
1328	return 0;
1329}
1330
1331static int takedown_cpu(unsigned int cpu)
1332{
1333	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1334	int err;
1335
1336	/* Park the smpboot threads */
1337	kthread_park(st->thread);
1338
1339	/*
1340	 * Prevent irq alloc/free while the dying cpu reorganizes the
1341	 * interrupt affinities.
1342	 */
1343	irq_lock_sparse();
1344
1345	/*
1346	 * So now all preempt/rcu users must observe !cpu_active().
1347	 */
1348	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1349	if (err) {
1350		/* CPU refused to die */
1351		irq_unlock_sparse();
1352		/* Unpark the hotplug thread so we can rollback there */
1353		kthread_unpark(st->thread);
1354		return err;
1355	}
1356	BUG_ON(cpu_online(cpu));
1357
1358	/*
1359	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1360	 * all runnable tasks from the CPU, there's only the idle task left now
1361	 * that the migration thread is done doing the stop_machine thing.
1362	 *
1363	 * Wait for the stop thread to go away.
1364	 */
1365	wait_for_ap_thread(st, false);
1366	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1367
1368	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1369	irq_unlock_sparse();
1370
1371	hotplug_cpu__broadcast_tick_pull(cpu);
1372	/* This actually kills the CPU. */
1373	__cpu_die(cpu);
1374
1375	cpuhp_bp_sync_dead(cpu);
1376
1377	tick_cleanup_dead_cpu(cpu);
1378
1379	/*
1380	 * Callbacks must be re-integrated right away to the RCU state machine.
1381	 * Otherwise an RCU callback could block a further teardown function
1382	 * waiting for its completion.
1383	 */
1384	rcutree_migrate_callbacks(cpu);
1385
1386	return 0;
1387}
1388
1389static void cpuhp_complete_idle_dead(void *arg)
1390{
1391	struct cpuhp_cpu_state *st = arg;
1392
1393	complete_ap_thread(st, false);
1394}
1395
1396void cpuhp_report_idle_dead(void)
1397{
1398	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1399
1400	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1401	tick_assert_timekeeping_handover();
1402	rcutree_report_cpu_dead();
1403	st->state = CPUHP_AP_IDLE_DEAD;
1404	/*
1405	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1406	 * to an online cpu.
1407	 */
1408	smp_call_function_single(cpumask_first(cpu_online_mask),
1409				 cpuhp_complete_idle_dead, st, 0);
1410}
1411
1412static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1413				enum cpuhp_state target)
1414{
1415	enum cpuhp_state prev_state = st->state;
1416	int ret = 0;
1417
1418	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1419	if (ret) {
1420		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1421			 ret, cpu, cpuhp_get_step(st->state)->name,
1422			 st->state);
1423
1424		cpuhp_reset_state(cpu, st, prev_state);
1425
1426		if (st->state < prev_state)
1427			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1428							    prev_state));
1429	}
1430
1431	return ret;
1432}
1433
1434/* Requires cpu_add_remove_lock to be held */
1435static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1436			   enum cpuhp_state target)
1437{
1438	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1439	int prev_state, ret = 0;
1440
1441	if (num_online_cpus() == 1)
1442		return -EBUSY;
1443
1444	if (!cpu_present(cpu))
1445		return -EINVAL;
1446
1447	cpus_write_lock();
1448
1449	cpuhp_tasks_frozen = tasks_frozen;
1450
1451	prev_state = cpuhp_set_state(cpu, st, target);
1452	/*
1453	 * If the current CPU state is in the range of the AP hotplug thread,
1454	 * then we need to kick the thread.
1455	 */
1456	if (st->state > CPUHP_TEARDOWN_CPU) {
1457		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1458		ret = cpuhp_kick_ap_work(cpu);
1459		/*
1460		 * The AP side has done the error rollback already. Just
1461		 * return the error code..
1462		 */
1463		if (ret)
1464			goto out;
1465
1466		/*
1467		 * We might have stopped still in the range of the AP hotplug
1468		 * thread. Nothing to do anymore.
1469		 */
1470		if (st->state > CPUHP_TEARDOWN_CPU)
1471			goto out;
1472
1473		st->target = target;
1474	}
1475	/*
1476	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1477	 * to do the further cleanups.
1478	 */
1479	ret = cpuhp_down_callbacks(cpu, st, target);
1480	if (ret && st->state < prev_state) {
1481		if (st->state == CPUHP_TEARDOWN_CPU) {
1482			cpuhp_reset_state(cpu, st, prev_state);
1483			__cpuhp_kick_ap(st);
1484		} else {
1485			WARN(1, "DEAD callback error for CPU%d", cpu);
1486		}
1487	}
1488
1489out:
1490	cpus_write_unlock();
1491	/*
1492	 * Do post unplug cleanup. This is still protected against
1493	 * concurrent CPU hotplug via cpu_add_remove_lock.
1494	 */
1495	lockup_detector_cleanup();
1496	arch_smt_update();
1497	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1498	return ret;
1499}
1500
1501struct cpu_down_work {
1502	unsigned int		cpu;
1503	enum cpuhp_state	target;
1504};
1505
1506static long __cpu_down_maps_locked(void *arg)
1507{
1508	struct cpu_down_work *work = arg;
1509
1510	return _cpu_down(work->cpu, 0, work->target);
1511}
1512
1513static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1514{
1515	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1516
1517	/*
1518	 * If the platform does not support hotplug, report it explicitly to
1519	 * differentiate it from a transient offlining failure.
1520	 */
1521	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1522		return -EOPNOTSUPP;
1523	if (cpu_hotplug_disabled)
1524		return -EBUSY;
1525
1526	/*
1527	 * Ensure that the control task does not run on the to be offlined
1528	 * CPU to prevent a deadlock against cfs_b->period_timer.
1529	 * Also keep at least one housekeeping cpu onlined to avoid generating
1530	 * an empty sched_domain span.
1531	 */
1532	for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1533		if (cpu != work.cpu)
1534			return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1535	}
1536	return -EBUSY;
1537}
1538
1539static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1540{
1541	int err;
1542
1543	cpu_maps_update_begin();
1544	err = cpu_down_maps_locked(cpu, target);
1545	cpu_maps_update_done();
1546	return err;
1547}
1548
1549/**
1550 * cpu_device_down - Bring down a cpu device
1551 * @dev: Pointer to the cpu device to offline
1552 *
1553 * This function is meant to be used by device core cpu subsystem only.
1554 *
1555 * Other subsystems should use remove_cpu() instead.
1556 *
1557 * Return: %0 on success or a negative errno code
1558 */
1559int cpu_device_down(struct device *dev)
1560{
1561	return cpu_down(dev->id, CPUHP_OFFLINE);
1562}
1563
1564int remove_cpu(unsigned int cpu)
1565{
1566	int ret;
1567
1568	lock_device_hotplug();
1569	ret = device_offline(get_cpu_device(cpu));
1570	unlock_device_hotplug();
1571
1572	return ret;
1573}
1574EXPORT_SYMBOL_GPL(remove_cpu);
1575
1576void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1577{
1578	unsigned int cpu;
1579	int error;
1580
1581	cpu_maps_update_begin();
1582
1583	/*
1584	 * Make certain the cpu I'm about to reboot on is online.
1585	 *
1586	 * This is inline to what migrate_to_reboot_cpu() already do.
1587	 */
1588	if (!cpu_online(primary_cpu))
1589		primary_cpu = cpumask_first(cpu_online_mask);
1590
1591	for_each_online_cpu(cpu) {
1592		if (cpu == primary_cpu)
1593			continue;
1594
1595		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1596		if (error) {
1597			pr_err("Failed to offline CPU%d - error=%d",
1598				cpu, error);
1599			break;
1600		}
1601	}
1602
1603	/*
1604	 * Ensure all but the reboot CPU are offline.
1605	 */
1606	BUG_ON(num_online_cpus() > 1);
1607
1608	/*
1609	 * Make sure the CPUs won't be enabled by someone else after this
1610	 * point. Kexec will reboot to a new kernel shortly resetting
1611	 * everything along the way.
1612	 */
1613	cpu_hotplug_disabled++;
1614
1615	cpu_maps_update_done();
1616}
1617
1618#else
1619#define takedown_cpu		NULL
1620#endif /*CONFIG_HOTPLUG_CPU*/
1621
1622/**
1623 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1624 * @cpu: cpu that just started
1625 *
1626 * It must be called by the arch code on the new cpu, before the new cpu
1627 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1628 */
1629void notify_cpu_starting(unsigned int cpu)
1630{
1631	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1632	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1633
1634	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1635	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1636
1637	/*
1638	 * STARTING must not fail!
1639	 */
1640	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1641}
1642
1643/*
1644 * Called from the idle task. Wake up the controlling task which brings the
1645 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1646 * online bringup to the hotplug thread.
1647 */
1648void cpuhp_online_idle(enum cpuhp_state state)
1649{
1650	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1651
1652	/* Happens for the boot cpu */
1653	if (state != CPUHP_AP_ONLINE_IDLE)
1654		return;
1655
1656	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1657
1658	/*
1659	 * Unpark the stopper thread before we start the idle loop (and start
1660	 * scheduling); this ensures the stopper task is always available.
1661	 */
1662	stop_machine_unpark(smp_processor_id());
1663
1664	st->state = CPUHP_AP_ONLINE_IDLE;
1665	complete_ap_thread(st, true);
1666}
1667
1668/* Requires cpu_add_remove_lock to be held */
1669static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1670{
1671	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1672	struct task_struct *idle;
1673	int ret = 0;
1674
1675	cpus_write_lock();
1676
1677	if (!cpu_present(cpu)) {
1678		ret = -EINVAL;
1679		goto out;
1680	}
1681
1682	/*
1683	 * The caller of cpu_up() might have raced with another
1684	 * caller. Nothing to do.
1685	 */
1686	if (st->state >= target)
1687		goto out;
1688
1689	if (st->state == CPUHP_OFFLINE) {
1690		/* Let it fail before we try to bring the cpu up */
1691		idle = idle_thread_get(cpu);
1692		if (IS_ERR(idle)) {
1693			ret = PTR_ERR(idle);
1694			goto out;
1695		}
1696
1697		/*
1698		 * Reset stale stack state from the last time this CPU was online.
1699		 */
1700		scs_task_reset(idle);
1701		kasan_unpoison_task_stack(idle);
1702	}
1703
1704	cpuhp_tasks_frozen = tasks_frozen;
1705
1706	cpuhp_set_state(cpu, st, target);
1707	/*
1708	 * If the current CPU state is in the range of the AP hotplug thread,
1709	 * then we need to kick the thread once more.
1710	 */
1711	if (st->state > CPUHP_BRINGUP_CPU) {
1712		ret = cpuhp_kick_ap_work(cpu);
1713		/*
1714		 * The AP side has done the error rollback already. Just
1715		 * return the error code..
1716		 */
1717		if (ret)
1718			goto out;
1719	}
1720
1721	/*
1722	 * Try to reach the target state. We max out on the BP at
1723	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1724	 * responsible for bringing it up to the target state.
1725	 */
1726	target = min((int)target, CPUHP_BRINGUP_CPU);
1727	ret = cpuhp_up_callbacks(cpu, st, target);
1728out:
1729	cpus_write_unlock();
1730	arch_smt_update();
1731	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1732	return ret;
1733}
1734
1735static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1736{
1737	int err = 0;
1738
1739	if (!cpu_possible(cpu)) {
1740		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1741		       cpu);
1742		return -EINVAL;
1743	}
1744
1745	err = try_online_node(cpu_to_node(cpu));
1746	if (err)
1747		return err;
1748
1749	cpu_maps_update_begin();
1750
1751	if (cpu_hotplug_disabled) {
1752		err = -EBUSY;
1753		goto out;
1754	}
1755	if (!cpu_bootable(cpu)) {
1756		err = -EPERM;
1757		goto out;
1758	}
1759
1760	err = _cpu_up(cpu, 0, target);
1761out:
1762	cpu_maps_update_done();
1763	return err;
1764}
1765
1766/**
1767 * cpu_device_up - Bring up a cpu device
1768 * @dev: Pointer to the cpu device to online
1769 *
1770 * This function is meant to be used by device core cpu subsystem only.
1771 *
1772 * Other subsystems should use add_cpu() instead.
1773 *
1774 * Return: %0 on success or a negative errno code
1775 */
1776int cpu_device_up(struct device *dev)
1777{
1778	return cpu_up(dev->id, CPUHP_ONLINE);
1779}
1780
1781int add_cpu(unsigned int cpu)
1782{
1783	int ret;
1784
1785	lock_device_hotplug();
1786	ret = device_online(get_cpu_device(cpu));
1787	unlock_device_hotplug();
1788
1789	return ret;
1790}
1791EXPORT_SYMBOL_GPL(add_cpu);
1792
1793/**
1794 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1795 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1796 *
1797 * On some architectures like arm64, we can hibernate on any CPU, but on
1798 * wake up the CPU we hibernated on might be offline as a side effect of
1799 * using maxcpus= for example.
1800 *
1801 * Return: %0 on success or a negative errno code
1802 */
1803int bringup_hibernate_cpu(unsigned int sleep_cpu)
1804{
1805	int ret;
1806
1807	if (!cpu_online(sleep_cpu)) {
1808		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1809		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1810		if (ret) {
1811			pr_err("Failed to bring hibernate-CPU up!\n");
1812			return ret;
1813		}
1814	}
1815	return 0;
1816}
1817
1818static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1819				      enum cpuhp_state target)
1820{
1821	unsigned int cpu;
1822
1823	for_each_cpu(cpu, mask) {
1824		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1825
1826		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1827			/*
1828			 * If this failed then cpu_up() might have only
1829			 * rolled back to CPUHP_BP_KICK_AP for the final
1830			 * online. Clean it up. NOOP if already rolled back.
1831			 */
1832			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1833		}
1834
1835		if (!--ncpus)
1836			break;
1837	}
1838}
1839
1840#ifdef CONFIG_HOTPLUG_PARALLEL
1841static bool __cpuhp_parallel_bringup __ro_after_init = true;
1842
1843static int __init parallel_bringup_parse_param(char *arg)
1844{
1845	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1846}
1847early_param("cpuhp.parallel", parallel_bringup_parse_param);
1848
1849static inline bool cpuhp_smt_aware(void)
1850{
1851	return cpu_smt_max_threads > 1;
1852}
1853
1854static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1855{
1856	return cpu_primary_thread_mask;
1857}
1858
1859/*
1860 * On architectures which have enabled parallel bringup this invokes all BP
1861 * prepare states for each of the to be onlined APs first. The last state
1862 * sends the startup IPI to the APs. The APs proceed through the low level
1863 * bringup code in parallel and then wait for the control CPU to release
1864 * them one by one for the final onlining procedure.
1865 *
1866 * This avoids waiting for each AP to respond to the startup IPI in
1867 * CPUHP_BRINGUP_CPU.
1868 */
1869static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1870{
1871	const struct cpumask *mask = cpu_present_mask;
1872
1873	if (__cpuhp_parallel_bringup)
1874		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1875	if (!__cpuhp_parallel_bringup)
1876		return false;
1877
1878	if (cpuhp_smt_aware()) {
1879		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1880		static struct cpumask tmp_mask __initdata;
1881
1882		/*
1883		 * X86 requires to prevent that SMT siblings stopped while
1884		 * the primary thread does a microcode update for various
1885		 * reasons. Bring the primary threads up first.
1886		 */
1887		cpumask_and(&tmp_mask, mask, pmask);
1888		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1889		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1890		/* Account for the online CPUs */
1891		ncpus -= num_online_cpus();
1892		if (!ncpus)
1893			return true;
1894		/* Create the mask for secondary CPUs */
1895		cpumask_andnot(&tmp_mask, mask, pmask);
1896		mask = &tmp_mask;
1897	}
1898
1899	/* Bring the not-yet started CPUs up */
1900	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1901	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1902	return true;
1903}
1904#else
1905static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1906#endif /* CONFIG_HOTPLUG_PARALLEL */
1907
1908void __init bringup_nonboot_cpus(unsigned int max_cpus)
1909{
1910	/* Try parallel bringup optimization if enabled */
1911	if (cpuhp_bringup_cpus_parallel(max_cpus))
1912		return;
1913
1914	/* Full per CPU serialized bringup */
1915	cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1916}
1917
1918#ifdef CONFIG_PM_SLEEP_SMP
1919static cpumask_var_t frozen_cpus;
1920
1921int freeze_secondary_cpus(int primary)
1922{
1923	int cpu, error = 0;
1924
1925	cpu_maps_update_begin();
1926	if (primary == -1) {
1927		primary = cpumask_first(cpu_online_mask);
1928		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1929			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1930	} else {
1931		if (!cpu_online(primary))
1932			primary = cpumask_first(cpu_online_mask);
1933	}
1934
1935	/*
1936	 * We take down all of the non-boot CPUs in one shot to avoid races
1937	 * with the userspace trying to use the CPU hotplug at the same time
1938	 */
1939	cpumask_clear(frozen_cpus);
1940
1941	pr_info("Disabling non-boot CPUs ...\n");
1942	for_each_online_cpu(cpu) {
1943		if (cpu == primary)
1944			continue;
1945
1946		if (pm_wakeup_pending()) {
1947			pr_info("Wakeup pending. Abort CPU freeze\n");
1948			error = -EBUSY;
1949			break;
1950		}
1951
1952		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1953		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1954		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1955		if (!error)
1956			cpumask_set_cpu(cpu, frozen_cpus);
1957		else {
1958			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1959			break;
1960		}
1961	}
1962
1963	if (!error)
1964		BUG_ON(num_online_cpus() > 1);
1965	else
1966		pr_err("Non-boot CPUs are not disabled\n");
1967
1968	/*
1969	 * Make sure the CPUs won't be enabled by someone else. We need to do
1970	 * this even in case of failure as all freeze_secondary_cpus() users are
1971	 * supposed to do thaw_secondary_cpus() on the failure path.
1972	 */
1973	cpu_hotplug_disabled++;
1974
1975	cpu_maps_update_done();
1976	return error;
1977}
1978
1979void __weak arch_thaw_secondary_cpus_begin(void)
1980{
1981}
1982
1983void __weak arch_thaw_secondary_cpus_end(void)
1984{
1985}
1986
1987void thaw_secondary_cpus(void)
1988{
1989	int cpu, error;
1990
1991	/* Allow everyone to use the CPU hotplug again */
1992	cpu_maps_update_begin();
1993	__cpu_hotplug_enable();
1994	if (cpumask_empty(frozen_cpus))
1995		goto out;
1996
1997	pr_info("Enabling non-boot CPUs ...\n");
1998
1999	arch_thaw_secondary_cpus_begin();
2000
2001	for_each_cpu(cpu, frozen_cpus) {
2002		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
2003		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
2004		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
2005		if (!error) {
2006			pr_info("CPU%d is up\n", cpu);
2007			continue;
2008		}
2009		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
2010	}
2011
2012	arch_thaw_secondary_cpus_end();
2013
2014	cpumask_clear(frozen_cpus);
2015out:
2016	cpu_maps_update_done();
2017}
2018
2019static int __init alloc_frozen_cpus(void)
2020{
2021	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2022		return -ENOMEM;
2023	return 0;
2024}
2025core_initcall(alloc_frozen_cpus);
2026
2027/*
2028 * When callbacks for CPU hotplug notifications are being executed, we must
2029 * ensure that the state of the system with respect to the tasks being frozen
2030 * or not, as reported by the notification, remains unchanged *throughout the
2031 * duration* of the execution of the callbacks.
2032 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2033 *
2034 * This synchronization is implemented by mutually excluding regular CPU
2035 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2036 * Hibernate notifications.
2037 */
2038static int
2039cpu_hotplug_pm_callback(struct notifier_block *nb,
2040			unsigned long action, void *ptr)
2041{
2042	switch (action) {
2043
2044	case PM_SUSPEND_PREPARE:
2045	case PM_HIBERNATION_PREPARE:
2046		cpu_hotplug_disable();
2047		break;
2048
2049	case PM_POST_SUSPEND:
2050	case PM_POST_HIBERNATION:
2051		cpu_hotplug_enable();
2052		break;
2053
2054	default:
2055		return NOTIFY_DONE;
2056	}
2057
2058	return NOTIFY_OK;
2059}
2060
2061
2062static int __init cpu_hotplug_pm_sync_init(void)
2063{
2064	/*
2065	 * cpu_hotplug_pm_callback has higher priority than x86
2066	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2067	 * to disable cpu hotplug to avoid cpu hotplug race.
2068	 */
2069	pm_notifier(cpu_hotplug_pm_callback, 0);
2070	return 0;
2071}
2072core_initcall(cpu_hotplug_pm_sync_init);
2073
2074#endif /* CONFIG_PM_SLEEP_SMP */
2075
2076int __boot_cpu_id;
2077
2078#endif /* CONFIG_SMP */
2079
2080/* Boot processor state steps */
2081static struct cpuhp_step cpuhp_hp_states[] = {
2082	[CPUHP_OFFLINE] = {
2083		.name			= "offline",
2084		.startup.single		= NULL,
2085		.teardown.single	= NULL,
2086	},
2087#ifdef CONFIG_SMP
2088	[CPUHP_CREATE_THREADS]= {
2089		.name			= "threads:prepare",
2090		.startup.single		= smpboot_create_threads,
2091		.teardown.single	= NULL,
2092		.cant_stop		= true,
2093	},
2094	[CPUHP_PERF_PREPARE] = {
2095		.name			= "perf:prepare",
2096		.startup.single		= perf_event_init_cpu,
2097		.teardown.single	= perf_event_exit_cpu,
2098	},
2099	[CPUHP_RANDOM_PREPARE] = {
2100		.name			= "random:prepare",
2101		.startup.single		= random_prepare_cpu,
2102		.teardown.single	= NULL,
2103	},
2104	[CPUHP_WORKQUEUE_PREP] = {
2105		.name			= "workqueue:prepare",
2106		.startup.single		= workqueue_prepare_cpu,
2107		.teardown.single	= NULL,
2108	},
2109	[CPUHP_HRTIMERS_PREPARE] = {
2110		.name			= "hrtimers:prepare",
2111		.startup.single		= hrtimers_prepare_cpu,
2112		.teardown.single	= NULL,
2113	},
2114	[CPUHP_SMPCFD_PREPARE] = {
2115		.name			= "smpcfd:prepare",
2116		.startup.single		= smpcfd_prepare_cpu,
2117		.teardown.single	= smpcfd_dead_cpu,
2118	},
2119	[CPUHP_RELAY_PREPARE] = {
2120		.name			= "relay:prepare",
2121		.startup.single		= relay_prepare_cpu,
2122		.teardown.single	= NULL,
2123	},
2124	[CPUHP_RCUTREE_PREP] = {
2125		.name			= "RCU/tree:prepare",
2126		.startup.single		= rcutree_prepare_cpu,
2127		.teardown.single	= rcutree_dead_cpu,
2128	},
2129	/*
2130	 * On the tear-down path, timers_dead_cpu() must be invoked
2131	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2132	 * otherwise a RCU stall occurs.
2133	 */
2134	[CPUHP_TIMERS_PREPARE] = {
2135		.name			= "timers:prepare",
2136		.startup.single		= timers_prepare_cpu,
2137		.teardown.single	= timers_dead_cpu,
2138	},
2139
2140#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2141	/*
2142	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2143	 * the next step will release it.
2144	 */
2145	[CPUHP_BP_KICK_AP] = {
2146		.name			= "cpu:kick_ap",
2147		.startup.single		= cpuhp_kick_ap_alive,
2148	},
2149
2150	/*
2151	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2152	 * releases it for the complete bringup.
2153	 */
2154	[CPUHP_BRINGUP_CPU] = {
2155		.name			= "cpu:bringup",
2156		.startup.single		= cpuhp_bringup_ap,
2157		.teardown.single	= finish_cpu,
2158		.cant_stop		= true,
2159	},
2160#else
2161	/*
2162	 * All-in-one CPU bringup state which includes the kick alive.
2163	 */
2164	[CPUHP_BRINGUP_CPU] = {
2165		.name			= "cpu:bringup",
2166		.startup.single		= bringup_cpu,
2167		.teardown.single	= finish_cpu,
2168		.cant_stop		= true,
2169	},
2170#endif
2171	/* Final state before CPU kills itself */
2172	[CPUHP_AP_IDLE_DEAD] = {
2173		.name			= "idle:dead",
2174	},
2175	/*
2176	 * Last state before CPU enters the idle loop to die. Transient state
2177	 * for synchronization.
2178	 */
2179	[CPUHP_AP_OFFLINE] = {
2180		.name			= "ap:offline",
2181		.cant_stop		= true,
2182	},
2183	/* First state is scheduler control. Interrupts are disabled */
2184	[CPUHP_AP_SCHED_STARTING] = {
2185		.name			= "sched:starting",
2186		.startup.single		= sched_cpu_starting,
2187		.teardown.single	= sched_cpu_dying,
2188	},
2189	[CPUHP_AP_RCUTREE_DYING] = {
2190		.name			= "RCU/tree:dying",
2191		.startup.single		= NULL,
2192		.teardown.single	= rcutree_dying_cpu,
2193	},
2194	[CPUHP_AP_SMPCFD_DYING] = {
2195		.name			= "smpcfd:dying",
2196		.startup.single		= NULL,
2197		.teardown.single	= smpcfd_dying_cpu,
2198	},
2199	[CPUHP_AP_HRTIMERS_DYING] = {
2200		.name			= "hrtimers:dying",
2201		.startup.single		= NULL,
2202		.teardown.single	= hrtimers_cpu_dying,
2203	},
2204	[CPUHP_AP_TICK_DYING] = {
2205		.name			= "tick:dying",
2206		.startup.single		= NULL,
2207		.teardown.single	= tick_cpu_dying,
2208	},
2209	/* Entry state on starting. Interrupts enabled from here on. Transient
2210	 * state for synchronsization */
2211	[CPUHP_AP_ONLINE] = {
2212		.name			= "ap:online",
2213	},
2214	/*
2215	 * Handled on control processor until the plugged processor manages
2216	 * this itself.
2217	 */
2218	[CPUHP_TEARDOWN_CPU] = {
2219		.name			= "cpu:teardown",
2220		.startup.single		= NULL,
2221		.teardown.single	= takedown_cpu,
2222		.cant_stop		= true,
2223	},
2224
2225	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2226		.name			= "sched:waitempty",
2227		.startup.single		= NULL,
2228		.teardown.single	= sched_cpu_wait_empty,
2229	},
2230
2231	/* Handle smpboot threads park/unpark */
2232	[CPUHP_AP_SMPBOOT_THREADS] = {
2233		.name			= "smpboot/threads:online",
2234		.startup.single		= smpboot_unpark_threads,
2235		.teardown.single	= smpboot_park_threads,
2236	},
2237	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2238		.name			= "irq/affinity:online",
2239		.startup.single		= irq_affinity_online_cpu,
2240		.teardown.single	= NULL,
2241	},
2242	[CPUHP_AP_PERF_ONLINE] = {
2243		.name			= "perf:online",
2244		.startup.single		= perf_event_init_cpu,
2245		.teardown.single	= perf_event_exit_cpu,
2246	},
2247	[CPUHP_AP_WATCHDOG_ONLINE] = {
2248		.name			= "lockup_detector:online",
2249		.startup.single		= lockup_detector_online_cpu,
2250		.teardown.single	= lockup_detector_offline_cpu,
2251	},
2252	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2253		.name			= "workqueue:online",
2254		.startup.single		= workqueue_online_cpu,
2255		.teardown.single	= workqueue_offline_cpu,
2256	},
2257	[CPUHP_AP_RANDOM_ONLINE] = {
2258		.name			= "random:online",
2259		.startup.single		= random_online_cpu,
2260		.teardown.single	= NULL,
2261	},
2262	[CPUHP_AP_RCUTREE_ONLINE] = {
2263		.name			= "RCU/tree:online",
2264		.startup.single		= rcutree_online_cpu,
2265		.teardown.single	= rcutree_offline_cpu,
2266	},
2267#endif
2268	/*
2269	 * The dynamically registered state space is here
2270	 */
2271
2272#ifdef CONFIG_SMP
2273	/* Last state is scheduler control setting the cpu active */
2274	[CPUHP_AP_ACTIVE] = {
2275		.name			= "sched:active",
2276		.startup.single		= sched_cpu_activate,
2277		.teardown.single	= sched_cpu_deactivate,
2278	},
2279#endif
2280
2281	/* CPU is fully up and running. */
2282	[CPUHP_ONLINE] = {
2283		.name			= "online",
2284		.startup.single		= NULL,
2285		.teardown.single	= NULL,
2286	},
2287};
2288
2289/* Sanity check for callbacks */
2290static int cpuhp_cb_check(enum cpuhp_state state)
2291{
2292	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2293		return -EINVAL;
2294	return 0;
2295}
2296
2297/*
2298 * Returns a free for dynamic slot assignment of the Online state. The states
2299 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2300 * by having no name assigned.
2301 */
2302static int cpuhp_reserve_state(enum cpuhp_state state)
2303{
2304	enum cpuhp_state i, end;
2305	struct cpuhp_step *step;
2306
2307	switch (state) {
2308	case CPUHP_AP_ONLINE_DYN:
2309		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2310		end = CPUHP_AP_ONLINE_DYN_END;
2311		break;
2312	case CPUHP_BP_PREPARE_DYN:
2313		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2314		end = CPUHP_BP_PREPARE_DYN_END;
2315		break;
2316	default:
2317		return -EINVAL;
2318	}
2319
2320	for (i = state; i <= end; i++, step++) {
2321		if (!step->name)
2322			return i;
2323	}
2324	WARN(1, "No more dynamic states available for CPU hotplug\n");
2325	return -ENOSPC;
2326}
2327
2328static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2329				 int (*startup)(unsigned int cpu),
2330				 int (*teardown)(unsigned int cpu),
2331				 bool multi_instance)
2332{
2333	/* (Un)Install the callbacks for further cpu hotplug operations */
2334	struct cpuhp_step *sp;
2335	int ret = 0;
2336
2337	/*
2338	 * If name is NULL, then the state gets removed.
2339	 *
2340	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2341	 * the first allocation from these dynamic ranges, so the removal
2342	 * would trigger a new allocation and clear the wrong (already
2343	 * empty) state, leaving the callbacks of the to be cleared state
2344	 * dangling, which causes wreckage on the next hotplug operation.
2345	 */
2346	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2347		     state == CPUHP_BP_PREPARE_DYN)) {
2348		ret = cpuhp_reserve_state(state);
2349		if (ret < 0)
2350			return ret;
2351		state = ret;
2352	}
2353	sp = cpuhp_get_step(state);
2354	if (name && sp->name)
2355		return -EBUSY;
2356
2357	sp->startup.single = startup;
2358	sp->teardown.single = teardown;
2359	sp->name = name;
2360	sp->multi_instance = multi_instance;
2361	INIT_HLIST_HEAD(&sp->list);
2362	return ret;
2363}
2364
2365static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2366{
2367	return cpuhp_get_step(state)->teardown.single;
2368}
2369
2370/*
2371 * Call the startup/teardown function for a step either on the AP or
2372 * on the current CPU.
2373 */
2374static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2375			    struct hlist_node *node)
2376{
2377	struct cpuhp_step *sp = cpuhp_get_step(state);
2378	int ret;
2379
2380	/*
2381	 * If there's nothing to do, we done.
2382	 * Relies on the union for multi_instance.
2383	 */
2384	if (cpuhp_step_empty(bringup, sp))
2385		return 0;
2386	/*
2387	 * The non AP bound callbacks can fail on bringup. On teardown
2388	 * e.g. module removal we crash for now.
2389	 */
2390#ifdef CONFIG_SMP
2391	if (cpuhp_is_ap_state(state))
2392		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2393	else
2394		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2395#else
2396	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2397#endif
2398	BUG_ON(ret && !bringup);
2399	return ret;
2400}
2401
2402/*
2403 * Called from __cpuhp_setup_state on a recoverable failure.
2404 *
2405 * Note: The teardown callbacks for rollback are not allowed to fail!
2406 */
2407static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2408				   struct hlist_node *node)
2409{
2410	int cpu;
2411
2412	/* Roll back the already executed steps on the other cpus */
2413	for_each_present_cpu(cpu) {
2414		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2415		int cpustate = st->state;
2416
2417		if (cpu >= failedcpu)
2418			break;
2419
2420		/* Did we invoke the startup call on that cpu ? */
2421		if (cpustate >= state)
2422			cpuhp_issue_call(cpu, state, false, node);
2423	}
2424}
2425
2426int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2427					  struct hlist_node *node,
2428					  bool invoke)
2429{
2430	struct cpuhp_step *sp;
2431	int cpu;
2432	int ret;
2433
2434	lockdep_assert_cpus_held();
2435
2436	sp = cpuhp_get_step(state);
2437	if (sp->multi_instance == false)
2438		return -EINVAL;
2439
2440	mutex_lock(&cpuhp_state_mutex);
2441
2442	if (!invoke || !sp->startup.multi)
2443		goto add_node;
2444
2445	/*
2446	 * Try to call the startup callback for each present cpu
2447	 * depending on the hotplug state of the cpu.
2448	 */
2449	for_each_present_cpu(cpu) {
2450		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2451		int cpustate = st->state;
2452
2453		if (cpustate < state)
2454			continue;
2455
2456		ret = cpuhp_issue_call(cpu, state, true, node);
2457		if (ret) {
2458			if (sp->teardown.multi)
2459				cpuhp_rollback_install(cpu, state, node);
2460			goto unlock;
2461		}
2462	}
2463add_node:
2464	ret = 0;
2465	hlist_add_head(node, &sp->list);
2466unlock:
2467	mutex_unlock(&cpuhp_state_mutex);
2468	return ret;
2469}
2470
2471int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2472			       bool invoke)
2473{
2474	int ret;
2475
2476	cpus_read_lock();
2477	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2478	cpus_read_unlock();
2479	return ret;
2480}
2481EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2482
2483/**
2484 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2485 * @state:		The state to setup
2486 * @name:		Name of the step
2487 * @invoke:		If true, the startup function is invoked for cpus where
2488 *			cpu state >= @state
2489 * @startup:		startup callback function
2490 * @teardown:		teardown callback function
2491 * @multi_instance:	State is set up for multiple instances which get
2492 *			added afterwards.
2493 *
2494 * The caller needs to hold cpus read locked while calling this function.
2495 * Return:
2496 *   On success:
2497 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2498 *      0 for all other states
2499 *   On failure: proper (negative) error code
2500 */
2501int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2502				   const char *name, bool invoke,
2503				   int (*startup)(unsigned int cpu),
2504				   int (*teardown)(unsigned int cpu),
2505				   bool multi_instance)
2506{
2507	int cpu, ret = 0;
2508	bool dynstate;
2509
2510	lockdep_assert_cpus_held();
2511
2512	if (cpuhp_cb_check(state) || !name)
2513		return -EINVAL;
2514
2515	mutex_lock(&cpuhp_state_mutex);
2516
2517	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2518				    multi_instance);
2519
2520	dynstate = state == CPUHP_AP_ONLINE_DYN;
2521	if (ret > 0 && dynstate) {
2522		state = ret;
2523		ret = 0;
2524	}
2525
2526	if (ret || !invoke || !startup)
2527		goto out;
2528
2529	/*
2530	 * Try to call the startup callback for each present cpu
2531	 * depending on the hotplug state of the cpu.
2532	 */
2533	for_each_present_cpu(cpu) {
2534		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2535		int cpustate = st->state;
2536
2537		if (cpustate < state)
2538			continue;
2539
2540		ret = cpuhp_issue_call(cpu, state, true, NULL);
2541		if (ret) {
2542			if (teardown)
2543				cpuhp_rollback_install(cpu, state, NULL);
2544			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2545			goto out;
2546		}
2547	}
2548out:
2549	mutex_unlock(&cpuhp_state_mutex);
2550	/*
2551	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2552	 * dynamically allocated state in case of success.
2553	 */
2554	if (!ret && dynstate)
2555		return state;
2556	return ret;
2557}
2558EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2559
2560int __cpuhp_setup_state(enum cpuhp_state state,
2561			const char *name, bool invoke,
2562			int (*startup)(unsigned int cpu),
2563			int (*teardown)(unsigned int cpu),
2564			bool multi_instance)
2565{
2566	int ret;
2567
2568	cpus_read_lock();
2569	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2570					     teardown, multi_instance);
2571	cpus_read_unlock();
2572	return ret;
2573}
2574EXPORT_SYMBOL(__cpuhp_setup_state);
2575
2576int __cpuhp_state_remove_instance(enum cpuhp_state state,
2577				  struct hlist_node *node, bool invoke)
2578{
2579	struct cpuhp_step *sp = cpuhp_get_step(state);
2580	int cpu;
2581
2582	BUG_ON(cpuhp_cb_check(state));
2583
2584	if (!sp->multi_instance)
2585		return -EINVAL;
2586
2587	cpus_read_lock();
2588	mutex_lock(&cpuhp_state_mutex);
2589
2590	if (!invoke || !cpuhp_get_teardown_cb(state))
2591		goto remove;
2592	/*
2593	 * Call the teardown callback for each present cpu depending
2594	 * on the hotplug state of the cpu. This function is not
2595	 * allowed to fail currently!
2596	 */
2597	for_each_present_cpu(cpu) {
2598		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2599		int cpustate = st->state;
2600
2601		if (cpustate >= state)
2602			cpuhp_issue_call(cpu, state, false, node);
2603	}
2604
2605remove:
2606	hlist_del(node);
2607	mutex_unlock(&cpuhp_state_mutex);
2608	cpus_read_unlock();
2609
2610	return 0;
2611}
2612EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2613
2614/**
2615 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2616 * @state:	The state to remove
2617 * @invoke:	If true, the teardown function is invoked for cpus where
2618 *		cpu state >= @state
2619 *
2620 * The caller needs to hold cpus read locked while calling this function.
2621 * The teardown callback is currently not allowed to fail. Think
2622 * about module removal!
2623 */
2624void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2625{
2626	struct cpuhp_step *sp = cpuhp_get_step(state);
2627	int cpu;
2628
2629	BUG_ON(cpuhp_cb_check(state));
2630
2631	lockdep_assert_cpus_held();
2632
2633	mutex_lock(&cpuhp_state_mutex);
2634	if (sp->multi_instance) {
2635		WARN(!hlist_empty(&sp->list),
2636		     "Error: Removing state %d which has instances left.\n",
2637		     state);
2638		goto remove;
2639	}
2640
2641	if (!invoke || !cpuhp_get_teardown_cb(state))
2642		goto remove;
2643
2644	/*
2645	 * Call the teardown callback for each present cpu depending
2646	 * on the hotplug state of the cpu. This function is not
2647	 * allowed to fail currently!
2648	 */
2649	for_each_present_cpu(cpu) {
2650		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2651		int cpustate = st->state;
2652
2653		if (cpustate >= state)
2654			cpuhp_issue_call(cpu, state, false, NULL);
2655	}
2656remove:
2657	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2658	mutex_unlock(&cpuhp_state_mutex);
2659}
2660EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2661
2662void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2663{
2664	cpus_read_lock();
2665	__cpuhp_remove_state_cpuslocked(state, invoke);
2666	cpus_read_unlock();
2667}
2668EXPORT_SYMBOL(__cpuhp_remove_state);
2669
2670#ifdef CONFIG_HOTPLUG_SMT
2671static void cpuhp_offline_cpu_device(unsigned int cpu)
2672{
2673	struct device *dev = get_cpu_device(cpu);
2674
2675	dev->offline = true;
2676	/* Tell user space about the state change */
2677	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2678}
2679
2680static void cpuhp_online_cpu_device(unsigned int cpu)
2681{
2682	struct device *dev = get_cpu_device(cpu);
2683
2684	dev->offline = false;
2685	/* Tell user space about the state change */
2686	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2687}
2688
2689int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2690{
2691	int cpu, ret = 0;
2692
2693	cpu_maps_update_begin();
2694	for_each_online_cpu(cpu) {
2695		if (topology_is_primary_thread(cpu))
2696			continue;
2697		/*
2698		 * Disable can be called with CPU_SMT_ENABLED when changing
2699		 * from a higher to lower number of SMT threads per core.
2700		 */
2701		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2702			continue;
2703		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2704		if (ret)
2705			break;
2706		/*
2707		 * As this needs to hold the cpu maps lock it's impossible
2708		 * to call device_offline() because that ends up calling
2709		 * cpu_down() which takes cpu maps lock. cpu maps lock
2710		 * needs to be held as this might race against in kernel
2711		 * abusers of the hotplug machinery (thermal management).
2712		 *
2713		 * So nothing would update device:offline state. That would
2714		 * leave the sysfs entry stale and prevent onlining after
2715		 * smt control has been changed to 'off' again. This is
2716		 * called under the sysfs hotplug lock, so it is properly
2717		 * serialized against the regular offline usage.
2718		 */
2719		cpuhp_offline_cpu_device(cpu);
2720	}
2721	if (!ret)
2722		cpu_smt_control = ctrlval;
2723	cpu_maps_update_done();
2724	return ret;
2725}
2726
2727int cpuhp_smt_enable(void)
2728{
2729	int cpu, ret = 0;
2730
2731	cpu_maps_update_begin();
2732	cpu_smt_control = CPU_SMT_ENABLED;
2733	for_each_present_cpu(cpu) {
2734		/* Skip online CPUs and CPUs on offline nodes */
2735		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2736			continue;
2737		if (!cpu_smt_thread_allowed(cpu))
2738			continue;
2739		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2740		if (ret)
2741			break;
2742		/* See comment in cpuhp_smt_disable() */
2743		cpuhp_online_cpu_device(cpu);
2744	}
2745	cpu_maps_update_done();
2746	return ret;
2747}
2748#endif
2749
2750#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2751static ssize_t state_show(struct device *dev,
2752			  struct device_attribute *attr, char *buf)
2753{
2754	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2755
2756	return sprintf(buf, "%d\n", st->state);
2757}
2758static DEVICE_ATTR_RO(state);
2759
2760static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2761			    const char *buf, size_t count)
2762{
2763	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2764	struct cpuhp_step *sp;
2765	int target, ret;
2766
2767	ret = kstrtoint(buf, 10, &target);
2768	if (ret)
2769		return ret;
2770
2771#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2772	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2773		return -EINVAL;
2774#else
2775	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2776		return -EINVAL;
2777#endif
2778
2779	ret = lock_device_hotplug_sysfs();
2780	if (ret)
2781		return ret;
2782
2783	mutex_lock(&cpuhp_state_mutex);
2784	sp = cpuhp_get_step(target);
2785	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2786	mutex_unlock(&cpuhp_state_mutex);
2787	if (ret)
2788		goto out;
2789
2790	if (st->state < target)
2791		ret = cpu_up(dev->id, target);
2792	else if (st->state > target)
2793		ret = cpu_down(dev->id, target);
2794	else if (WARN_ON(st->target != target))
2795		st->target = target;
2796out:
2797	unlock_device_hotplug();
2798	return ret ? ret : count;
2799}
2800
2801static ssize_t target_show(struct device *dev,
2802			   struct device_attribute *attr, char *buf)
2803{
2804	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2805
2806	return sprintf(buf, "%d\n", st->target);
2807}
2808static DEVICE_ATTR_RW(target);
2809
2810static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2811			  const char *buf, size_t count)
2812{
2813	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2814	struct cpuhp_step *sp;
2815	int fail, ret;
2816
2817	ret = kstrtoint(buf, 10, &fail);
2818	if (ret)
2819		return ret;
2820
2821	if (fail == CPUHP_INVALID) {
2822		st->fail = fail;
2823		return count;
2824	}
2825
2826	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2827		return -EINVAL;
2828
2829	/*
2830	 * Cannot fail STARTING/DYING callbacks.
2831	 */
2832	if (cpuhp_is_atomic_state(fail))
2833		return -EINVAL;
2834
2835	/*
2836	 * DEAD callbacks cannot fail...
2837	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2838	 * triggering STARTING callbacks, a failure in this state would
2839	 * hinder rollback.
2840	 */
2841	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2842		return -EINVAL;
2843
2844	/*
2845	 * Cannot fail anything that doesn't have callbacks.
2846	 */
2847	mutex_lock(&cpuhp_state_mutex);
2848	sp = cpuhp_get_step(fail);
2849	if (!sp->startup.single && !sp->teardown.single)
2850		ret = -EINVAL;
2851	mutex_unlock(&cpuhp_state_mutex);
2852	if (ret)
2853		return ret;
2854
2855	st->fail = fail;
2856
2857	return count;
2858}
2859
2860static ssize_t fail_show(struct device *dev,
2861			 struct device_attribute *attr, char *buf)
2862{
2863	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2864
2865	return sprintf(buf, "%d\n", st->fail);
2866}
2867
2868static DEVICE_ATTR_RW(fail);
2869
2870static struct attribute *cpuhp_cpu_attrs[] = {
2871	&dev_attr_state.attr,
2872	&dev_attr_target.attr,
2873	&dev_attr_fail.attr,
2874	NULL
2875};
2876
2877static const struct attribute_group cpuhp_cpu_attr_group = {
2878	.attrs = cpuhp_cpu_attrs,
2879	.name = "hotplug",
2880	NULL
2881};
2882
2883static ssize_t states_show(struct device *dev,
2884				 struct device_attribute *attr, char *buf)
2885{
2886	ssize_t cur, res = 0;
2887	int i;
2888
2889	mutex_lock(&cpuhp_state_mutex);
2890	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2891		struct cpuhp_step *sp = cpuhp_get_step(i);
2892
2893		if (sp->name) {
2894			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2895			buf += cur;
2896			res += cur;
2897		}
2898	}
2899	mutex_unlock(&cpuhp_state_mutex);
2900	return res;
2901}
2902static DEVICE_ATTR_RO(states);
2903
2904static struct attribute *cpuhp_cpu_root_attrs[] = {
2905	&dev_attr_states.attr,
2906	NULL
2907};
2908
2909static const struct attribute_group cpuhp_cpu_root_attr_group = {
2910	.attrs = cpuhp_cpu_root_attrs,
2911	.name = "hotplug",
2912	NULL
2913};
2914
2915#ifdef CONFIG_HOTPLUG_SMT
2916
2917static bool cpu_smt_num_threads_valid(unsigned int threads)
2918{
2919	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2920		return threads >= 1 && threads <= cpu_smt_max_threads;
2921	return threads == 1 || threads == cpu_smt_max_threads;
2922}
2923
2924static ssize_t
2925__store_smt_control(struct device *dev, struct device_attribute *attr,
2926		    const char *buf, size_t count)
2927{
2928	int ctrlval, ret, num_threads, orig_threads;
2929	bool force_off;
2930
2931	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2932		return -EPERM;
2933
2934	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2935		return -ENODEV;
2936
2937	if (sysfs_streq(buf, "on")) {
2938		ctrlval = CPU_SMT_ENABLED;
2939		num_threads = cpu_smt_max_threads;
2940	} else if (sysfs_streq(buf, "off")) {
2941		ctrlval = CPU_SMT_DISABLED;
2942		num_threads = 1;
2943	} else if (sysfs_streq(buf, "forceoff")) {
2944		ctrlval = CPU_SMT_FORCE_DISABLED;
2945		num_threads = 1;
2946	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2947		if (num_threads == 1)
2948			ctrlval = CPU_SMT_DISABLED;
2949		else if (cpu_smt_num_threads_valid(num_threads))
2950			ctrlval = CPU_SMT_ENABLED;
2951		else
2952			return -EINVAL;
2953	} else {
2954		return -EINVAL;
2955	}
2956
2957	ret = lock_device_hotplug_sysfs();
2958	if (ret)
2959		return ret;
2960
2961	orig_threads = cpu_smt_num_threads;
2962	cpu_smt_num_threads = num_threads;
2963
2964	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2965
2966	if (num_threads > orig_threads)
2967		ret = cpuhp_smt_enable();
2968	else if (num_threads < orig_threads || force_off)
2969		ret = cpuhp_smt_disable(ctrlval);
2970
2971	unlock_device_hotplug();
2972	return ret ? ret : count;
2973}
2974
2975#else /* !CONFIG_HOTPLUG_SMT */
2976static ssize_t
2977__store_smt_control(struct device *dev, struct device_attribute *attr,
2978		    const char *buf, size_t count)
2979{
2980	return -ENODEV;
2981}
2982#endif /* CONFIG_HOTPLUG_SMT */
2983
2984static const char *smt_states[] = {
2985	[CPU_SMT_ENABLED]		= "on",
2986	[CPU_SMT_DISABLED]		= "off",
2987	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2988	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2989	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2990};
2991
2992static ssize_t control_show(struct device *dev,
2993			    struct device_attribute *attr, char *buf)
2994{
2995	const char *state = smt_states[cpu_smt_control];
2996
2997#ifdef CONFIG_HOTPLUG_SMT
2998	/*
2999	 * If SMT is enabled but not all threads are enabled then show the
3000	 * number of threads. If all threads are enabled show "on". Otherwise
3001	 * show the state name.
3002	 */
3003	if (cpu_smt_control == CPU_SMT_ENABLED &&
3004	    cpu_smt_num_threads != cpu_smt_max_threads)
3005		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
3006#endif
3007
3008	return sysfs_emit(buf, "%s\n", state);
3009}
3010
3011static ssize_t control_store(struct device *dev, struct device_attribute *attr,
3012			     const char *buf, size_t count)
3013{
3014	return __store_smt_control(dev, attr, buf, count);
3015}
3016static DEVICE_ATTR_RW(control);
3017
3018static ssize_t active_show(struct device *dev,
3019			   struct device_attribute *attr, char *buf)
3020{
3021	return sysfs_emit(buf, "%d\n", sched_smt_active());
3022}
3023static DEVICE_ATTR_RO(active);
3024
3025static struct attribute *cpuhp_smt_attrs[] = {
3026	&dev_attr_control.attr,
3027	&dev_attr_active.attr,
3028	NULL
3029};
3030
3031static const struct attribute_group cpuhp_smt_attr_group = {
3032	.attrs = cpuhp_smt_attrs,
3033	.name = "smt",
3034	NULL
3035};
3036
3037static int __init cpu_smt_sysfs_init(void)
3038{
3039	struct device *dev_root;
3040	int ret = -ENODEV;
3041
3042	dev_root = bus_get_dev_root(&cpu_subsys);
3043	if (dev_root) {
3044		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3045		put_device(dev_root);
3046	}
3047	return ret;
3048}
3049
3050static int __init cpuhp_sysfs_init(void)
3051{
3052	struct device *dev_root;
3053	int cpu, ret;
3054
3055	ret = cpu_smt_sysfs_init();
3056	if (ret)
3057		return ret;
3058
3059	dev_root = bus_get_dev_root(&cpu_subsys);
3060	if (dev_root) {
3061		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3062		put_device(dev_root);
3063		if (ret)
3064			return ret;
3065	}
3066
3067	for_each_possible_cpu(cpu) {
3068		struct device *dev = get_cpu_device(cpu);
3069
3070		if (!dev)
3071			continue;
3072		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3073		if (ret)
3074			return ret;
3075	}
3076	return 0;
3077}
3078device_initcall(cpuhp_sysfs_init);
3079#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3080
3081/*
3082 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3083 * represents all NR_CPUS bits binary values of 1<<nr.
3084 *
3085 * It is used by cpumask_of() to get a constant address to a CPU
3086 * mask value that has a single bit set only.
3087 */
3088
3089/* cpu_bit_bitmap[0] is empty - so we can back into it */
3090#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3091#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3092#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3093#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3094
3095const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3096
3097	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3098	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3099#if BITS_PER_LONG > 32
3100	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3101	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3102#endif
3103};
3104EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3105
3106const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3107EXPORT_SYMBOL(cpu_all_bits);
3108
3109#ifdef CONFIG_INIT_ALL_POSSIBLE
3110struct cpumask __cpu_possible_mask __ro_after_init
3111	= {CPU_BITS_ALL};
3112#else
3113struct cpumask __cpu_possible_mask __ro_after_init;
3114#endif
3115EXPORT_SYMBOL(__cpu_possible_mask);
3116
3117struct cpumask __cpu_online_mask __read_mostly;
3118EXPORT_SYMBOL(__cpu_online_mask);
3119
3120struct cpumask __cpu_present_mask __read_mostly;
3121EXPORT_SYMBOL(__cpu_present_mask);
3122
3123struct cpumask __cpu_active_mask __read_mostly;
3124EXPORT_SYMBOL(__cpu_active_mask);
3125
3126struct cpumask __cpu_dying_mask __read_mostly;
3127EXPORT_SYMBOL(__cpu_dying_mask);
3128
3129atomic_t __num_online_cpus __read_mostly;
3130EXPORT_SYMBOL(__num_online_cpus);
3131
3132void init_cpu_present(const struct cpumask *src)
3133{
3134	cpumask_copy(&__cpu_present_mask, src);
3135}
3136
3137void init_cpu_possible(const struct cpumask *src)
3138{
3139	cpumask_copy(&__cpu_possible_mask, src);
3140}
3141
3142void init_cpu_online(const struct cpumask *src)
3143{
3144	cpumask_copy(&__cpu_online_mask, src);
3145}
3146
3147void set_cpu_online(unsigned int cpu, bool online)
3148{
3149	/*
3150	 * atomic_inc/dec() is required to handle the horrid abuse of this
3151	 * function by the reboot and kexec code which invoke it from
3152	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3153	 * regular CPU hotplug is properly serialized.
3154	 *
3155	 * Note, that the fact that __num_online_cpus is of type atomic_t
3156	 * does not protect readers which are not serialized against
3157	 * concurrent hotplug operations.
3158	 */
3159	if (online) {
3160		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3161			atomic_inc(&__num_online_cpus);
3162	} else {
3163		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3164			atomic_dec(&__num_online_cpus);
3165	}
3166}
3167
3168/*
3169 * Activate the first processor.
3170 */
3171void __init boot_cpu_init(void)
3172{
3173	int cpu = smp_processor_id();
3174
3175	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3176	set_cpu_online(cpu, true);
3177	set_cpu_active(cpu, true);
3178	set_cpu_present(cpu, true);
3179	set_cpu_possible(cpu, true);
3180
3181#ifdef CONFIG_SMP
3182	__boot_cpu_id = cpu;
3183#endif
3184}
3185
3186/*
3187 * Must be called _AFTER_ setting up the per_cpu areas
3188 */
3189void __init boot_cpu_hotplug_init(void)
3190{
3191#ifdef CONFIG_SMP
3192	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3193	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3194#endif
3195	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3196	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3197}
3198
3199/*
3200 * These are used for a global "mitigations=" cmdline option for toggling
3201 * optional CPU mitigations.
3202 */
3203enum cpu_mitigations {
3204	CPU_MITIGATIONS_OFF,
3205	CPU_MITIGATIONS_AUTO,
3206	CPU_MITIGATIONS_AUTO_NOSMT,
3207};
3208
3209static enum cpu_mitigations cpu_mitigations __ro_after_init =
3210	IS_ENABLED(CONFIG_SPECULATION_MITIGATIONS) ? CPU_MITIGATIONS_AUTO :
3211						     CPU_MITIGATIONS_OFF;
3212
3213static int __init mitigations_parse_cmdline(char *arg)
3214{
3215	if (!strcmp(arg, "off"))
3216		cpu_mitigations = CPU_MITIGATIONS_OFF;
3217	else if (!strcmp(arg, "auto"))
3218		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3219	else if (!strcmp(arg, "auto,nosmt"))
3220		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3221	else
3222		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3223			arg);
3224
3225	return 0;
3226}
3227early_param("mitigations", mitigations_parse_cmdline);
3228
3229/* mitigations=off */
3230bool cpu_mitigations_off(void)
3231{
3232	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3233}
3234EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3235
3236/* mitigations=auto,nosmt */
3237bool cpu_mitigations_auto_nosmt(void)
3238{
3239	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3240}
3241EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3242